blob: 8681375b633d4e39040c150fb7ac8d56757562cd [file] [log] [blame] [edit]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "LibHidlTest"
#pragma clang diagnostic push
#pragma clang diagnostic error "-Wpadded"
#include <hidl/HidlInternal.h>
#include <hidl/HidlSupport.h>
#pragma clang diagnostic pop
#include <android-base/logging.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <hidl/ServiceManagement.h>
#include <hidl/Status.h>
#include <hidl/TaskRunner.h>
#include <condition_variable>
#include <fstream>
#include <vector>
#ifdef __ANDROID__
static bool kAndroid = true;
#else
static bool kAndroid = false;
#endif
#define EXPECT_ARRAYEQ(__a1__, __a2__, __size__) EXPECT_TRUE(isArrayEqual(__a1__, __a2__, __size__))
#define EXPECT_2DARRAYEQ(__a1__, __a2__, __size1__, __size2__) \
EXPECT_TRUE(is2dArrayEqual(__a1__, __a2__, __size1__, __size2__))
template<typename T, typename S>
static inline bool isArrayEqual(const T arr1, const S arr2, size_t size) {
for(size_t i = 0; i < size; i++)
if(arr1[i] != arr2[i])
return false;
return true;
}
template<typename T, typename S>
static inline bool is2dArrayEqual(const T arr1, const S arr2, size_t size1, size_t size2) {
for(size_t i = 0; i < size1; i++)
for (size_t j = 0; j < size2; j++)
if(arr1[i][j] != arr2[i][j])
return false;
return true;
}
bool isLibraryOpen(const std::string& lib) {
std::ifstream ifs("/proc/self/maps");
for (std::string line; std::getline(ifs, line);) {
if (line.size() >= lib.size() && line.substr(line.size() - lib.size()) == lib) {
return true;
}
}
return false;
}
class LibHidlTest : public ::testing::Test {
public:
virtual void SetUp() override {
}
virtual void TearDown() override {
}
};
TEST_F(LibHidlTest, StringTest) {
using android::hardware::hidl_string;
hidl_string s; // empty constructor
EXPECT_STREQ(s.c_str(), "");
hidl_string s1 = "s1"; // copy = from cstr
EXPECT_STREQ(s1.c_str(), "s1");
hidl_string s2("s2"); // copy constructor from cstr
EXPECT_STREQ(s2.c_str(), "s2");
hidl_string s2a(nullptr); // copy constructor from null cstr
EXPECT_STREQ("", s2a.c_str());
s2a = nullptr; // = from nullptr cstr
EXPECT_STREQ(s2a.c_str(), "");
hidl_string s3 = hidl_string("s3"); // move =
EXPECT_STREQ(s3.c_str(), "s3");
hidl_string s4 = hidl_string("12345", 3); // copy constructor from cstr w/ length
EXPECT_STREQ(s4.c_str(), "123");
hidl_string s5(hidl_string(hidl_string("s5"))); // move constructor
EXPECT_STREQ(s5.c_str(), "s5");
hidl_string s6(std::string("s6")); // copy constructor from std::string
EXPECT_STREQ(s6.c_str(), "s6");
hidl_string s7 = std::string("s7"); // copy = from std::string
EXPECT_STREQ(s7.c_str(), "s7");
hidl_string s8(s7); // copy constructor // NOLINT, test the copy constructor
EXPECT_STREQ(s8.c_str(), "s7");
hidl_string s9 = s8; // copy = // NOLINT, test the copy operator
EXPECT_STREQ(s9.c_str(), "s7");
char myCString[20] = "myCString";
s.setToExternal(&myCString[0], strlen(myCString));
EXPECT_STREQ(s.c_str(), "myCString");
myCString[2] = 'D';
EXPECT_STREQ(s.c_str(), "myDString");
s.clear(); // should not affect myCString
EXPECT_STREQ(myCString, "myDString");
// casts
s = "great";
std::string myString = s;
const char *anotherCString = s.c_str();
EXPECT_EQ(myString, "great");
EXPECT_STREQ(anotherCString, "great");
const hidl_string t = "not so great";
