blob: 6d2abac30c5c67bec4ad5a89235445e5d010505f [file] [log] [blame]
// Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "update_engine/utils.h"
#include <attr/xattr.h>
#include <sys/mount.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <algorithm>
#include <vector>
#include <base/files/file_path.h>
#include <base/file_util.h>
#include <base/logging.h>
#include <base/posix/eintr_wrapper.h>
#include <base/rand_util.h>
#include <base/strings/string_number_conversions.h>
#include <base/strings/string_split.h>
#include <base/strings/string_util.h>
#include <base/strings/stringprintf.h>
#include <glib.h>
#include <google/protobuf/stubs/common.h>
#include "update_engine/clock_interface.h"
#include "update_engine/constants.h"
#include "update_engine/file_writer.h"
#include "update_engine/omaha_request_params.h"
#include "update_engine/prefs_interface.h"
#include "update_engine/subprocess.h"
#include "update_engine/system_state.h"
#include "update_engine/update_attempter.h"
using base::Time;
using base::TimeDelta;
using std::min;
using std::pair;
using std::string;
using std::vector;
namespace chromeos_update_engine {
namespace {
// The following constants control how UnmountFilesystem should retry if
// umount() fails with an errno EBUSY, i.e. retry 5 times over the course of
// one second.
const int kUnmountMaxNumOfRetries = 5;
const int kUnmountRetryIntervalInMicroseconds = 200 * 1000; // 200 ms
// Number of bytes to read from a file to attempt to detect its contents. Used
// in GetFileFormat.
const int kGetFileFormatMaxHeaderSize = 32;
} // namespace
namespace utils {
// Cgroup container is created in update-engine's upstart script located at
// /etc/init/update-engine.conf.
static const char kCGroupDir[] = "/sys/fs/cgroup/cpu/update-engine";
string ParseECVersion(string input_line) {
TrimWhitespaceASCII(input_line, TRIM_ALL, &input_line);
// At this point we want to convert the format key=value pair from mosys to
// a vector of key value pairs.
vector<pair<string, string> > kv_pairs;
if (base::SplitStringIntoKeyValuePairs(input_line, '=', ' ', &kv_pairs)) {
for (vector<pair<string, string> >::iterator it = kv_pairs.begin();
it != kv_pairs.end(); ++it) {
// Finally match against the fw_verion which may have quotes.
if (it->first == "fw_version") {
string output;
// Trim any quotes.
base::TrimString(it->second, "\"", &output);
return output;
}
}
}
LOG(ERROR) << "Unable to parse fwid from ec info.";
return "";
}
const string KernelDeviceOfBootDevice(const string& boot_device) {
string kernel_partition_name;
string disk_name;
int partition_num;
if (SplitPartitionName(boot_device, &disk_name, &partition_num)) {
if (disk_name == "/dev/ubiblock") {
// Special case for NAND devices.
// eg: /dev/ubiblock3_0 becomes /dev/mtdblock2
disk_name = "/dev/mtdblock";
}
// Currently this assumes the partition number of the boot device is
// 3, 5, or 7, and changes it to 2, 4, or 6, respectively, to
// get the kernel device.
if (partition_num == 3 || partition_num == 5 || partition_num == 7) {
kernel_partition_name = MakePartitionName(disk_name, partition_num - 1);
}
}
return kernel_partition_name;
}
bool WriteFile(const char* path, const char* data, int data_len) {
DirectFileWriter writer;
TEST_AND_RETURN_FALSE_ERRNO(0 == writer.Open(path,
O_WRONLY | O_CREAT | O_TRUNC,
0600));
ScopedFileWriterCloser closer(&writer);
TEST_AND_RETURN_FALSE_ERRNO(writer.Write(data, data_len));
return true;
}
bool WriteAll(int fd, const void* buf, size_t count) {
const char* c_buf = static_cast<const char*>(buf);
ssize_t bytes_written = 0;
while (bytes_written < static_cast<ssize_t>(count)) {
ssize_t rc = write(fd, c_buf + bytes_written, count - bytes_written);
TEST_AND_RETURN_FALSE_ERRNO(rc >= 0);
bytes_written += rc;
}
return true;
}
bool PWriteAll(int fd, const void* buf, size_t count, off_t offset) {
const char* c_buf = static_cast<const char*>(buf);
size_t bytes_written = 0;
int num_attempts = 0;
while (bytes_written < count) {
num_attempts++;
ssize_t rc = pwrite(fd, c_buf + bytes_written, count - bytes_written,
offset + bytes_written);
// TODO(garnold) for debugging failure in chromium-os:31077; to be removed.
if (rc < 0) {
PLOG(ERROR) << "pwrite error; num_attempts=" << num_attempts
<< " bytes_written=" << bytes_written
<< " count=" << count << " offset=" << offset;
}
TEST_AND_RETURN_FALSE_ERRNO(rc >= 0);
bytes_written += rc;
}
return true;
}
bool PReadAll(int fd, void* buf, size_t count, off_t offset,
ssize_t* out_bytes_read) {
char* c_buf = static_cast<char*>(buf);
ssize_t bytes_read = 0;
while (bytes_read < static_cast<ssize_t>(count)) {
ssize_t rc = pread(fd, c_buf + bytes_read, count - bytes_read,
offset + bytes_read);
TEST_AND_RETURN_FALSE_ERRNO(rc >= 0);
if (rc == 0) {
break;
}
bytes_read += rc;
}
*out_bytes_read = bytes_read;
return true;
}
// Append |nbytes| of content from |buf| to the vector pointed to by either
// |vec_p| or |str_p|.
static void AppendBytes(const char* buf, size_t nbytes,
std::vector<char>* vec_p) {
CHECK(buf);
CHECK(vec_p);
vec_p->insert(vec_p->end(), buf, buf + nbytes);
}
static void AppendBytes(const char* buf, size_t nbytes,
std::string* str_p) {
CHECK(buf);
CHECK(str_p);
str_p->append(buf, nbytes);
}
// Reads from an open file |fp|, appending the read content to the container
// pointer to by |out_p|. Returns true upon successful reading all of the
// file's content, false otherwise. If |size| is not -1, reads up to |size|
// bytes.
template <class T>
static bool Read(FILE* fp, off_t size, T* out_p) {
CHECK(fp);
CHECK(size == -1 || size >= 0);
char buf[1024];
while (size == -1 || size > 0) {
off_t bytes_to_read = sizeof(buf);
if (size > 0 && bytes_to_read > size) {
bytes_to_read = size;
}
size_t nbytes = fread(buf, 1, bytes_to_read, fp);
if (!nbytes) {
break;
}
AppendBytes(buf, nbytes, out_p);
if (size != -1) {
CHECK(size >= static_cast<off_t>(nbytes));
size -= nbytes;
}
}
if (ferror(fp)) {
return false;
}
return size == 0 || feof(fp);
}
// Opens a file |path| for reading and appends its the contents to a container
// |out_p|. Starts reading the file from |offset|. If |offset| is beyond the end
// of the file, returns success. If |size| is not -1, reads up to |size| bytes.
