| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // This file contains the functions that initialize SELinux during boot as well as helper functions |
| // for SELinux operation for init. |
| |
| // When the system boots, there is no SEPolicy present and init is running in the kernel domain. |
| // Init loads the SEPolicy from the file system, restores the context of /system/bin/init based on |
| // this SEPolicy, and finally exec()'s itself to run in the proper domain. |
| |
| // The SEPolicy on Android comes in two variants: monolithic and split. |
| |
| // The monolithic policy variant is for legacy non-treble devices that contain a single SEPolicy |
| // file located at /sepolicy and is directly loaded into the kernel SELinux subsystem. |
| |
| // The split policy is for supporting treble devices. It splits the SEPolicy across files on |
| // /system/etc/selinux (the 'plat' portion of the policy) and /vendor/etc/selinux (the 'nonplat' |
| // portion of the policy). This is necessary to allow the system image to be updated independently |
| // of the vendor image, while maintaining contributions from both partitions in the SEPolicy. This |
| // is especially important for VTS testing, where the SEPolicy on the Google System Image may not be |
| // identical to the system image shipped on a vendor's device. |
| |
| // The split SEPolicy is loaded as described below: |
| // 1) There is a precompiled SEPolicy located at either /vendor/etc/selinux/precompiled_sepolicy or |
| // /odm/etc/selinux/precompiled_sepolicy if odm parition is present. Stored along with this file |
| // are the sha256 hashes of the parts of the SEPolicy on /system, /system_ext and /product that |
| // were used to compile this precompiled policy. The system partition contains a similar sha256 |
| // of the parts of the SEPolicy that it currently contains. Symmetrically, system_ext and |
| // product paritition contain sha256 hashes of their SEPolicy. The init loads this |
| // precompiled_sepolicy directly if and only if the hashes along with the precompiled SEPolicy on |
| // /vendor or /odm match the hashes for system, system_ext and product SEPolicy, respectively. |
| // 2) If these hashes do not match, then either /system or /system_ext or /product (or some of them) |
| // have been updated out of sync with /vendor (or /odm if it is present) and the init needs to |
| // compile the SEPolicy. /system contains the SEPolicy compiler, secilc, and it is used by the |
| // OpenSplitPolicy() function below to compile the SEPolicy to a temp directory and load it. |
| // That function contains even more documentation with the specific implementation details of how |
| // the SEPolicy is compiled if needed. |
| |
| #include "selinux.h" |
| |
| #include <android/api-level.h> |
| #include <fcntl.h> |
| #include <linux/audit.h> |
| #include <linux/netlink.h> |
| #include <stdlib.h> |
| #include <sys/wait.h> |
| #include <unistd.h> |
| |
| #include <android-base/chrono_utils.h> |
| #include <android-base/file.h> |
| #include <android-base/logging.h> |
| #include <android-base/parseint.h> |
| #include <android-base/result.h> |
| #include <android-base/strings.h> |
| #include <android-base/unique_fd.h> |
| #include <fs_avb/fs_avb.h> |
| #include <fs_mgr.h> |
| #include <libgsi/libgsi.h> |
| #include <libsnapshot/snapshot.h> |
| #include <selinux/android.h> |
| |
| #include "block_dev_initializer.h" |
| #include "debug_ramdisk.h" |
| #include "reboot_utils.h" |