std::string myTString = t;
const char * anotherTCString = t.c_str();
EXPECT_EQ(myTString, "not so great");
EXPECT_STREQ(anotherTCString, "not so great");
// Assignment from hidl_string to std::string
std::string tgt;
hidl_string src("some stuff");
tgt = src;
EXPECT_STREQ(tgt.c_str(), "some stuff");
// Stream output operator
hidl_string msg("hidl_string works with operator<<");
std::cout << msg;
// Comparisons
const char * cstr1 = "abc";
std::string string1(cstr1);
hidl_string hs1(cstr1);
const char * cstrE = "abc";
std::string stringE(cstrE);
hidl_string hsE(cstrE);
const char * cstrNE = "ABC";
std::string stringNE(cstrNE);
hidl_string hsNE(cstrNE);
const char * cstr2 = "def";
std::string string2(cstr2);
hidl_string hs2(cstr2);
EXPECT_TRUE(hs1 == hsE);
EXPECT_FALSE(hs1 == hsNE);
EXPECT_TRUE(hs1 == cstrE);
EXPECT_FALSE(hs1 == cstrNE);
EXPECT_TRUE(hs1 == stringE);
EXPECT_FALSE(hs1 == stringNE);
EXPECT_FALSE(hs1 != hsE);
EXPECT_TRUE(hs1 != hsNE);
EXPECT_FALSE(hs1 != cstrE);
EXPECT_TRUE(hs1 != cstrNE);
EXPECT_FALSE(hs1 != stringE);
EXPECT_TRUE(hs1 != stringNE);
EXPECT_TRUE(hs1 < hs2);
EXPECT_FALSE(hs2 < hs1);
EXPECT_TRUE(hs2 > hs1);
EXPECT_FALSE(hs1 > hs2);
EXPECT_TRUE(hs1 <= hs1);
EXPECT_TRUE(hs1 <= hs2);
EXPECT_FALSE(hs2 <= hs1);
EXPECT_TRUE(hs1 >= hs1);
EXPECT_TRUE(hs2 >= hs1);
EXPECT_FALSE(hs2 <= hs1);
}
// empty string optimization should apply for any constructor
TEST_F(LibHidlTest, HidlStringEmptyLiteralAllocation) {
using android::hardware::hidl_string;
hidl_string empty1;
hidl_string empty2("");
hidl_string empty3("foo", 0);
hidl_string empty4((std::string()));
EXPECT_EQ(empty1.c_str(), empty2.c_str());
EXPECT_EQ(empty1.c_str(), empty3.c_str());
EXPECT_EQ(empty1.c_str(), empty4.c_str());
}
TEST_F(LibHidlTest, MemoryTest) {
using android::hardware::hidl_memory;
hidl_memory mem1 = hidl_memory(); // default constructor
hidl_memory mem2 = mem1; // copy constructor (nullptr), NOLINT
EXPECT_EQ(nullptr, mem2.handle());
native_handle_t* testHandle = native_handle_create(0 /* numInts */, 0 /* numFds */);
hidl_memory mem3 = hidl_memory("foo", testHandle, 42 /* size */); // owns testHandle
hidl_memory mem4 = mem3; // copy constructor (regular handle), NOLINT
EXPECT_EQ(mem3.name(), mem4.name());
EXPECT_EQ(mem3.size(), mem4.size());
EXPECT_NE(nullptr, mem4.handle());
EXPECT_NE(mem3.handle(), mem4.handle()); // check handle cloned
hidl_memory mem5 = hidl_memory("foo", nullptr, 0); // hidl memory works with nullptr handle
hidl_memory mem6 = mem5; // NOLINT, test copying
EXPECT_EQ(nullptr, mem5.handle());
EXPECT_EQ(nullptr, mem6.handle());
}
TEST_F(LibHidlTest, VecInitTest) {
using android::hardware::hidl_vec;
using std::vector;
int32_t array[] = {5, 6, 7};
vector<int32_t> v(array, array + 3);
hidl_vec<int32_t> hv0(3); // size
EXPECT_EQ(hv0.size(), 3ul); // cannot say anything about its contents
hidl_vec<int32_t> hv1 = v; // copy =
EXPECT_ARRAYEQ(hv1, array, 3);
EXPECT_ARRAYEQ(hv1, v, 3);
hidl_vec<int32_t> hv2(v); // copy constructor
EXPECT_ARRAYEQ(hv2, v, 3);
vector<int32_t> v2 = hv1; // cast
EXPECT_ARRAYEQ(v2, v, 3);
hidl_vec<int32_t> v3 = {5, 6, 7}; // initializer_list
EXPECT_EQ(v3.size(), 3ul);
EXPECT_ARRAYEQ(v3, array, v3.size());
}
TEST_F(LibHidlTest, VecReleaseTest) {
// this test indicates an inconsistency of behaviors which is undesirable.