template <class T>
static bool ReadFileChunkAndAppend(const std::string& path,
off_t offset,
off_t size,
T* out_p) {
CHECK_GE(offset, 0);
CHECK(size == -1 || size >= 0);
file_util::ScopedFILE fp(fopen(path.c_str(), "r"));
if (!fp.get())
return false;
if (offset) {
// Return success without appending any data if a chunk beyond the end of
// the file is requested.
if (offset >= FileSize(path)) {
return true;
}
TEST_AND_RETURN_FALSE_ERRNO(fseek(fp.get(), offset, SEEK_SET) == 0);
}
return Read(fp.get(), size, out_p);
}
// Invokes a pipe |cmd|, then uses |append_func| to append its stdout to a
// container |out_p|.
template <class T>
static bool ReadPipeAndAppend(const std::string& cmd, T* out_p) {
FILE* fp = popen(cmd.c_str(), "r");
if (!fp)
return false;
bool success = Read(fp, -1, out_p);
return (success && pclose(fp) >= 0);
}
bool ReadFile(const string& path, vector<char>* out_p) {
return ReadFileChunkAndAppend(path, 0, -1, out_p);
}
bool ReadFile(const string& path, string* out_p) {
return ReadFileChunkAndAppend(path, 0, -1, out_p);
}
bool ReadFileChunk(const string& path, off_t offset, off_t size,
vector<char>* out_p) {
return ReadFileChunkAndAppend(path, offset, size, out_p);
}
bool ReadPipe(const string& cmd, vector<char>* out_p) {
return ReadPipeAndAppend(cmd, out_p);
}
bool ReadPipe(const string& cmd, string* out_p) {
return ReadPipeAndAppend(cmd, out_p);
}
off_t FileSize(const string& path) {
struct stat stbuf;
int rc = stat(path.c_str(), &stbuf);
CHECK_EQ(rc, 0);
if (rc < 0)
return rc;
return stbuf.st_size;
}
void HexDumpArray(const unsigned char* const arr, const size_t length) {
const unsigned char* const char_arr =
reinterpret_cast<const unsigned char* const>(arr);
LOG(INFO) << "Logging array of length: " << length;
const unsigned int bytes_per_line = 16;
for (uint32_t i = 0; i < length; i += bytes_per_line) {
const unsigned int bytes_remaining = length - i;
const unsigned int bytes_per_this_line = min(bytes_per_line,
bytes_remaining);
char header[100];
int r = snprintf(header, sizeof(header), "0x%08x : ", i);
TEST_AND_RETURN(r == 13);
string line = header;
for (unsigned int j = 0; j < bytes_per_this_line; j++) {
char buf[20];
unsigned char c = char_arr[i + j];
r = snprintf(buf, sizeof(buf), "%02x ", static_cast<unsigned int>(c));
TEST_AND_RETURN(r == 3);
line += buf;
}
LOG(INFO) << line;
}
}
namespace {
class ScopedDirCloser {
public:
explicit ScopedDirCloser(DIR** dir) : dir_(dir) {}
~ScopedDirCloser() {
if (dir_ && *dir_) {
int r = closedir(*dir_);
TEST_AND_RETURN_ERRNO(r == 0);
*dir_ = NULL;
dir_ = NULL;
}
}
private:
DIR** dir_;
};
} // namespace {}
bool RecursiveUnlinkDir(const std::string& path) {
struct stat stbuf;
int r = lstat(path.c_str(), &stbuf);
TEST_AND_RETURN_FALSE_ERRNO((r == 0) || (errno == ENOENT));
if ((r < 0) && (errno == ENOENT))
// path request is missing. that's fine.
return true;
if (!S_ISDIR(stbuf.st_mode)) {
TEST_AND_RETURN_FALSE_ERRNO((unlink(path.c_str()) == 0) ||
(errno == ENOENT));
// success or path disappeared before we could unlink.
return true;
}
{
// We have a dir, unlink all children, then delete dir
DIR *dir = opendir(path.c_str());
TEST_AND_RETURN_FALSE_ERRNO(dir);
ScopedDirCloser dir_closer(&dir);
struct dirent dir_entry;
struct dirent *dir_entry_p;
int err = 0;
while ((err = readdir_r(dir, &dir_entry, &dir_entry_p)) == 0) {
if (dir_entry_p == NULL) {
// end of stream reached
break;
}
// Skip . and ..
if (!strcmp(dir_entry_p->d_name, ".") ||
!strcmp(dir_entry_p->d_name, ".."))
continue;
TEST_AND_RETURN_FALSE(RecursiveUnlinkDir(path + "/" +
dir_entry_p->d_name));
}
TEST_AND_RETURN_FALSE(err == 0);
}
// unlink dir
TEST_AND_RETURN_FALSE_ERRNO((rmdir(path.c_str()) == 0) || (errno == ENOENT));
return true;
}
std::string GetDiskName(const string& partition_name) {
std::string disk_name;
return SplitPartitionName(partition_name, &disk_name, nullptr) ?
disk_name : std::string();
}
int GetPartitionNumber(const std::string& partition_name) {
int partition_num = 0;
return SplitPartitionName(partition_name, nullptr, &partition_num) ?
partition_num : 0;
}
bool SplitPartitionName(const std::string& partition_name,
std::string* out_disk_name,
int* out_partition_num) {
if (!StringHasPrefix(partition_name, "/dev/")) {
LOG(ERROR) << "Invalid partition device name: " << partition_name;
return false;
}
size_t last_nondigit_pos = partition_name.find_last_not_of("0123456789");
if (last_nondigit_pos == string::npos ||
(last_nondigit_pos + 1) == partition_name.size()) {
LOG(ERROR) << "Unable to parse partition device name: " << partition_name;
return false;
}
size_t partition_name_len = std::string::npos;
if (partition_name[last_nondigit_pos] == '_') {
// NAND block devices have weird naming which could be something
// like "/dev/ubiblock2_0". We discard "_0" in such a case.
size_t prev_nondigit_pos =
partition_name.find_last_not_of("0123456789", last_nondigit_pos - 1);
if (prev_nondigit_pos == string::npos ||
(prev_nondigit_pos + 1) == last_nondigit_pos) {
LOG(ERROR) << "Unable to parse partition device name: " << partition_name;
return false;
}
partition_name_len = last_nondigit_pos - prev_nondigit_pos;
last_nondigit_pos = prev_nondigit_pos;
}
if (out_disk_name) {
// Special case for MMC devices which have the following naming scheme:
// mmcblk0p2
size_t disk_name_len = last_nondigit_pos;
if (partition_name[last_nondigit_pos] != 'p' ||
last_nondigit_pos == 0 ||
!isdigit(partition_name[last_nondigit_pos - 1])) {
disk_name_len++;
}
*out_disk_name = partition_name.substr(0, disk_name_len);
}
if (out_partition_num) {
std::string partition_str = partition_name.substr(last_nondigit_pos + 1,
partition_name_len);
*out_partition_num = atoi(partition_str.c_str());
}
return true;
}
std::string MakePartitionName(const std::string& disk_name,
int partition_num) {
if (!StringHasPrefix(disk_name, "/dev/")) {
LOG(ERROR) << "Invalid disk name: " << disk_name;
return std::string();
}
if (partition_num < 1) {
LOG(ERROR) << "Invalid partition number: " << partition_num;
return std::string();
}
std::string partition_name = disk_name;
if (isdigit(partition_name.back())) {
// Special case for devices with names ending with a digit.