| #include "snapuserd_transition.h" |
| #include "util.h" |
| |
| using namespace std::string_literals; |
| |
| using android::base::ParseInt; |
| using android::base::Timer; |
| using android::base::unique_fd; |
| using android::fs_mgr::AvbHandle; |
| using android::snapshot::SnapshotManager; |
| |
| namespace android { |
| namespace init { |
| |
| namespace { |
| |
| enum EnforcingStatus { SELINUX_PERMISSIVE, SELINUX_ENFORCING }; |
| |
| EnforcingStatus StatusFromProperty() { |
| EnforcingStatus status = SELINUX_ENFORCING; |
| |
| ImportKernelCmdline([&](const std::string& key, const std::string& value) { |
| if (key == "androidboot.selinux" && value == "permissive") { |
| status = SELINUX_PERMISSIVE; |
| } |
| }); |
| |
| if (status == SELINUX_ENFORCING) { |
| ImportBootconfig([&](const std::string& key, const std::string& value) { |
| if (key == "androidboot.selinux" && value == "permissive") { |
| status = SELINUX_PERMISSIVE; |
| } |
| }); |
| } |
| |
| return status; |
| } |
| |
| bool IsEnforcing() { |
| if (ALLOW_PERMISSIVE_SELINUX) { |
| return StatusFromProperty() == SELINUX_ENFORCING; |
| } |
| return true; |
| } |
| |
| // Forks, executes the provided program in the child, and waits for the completion in the parent. |
| // Child's stderr is captured and logged using LOG(ERROR). |
| bool ForkExecveAndWaitForCompletion(const char* filename, char* const argv[]) { |
| // Create a pipe used for redirecting child process's output. |
| // * pipe_fds[0] is the FD the parent will use for reading. |
| // * pipe_fds[1] is the FD the child will use for writing. |
| int pipe_fds[2]; |
| if (pipe(pipe_fds) == -1) { |
| PLOG(ERROR) << "Failed to create pipe"; |
| return false; |
| } |
| |
| pid_t child_pid = fork(); |
| if (child_pid == -1) { |
| PLOG(ERROR) << "Failed to fork for " << filename; |
| return false; |
| } |
| |
| if (child_pid == 0) { |
| // fork succeeded -- this is executing in the child process |
| |
| // Close the pipe FD not used by this process |
| close(pipe_fds[0]); |
| |
| // Redirect stderr to the pipe FD provided by the parent |
| if (TEMP_FAILURE_RETRY(dup2(pipe_fds[1], STDERR_FILENO)) == -1) { |
| PLOG(ERROR) << "Failed to redirect stderr of " << filename; |
| _exit(127); |
| return false; |
| } |
| close(pipe_fds[1]); |
| |
| if (execv(filename, argv) == -1) { |
| PLOG(ERROR) << "Failed to execve " << filename; |
| return false; |
| } |
| // Unreachable because execve will have succeeded and replaced this code |
| // with child process's code. |
| _exit(127); |
| return false; |
| } else { |
| // fork succeeded -- this is executing in the original/parent process |
| |
| // Close the pipe FD not used by this process |
| close(pipe_fds[1]); |
| |
| // Log the redirected output of the child process. |
| // It's unfortunate that there's no standard way to obtain an istream for a file descriptor. |
| // As a result, we're buffering all output and logging it in one go at the end of the |
| // invocation, instead of logging it as it comes in. |
| const int child_out_fd = pipe_fds[0]; |
| std::string child_output; |
| if (!android::base::ReadFdToString(child_out_fd, &child_output)) { |
| PLOG(ERROR) << "Failed to capture full output of " << filename; |
| } |
| close(child_out_fd); |
| if (!child_output.empty()) { |
| // Log captured output, line by line, because LOG expects to be invoked for each line |
| std::istringstream in(child_output); |
| std::string line; |
| while (std::getline(in, line)) { |