// Perhaps hidl-vec should always allocate an empty vector whenever it
// exposes its data. Alternatively, perhaps it should always free/reject
// empty vectors and always return nullptr for this state. While this second
// alternative is faster, it makes client code harder to write, and it would
// break existing client code.
using android::hardware::hidl_vec;
hidl_vec<int32_t> empty;
EXPECT_EQ(nullptr, empty.releaseData());
empty.resize(0);
int32_t* data = empty.releaseData();
EXPECT_NE(nullptr, data);
delete data;
}
TEST_F(LibHidlTest, VecIterTest) {
int32_t array[] = {5, 6, 7};
android::hardware::hidl_vec<int32_t> hv1 = std::vector<int32_t>(array, array + 3);
auto iter = hv1.begin(); // iterator begin()
EXPECT_EQ(*iter++, 5);
EXPECT_EQ(*iter, 6);
EXPECT_EQ(*++iter, 7);
EXPECT_EQ(*iter--, 7);
EXPECT_EQ(*iter, 6);
EXPECT_EQ(*--iter, 5);
iter += 2;
EXPECT_EQ(*iter, 7);
iter -= 2;
EXPECT_EQ(*iter, 5);
iter++;
EXPECT_EQ(*(iter + 1), 7);
EXPECT_EQ(*(1 + iter), 7);
EXPECT_EQ(*(iter - 1), 5);
EXPECT_EQ(*iter, 6);
auto five = iter - 1;
auto seven = iter + 1;
EXPECT_EQ(seven - five, 2);
EXPECT_EQ(five - seven, -2);
EXPECT_LT(five, seven);
EXPECT_LE(five, seven);
EXPECT_GT(seven, five);
EXPECT_GE(seven, five);
EXPECT_EQ(seven[0], 7);
EXPECT_EQ(five[1], 6);
}
TEST_F(LibHidlTest, VecIterForTest) {
using android::hardware::hidl_vec;
int32_t array[] = {5, 6, 7};
hidl_vec<int32_t> hv1 = std::vector<int32_t>(array, array + 3);
int32_t sum = 0; // range based for loop interoperability
for (auto &&i: hv1) {
sum += i;
}
EXPECT_EQ(sum, 5+6+7);
for (auto iter = hv1.begin(); iter < hv1.end(); ++iter) {
*iter += 10;
}
const hidl_vec<int32_t> &v4 = hv1;
sum = 0;
for (const auto &i : v4) {
sum += i;
}
EXPECT_EQ(sum, 15+16+17);
}
TEST_F(LibHidlTest, VecEqTest) {
android::hardware::hidl_vec<int32_t> hv1{5, 6, 7};
android::hardware::hidl_vec<int32_t> hv2{5, 6, 7};
android::hardware::hidl_vec<int32_t> hv3{5, 6, 8};
// use the == and != operator intentionally here
EXPECT_TRUE(hv1 == hv2);
EXPECT_TRUE(hv1 != hv3);
}
TEST_F(LibHidlTest, VecEqInitializerTest) {
std::vector<int32_t> reference{5, 6, 7};
android::hardware::hidl_vec<int32_t> hv1{1, 2, 3};
hv1 = {5, 6, 7};
android::hardware::hidl_vec<int32_t> hv2;
hv2 = {5, 6, 7};
android::hardware::hidl_vec<int32_t> hv3;
hv3 = {5, 6, 8};
// use the == and != operator intentionally here
EXPECT_TRUE(hv1 == hv2);
EXPECT_TRUE(hv1 == reference);
EXPECT_TRUE(hv1 != hv3);
}
TEST_F(LibHidlTest, VecRangeCtorTest) {
struct ConvertibleType {
int val;
explicit ConvertibleType(int val) : val(val) {}
explicit operator int() const { return val; }
