| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <stdint.h> |
| |
| #include <unwindstack/DwarfError.h> |
| #include <unwindstack/DwarfLocation.h> |
| #include <unwindstack/DwarfMemory.h> |
| #include <unwindstack/DwarfSection.h> |
| #include <unwindstack/DwarfStructs.h> |
| #include <unwindstack/Log.h> |
| #include <unwindstack/Memory.h> |
| #include <unwindstack/Regs.h> |
| |
| #include "DwarfCfa.h" |
| #include "DwarfDebugFrame.h" |
| #include "DwarfEhFrame.h" |
| #include "DwarfEncoding.h" |
| #include "DwarfOp.h" |
| #include "RegsInfo.h" |
| |
| namespace unwindstack { |
| |
| DwarfSection::DwarfSection(Memory* memory) : memory_(memory) {} |
| |
| bool DwarfSection::Step(uint64_t pc, Regs* regs, Memory* process_memory, bool* finished) { |
| // Lookup the pc in the cache. |
| auto it = loc_regs_.upper_bound(pc); |
| if (it == loc_regs_.end() || pc < it->second.pc_start) { |
| last_error_.code = DWARF_ERROR_NONE; |
| const DwarfFde* fde = GetFdeFromPc(pc); |
| if (fde == nullptr || fde->cie == nullptr) { |
| last_error_.code = DWARF_ERROR_ILLEGAL_STATE; |
| return false; |
| } |
| |
| // Now get the location information for this pc. |
| dwarf_loc_regs_t loc_regs; |
| if (!GetCfaLocationInfo(pc, fde, &loc_regs)) { |
| return false; |
| } |
| loc_regs.cie = fde->cie; |
| |
| // Store it in the cache. |
| it = loc_regs_.emplace(loc_regs.pc_end, std::move(loc_regs)).first; |
| } |
| |
| // Now eval the actual registers. |
| return Eval(it->second.cie, process_memory, it->second, regs, finished); |
| } |
| |
| template <typename AddressType> |
| const DwarfCie* DwarfSectionImpl<AddressType>::GetCieFromOffset(uint64_t offset) { |
| auto cie_entry = cie_entries_.find(offset); |
| if (cie_entry != cie_entries_.end()) { |
| return &cie_entry->second; |
| } |
| DwarfCie* cie = &cie_entries_[offset]; |
| memory_.set_data_offset(entries_offset_); |
| memory_.set_cur_offset(offset); |
| if (!FillInCieHeader(cie) || !FillInCie(cie)) { |
| // Erase the cached entry. |
| cie_entries_.erase(offset); |
| return nullptr; |
| } |
| return cie; |
| } |
| |
| template <typename AddressType> |
| bool DwarfSectionImpl<AddressType>::FillInCieHeader(DwarfCie* cie) { |
| cie->lsda_encoding = DW_EH_PE_omit; |
| uint32_t length32; |
| if (!memory_.ReadBytes(&length32, sizeof(length32))) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| if (length32 == static_cast<uint32_t>(-1)) { |
| // 64 bit Cie |
| uint64_t length64; |
| if (!memory_.ReadBytes(&length64, sizeof(length64))) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| |
| cie->cfa_instructions_end = memory_.cur_offset() + length64; |
| cie->fde_address_encoding = DW_EH_PE_sdata8; |
| |
| uint64_t cie_id; |
| if (!memory_.ReadBytes(&cie_id, sizeof(cie_id))) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| if (cie_id != cie64_value_) { |
| // This is not a Cie, something has gone horribly wrong. |
| last_error_.code = DWARF_ERROR_ILLEGAL_VALUE; |
| return false; |
| } |
| } else { |
| // 32 bit Cie |
| cie->cfa_instructions_end = memory_.cur_offset() + length32; |
| cie->fde_address_encoding = DW_EH_PE_sdata4; |
| |
| uint32_t cie_id; |
| if (!memory_.ReadBytes(&cie_id, sizeof(cie_id))) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| if (cie_id != cie32_value_) { |
| // This is not a Cie, something has gone horribly wrong. |
| last_error_.code = DWARF_ERROR_ILLEGAL_VALUE; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| template <typename AddressType> |
| bool DwarfSectionImpl<AddressType>::FillInCie(DwarfCie* cie) { |
| if (!memory_.ReadBytes(&cie->version, sizeof(cie->version))) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| |
| if (cie->version != 1 && cie->version != 3 && cie->version != 4 && cie->version != 5) { |
| // Unrecognized version. |
| last_error_.code = DWARF_ERROR_UNSUPPORTED_VERSION; |