| LOG(ERROR) << filename << ": " << line; |
| } |
| } |
| |
| // Wait for child to terminate |
| int status; |
| if (TEMP_FAILURE_RETRY(waitpid(child_pid, &status, 0)) != child_pid) { |
| PLOG(ERROR) << "Failed to wait for " << filename; |
| return false; |
| } |
| |
| if (WIFEXITED(status)) { |
| int status_code = WEXITSTATUS(status); |
| if (status_code == 0) { |
| return true; |
| } else { |
| LOG(ERROR) << filename << " exited with status " << status_code; |
| } |
| } else if (WIFSIGNALED(status)) { |
| LOG(ERROR) << filename << " killed by signal " << WTERMSIG(status); |
| } else if (WIFSTOPPED(status)) { |
| LOG(ERROR) << filename << " stopped by signal " << WSTOPSIG(status); |
| } else { |
| LOG(ERROR) << "waitpid for " << filename << " returned unexpected status: " << status; |
| } |
| |
| return false; |
| } |
| } |
| |
| bool ReadFirstLine(const char* file, std::string* line) { |
| line->clear(); |
| |
| std::string contents; |
| if (!android::base::ReadFileToString(file, &contents, true /* follow symlinks */)) { |
| return false; |
| } |
| std::istringstream in(contents); |
| std::getline(in, *line); |
| return true; |
| } |
| |
| Result<std::string> FindPrecompiledSplitPolicy() { |
| std::string precompiled_sepolicy; |
| // If there is an odm partition, precompiled_sepolicy will be in |
| // odm/etc/selinux. Otherwise it will be in vendor/etc/selinux. |
| static constexpr const char vendor_precompiled_sepolicy[] = |
| "/vendor/etc/selinux/precompiled_sepolicy"; |
| static constexpr const char odm_precompiled_sepolicy[] = |
| "/odm/etc/selinux/precompiled_sepolicy"; |
| if (access(odm_precompiled_sepolicy, R_OK) == 0) { |
| precompiled_sepolicy = odm_precompiled_sepolicy; |
| } else if (access(vendor_precompiled_sepolicy, R_OK) == 0) { |
| precompiled_sepolicy = vendor_precompiled_sepolicy; |
| } else { |
| return ErrnoError() << "No precompiled sepolicy at " << vendor_precompiled_sepolicy; |
| } |
| |
| // Use precompiled sepolicy only when all corresponding hashes are equal. |
| // plat_sepolicy is always checked, while system_ext and product are checked only when they |
| // exist. |
| std::vector<std::pair<std::string, std::string>> sepolicy_hashes{ |
| {"/system/etc/selinux/plat_sepolicy_and_mapping.sha256", |
| precompiled_sepolicy + ".plat_sepolicy_and_mapping.sha256"}, |
| }; |
| |
| if (access("/system_ext/etc/selinux/system_ext_sepolicy.cil", F_OK) == 0) { |
| sepolicy_hashes.emplace_back( |
| "/system_ext/etc/selinux/system_ext_sepolicy_and_mapping.sha256", |
| precompiled_sepolicy + ".system_ext_sepolicy_and_mapping.sha256"); |
| } |
| |
| if (access("/product/etc/selinux/product_sepolicy.cil", F_OK) == 0) { |
| sepolicy_hashes.emplace_back("/product/etc/selinux/product_sepolicy_and_mapping.sha256", |
| precompiled_sepolicy + ".product_sepolicy_and_mapping.sha256"); |
| } |
| |
| for (const auto& [actual_id_path, precompiled_id_path] : sepolicy_hashes) { |
| std::string actual_id; |
| if (!ReadFirstLine(actual_id_path.c_str(), &actual_id)) { |
| return ErrnoError() << "Failed to read " << actual_id_path; |
| } |
| |
| std::string precompiled_id; |
| if (!ReadFirstLine(precompiled_id_path.c_str(), &precompiled_id)) { |
| return ErrnoError() << "Failed to read " << precompiled_id_path; |
| } |
| |
| if (actual_id.empty() || actual_id != precompiled_id) { |
| return Error() << actual_id_path << " and " << precompiled_id_path << " differ"; |
| } |
| } |
| |
| return precompiled_sepolicy; |
| } |
| |