// Add "p" to separate the disk name from partition number,
// e.g. "/dev/loop0p2"
partition_name += 'p';
}
partition_name += std::to_string(partition_num);
if (StringHasPrefix(partition_name, "/dev/ubiblock")) {
// Special case for UBI block devieces that have "_0" suffix.
partition_name += "_0";
}
return partition_name;
}
string SysfsBlockDevice(const string& device) {
base::FilePath device_path(device);
if (device_path.DirName().value() != "/dev") {
return "";
}
return base::FilePath("/sys/block").Append(device_path.BaseName()).value();
}
bool IsRemovableDevice(const std::string& device) {
string sysfs_block = SysfsBlockDevice(device);
string removable;
if (sysfs_block.empty() ||
!base::ReadFileToString(base::FilePath(sysfs_block).Append("removable"),
&removable)) {
return false;
}
TrimWhitespaceASCII(removable, TRIM_ALL, &removable);
return removable == "1";
}
std::string ErrnoNumberAsString(int err) {
char buf[100];
buf[0] = '\0';
return strerror_r(err, buf, sizeof(buf));
}
std::string NormalizePath(const std::string& path, bool strip_trailing_slash) {
string ret;
bool last_insert_was_slash = false;
for (string::const_iterator it = path.begin(); it != path.end(); ++it) {
if (*it == '/') {
if (last_insert_was_slash)
continue;
last_insert_was_slash = true;
} else {
last_insert_was_slash = false;
}
ret.push_back(*it);
}
if (strip_trailing_slash && last_insert_was_slash) {
string::size_type last_non_slash = ret.find_last_not_of('/');
if (last_non_slash != string::npos) {
ret.resize(last_non_slash + 1);
} else {
ret = "";
}
}
return ret;
}
bool FileExists(const char* path) {
struct stat stbuf;
return 0 == lstat(path, &stbuf);
}
bool IsSymlink(const char* path) {
struct stat stbuf;
return lstat(path, &stbuf) == 0 && S_ISLNK(stbuf.st_mode) != 0;
}
std::string TempFilename(string path) {
static const string suffix("XXXXXX");
CHECK(StringHasSuffix(path, suffix));
do {
string new_suffix;
for (unsigned int i = 0; i < suffix.size(); i++) {
int r = rand() % (26 * 2 + 10); // [a-zA-Z0-9]
if (r < 26)
new_suffix.append(1, 'a' + r);
else if (r < (26 * 2))
new_suffix.append(1, 'A' + r - 26);
else
new_suffix.append(1, '0' + r - (26 * 2));
}
CHECK_EQ(new_suffix.size(), suffix.size());
path.resize(path.size() - new_suffix.size());
path.append(new_suffix);
} while (FileExists(path.c_str()));
return path;
}
// If |path| is absolute, or explicit relative to the current working directory,
// leaves it as is. Otherwise, if TMPDIR is defined in the environment and is
// non-empty, prepends it to |path|. Otherwise, prepends /tmp. Returns the
// resulting path.
static const string PrependTmpdir(const string& path) {
if (path[0] == '/' || StartsWithASCII(path, "./", true) ||
StartsWithASCII(path, "../", true))
return path;
const char *tmpdir = getenv("TMPDIR");
const string prefix = (tmpdir && *tmpdir ? tmpdir : "/tmp");
return prefix + "/" + path;
}
bool MakeTempFile(const std::string& base_filename_template,
std::string* filename,
int* fd) {
const string filename_template = PrependTmpdir(base_filename_template);
DCHECK(filename || fd);
vector<char> buf(filename_template.size() + 1);
memcpy(&buf[0], filename_template.data(), filename_template.size());
buf[filename_template.size()] = '\0';
int mkstemp_fd = mkstemp(&buf[0]);
TEST_AND_RETURN_FALSE_ERRNO(mkstemp_fd >= 0);
if (filename) {
*filename = &buf[0];
}
if (fd) {
*fd = mkstemp_fd;
} else {
close(mkstemp_fd);
}
return true;
}
bool MakeTempDirectory(const std::string& base_dirname_template,
std::string* dirname) {
const string dirname_template = PrependTmpdir(base_dirname_template);
DCHECK(dirname);
vector<char> buf(dirname_template.size() + 1);
memcpy(&buf[0], dirname_template.data(), dirname_template.size());
buf[dirname_template.size()] = '\0';
char* return_code = mkdtemp(&buf[0]);
TEST_AND_RETURN_FALSE_ERRNO(return_code != NULL);
*dirname = &buf[0];
return true;
}
bool StringHasSuffix(const std::string& str, const std::string& suffix) {
if (suffix.size() > str.size())
return false;
return 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
}
bool StringHasPrefix(const std::string& str, const std::string& prefix) {
if (prefix.size() > str.size())
return false;
return 0 == str.compare(0, prefix.size(), prefix);
}
bool MountFilesystem(const string& device,
const string& mountpoint,
unsigned long mountflags) {
int rc = mount(device.c_str(), mountpoint.c_str(), "ext3", mountflags, NULL);
if (rc < 0) {
string msg = ErrnoNumberAsString(errno);
LOG(ERROR) << "Unable to mount destination device: " << msg << ". "
<< device << " on " << mountpoint;
return false;
}
return true;
}
bool UnmountFilesystem(const string& mountpoint) {
for (int num_retries = 0; ; ++num_retries) {
if (umount(mountpoint.c_str()) == 0)
break;
TEST_AND_RETURN_FALSE_ERRNO(errno == EBUSY &&
num_retries < kUnmountMaxNumOfRetries);
g_usleep(kUnmountRetryIntervalInMicroseconds);
}
return true;
}
bool GetFilesystemSize(const std::string& device,
int* out_block_count,
int* out_block_size) {
int fd = HANDLE_EINTR(open(device.c_str(), O_RDONLY));
TEST_AND_RETURN_FALSE(fd >= 0);
ScopedFdCloser fd_closer(&fd);
return GetFilesystemSizeFromFD(fd, out_block_count, out_block_size);
}
bool GetFilesystemSizeFromFD(int fd,
int* out_block_count,
int* out_block_size) {
TEST_AND_RETURN_FALSE(fd >= 0);
// Determine the ext3 filesystem size by directly reading the block count and
// block size information from the superblock. See include/linux/ext3_fs.h for
// more details on the structure.