| return false; |
| } |
| |
| // Read the augmentation string. |
| char aug_value; |
| do { |
| if (!memory_.ReadBytes(&aug_value, 1)) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| cie->augmentation_string.push_back(aug_value); |
| } while (aug_value != '\0'); |
| |
| if (cie->version == 4 || cie->version == 5) { |
| // Skip the Address Size field since we only use it for validation. |
| memory_.set_cur_offset(memory_.cur_offset() + 1); |
| |
| // Segment Size |
| if (!memory_.ReadBytes(&cie->segment_size, 1)) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| } |
| |
| // Code Alignment Factor |
| if (!memory_.ReadULEB128(&cie->code_alignment_factor)) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| |
| // Data Alignment Factor |
| if (!memory_.ReadSLEB128(&cie->data_alignment_factor)) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| |
| if (cie->version == 1) { |
| // Return Address is a single byte. |
| uint8_t return_address_register; |
| if (!memory_.ReadBytes(&return_address_register, 1)) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| cie->return_address_register = return_address_register; |
| } else if (!memory_.ReadULEB128(&cie->return_address_register)) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| |
| if (cie->augmentation_string[0] != 'z') { |
| cie->cfa_instructions_offset = memory_.cur_offset(); |
| return true; |
| } |
| |
| uint64_t aug_length; |
| if (!memory_.ReadULEB128(&aug_length)) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| cie->cfa_instructions_offset = memory_.cur_offset() + aug_length; |
| |
| for (size_t i = 1; i < cie->augmentation_string.size(); i++) { |
| switch (cie->augmentation_string[i]) { |
| case 'L': |
| if (!memory_.ReadBytes(&cie->lsda_encoding, 1)) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| break; |
| case 'P': { |
| uint8_t encoding; |
| if (!memory_.ReadBytes(&encoding, 1)) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| memory_.set_pc_offset(pc_offset_); |
| if (!memory_.ReadEncodedValue<AddressType>(encoding, &cie->personality_handler)) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| } break; |
| case 'R': |
| if (!memory_.ReadBytes(&cie->fde_address_encoding, 1)) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| break; |
| } |
| } |
| return true; |
| } |
| |
| template <typename AddressType> |
| const DwarfFde* DwarfSectionImpl<AddressType>::GetFdeFromOffset(uint64_t offset) { |
| auto fde_entry = fde_entries_.find(offset); |
| if (fde_entry != fde_entries_.end()) { |
| return &fde_entry->second; |
| } |
| DwarfFde* fde = &fde_entries_[offset]; |
| memory_.set_data_offset(entries_offset_); |
| memory_.set_cur_offset(offset); |
| if (!FillInFdeHeader(fde) || !FillInFde(fde)) { |
| fde_entries_.erase(offset); |
| return nullptr; |
| } |
| return fde; |
| } |
| |
| template <typename AddressType> |
| bool DwarfSectionImpl<AddressType>::FillInFdeHeader(DwarfFde* fde) { |
| uint32_t length32; |
| if (!memory_.ReadBytes(&length32, sizeof(length32))) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| |
| if (length32 == static_cast<uint32_t>(-1)) { |
| // 64 bit Fde. |
| uint64_t length64; |
| if (!memory_.ReadBytes(&length64, sizeof(length64))) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| fde->cfa_instructions_end = memory_.cur_offset() + length64; |
| |
| uint64_t value64; |
| if (!memory_.ReadBytes(&value64, sizeof(value64))) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| if (value64 == cie64_value_) { |
| // This is a Cie, this means something has gone wrong. |
| last_error_.code = DWARF_ERROR_ILLEGAL_VALUE; |
| return false; |
| } |
| |
| // Get the Cie pointer, which is necessary to properly read the rest of |
| // of the Fde information. |
| fde->cie_offset = GetCieOffsetFromFde64(value64); |
| } else { |
| // 32 bit Fde. |