| bool GetVendorMappingVersion(std::string* plat_vers) { |
| if (!ReadFirstLine("/vendor/etc/selinux/plat_sepolicy_vers.txt", plat_vers)) { |
| PLOG(ERROR) << "Failed to read /vendor/etc/selinux/plat_sepolicy_vers.txt"; |
| return false; |
| } |
| if (plat_vers->empty()) { |
| LOG(ERROR) << "No version present in plat_sepolicy_vers.txt"; |
| return false; |
| } |
| return true; |
| } |
| |
| constexpr const char plat_policy_cil_file[] = "/system/etc/selinux/plat_sepolicy.cil"; |
| |
| bool IsSplitPolicyDevice() { |
| return access(plat_policy_cil_file, R_OK) != -1; |
| } |
| |
| struct PolicyFile { |
| unique_fd fd; |
| std::string path; |
| }; |
| |
| bool OpenSplitPolicy(PolicyFile* policy_file) { |
| // IMPLEMENTATION NOTE: Split policy consists of three CIL files: |
| // * platform -- policy needed due to logic contained in the system image, |
| // * non-platform -- policy needed due to logic contained in the vendor image, |
| // * mapping -- mapping policy which helps preserve forward-compatibility of non-platform policy |
| // with newer versions of platform policy. |
| // |
| // secilc is invoked to compile the above three policy files into a single monolithic policy |
| // file. This file is then loaded into the kernel. |
| |
| // See if we need to load userdebug_plat_sepolicy.cil instead of plat_sepolicy.cil. |
| const char* force_debuggable_env = getenv("INIT_FORCE_DEBUGGABLE"); |
| bool use_userdebug_policy = |
| ((force_debuggable_env && "true"s == force_debuggable_env) && |
| AvbHandle::IsDeviceUnlocked() && access(kDebugRamdiskSEPolicy, F_OK) == 0); |
| if (use_userdebug_policy) { |
| LOG(WARNING) << "Using userdebug system sepolicy"; |
| } |
| |
| // Load precompiled policy from vendor image, if a matching policy is found there. The policy |
| // must match the platform policy on the system image. |
| // use_userdebug_policy requires compiling sepolicy with userdebug_plat_sepolicy.cil. |
| // Thus it cannot use the precompiled policy from vendor image. |
| if (!use_userdebug_policy) { |
| if (auto res = FindPrecompiledSplitPolicy(); res.ok()) { |
| unique_fd fd(open(res->c_str(), O_RDONLY | O_CLOEXEC | O_BINARY)); |
| if (fd != -1) { |
| policy_file->fd = std::move(fd); |
| policy_file->path = std::move(*res); |
| return true; |
| } |
| } else { |
| LOG(INFO) << res.error(); |
| } |
| } |
| // No suitable precompiled policy could be loaded |
| |
| LOG(INFO) << "Compiling SELinux policy"; |
| |
| // We store the output of the compilation on /dev because this is the most convenient tmpfs |
| // storage mount available this early in the boot sequence. |
| char compiled_sepolicy[] = "/dev/sepolicy.XXXXXX"; |
| unique_fd compiled_sepolicy_fd(mkostemp(compiled_sepolicy, O_CLOEXEC)); |
| if (compiled_sepolicy_fd < 0) { |
| PLOG(ERROR) << "Failed to create temporary file " << compiled_sepolicy; |
| return false; |
| } |
| |
| // Determine which mapping file to include |
| std::string vend_plat_vers; |
| if (!GetVendorMappingVersion(&vend_plat_vers)) { |
| return false; |
| } |
| std::string plat_mapping_file("/system/etc/selinux/mapping/" + vend_plat_vers + ".cil"); |
| |
| std::string plat_compat_cil_file("/system/etc/selinux/mapping/" + vend_plat_vers + |
| ".compat.cil"); |
| if (access(plat_compat_cil_file.c_str(), F_OK) == -1) { |
| plat_compat_cil_file.clear(); |
| } |
| |
| std::string system_ext_policy_cil_file("/system_ext/etc/selinux/system_ext_sepolicy.cil"); |
| if (access(system_ext_policy_cil_file.c_str(), F_OK) == -1) { |