ssize_t kBufferSize = 16 * sizeof(uint32_t);
char buffer[kBufferSize];
const int kSuperblockOffset = 1024;
if (HANDLE_EINTR(pread(fd, buffer, kBufferSize, kSuperblockOffset)) !=
kBufferSize) {
PLOG(ERROR) << "Unable to determine file system size:";
return false;
}
uint32_t block_count; // ext3_fs.h: ext3_super_block.s_blocks_count
uint32_t log_block_size; // ext3_fs.h: ext3_super_block.s_log_block_size
uint16_t magic; // ext3_fs.h: ext3_super_block.s_magic
memcpy(&block_count, &buffer[1 * sizeof(int32_t)], sizeof(block_count));
memcpy(&log_block_size, &buffer[6 * sizeof(int32_t)], sizeof(log_block_size));
memcpy(&magic, &buffer[14 * sizeof(int32_t)], sizeof(magic));
block_count = le32toh(block_count);
const int kExt3MinBlockLogSize = 10; // ext3_fs.h: EXT3_MIN_BLOCK_LOG_SIZE
log_block_size = le32toh(log_block_size) + kExt3MinBlockLogSize;
magic = le16toh(magic);
// Sanity check the parameters.
const uint16_t kExt3SuperMagic = 0xef53; // ext3_fs.h: EXT3_SUPER_MAGIC
TEST_AND_RETURN_FALSE(magic == kExt3SuperMagic);
const int kExt3MinBlockSize = 1024; // ext3_fs.h: EXT3_MIN_BLOCK_SIZE
const int kExt3MaxBlockSize = 4096; // ext3_fs.h: EXT3_MAX_BLOCK_SIZE
int block_size = 1 << log_block_size;
TEST_AND_RETURN_FALSE(block_size >= kExt3MinBlockSize &&
block_size <= kExt3MaxBlockSize);
TEST_AND_RETURN_FALSE(block_count > 0);
if (out_block_count) {
*out_block_count = block_count;
}
if (out_block_size) {
*out_block_size = block_size;
}
return true;
}
// Tries to parse the header of an ELF file to obtain a human-readable
// description of it on the |output| string.
static bool GetFileFormatELF(const char* buffer, size_t size, string* output) {
// 0x00: EI_MAG - ELF magic header, 4 bytes.
if (size < 4 || memcmp(buffer, "\x7F""ELF", 4) != 0)
return false;
*output = "ELF";
// 0x04: EI_CLASS, 1 byte.
if (size < 0x04 + 1)
return true;
switch (buffer[4]) {
case 1:
*output += " 32-bit";
break;
case 2:
*output += " 64-bit";
break;
default:
*output += " ?-bit";
}
// 0x05: EI_DATA, endianness, 1 byte.
if (size < 0x05 + 1)
return true;
char ei_data = buffer[5];
switch (ei_data) {
case 1:
*output += " little-endian";
break;
case 2:
*output += " big-endian";
break;
default:
*output += " ?-endian";
// Don't parse anything after the 0x10 offset if endianness is unknown.
return true;
}
// 0x12: e_machine, 2 byte endianness based on ei_data
if (size < 0x12 + 2)
return true;
uint16 e_machine = *reinterpret_cast<const uint16*>(buffer+0x12);
// Fix endianess regardless of the host endianess.
if (ei_data == 1)
e_machine = le16toh(e_machine);
else
e_machine = be16toh(e_machine);
switch (e_machine) {
case 0x03:
*output += " x86";
break;
case 0x28:
*output += " arm";
break;
case 0x3E:
*output += " x86-64";
break;
default:
*output += " unknown-arch";
}
return true;
}
string GetFileFormat(const string& path) {
vector<char> buffer;
if (!ReadFileChunkAndAppend(path, 0, kGetFileFormatMaxHeaderSize, &buffer))
return "File not found.";
string result;
if (GetFileFormatELF(buffer.data(), buffer.size(), &result))
return result;
return "data";
}
bool GetBootloader(BootLoader* out_bootloader) {
// For now, hardcode to syslinux.
*out_bootloader = BootLoader_SYSLINUX;
return true;
}
string GetAndFreeGError(GError** error) {
if (!*error) {
return "Unknown GLib error.";
}
string message =
base::StringPrintf("GError(%d): %s",
(*error)->code,
(*error)->message ? (*error)->message : "(unknown)");
g_error_free(*error);
*error = NULL;
return message;
}
bool Reboot() {
vector<string> command;
command.push_back("/sbin/shutdown");
command.push_back("-r");
command.push_back("now");
int rc = 0;
Subprocess::SynchronousExec(command, &rc, NULL);
TEST_AND_RETURN_FALSE(rc == 0);
return true;
}
namespace {
// Do the actual trigger. We do it as a main-loop callback to (try to) get a
// consistent stack trace.
gboolean TriggerCrashReporterUpload(void* unused) {
pid_t pid = fork();
CHECK(pid >= 0) << "fork failed"; // fork() failed. Something is very wrong.
if (pid == 0) {
// We are the child. Crash.
abort(); // never returns
}
// We are the parent. Wait for child to terminate.
pid_t result = waitpid(pid, NULL, 0);
LOG_IF(ERROR, result < 0) << "waitpid() failed";
return FALSE; // Don't call this callback again
}
} // namespace {}
void ScheduleCrashReporterUpload() {
g_idle_add(&TriggerCrashReporterUpload, NULL);
}
bool SetCpuShares(CpuShares shares) {
string string_shares = base::IntToString(static_cast<int>(shares));
string cpu_shares_file = string(utils::kCGroupDir) + "/cpu.shares";
LOG(INFO) << "Setting cgroup cpu shares to " << string_shares;
if(utils::WriteFile(cpu_shares_file.c_str(), string_shares.c_str(),
string_shares.size())){
return true;
} else {
LOG(ERROR) << "Failed to change cgroup cpu shares to "<< string_shares
<< " using " << cpu_shares_file;
return false;
}
}
int CompareCpuShares(CpuShares shares_lhs,
CpuShares shares_rhs) {
return static_cast<int>(shares_lhs) - static_cast<int>(shares_rhs);
}
int FuzzInt(int value, unsigned int range) {
int min = value - range / 2;
int max = value + range - range / 2;
return base::RandInt(min, max);
}
gboolean GlibRunClosure(gpointer data) {
google::protobuf::Closure* callback =
reinterpret_cast<google::protobuf::Closure*>(data);
callback->Run();
return FALSE;
}
string FormatSecs(unsigned secs) {
return FormatTimeDelta(TimeDelta::FromSeconds(secs));
}
string FormatTimeDelta(TimeDelta delta) {
// Canonicalize into days, hours, minutes, seconds and microseconds.