| fde->cfa_instructions_end = memory_.cur_offset() + length32; |
| |
| uint32_t value32; |
| if (!memory_.ReadBytes(&value32, sizeof(value32))) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| if (value32 == cie32_value_) { |
| // This is a Cie, this means something has gone wrong. |
| last_error_.code = DWARF_ERROR_ILLEGAL_VALUE; |
| return false; |
| } |
| |
| // Get the Cie pointer, which is necessary to properly read the rest of |
| // of the Fde information. |
| fde->cie_offset = GetCieOffsetFromFde32(value32); |
| } |
| return true; |
| } |
| |
| template <typename AddressType> |
| bool DwarfSectionImpl<AddressType>::FillInFde(DwarfFde* fde) { |
| uint64_t cur_offset = memory_.cur_offset(); |
| |
| const DwarfCie* cie = GetCieFromOffset(fde->cie_offset); |
| if (cie == nullptr) { |
| return false; |
| } |
| fde->cie = cie; |
| |
| if (cie->segment_size != 0) { |
| // Skip over the segment selector for now. |
| cur_offset += cie->segment_size; |
| } |
| memory_.set_cur_offset(cur_offset); |
| |
| // The load bias only applies to the start. |
| memory_.set_pc_offset(section_bias_); |
| bool valid = memory_.ReadEncodedValue<AddressType>(cie->fde_address_encoding, &fde->pc_start); |
| fde->pc_start = AdjustPcFromFde(fde->pc_start); |
| |
| memory_.set_pc_offset(0); |
| if (!valid || !memory_.ReadEncodedValue<AddressType>(cie->fde_address_encoding, &fde->pc_end)) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| fde->pc_end += fde->pc_start; |
| |
| if (cie->augmentation_string.size() > 0 && cie->augmentation_string[0] == 'z') { |
| // Augmentation Size |
| uint64_t aug_length; |
| if (!memory_.ReadULEB128(&aug_length)) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| uint64_t cur_offset = memory_.cur_offset(); |
| |
| memory_.set_pc_offset(pc_offset_); |
| if (!memory_.ReadEncodedValue<AddressType>(cie->lsda_encoding, &fde->lsda_address)) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| |
| // Set our position to after all of the augmentation data. |
| memory_.set_cur_offset(cur_offset + aug_length); |
| } |
| fde->cfa_instructions_offset = memory_.cur_offset(); |
| |
| return true; |
| } |
| |
| template <typename AddressType> |
| bool DwarfSectionImpl<AddressType>::EvalExpression(const DwarfLocation& loc, Memory* regular_memory, |
| AddressType* value, |
| RegsInfo<AddressType>* regs_info, |
| bool* is_dex_pc) { |
| DwarfOp<AddressType> op(&memory_, regular_memory); |
| op.set_regs_info(regs_info); |
| |
| // Need to evaluate the op data. |
| uint64_t end = loc.values[1]; |
| uint64_t start = end - loc.values[0]; |
| if (!op.Eval(start, end)) { |
| last_error_ = op.last_error(); |
| return false; |
| } |
| if (op.StackSize() == 0) { |
| last_error_.code = DWARF_ERROR_ILLEGAL_STATE; |
| return false; |
| } |
| // We don't support an expression that evaluates to a register number. |
| if (op.is_register()) { |
| last_error_.code = DWARF_ERROR_NOT_IMPLEMENTED; |
| return false; |
| } |
| *value = op.StackAt(0); |
| if (is_dex_pc != nullptr && op.dex_pc_set()) { |
| *is_dex_pc = true; |
| } |
| return true; |
| } |
| |
| template <typename AddressType> |
| struct EvalInfo { |
| const dwarf_loc_regs_t* loc_regs; |
| const DwarfCie* cie; |
| Memory* regular_memory; |
| AddressType cfa; |
| bool return_address_undefined = false; |
| RegsInfo<AddressType> regs_info; |
| }; |
| |
| template <typename AddressType> |
| bool DwarfSectionImpl<AddressType>::EvalRegister(const DwarfLocation* loc, uint32_t reg, |
| AddressType* reg_ptr, void* info) { |
| EvalInfo<AddressType>* eval_info = reinterpret_cast<EvalInfo<AddressType>*>(info); |
| Memory* regular_memory = eval_info->regular_memory; |
| switch (loc->type) { |
| case DWARF_LOCATION_OFFSET: |
| if (!regular_memory->ReadFully(eval_info->cfa + loc->values[0], reg_ptr, sizeof(AddressType))) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = eval_info->cfa + loc->values[0]; |