| system_ext_policy_cil_file.clear(); |
| } |
| |
| std::string system_ext_mapping_file("/system_ext/etc/selinux/mapping/" + vend_plat_vers + |
| ".cil"); |
| if (access(system_ext_mapping_file.c_str(), F_OK) == -1) { |
| system_ext_mapping_file.clear(); |
| } |
| |
| std::string product_policy_cil_file("/product/etc/selinux/product_sepolicy.cil"); |
| if (access(product_policy_cil_file.c_str(), F_OK) == -1) { |
| product_policy_cil_file.clear(); |
| } |
| |
| std::string product_mapping_file("/product/etc/selinux/mapping/" + vend_plat_vers + ".cil"); |
| if (access(product_mapping_file.c_str(), F_OK) == -1) { |
| product_mapping_file.clear(); |
| } |
| |
| // vendor_sepolicy.cil and plat_pub_versioned.cil are the new design to replace |
| // nonplat_sepolicy.cil. |
| std::string plat_pub_versioned_cil_file("/vendor/etc/selinux/plat_pub_versioned.cil"); |
| std::string vendor_policy_cil_file("/vendor/etc/selinux/vendor_sepolicy.cil"); |
| |
| if (access(vendor_policy_cil_file.c_str(), F_OK) == -1) { |
| // For backward compatibility. |
| // TODO: remove this after no device is using nonplat_sepolicy.cil. |
| vendor_policy_cil_file = "/vendor/etc/selinux/nonplat_sepolicy.cil"; |
| plat_pub_versioned_cil_file.clear(); |
| } else if (access(plat_pub_versioned_cil_file.c_str(), F_OK) == -1) { |
| LOG(ERROR) << "Missing " << plat_pub_versioned_cil_file; |
| return false; |
| } |
| |
| // odm_sepolicy.cil is default but optional. |
| std::string odm_policy_cil_file("/odm/etc/selinux/odm_sepolicy.cil"); |
| if (access(odm_policy_cil_file.c_str(), F_OK) == -1) { |
| odm_policy_cil_file.clear(); |
| } |
| const std::string version_as_string = std::to_string(SEPOLICY_VERSION); |
| |
| // clang-format off |
| std::vector<const char*> compile_args { |
| "/system/bin/secilc", |
| use_userdebug_policy ? kDebugRamdiskSEPolicy: plat_policy_cil_file, |
| "-m", "-M", "true", "-G", "-N", |
| "-c", version_as_string.c_str(), |
| plat_mapping_file.c_str(), |
| "-o", compiled_sepolicy, |
| // We don't care about file_contexts output by the compiler |
| "-f", "/sys/fs/selinux/null", // /dev/null is not yet available |
| }; |
| // clang-format on |
| |
| if (!plat_compat_cil_file.empty()) { |
| compile_args.push_back(plat_compat_cil_file.c_str()); |
| } |
| if (!system_ext_policy_cil_file.empty()) { |
| compile_args.push_back(system_ext_policy_cil_file.c_str()); |
| } |
| if (!system_ext_mapping_file.empty()) { |
| compile_args.push_back(system_ext_mapping_file.c_str()); |
| } |
| if (!product_policy_cil_file.empty()) { |
| compile_args.push_back(product_policy_cil_file.c_str()); |
| } |
| if (!product_mapping_file.empty()) { |
| compile_args.push_back(product_mapping_file.c_str()); |
| } |
| if (!plat_pub_versioned_cil_file.empty()) { |
| compile_args.push_back(plat_pub_versioned_cil_file.c_str()); |
| } |
| if (!vendor_policy_cil_file.empty()) { |
| compile_args.push_back(vendor_policy_cil_file.c_str()); |
| } |
| if (!odm_policy_cil_file.empty()) { |
| compile_args.push_back(odm_policy_cil_file.c_str()); |
| } |
| compile_args.push_back(nullptr); |
| |
| if (!ForkExecveAndWaitForCompletion(compile_args[0], (char**)compile_args.data())) { |
| unlink(compiled_sepolicy); |
| return false; |
| } |
| unlink(compiled_sepolicy); |
| |
| policy_file->fd = std::move(compiled_sepolicy_fd); |
| policy_file->path = compiled_sepolicy; |
| return true; |
| } |
| |
| bool OpenMonolithicPolicy(PolicyFile* policy_file) { |