unsigned days = delta.InDays();
delta -= TimeDelta::FromDays(days);
unsigned hours = delta.InHours();
delta -= TimeDelta::FromHours(hours);
unsigned mins = delta.InMinutes();
delta -= TimeDelta::FromMinutes(mins);
unsigned secs = delta.InSeconds();
delta -= TimeDelta::FromSeconds(secs);
unsigned usecs = delta.InMicroseconds();
// Construct and return string.
string str;
if (days)
base::StringAppendF(&str, "%ud", days);
if (days || hours)
base::StringAppendF(&str, "%uh", hours);
if (days || hours || mins)
base::StringAppendF(&str, "%um", mins);
base::StringAppendF(&str, "%u", secs);
if (usecs) {
int width = 6;
while ((usecs / 10) * 10 == usecs) {
usecs /= 10;
width--;
}
base::StringAppendF(&str, ".%0*u", width, usecs);
}
base::StringAppendF(&str, "s");
return str;
}
string ToString(const Time utc_time) {
Time::Exploded exp_time;
utc_time.UTCExplode(&exp_time);
return base::StringPrintf("%d/%d/%d %d:%02d:%02d GMT",
exp_time.month,
exp_time.day_of_month,
exp_time.year,
exp_time.hour,
exp_time.minute,
exp_time.second);
}
string ToString(bool b) {
return (b ? "true" : "false");
}
string ToString(DownloadSource source) {
switch (source) {
case kDownloadSourceHttpsServer: return "HttpsServer";
case kDownloadSourceHttpServer: return "HttpServer";
case kDownloadSourceHttpPeer: return "HttpPeer";
case kNumDownloadSources: return "Unknown";
// Don't add a default case to let the compiler warn about newly added
// download sources which should be added here.
}
return "Unknown";
}
string ToString(PayloadType payload_type) {
switch (payload_type) {
case kPayloadTypeDelta: return "Delta";
case kPayloadTypeFull: return "Full";
case kPayloadTypeForcedFull: return "ForcedFull";
case kNumPayloadTypes: return "Unknown";
// Don't add a default case to let the compiler warn about newly added
// payload types which should be added here.
}
return "Unknown";
}
ErrorCode GetBaseErrorCode(ErrorCode code) {
// Ignore the higher order bits in the code by applying the mask as
// we want the enumerations to be in the small contiguous range
// with values less than kErrorCodeUmaReportedMax.
ErrorCode base_code = static_cast<ErrorCode>(code & ~kErrorCodeSpecialFlags);
// Make additional adjustments required for UMA and error classification.
// TODO(jaysri): Move this logic to UeErrorCode.cc when we fix
// chromium-os:34369.
if (base_code >= kErrorCodeOmahaRequestHTTPResponseBase) {
// Since we want to keep the enums to a small value, aggregate all HTTP
// errors into this one bucket for UMA and error classification purposes.
LOG(INFO) << "Converting error code " << base_code
<< " to kErrorCodeOmahaErrorInHTTPResponse";
base_code = kErrorCodeOmahaErrorInHTTPResponse;
}
return base_code;
}
metrics::AttemptResult GetAttemptResult(ErrorCode code) {
ErrorCode base_code = static_cast<ErrorCode>(code & ~kErrorCodeSpecialFlags);
switch (base_code) {
case kErrorCodeSuccess:
return metrics::AttemptResult::kUpdateSucceeded;
case kErrorCodeDownloadTransferError:
return metrics::AttemptResult::kPayloadDownloadError;
case kErrorCodeDownloadInvalidMetadataSize:
case kErrorCodeDownloadInvalidMetadataMagicString:
case kErrorCodeDownloadMetadataSignatureError:
case kErrorCodeDownloadMetadataSignatureVerificationError:
case kErrorCodePayloadMismatchedType:
case kErrorCodeUnsupportedMajorPayloadVersion:
case kErrorCodeUnsupportedMinorPayloadVersion:
case kErrorCodeDownloadNewPartitionInfoError:
case kErrorCodeDownloadSignatureMissingInManifest:
case kErrorCodeDownloadManifestParseError:
case kErrorCodeDownloadOperationHashMissingError:
return metrics::AttemptResult::kMetadataMalformed;
case kErrorCodeDownloadOperationHashMismatch:
case kErrorCodeDownloadOperationHashVerificationError:
return metrics::AttemptResult::kOperationMalformed;
case kErrorCodeDownloadOperationExecutionError:
case kErrorCodeInstallDeviceOpenError:
case kErrorCodeKernelDeviceOpenError:
case kErrorCodeDownloadWriteError:
case kErrorCodeFilesystemCopierError:
return metrics::AttemptResult::kOperationExecutionError;
case kErrorCodeDownloadMetadataSignatureMismatch:
return metrics::AttemptResult::kMetadataVerificationFailed;
case kErrorCodePayloadSizeMismatchError:
case kErrorCodePayloadHashMismatchError:
case kErrorCodeDownloadPayloadVerificationError:
case kErrorCodeSignedDeltaPayloadExpectedError:
case kErrorCodeDownloadPayloadPubKeyVerificationError:
return metrics::AttemptResult::kPayloadVerificationFailed;
case kErrorCodeNewRootfsVerificationError:
case kErrorCodeNewKernelVerificationError:
return metrics::AttemptResult::kVerificationFailed;
case kErrorCodePostinstallRunnerError:
case kErrorCodePostinstallBootedFromFirmwareB:
case kErrorCodePostinstallFirmwareRONotUpdatable:
return metrics::AttemptResult::kPostInstallFailed;
// We should never get these errors in the update-attempt stage so
// return internal error if this happens.
case kErrorCodeError:
case kErrorCodeOmahaRequestXMLParseError:
case kErrorCodeOmahaRequestError:
case kErrorCodeOmahaResponseHandlerError:
case kErrorCodeDownloadStateInitializationError:
case kErrorCodeOmahaRequestEmptyResponseError:
case kErrorCodeDownloadInvalidMetadataSignature:
case kErrorCodeOmahaResponseInvalid:
case kErrorCodeOmahaUpdateIgnoredPerPolicy:
case kErrorCodeOmahaUpdateDeferredPerPolicy:
case kErrorCodeOmahaErrorInHTTPResponse:
case kErrorCodeDownloadMetadataSignatureMissingError:
case kErrorCodeOmahaUpdateDeferredForBackoff:
case kErrorCodePostinstallPowerwashError:
case kErrorCodeUpdateCanceledByChannelChange:
return metrics::AttemptResult::kInternalError;
// Special flags. These can't happen (we mask them out above) but
// the compiler doesn't know that. Just break out so we can warn and
// return |kInternalError|.