| return false; |
| } |
| break; |
| case DWARF_LOCATION_VAL_OFFSET: |
| *reg_ptr = eval_info->cfa + loc->values[0]; |
| break; |
| case DWARF_LOCATION_REGISTER: { |
| uint32_t cur_reg = loc->values[0]; |
| if (cur_reg >= eval_info->regs_info.Total()) { |
| last_error_.code = DWARF_ERROR_ILLEGAL_VALUE; |
| return false; |
| } |
| *reg_ptr = eval_info->regs_info.Get(cur_reg) + loc->values[1]; |
| break; |
| } |
| case DWARF_LOCATION_EXPRESSION: |
| case DWARF_LOCATION_VAL_EXPRESSION: { |
| AddressType value; |
| bool is_dex_pc = false; |
| if (!EvalExpression(*loc, regular_memory, &value, &eval_info->regs_info, &is_dex_pc)) { |
| return false; |
| } |
| if (loc->type == DWARF_LOCATION_EXPRESSION) { |
| if (!regular_memory->ReadFully(value, reg_ptr, sizeof(AddressType))) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = value; |
| return false; |
| } |
| } else { |
| *reg_ptr = value; |
| if (is_dex_pc) { |
| eval_info->regs_info.regs->set_dex_pc(value); |
| } |
| } |
| break; |
| } |
| case DWARF_LOCATION_UNDEFINED: |
| if (reg == eval_info->cie->return_address_register) { |
| eval_info->return_address_undefined = true; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| template <typename AddressType> |
| bool DwarfSectionImpl<AddressType>::Eval(const DwarfCie* cie, Memory* regular_memory, |
| const dwarf_loc_regs_t& loc_regs, Regs* regs, |
| bool* finished) { |
| RegsImpl<AddressType>* cur_regs = reinterpret_cast<RegsImpl<AddressType>*>(regs); |
| if (cie->return_address_register >= cur_regs->total_regs()) { |
| last_error_.code = DWARF_ERROR_ILLEGAL_VALUE; |
| return false; |
| } |
| |
| // Get the cfa value; |
| auto cfa_entry = loc_regs.find(CFA_REG); |
| if (cfa_entry == loc_regs.end()) { |
| last_error_.code = DWARF_ERROR_CFA_NOT_DEFINED; |
| return false; |
| } |
| |
| // Always set the dex pc to zero when evaluating. |
| cur_regs->set_dex_pc(0); |
| |
| EvalInfo<AddressType> eval_info{.loc_regs = &loc_regs, |
| .cie = cie, |
| .regular_memory = regular_memory, |
| .regs_info = RegsInfo<AddressType>(cur_regs)}; |
| const DwarfLocation* loc = &cfa_entry->second; |
| // Only a few location types are valid for the cfa. |
| switch (loc->type) { |
| case DWARF_LOCATION_REGISTER: |
| if (loc->values[0] >= cur_regs->total_regs()) { |
| last_error_.code = DWARF_ERROR_ILLEGAL_VALUE; |
| return false; |
| } |
| eval_info.cfa = (*cur_regs)[loc->values[0]]; |
| eval_info.cfa += loc->values[1]; |
| break; |
| case DWARF_LOCATION_VAL_EXPRESSION: { |
| AddressType value; |
| if (!EvalExpression(*loc, regular_memory, &value, &eval_info.regs_info, nullptr)) { |
| return false; |
| } |
| // There is only one type of valid expression for CFA evaluation. |
| eval_info.cfa = value; |
| break; |
| } |
| default: |
| last_error_.code = DWARF_ERROR_ILLEGAL_VALUE; |
| return false; |
| } |
| |
| for (const auto& entry : loc_regs) { |
| uint32_t reg = entry.first; |
| // Already handled the CFA register. |
| if (reg == CFA_REG) continue; |
| |
| AddressType* reg_ptr; |
| if (reg >= cur_regs->total_regs()) { |
| // Skip this unknown register. |
| continue; |
| } |
| |
| reg_ptr = eval_info.regs_info.Save(reg); |
| if (!EvalRegister(&entry.second, reg, reg_ptr, &eval_info)) { |
| return false; |
| } |
| } |
| |
| // Find the return address location. |
| if (eval_info.return_address_undefined) { |
| cur_regs->set_pc(0); |
| } else { |
| cur_regs->set_pc((*cur_regs)[cie->return_address_register]); |
| } |
| |
| // If the pc was set to zero, consider this the final frame. |
| *finished = (cur_regs->pc() == 0) ? true : false; |
| |
| cur_regs->set_sp(eval_info.cfa); |
| |
| return true; |
| } |
| |
| template <typename AddressType> |
| bool DwarfSectionImpl<AddressType>::GetCfaLocationInfo(uint64_t pc, const DwarfFde* fde, |