| static constexpr char kSepolicyFile[] = "/sepolicy"; |
| |
| LOG(VERBOSE) << "Opening SELinux policy from monolithic file"; |
| policy_file->fd.reset(open(kSepolicyFile, O_RDONLY | O_CLOEXEC | O_NOFOLLOW)); |
| if (policy_file->fd < 0) { |
| PLOG(ERROR) << "Failed to open monolithic SELinux policy"; |
| return false; |
| } |
| policy_file->path = kSepolicyFile; |
| return true; |
| } |
| |
| void ReadPolicy(std::string* policy) { |
| PolicyFile policy_file; |
| |
| bool ok = IsSplitPolicyDevice() ? OpenSplitPolicy(&policy_file) |
| : OpenMonolithicPolicy(&policy_file); |
| if (!ok) { |
| LOG(FATAL) << "Unable to open SELinux policy"; |
| } |
| |
| if (!android::base::ReadFdToString(policy_file.fd, policy)) { |
| PLOG(FATAL) << "Failed to read policy file: " << policy_file.path; |
| } |
| } |
| |
| void SelinuxSetEnforcement() { |
| bool kernel_enforcing = (security_getenforce() == 1); |
| bool is_enforcing = IsEnforcing(); |
| if (kernel_enforcing != is_enforcing) { |
| if (security_setenforce(is_enforcing)) { |
| PLOG(FATAL) << "security_setenforce(" << (is_enforcing ? "true" : "false") |
| << ") failed"; |
| } |
| } |
| |
| if (auto result = WriteFile("/sys/fs/selinux/checkreqprot", "0"); !result.ok()) { |
| LOG(FATAL) << "Unable to write to /sys/fs/selinux/checkreqprot: " << result.error(); |
| } |
| } |
| |
| constexpr size_t kKlogMessageSize = 1024; |
| |
| void SelinuxAvcLog(char* buf, size_t buf_len) { |
| CHECK_GT(buf_len, 0u); |
| |
| size_t str_len = strnlen(buf, buf_len); |
| // trim newline at end of string |
| if (buf[str_len - 1] == '\n') { |
| buf[str_len - 1] = '\0'; |
| } |
| |
| struct NetlinkMessage { |
| nlmsghdr hdr; |
| char buf[kKlogMessageSize]; |
| } request = {}; |
| |
| request.hdr.nlmsg_flags = NLM_F_REQUEST; |
| request.hdr.nlmsg_type = AUDIT_USER_AVC; |
| request.hdr.nlmsg_len = sizeof(request); |
| strlcpy(request.buf, buf, sizeof(request.buf)); |
| |
| auto fd = unique_fd{socket(PF_NETLINK, SOCK_RAW | SOCK_CLOEXEC, NETLINK_AUDIT)}; |
| if (!fd.ok()) { |
| return; |
| } |
| |
| TEMP_FAILURE_RETRY(send(fd, &request, sizeof(request), 0)); |
| } |
| |
| } // namespace |
| |
| void SelinuxRestoreContext() { |
| LOG(INFO) << "Running restorecon..."; |
| selinux_android_restorecon("/dev", 0); |
| selinux_android_restorecon("/dev/kmsg", 0); |
| if constexpr (WORLD_WRITABLE_KMSG) { |
| selinux_android_restorecon("/dev/kmsg_debug", 0); |
| } |
| selinux_android_restorecon("/dev/null", 0); |
| selinux_android_restorecon("/dev/ptmx", 0); |
| selinux_android_restorecon("/dev/socket", 0); |
| selinux_android_restorecon("/dev/random", 0); |
| selinux_android_restorecon("/dev/urandom", 0); |
| selinux_android_restorecon("/dev/__properties__", 0); |
| |
| selinux_android_restorecon("/dev/block", SELINUX_ANDROID_RESTORECON_RECURSE); |
| selinux_android_restorecon("/dev/dm-user", SELINUX_ANDROID_RESTORECON_RECURSE); |
| selinux_android_restorecon("/dev/device-mapper", 0); |
| |
| selinux_android_restorecon("/apex", 0); |
| |
| selinux_android_restorecon("/linkerconfig", 0); |
| |
| // adb remount, snapshot-based updates, and DSUs all create files during |
| // first-stage init. |
| selinux_android_restorecon(SnapshotManager::GetGlobalRollbackIndicatorPath().c_str(), 0); |
| selinux_android_restorecon("/metadata/gsi", SELINUX_ANDROID_RESTORECON_RECURSE | |
| SELINUX_ANDROID_RESTORECON_SKIP_SEHASH); |
| } |
| |
| int SelinuxKlogCallback(int type, const char* fmt, ...) { |
| android::base::LogSeverity severity = android::base::ERROR; |