case kErrorCodeUmaReportedMax:
case kErrorCodeOmahaRequestHTTPResponseBase:
case kErrorCodeDevModeFlag:
case kErrorCodeResumedFlag:
case kErrorCodeTestImageFlag:
case kErrorCodeTestOmahaUrlFlag:
case kErrorCodeSpecialFlags:
break;
}
LOG(ERROR) << "Unexpected error code " << base_code;
return metrics::AttemptResult::kInternalError;
}
metrics::DownloadErrorCode GetDownloadErrorCode(ErrorCode code) {
ErrorCode base_code = static_cast<ErrorCode>(code & ~kErrorCodeSpecialFlags);
if (base_code >= kErrorCodeOmahaRequestHTTPResponseBase) {
int http_status = base_code - kErrorCodeOmahaRequestHTTPResponseBase;
if (http_status >= 200 && http_status <= 599) {
return static_cast<metrics::DownloadErrorCode>(
static_cast<int>(metrics::DownloadErrorCode::kHttpStatus200) +
http_status - 200);
} else if (http_status == 0) {
// The code is using HTTP Status 0 for "Unable to get http
// response code."
return metrics::DownloadErrorCode::kDownloadError;
}
LOG(WARNING) << "Unexpected HTTP status code " << http_status;
return metrics::DownloadErrorCode::kHttpStatusOther;
}
switch (base_code) {
// Unfortunately, kErrorCodeDownloadTransferError is returned for a wide
// variety of errors (proxy errors, host not reachable, timeouts etc.).
//
// For now just map that to kDownloading. See http://crbug.com/355745
// for how we plan to add more detail in the future.
case kErrorCodeDownloadTransferError:
return metrics::DownloadErrorCode::kDownloadError;
// All of these error codes are not related to downloading so break
// out so we can warn and return InputMalformed.
case kErrorCodeSuccess:
case kErrorCodeError:
case kErrorCodeOmahaRequestError:
case kErrorCodeOmahaResponseHandlerError:
case kErrorCodeFilesystemCopierError:
case kErrorCodePostinstallRunnerError:
case kErrorCodePayloadMismatchedType:
case kErrorCodeInstallDeviceOpenError:
case kErrorCodeKernelDeviceOpenError:
case kErrorCodePayloadHashMismatchError:
case kErrorCodePayloadSizeMismatchError:
case kErrorCodeDownloadPayloadVerificationError:
case kErrorCodeDownloadNewPartitionInfoError:
case kErrorCodeDownloadWriteError:
case kErrorCodeNewRootfsVerificationError:
case kErrorCodeNewKernelVerificationError:
case kErrorCodeSignedDeltaPayloadExpectedError:
case kErrorCodeDownloadPayloadPubKeyVerificationError:
case kErrorCodePostinstallBootedFromFirmwareB:
case kErrorCodeDownloadStateInitializationError:
case kErrorCodeDownloadInvalidMetadataMagicString:
case kErrorCodeDownloadSignatureMissingInManifest:
case kErrorCodeDownloadManifestParseError:
case kErrorCodeDownloadMetadataSignatureError:
case kErrorCodeDownloadMetadataSignatureVerificationError:
case kErrorCodeDownloadMetadataSignatureMismatch:
case kErrorCodeDownloadOperationHashVerificationError:
case kErrorCodeDownloadOperationExecutionError:
case kErrorCodeDownloadOperationHashMismatch:
case kErrorCodeOmahaRequestEmptyResponseError:
case kErrorCodeOmahaRequestXMLParseError:
case kErrorCodeDownloadInvalidMetadataSize:
case kErrorCodeDownloadInvalidMetadataSignature:
case kErrorCodeOmahaResponseInvalid:
case kErrorCodeOmahaUpdateIgnoredPerPolicy:
case kErrorCodeOmahaUpdateDeferredPerPolicy:
case kErrorCodeOmahaErrorInHTTPResponse:
case kErrorCodeDownloadOperationHashMissingError:
case kErrorCodeDownloadMetadataSignatureMissingError:
case kErrorCodeOmahaUpdateDeferredForBackoff:
case kErrorCodePostinstallPowerwashError:
case kErrorCodeUpdateCanceledByChannelChange:
case kErrorCodePostinstallFirmwareRONotUpdatable:
case kErrorCodeUnsupportedMajorPayloadVersion:
case kErrorCodeUnsupportedMinorPayloadVersion:
break;
// Special flags. These can't happen (we mask them out above) but
// the compiler doesn't know that. Just break out so we can warn and
// return |kInputMalformed|.
case kErrorCodeUmaReportedMax:
case kErrorCodeOmahaRequestHTTPResponseBase:
case kErrorCodeDevModeFlag:
case kErrorCodeResumedFlag:
case kErrorCodeTestImageFlag:
case kErrorCodeTestOmahaUrlFlag:
case kErrorCodeSpecialFlags:
LOG(ERROR) << "Unexpected error code " << base_code;
break;
}
return metrics::DownloadErrorCode::kInputMalformed;
}
metrics::ConnectionType GetConnectionType(
NetworkConnectionType type,
NetworkTethering tethering) {
switch (type) {
case kNetUnknown:
return metrics::ConnectionType::kUnknown;
case kNetEthernet:
if (tethering == NetworkTethering::kConfirmed)
return metrics::ConnectionType::kTetheredEthernet;
else
return metrics::ConnectionType::kEthernet;
case kNetWifi:
if (tethering == NetworkTethering::kConfirmed)
return metrics::ConnectionType::kTetheredWifi;
else
return metrics::ConnectionType::kWifi;
case kNetWimax:
return metrics::ConnectionType::kWimax;
case kNetBluetooth:
return metrics::ConnectionType::kBluetooth;
case kNetCellular:
return metrics::ConnectionType::kCellular;
}
LOG(ERROR) << "Unexpected network connection type: type=" << type
<< ", tethering=" << static_cast<int>(tethering);
return metrics::ConnectionType::kUnknown;
}
// Returns a printable version of the various flags denoted in the higher order
// bits of the given code. Returns an empty string if none of those bits are
// set.
string GetFlagNames(uint32_t code) {
uint32_t flags = code & kErrorCodeSpecialFlags;
string flag_names;
string separator = "";
for(size_t i = 0; i < sizeof(flags) * 8; i++) {
uint32_t flag = flags & (1 << i);
if (flag) {
flag_names += separator + CodeToString(static_cast<ErrorCode>(flag));
separator = ", ";
}
}
return flag_names;
}
void SendErrorCodeToUma(SystemState* system_state, ErrorCode code) {
if (!system_state)
return;
ErrorCode uma_error_code = GetBaseErrorCode(code);
// If the code doesn't have flags computed already, compute them now based on
// the state of the current update attempt.
uint32_t flags = code & kErrorCodeSpecialFlags;
if (!flags)
flags = system_state->update_attempter()->GetErrorCodeFlags();
// Determine the UMA bucket depending on the flags. But, ignore the resumed
// flag, as it's perfectly normal for production devices to resume their
// downloads and so we want to record those cases also in NormalErrorCodes
// bucket.
string metric = (flags & ~kErrorCodeResumedFlag) ?