bool operator==(const int& other) const { return val == other; }
};
std::vector<ConvertibleType> input{
ConvertibleType(1), ConvertibleType(2), ConvertibleType(3),
};
android::hardware::hidl_vec<int> hv(input.begin(), input.end());
EXPECT_EQ(input.size(), hv.size());
int sum = 0;
for (unsigned i = 0; i < input.size(); i++) {
EXPECT_EQ(input[i], hv[i]);
sum += hv[i];
}
EXPECT_EQ(sum, 1 + 2 + 3);
}
struct FailsIfCopied {
FailsIfCopied() {}
// add failure if copied since in general this can be expensive
FailsIfCopied(const FailsIfCopied& o) { *this = o; }
FailsIfCopied& operator=(const FailsIfCopied&) {
ADD_FAILURE() << "FailsIfCopied copied";
return *this;
}
// fine to move this type since in general this is cheaper
FailsIfCopied(FailsIfCopied&& o) = default;
FailsIfCopied& operator=(FailsIfCopied&&) = default;
};
TEST_F(LibHidlTest, VecResizeNoCopy) {
using android::hardware::hidl_vec;
hidl_vec<FailsIfCopied> noCopies;
noCopies.resize(3); // instantiates three elements
FailsIfCopied* oldPointer = noCopies.data();
noCopies.resize(6); // should move three elements, not copy
// oldPointer should be invalidated at this point.
// hidl_vec doesn't currently try to realloc but if it ever switches
// to an implementation that does, this test wouldn't do anything.
EXPECT_NE(oldPointer, noCopies.data());
}
TEST_F(LibHidlTest, VecFindTest) {
using android::hardware::hidl_vec;
hidl_vec<int32_t> hv1 = {10, 20, 30, 40};
const hidl_vec<int32_t> hv2 = {1, 2, 3, 4};
auto it = hv1.find(20);
EXPECT_EQ(20, *it);
*it = 21;
EXPECT_EQ(21, *it);
it = hv1.find(20);
EXPECT_EQ(hv1.end(), it);
it = hv1.find(21);
EXPECT_EQ(21, *it);
auto cit = hv2.find(4);
EXPECT_EQ(4, *cit);
}
TEST_F(LibHidlTest, VecContainsTest) {
using android::hardware::hidl_vec;
hidl_vec<int32_t> hv1 = {10, 20, 30, 40};
const hidl_vec<int32_t> hv2 = {0, 1, 2, 3, 4};
EXPECT_TRUE(hv1.contains(10));
EXPECT_TRUE(hv1.contains(40));
EXPECT_FALSE(hv1.contains(1));
EXPECT_FALSE(hv1.contains(0));
EXPECT_TRUE(hv2.contains(0));
EXPECT_FALSE(hv2.contains(10));
hv1[0] = 11;
EXPECT_FALSE(hv1.contains(10));
EXPECT_TRUE(hv1.contains(11));
}
TEST_F(LibHidlTest, ArrayTest) {
using android::hardware::hidl_array;
int32_t array[] = {5, 6, 7};
hidl_array<int32_t, 3> ha(array);
EXPECT_ARRAYEQ(ha, array, 3);
}
TEST_F(LibHidlTest, TaskRunnerTest) {
using android::hardware::details::TaskRunner;
using namespace std::chrono_literals;
std::condition_variable cv;
std::mutex m;
TaskRunner tr;
tr.start(1 /* limit */);
bool flag = false;
tr.push([&] {
flag = true;
cv.notify_all();
});
std::unique_lock<std::mutex> lock(m);
// 1s so this doesn't deadlock. This isn't a performance test.