| if (type == SELINUX_WARNING) { |
| severity = android::base::WARNING; |
| } else if (type == SELINUX_INFO) { |
| severity = android::base::INFO; |
| } |
| char buf[kKlogMessageSize]; |
| va_list ap; |
| va_start(ap, fmt); |
| int length_written = vsnprintf(buf, sizeof(buf), fmt, ap); |
| va_end(ap); |
| if (length_written <= 0) { |
| return 0; |
| } |
| if (type == SELINUX_AVC) { |
| SelinuxAvcLog(buf, sizeof(buf)); |
| } else { |
| android::base::KernelLogger(android::base::MAIN, severity, "selinux", nullptr, 0, buf); |
| } |
| return 0; |
| } |
| |
| void SelinuxSetupKernelLogging() { |
| selinux_callback cb; |
| cb.func_log = SelinuxKlogCallback; |
| selinux_set_callback(SELINUX_CB_LOG, cb); |
| } |
| |
| int SelinuxGetVendorAndroidVersion() { |
| static int vendor_android_version = [] { |
| if (!IsSplitPolicyDevice()) { |
| // If this device does not split sepolicy files, it's not a Treble device and therefore, |
| // we assume it's always on the latest platform. |
| return __ANDROID_API_FUTURE__; |
| } |
| |
| std::string version; |
| if (!GetVendorMappingVersion(&version)) { |
| LOG(FATAL) << "Could not read vendor SELinux version"; |
| } |
| |
| int major_version; |
| std::string major_version_str(version, 0, version.find('.')); |
| if (!ParseInt(major_version_str, &major_version)) { |
| PLOG(FATAL) << "Failed to parse the vendor sepolicy major version " |
| << major_version_str; |
| } |
| |
| return major_version; |
| }(); |
| return vendor_android_version; |
| } |
| |
| // This is for R system.img/system_ext.img to work on old vendor.img as system_ext.img |
| // is introduced in R. We mount system_ext in second stage init because the first-stage |
| // init in boot.img won't be updated in the system-only OTA scenario. |
| void MountMissingSystemPartitions() { |
| android::fs_mgr::Fstab fstab; |
| if (!ReadDefaultFstab(&fstab)) { |
| LOG(ERROR) << "Could not read default fstab"; |
| } |
| |
| android::fs_mgr::Fstab mounts; |
| if (!ReadFstabFromFile("/proc/mounts", &mounts)) { |
| LOG(ERROR) << "Could not read /proc/mounts"; |
| } |
| |
| static const std::vector<std::string> kPartitionNames = {"system_ext", "product"}; |
| |
| android::fs_mgr::Fstab extra_fstab; |
| for (const auto& name : kPartitionNames) { |
| if (GetEntryForMountPoint(&mounts, "/"s + name)) { |
| // The partition is already mounted. |
| continue; |
| } |
| |
| auto system_entry = GetEntryForMountPoint(&fstab, "/system"); |
| if (!system_entry) { |
| LOG(ERROR) << "Could not find mount entry for /system"; |
| break; |
| } |
| if (!system_entry->fs_mgr_flags.logical) { |
| LOG(INFO) << "Skipping mount of " << name << ", system is not dynamic."; |
| break; |
| } |
| |
| auto entry = *system_entry; |
| auto partition_name = name + fs_mgr_get_slot_suffix(); |
| auto replace_name = "system"s + fs_mgr_get_slot_suffix(); |
| |
| entry.mount_point = "/"s + name; |
| entry.blk_device = |
| android::base::StringReplace(entry.blk_device, replace_name, partition_name, false); |
| if (!fs_mgr_update_logical_partition(&entry)) { |
| LOG(ERROR) << "Could not update logical partition"; |
| continue; |
| } |
| |
| extra_fstab.emplace_back(std::move(entry)); |
| } |
| |
| SkipMountingPartitions(&extra_fstab); |
| if (extra_fstab.empty()) { |
| return; |
| } |
| |
| BlockDevInitializer block_dev_init; |
| for (auto& entry : extra_fstab) { |
| if (access(entry.blk_device.c_str(), F_OK) != 0) { |
| auto block_dev = android::base::Basename(entry.blk_device); |