"Installer.DevModeErrorCodes" : "Installer.NormalErrorCodes";
LOG(INFO) << "Sending error code " << uma_error_code
<< " (" << CodeToString(uma_error_code) << ")"
<< " to UMA metric: " << metric
<< ". Flags = " << (flags ? GetFlagNames(flags) : "None");
system_state->metrics_lib()->SendEnumToUMA(metric,
uma_error_code,
kErrorCodeUmaReportedMax);
}
string CodeToString(ErrorCode code) {
// If the given code has both parts (i.e. the error code part and the flags
// part) then strip off the flags part since the switch statement below
// has case statements only for the base error code or a single flag but
// doesn't support any combinations of those.
if ((code & kErrorCodeSpecialFlags) && (code & ~kErrorCodeSpecialFlags))
code = static_cast<ErrorCode>(code & ~kErrorCodeSpecialFlags);
switch (code) {
case kErrorCodeSuccess: return "kErrorCodeSuccess";
case kErrorCodeError: return "kErrorCodeError";
case kErrorCodeOmahaRequestError: return "kErrorCodeOmahaRequestError";
case kErrorCodeOmahaResponseHandlerError:
return "kErrorCodeOmahaResponseHandlerError";
case kErrorCodeFilesystemCopierError:
return "kErrorCodeFilesystemCopierError";
case kErrorCodePostinstallRunnerError:
return "kErrorCodePostinstallRunnerError";
case kErrorCodePayloadMismatchedType:
return "kErrorCodePayloadMismatchedType";
case kErrorCodeInstallDeviceOpenError:
return "kErrorCodeInstallDeviceOpenError";
case kErrorCodeKernelDeviceOpenError:
return "kErrorCodeKernelDeviceOpenError";
case kErrorCodeDownloadTransferError:
return "kErrorCodeDownloadTransferError";
case kErrorCodePayloadHashMismatchError:
return "kErrorCodePayloadHashMismatchError";
case kErrorCodePayloadSizeMismatchError:
return "kErrorCodePayloadSizeMismatchError";
case kErrorCodeDownloadPayloadVerificationError:
return "kErrorCodeDownloadPayloadVerificationError";
case kErrorCodeDownloadNewPartitionInfoError:
return "kErrorCodeDownloadNewPartitionInfoError";
case kErrorCodeDownloadWriteError:
return "kErrorCodeDownloadWriteError";
case kErrorCodeNewRootfsVerificationError:
return "kErrorCodeNewRootfsVerificationError";
case kErrorCodeNewKernelVerificationError:
return "kErrorCodeNewKernelVerificationError";
case kErrorCodeSignedDeltaPayloadExpectedError:
return "kErrorCodeSignedDeltaPayloadExpectedError";
case kErrorCodeDownloadPayloadPubKeyVerificationError:
return "kErrorCodeDownloadPayloadPubKeyVerificationError";
case kErrorCodePostinstallBootedFromFirmwareB:
return "kErrorCodePostinstallBootedFromFirmwareB";
case kErrorCodeDownloadStateInitializationError:
return "kErrorCodeDownloadStateInitializationError";
case kErrorCodeDownloadInvalidMetadataMagicString:
return "kErrorCodeDownloadInvalidMetadataMagicString";
case kErrorCodeDownloadSignatureMissingInManifest:
return "kErrorCodeDownloadSignatureMissingInManifest";
case kErrorCodeDownloadManifestParseError:
return "kErrorCodeDownloadManifestParseError";
case kErrorCodeDownloadMetadataSignatureError:
return "kErrorCodeDownloadMetadataSignatureError";
case kErrorCodeDownloadMetadataSignatureVerificationError:
return "kErrorCodeDownloadMetadataSignatureVerificationError";
case kErrorCodeDownloadMetadataSignatureMismatch:
return "kErrorCodeDownloadMetadataSignatureMismatch";
case kErrorCodeDownloadOperationHashVerificationError:
return "kErrorCodeDownloadOperationHashVerificationError";
case kErrorCodeDownloadOperationExecutionError:
return "kErrorCodeDownloadOperationExecutionError";
case kErrorCodeDownloadOperationHashMismatch:
return "kErrorCodeDownloadOperationHashMismatch";
case kErrorCodeOmahaRequestEmptyResponseError:
return "kErrorCodeOmahaRequestEmptyResponseError";
case kErrorCodeOmahaRequestXMLParseError:
return "kErrorCodeOmahaRequestXMLParseError";
case kErrorCodeDownloadInvalidMetadataSize:
return "kErrorCodeDownloadInvalidMetadataSize";
case kErrorCodeDownloadInvalidMetadataSignature:
return "kErrorCodeDownloadInvalidMetadataSignature";
case kErrorCodeOmahaResponseInvalid:
return "kErrorCodeOmahaResponseInvalid";
case kErrorCodeOmahaUpdateIgnoredPerPolicy:
return "kErrorCodeOmahaUpdateIgnoredPerPolicy";
case kErrorCodeOmahaUpdateDeferredPerPolicy:
return "kErrorCodeOmahaUpdateDeferredPerPolicy";
case kErrorCodeOmahaErrorInHTTPResponse:
return "kErrorCodeOmahaErrorInHTTPResponse";
case kErrorCodeDownloadOperationHashMissingError:
return "kErrorCodeDownloadOperationHashMissingError";
case kErrorCodeDownloadMetadataSignatureMissingError:
return "kErrorCodeDownloadMetadataSignatureMissingError";
case kErrorCodeOmahaUpdateDeferredForBackoff:
return "kErrorCodeOmahaUpdateDeferredForBackoff";
case kErrorCodePostinstallPowerwashError:
return "kErrorCodePostinstallPowerwashError";
case kErrorCodeUpdateCanceledByChannelChange:
return "kErrorCodeUpdateCanceledByChannelChange";
case kErrorCodeUmaReportedMax:
return "kErrorCodeUmaReportedMax";
case kErrorCodeOmahaRequestHTTPResponseBase:
return "kErrorCodeOmahaRequestHTTPResponseBase";
case kErrorCodeResumedFlag:
return "Resumed";
case kErrorCodeDevModeFlag:
return "DevMode";
case kErrorCodeTestImageFlag:
return "TestImage";
case kErrorCodeTestOmahaUrlFlag:
return "TestOmahaUrl";
case kErrorCodeSpecialFlags:
return "kErrorCodeSpecialFlags";
case kErrorCodePostinstallFirmwareRONotUpdatable:
return "kErrorCodePostinstallFirmwareRONotUpdatable";
case kErrorCodeUnsupportedMajorPayloadVersion:
return "kErrorCodeUnsupportedMajorPayloadVersion";
case kErrorCodeUnsupportedMinorPayloadVersion:
return "kErrorCodeUnsupportedMinorPayloadVersion";
// Don't add a default case to let the compiler warn about newly added
// error codes which should be added here.