| dwarf_loc_regs_t* loc_regs) { |
| DwarfCfa<AddressType> cfa(&memory_, fde); |
| |
| // Look for the cached copy of the cie data. |
| auto reg_entry = cie_loc_regs_.find(fde->cie_offset); |
| if (reg_entry == cie_loc_regs_.end()) { |
| if (!cfa.GetLocationInfo(pc, fde->cie->cfa_instructions_offset, fde->cie->cfa_instructions_end, |
| loc_regs)) { |
| last_error_ = cfa.last_error(); |
| return false; |
| } |
| cie_loc_regs_[fde->cie_offset] = *loc_regs; |
| } |
| cfa.set_cie_loc_regs(&cie_loc_regs_[fde->cie_offset]); |
| if (!cfa.GetLocationInfo(pc, fde->cfa_instructions_offset, fde->cfa_instructions_end, loc_regs)) { |
| last_error_ = cfa.last_error(); |
| return false; |
| } |
| return true; |
| } |
| |
| template <typename AddressType> |
| bool DwarfSectionImpl<AddressType>::Log(uint8_t indent, uint64_t pc, const DwarfFde* fde) { |
| DwarfCfa<AddressType> cfa(&memory_, fde); |
| |
| // Always print the cie information. |
| const DwarfCie* cie = fde->cie; |
| if (!cfa.Log(indent, pc, cie->cfa_instructions_offset, cie->cfa_instructions_end)) { |
| last_error_ = cfa.last_error(); |
| return false; |
| } |
| if (!cfa.Log(indent, pc, fde->cfa_instructions_offset, fde->cfa_instructions_end)) { |
| last_error_ = cfa.last_error(); |
| return false; |
| } |
| return true; |
| } |
| |
| template <typename AddressType> |
| bool DwarfSectionImpl<AddressType>::Init(uint64_t offset, uint64_t size, int64_t section_bias) { |
| section_bias_ = section_bias; |
| entries_offset_ = offset; |
| next_entries_offset_ = offset; |
| entries_end_ = offset + size; |
| |
| memory_.clear_func_offset(); |
| memory_.clear_text_offset(); |
| memory_.set_cur_offset(offset); |
| pc_offset_ = offset; |
| |
| return true; |
| } |
| |
| // Create a cached version of the fde information such that it is a std::map |
| // that is indexed by end pc and contains a pair that represents the start pc |
| // followed by the fde object. The fde pointers are owned by fde_entries_ |
| // and not by the map object. |
| // It is possible for an fde to be represented by multiple entries in |
| // the map. This can happen if the the start pc and end pc overlap already |
| // existing entries. For example, if there is already an entry of 0x400, 0x200, |
| // and an fde has a start pc of 0x100 and end pc of 0x500, two new entries |
| // will be added: 0x200, 0x100 and 0x500, 0x400. |
| template <typename AddressType> |
| void DwarfSectionImpl<AddressType>::InsertFde(const DwarfFde* fde) { |
| uint64_t start = fde->pc_start; |
| uint64_t end = fde->pc_end; |
| auto it = fdes_.upper_bound(start); |
| bool add_element = false; |
| while (it != fdes_.end() && start < end) { |
| if (add_element) { |
| add_element = false; |
| if (end < it->second.first) { |
| if (it->first == end) { |
| return; |
| } |
| fdes_[end] = std::make_pair(start, fde); |
| return; |
| } |
| if (start != it->second.first) { |
| fdes_[it->second.first] = std::make_pair(start, fde); |
| } |
| } |
| if (start < it->first) { |
| if (end < it->second.first) { |
| if (it->first != end) { |
| fdes_[end] = std::make_pair(start, fde); |
| } |
| return; |
| } |
| add_element = true; |
| } |
| start = it->first; |
| ++it; |
| } |
| if (start < end) { |
| fdes_[end] = std::make_pair(start, fde); |
| } |
| } |
| |
| template <typename AddressType> |
| bool DwarfSectionImpl<AddressType>::GetNextCieOrFde(const DwarfFde** fde_entry) { |
| uint64_t start_offset = next_entries_offset_; |
| |
| memory_.set_data_offset(entries_offset_); |
| memory_.set_cur_offset(next_entries_offset_); |
| uint32_t value32; |
| if (!memory_.ReadBytes(&value32, sizeof(value32))) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| |
| uint64_t cie_offset; |
| uint8_t cie_fde_encoding; |
| bool entry_is_cie = false; |
| if (value32 == static_cast<uint32_t>(-1)) { |