| if (!block_dev_init.InitDmDevice(block_dev)) { |
| LOG(ERROR) << "Failed to find device-mapper node: " << block_dev; |
| continue; |
| } |
| } |
| if (fs_mgr_do_mount_one(entry)) { |
| LOG(ERROR) << "Could not mount " << entry.mount_point; |
| } |
| } |
| } |
| |
| static void LoadSelinuxPolicy(std::string& policy) { |
| LOG(INFO) << "Loading SELinux policy"; |
| |
| set_selinuxmnt("/sys/fs/selinux"); |
| if (security_load_policy(policy.data(), policy.size()) < 0) { |
| PLOG(FATAL) << "SELinux: Could not load policy"; |
| } |
| } |
| |
| // The SELinux setup process is carefully orchestrated around snapuserd. Policy |
| // must be loaded off dynamic partitions, and during an OTA, those partitions |
| // cannot be read without snapuserd. But, with kernel-privileged snapuserd |
| // running, loading the policy will immediately trigger audits. |
| // |
| // We use a five-step process to address this: |
| // (1) Read the policy into a string, with snapuserd running. |
| // (2) Rewrite the snapshot device-mapper tables, to generate new dm-user |
| // devices and to flush I/O. |
| // (3) Kill snapuserd, which no longer has any dm-user devices to attach to. |
| // (4) Load the sepolicy and issue critical restorecons in /dev, carefully |
| // avoiding anything that would read from /system. |
| // (5) Re-launch snapuserd and attach it to the dm-user devices from step (2). |
| // |
| // After this sequence, it is safe to enable enforcing mode and continue booting. |
| int SetupSelinux(char** argv) { |
| SetStdioToDevNull(argv); |
| InitKernelLogging(argv); |
| |
| if (REBOOT_BOOTLOADER_ON_PANIC) { |
| InstallRebootSignalHandlers(); |
| } |
| |
| boot_clock::time_point start_time = boot_clock::now(); |
| |
| MountMissingSystemPartitions(); |
| |
| SelinuxSetupKernelLogging(); |
| |
| LOG(INFO) << "Opening SELinux policy"; |
| |
| // Read the policy before potentially killing snapuserd. |
| std::string policy; |
| ReadPolicy(&policy); |
| |
| auto snapuserd_helper = SnapuserdSelinuxHelper::CreateIfNeeded(); |
| if (snapuserd_helper) { |
| // Kill the old snapused to avoid audit messages. After this we cannot |
| // read from /system (or other dynamic partitions) until we call |
| // FinishTransition(). |
| snapuserd_helper->StartTransition(); |
| } |
| |
| LoadSelinuxPolicy(policy); |
| |
| if (snapuserd_helper) { |
| // Before enforcing, finish the pending snapuserd transition. |
| snapuserd_helper->FinishTransition(); |
| snapuserd_helper = nullptr; |
| } |
| |
| SelinuxSetEnforcement(); |
| |
| // We're in the kernel domain and want to transition to the init domain. File systems that |
| // store SELabels in their xattrs, such as ext4 do not need an explicit restorecon here, |
| // but other file systems do. In particular, this is needed for ramdisks such as the |
| // recovery image for A/B devices. |
| if (selinux_android_restorecon("/system/bin/init", 0) == -1) { |
| PLOG(FATAL) << "restorecon failed of /system/bin/init failed"; |
| } |
| |
| setenv(kEnvSelinuxStartedAt, std::to_string(start_time.time_since_epoch().count()).c_str(), 1); |
| |
| const char* path = "/system/bin/init"; |
| const char* args[] = {path, "second_stage", nullptr}; |
| execv(path, const_cast<char**>(args)); |
| |
| // execv() only returns if an error happened, in which case we |
| // panic and never return from this function. |
| PLOG(FATAL) << "execv(\"" << path << "\") failed"; |
| |
| return 1; |
| } |
| |
| } // namespace init |
| } // namespace android |