}
return "Unknown error: " + base::UintToString(static_cast<unsigned>(code));
}
bool CreatePowerwashMarkerFile(const char* file_path) {
const char* marker_file = file_path ? file_path : kPowerwashMarkerFile;
bool result = utils::WriteFile(marker_file,
kPowerwashCommand,
strlen(kPowerwashCommand));
if (result) {
LOG(INFO) << "Created " << marker_file << " to powerwash on next reboot";
} else {
PLOG(ERROR) << "Error in creating powerwash marker file: " << marker_file;
}
return result;
}
bool DeletePowerwashMarkerFile(const char* file_path) {
const char* marker_file = file_path ? file_path : kPowerwashMarkerFile;
const base::FilePath kPowerwashMarkerPath(marker_file);
bool result = base::DeleteFile(kPowerwashMarkerPath, false);
if (result)
LOG(INFO) << "Successfully deleted the powerwash marker file : "
<< marker_file;
else
PLOG(ERROR) << "Could not delete the powerwash marker file : "
<< marker_file;
return result;
}
bool GetInstallDev(const std::string& boot_dev, std::string* install_dev) {
std::string disk_name;
int partition_num;
if (!SplitPartitionName(boot_dev, &disk_name, &partition_num))
return false;
// Right now, we just switch '3' and '5' partition numbers.
if (partition_num == 3) {
partition_num = 5;
} else if (partition_num == 5) {
partition_num = 3;
} else {
return false;
}
if (install_dev)
*install_dev = MakePartitionName(disk_name, partition_num);
return true;
}
Time TimeFromStructTimespec(struct timespec *ts) {
int64 us = static_cast<int64>(ts->tv_sec) * Time::kMicrosecondsPerSecond +
static_cast<int64>(ts->tv_nsec) / Time::kNanosecondsPerMicrosecond;
return Time::UnixEpoch() + TimeDelta::FromMicroseconds(us);
}
gchar** StringVectorToGStrv(const vector<string> &vector) {
GPtrArray *p = g_ptr_array_new();
for (std::vector<string>::const_iterator i = vector.begin();
i != vector.end(); ++i) {
g_ptr_array_add(p, g_strdup(i->c_str()));
}
g_ptr_array_add(p, NULL);
return reinterpret_cast<gchar**>(g_ptr_array_free(p, FALSE));
}
string StringVectorToString(const vector<string> &vector) {
string str = "[";
for (std::vector<string>::const_iterator i = vector.begin();
i != vector.end(); ++i) {
if (i != vector.begin())
str += ", ";
str += '"';
str += *i;
str += '"';
}
str += "]";
return str;
}
string CalculateP2PFileId(const string& payload_hash, size_t payload_size) {
string encoded_hash;
OmahaHashCalculator::Base64Encode(payload_hash.c_str(),
payload_hash.size(),
&encoded_hash);
return base::StringPrintf("cros_update_size_%zu_hash_%s",
payload_size,
encoded_hash.c_str());
}
bool IsXAttrSupported(const base::FilePath& dir_path) {
char *path = strdup(dir_path.Append("xattr_test_XXXXXX").value().c_str());
int fd = mkstemp(path);
if (fd == -1) {
PLOG(ERROR) << "Error creating temporary file in " << dir_path.value();
free(path);
return false;
}
if (unlink(path) != 0) {
PLOG(ERROR) << "Error unlinking temporary file " << path;
close(fd);
free(path);
return false;
}
int xattr_res = fsetxattr(fd, "user.xattr-test", "value", strlen("value"), 0);
if (xattr_res != 0) {
if (errno == ENOTSUP) {
// Leave it to call-sites to warn about non-support.
} else {
PLOG(ERROR) << "Error setting xattr on " << path;
}
}
close(fd);
free(path);
return xattr_res == 0;
}
bool DecodeAndStoreBase64String(const std::string& base64_encoded,
base::FilePath *out_path) {
vector<char> contents;
out_path->clear();
if (base64_encoded.size() == 0) {
LOG(ERROR) << "Can't decode empty string.";
return false;
}
if (!OmahaHashCalculator::Base64Decode(base64_encoded, &contents) ||
contents.size() == 0) {
LOG(ERROR) << "Error decoding base64.";
return false;
}
FILE *file = base::CreateAndOpenTemporaryFile(out_path);
if (file == NULL) {
LOG(ERROR) << "Error creating temporary file.";
return false;
}
if (fwrite(&contents[0], 1, contents.size(), file) != contents.size()) {
PLOG(ERROR) << "Error writing to temporary file.";
if (fclose(file) != 0)
PLOG(ERROR) << "Error closing temporary file.";
if (unlink(out_path->value().c_str()) != 0)
PLOG(ERROR) << "Error unlinking temporary file.";
out_path->clear();
return false;
}
if (fclose(file) != 0) {
PLOG(ERROR) << "Error closing temporary file.";
out_path->clear();
return false;
}
return true;
}
bool ConvertToOmahaInstallDate(base::Time time, int *out_num_days) {
time_t unix_time = time.ToTimeT();
// Output of: date +"%s" --date="Jan 1, 2007 0:00 PST".
const time_t kOmahaEpoch = 1167638400;
const int64_t kNumSecondsPerWeek = 7*24*3600;
const int64_t kNumDaysPerWeek = 7;
time_t omaha_time = unix_time - kOmahaEpoch;
if (omaha_time < 0)
return false;
// Note, as per the comment in utils.h we are deliberately not
// handling DST correctly.
int64_t num_weeks_since_omaha_epoch = omaha_time / kNumSecondsPerWeek;
*out_num_days = num_weeks_since_omaha_epoch * kNumDaysPerWeek;
return true;
}
bool WallclockDurationHelper(SystemState* system_state,
const std::string& state_variable_key,
base::TimeDelta* out_duration) {
bool ret = false;
base::Time now = system_state->clock()->GetWallclockTime();
int64_t stored_value;
if (system_state->prefs()->GetInt64(state_variable_key, &stored_value)) {
base::Time stored_time = base::Time::FromInternalValue(stored_value);
if (stored_time > now) {
LOG(ERROR) << "Stored time-stamp used for " << state_variable_key
<< " is in the future.";
} else {
*out_duration = now - stored_time;
ret = true;
}
}
if (!system_state->prefs()->SetInt64(state_variable_key,
now.ToInternalValue())) {
LOG(ERROR) << "Error storing time-stamp in " << state_variable_key;
}
return ret;
}
bool MonotonicDurationHelper(SystemState* system_state,
int64_t* storage,
base::TimeDelta* out_duration) {
bool ret = false;
base::Time now = system_state->clock()->GetMonotonicTime();
if (*storage != 0) {
base::Time stored_time = base::Time::FromInternalValue(*storage);
*out_duration = now - stored_time;
ret = true;
}
*storage = now.ToInternalValue();
return ret;
}
} // namespace utils
} // namespace chromeos_update_engine