EXPECT_TRUE(cv.wait_for(lock, 1s, [&]{return flag;}));
EXPECT_TRUE(flag);
}
TEST_F(LibHidlTest, StringCmpTest) {
using android::hardware::hidl_string;
const char * s = "good";
hidl_string hs(s);
EXPECT_NE(hs.c_str(), s);
EXPECT_TRUE(hs == s); // operator ==
EXPECT_TRUE(s == hs);
EXPECT_FALSE(hs != s); // operator ==
EXPECT_FALSE(s != hs);
}
template <typename T>
void great(android::hardware::hidl_vec<T>) {}
TEST_F(LibHidlTest, VecCopyTest) {
android::hardware::hidl_vec<int32_t> v;
great(v);
}
TEST_F(LibHidlTest, StdArrayTest) {
using android::hardware::hidl_array;
hidl_array<int32_t, 5> array{(int32_t[5]){1, 2, 3, 4, 5}};
std::array<int32_t, 5> stdArray = array;
EXPECT_ARRAYEQ(array.data(), stdArray.data(), 5);
hidl_array<int32_t, 5> array2 = stdArray;
EXPECT_ARRAYEQ(array.data(), array2.data(), 5);
}
TEST_F(LibHidlTest, MultiDimStdArrayTest) {
using android::hardware::hidl_array;
hidl_array<int32_t, 2, 3> array;
for (size_t i = 0; i < 2; i++) {
for (size_t j = 0; j < 3; j++) {
array[i][j] = i + j + i * j;
}
}
std::array<std::array<int32_t, 3>, 2> stdArray = array;
EXPECT_2DARRAYEQ(array, stdArray, 2, 3);
hidl_array<int32_t, 2, 3> array2 = stdArray;
EXPECT_2DARRAYEQ(array, array2, 2, 3);
}
TEST_F(LibHidlTest, HidlVersionTest) {
using android::hardware::hidl_version;
hidl_version v1_0{1, 0};
EXPECT_EQ(1, v1_0.get_major());
EXPECT_EQ(0, v1_0.get_minor());
hidl_version v2_0{2, 0};
hidl_version v2_1{2, 1};
hidl_version v2_2{2, 2};
hidl_version v3_0{3, 0};
hidl_version v3_0b{3,0};
EXPECT_TRUE(v1_0 < v2_0);
EXPECT_TRUE(v1_0 != v2_0);
EXPECT_TRUE(v2_0 < v2_1);
EXPECT_TRUE(v2_1 < v3_0);
EXPECT_TRUE(v2_0 > v1_0);
EXPECT_TRUE(v2_0 != v1_0);
EXPECT_TRUE(v2_1 > v2_0);
EXPECT_TRUE(v3_0 > v2_1);
EXPECT_TRUE(v3_0 == v3_0b);
EXPECT_FALSE(v3_0 != v3_0b);
EXPECT_TRUE(v3_0 <= v3_0b);
EXPECT_TRUE(v2_2 <= v3_0);
EXPECT_TRUE(v3_0 >= v3_0b);
EXPECT_TRUE(v3_0 >= v2_2);
}
TEST_F(LibHidlTest, ReturnMoveTest) {
using namespace ::android;
using ::android::hardware::Return;
using ::android::hardware::Status;
Return<void> ret{Status::fromStatusT(DEAD_OBJECT)};
ret.isOk();
ret = {Status::fromStatusT(DEAD_OBJECT)};
ret.isOk();
}
TEST_F(LibHidlTest, ReturnTest) {
using ::android::DEAD_OBJECT;
using ::android::hardware::Return;
using ::android::hardware::Status;
using ::android::hardware::hidl_string;
EXPECT_FALSE(Return<void>(Status::fromStatusT(DEAD_OBJECT)).isOk());
EXPECT_TRUE(Return<void>(Status::ok()).isOk());
hidl_string one = "1";
hidl_string two = "2";
const Return<hidl_string> ret = Return<hidl_string>(Status::fromStatusT(DEAD_OBJECT));
EXPECT_EQ(one, Return<hidl_string>(one).withDefault(two));
EXPECT_EQ(two, ret.withDefault(two));
hidl_string&& moved = ret.withDefault(std::move(two));
EXPECT_EQ("2", moved);
const hidl_string three = "3";
EXPECT_EQ(three, ret.withDefault(three));
}
TEST_F(LibHidlTest, ReturnDies) {
using ::android::hardware::Return;
using ::android::hardware::Status;
EXPECT_DEATH({ Return<void>(Status::fromStatusT(-EBUSY)); }, "");
EXPECT_DEATH({ Return<void>(Status::fromStatusT(-EBUSY)).isDeadObject(); }, "");
EXPECT_DEATH(
{
Return<int> ret = Return<int>(Status::fromStatusT(-EBUSY));
int foo = ret; // should crash here
(void)foo;
ret.isOk();
},
"");
}
TEST_F(LibHidlTest, DetectUncheckedReturn) {
using ::android::hardware::HidlReturnRestriction;
using ::android::hardware::Return;
using ::android::hardware::setProcessHidlReturnRestriction;
using ::android::hardware::Status;
setProcessHidlReturnRestriction(HidlReturnRestriction::FATAL_IF_UNCHECKED);
EXPECT_DEATH(
{
auto ret = Return<void>(Status::ok());
(void)ret;
},
"");
EXPECT_DEATH(
{
auto ret = Return<void>(Status::ok());
ret = Return<void>(Status::ok());
ret.isOk();
},
"");
auto ret = Return<void>(Status::ok());
(void)ret.isOk();
ret = Return<void>(Status::ok());
(void)ret.isOk();
setProcessHidlReturnRestriction(HidlReturnRestriction::NONE);
}
std::string toString(const ::android::hardware::Status &s) {
using ::android::hardware::operator<<;
std::ostringstream oss;
oss << s;
return oss.str();
}
TEST_F(LibHidlTest, StatusStringTest) {
using namespace ::android;
using ::android::hardware::Status;
using ::testing::HasSubstr;
EXPECT_EQ(toString(Status::ok()), "No error");
EXPECT_THAT(toString(Status::fromStatusT(DEAD_OBJECT)), HasSubstr("DEAD_OBJECT"));
EXPECT_THAT(toString(Status::fromStatusT(-EBUSY)), HasSubstr("busy"));
EXPECT_THAT(toString(Status::fromExceptionCode(Status::EX_NULL_POINTER)),
HasSubstr("EX_NULL_POINTER"));
}
TEST_F(LibHidlTest, PreloadTest) {
// HIDL doesn't have support to load passthrough implementations on host, but we
// could do this by loading implementations from the output directory
if (!kAndroid) GTEST_SKIP();
using ::android::hardware::preloadPassthroughService;
using ::android::hidl::memory::V1_0::IMemory;
// installed on all devices by default in both bitnesses and not otherwise a dependency of this
// test.
static const std::string kLib = "android.hidl.memory@1.0-impl.so";
EXPECT_FALSE(isLibraryOpen(kLib));
preloadPassthroughService<IMemory>();
EXPECT_TRUE(isLibraryOpen(kLib));
}
template <typename T, size_t start, size_t end>
static void assertZeroInRange(const T* t) {
static_assert(start < sizeof(T));
static_assert(end <= sizeof(T));
const uint8_t* ptr = reinterpret_cast<const uint8_t*>(t);
for (size_t i = start; i < end; i++) {
EXPECT_EQ(0, ptr[i]);
}
}
template <typename T, size_t start, size_t end>
static void uninitTest() {
uint8_t buf[sizeof(T)];
memset(buf, 0xFF, sizeof(T));
T* type = new (buf) T;
assertZeroInRange<T, start, end>(type);
type->~T();
}
TEST_F(LibHidlTest, HidlVecUninit) {
using ::android::hardware::hidl_vec;
struct SomeType {};
static_assert(sizeof(hidl_vec<SomeType>) == 16);
// padding after mOwnsBuffer
uninitTest<hidl_vec<SomeType>, 13, 16>();
}
TEST_F(LibHidlTest, HidlHandleUninit) {
using ::android::hardware::hidl_handle;
static_assert(sizeof(hidl_handle) == 16);
// padding after mOwnsHandle
uninitTest<hidl_handle, 9, 16>();
}
TEST_F(LibHidlTest, HidlStringUninit) {
using ::android::hardware::hidl_string;
static_assert(sizeof(hidl_string) == 16);
// padding after mOwnsBuffer
uninitTest<hidl_string, 13, 16>();
}
int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}