| // 64 bit entry. |
| uint64_t value64; |
| if (!memory_.ReadBytes(&value64, sizeof(value64))) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| |
| next_entries_offset_ = memory_.cur_offset() + value64; |
| // Read the Cie Id of a Cie or the pointer of the Fde. |
| if (!memory_.ReadBytes(&value64, sizeof(value64))) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| |
| if (value64 == cie64_value_) { |
| entry_is_cie = true; |
| cie_fde_encoding = DW_EH_PE_sdata8; |
| } else { |
| cie_offset = GetCieOffsetFromFde64(value64); |
| } |
| } else { |
| next_entries_offset_ = memory_.cur_offset() + value32; |
| |
| // 32 bit Cie |
| if (!memory_.ReadBytes(&value32, sizeof(value32))) { |
| last_error_.code = DWARF_ERROR_MEMORY_INVALID; |
| last_error_.address = memory_.cur_offset(); |
| return false; |
| } |
| |
| if (value32 == cie32_value_) { |
| entry_is_cie = true; |
| cie_fde_encoding = DW_EH_PE_sdata4; |
| } else { |
| cie_offset = GetCieOffsetFromFde32(value32); |
| } |
| } |
| |
| if (entry_is_cie) { |
| auto entry = cie_entries_.find(start_offset); |
| if (entry == cie_entries_.end()) { |
| DwarfCie* cie = &cie_entries_[start_offset]; |
| cie->lsda_encoding = DW_EH_PE_omit; |
| cie->cfa_instructions_end = next_entries_offset_; |
| cie->fde_address_encoding = cie_fde_encoding; |
| |
| if (!FillInCie(cie)) { |
| cie_entries_.erase(start_offset); |
| return false; |
| } |
| } |
| *fde_entry = nullptr; |
| } else { |
| auto entry = fde_entries_.find(start_offset); |
| if (entry != fde_entries_.end()) { |
| *fde_entry = &entry->second; |
| } else { |
| DwarfFde* fde = &fde_entries_[start_offset]; |
| fde->cfa_instructions_end = next_entries_offset_; |
| fde->cie_offset = cie_offset; |
| |
| if (!FillInFde(fde)) { |
| fde_entries_.erase(start_offset); |
| return false; |
| } |
| *fde_entry = fde; |
| } |
| } |
| return true; |
| } |
| |
| template <typename AddressType> |
| void DwarfSectionImpl<AddressType>::GetFdes(std::vector<const DwarfFde*>* fdes) { |
| // Loop through the already cached entries. |
| uint64_t entry_offset = entries_offset_; |
| while (entry_offset < next_entries_offset_) { |
| auto cie_it = cie_entries_.find(entry_offset); |
| if (cie_it != cie_entries_.end()) { |
| entry_offset = cie_it->second.cfa_instructions_end; |
| } else { |
| auto fde_it = fde_entries_.find(entry_offset); |
| if (fde_it == fde_entries_.end()) { |
| // No fde or cie at this entry, should not be possible. |
| return; |
| } |
| entry_offset = fde_it->second.cfa_instructions_end; |
| fdes->push_back(&fde_it->second); |
| } |
| } |
| |
| while (next_entries_offset_ < entries_end_) { |
| const DwarfFde* fde; |
| if (!GetNextCieOrFde(&fde)) { |
| break; |
| } |
| if (fde != nullptr) { |
| InsertFde(fde); |
| fdes->push_back(fde); |
| } |
| |
| if (next_entries_offset_ < memory_.cur_offset()) { |
| // Simply consider the processing done in this case. |
| break; |
| } |
| } |
| } |
| |
| template <typename AddressType> |
| const DwarfFde* DwarfSectionImpl<AddressType>::GetFdeFromPc(uint64_t pc) { |
| // Search in the list of fdes we already have. |
| auto it = fdes_.upper_bound(pc); |
| if (it != fdes_.end()) { |
| if (pc >= it->second.first) { |
| return it->second.second; |
| } |
| } |
| |
| // The section might have overlapping pcs in fdes, so it is necessary |
| // to do a linear search of the fdes by pc. As fdes are read, a cached |
| // search map is created. |
| while (next_entries_offset_ < entries_end_) { |
| const DwarfFde* fde; |
| if (!GetNextCieOrFde(&fde)) { |
| return nullptr; |
| } |
| if (fde != nullptr) { |
| InsertFde(fde); |
| if (pc >= fde->pc_start && pc < fde->pc_end) { |
| return fde; |
| } |
| } |
| |
| if (next_entries_offset_ < memory_.cur_offset()) { |
| // Simply consider the processing done in this case. |
| break; |
| } |
| } |
| return nullptr; |
| } |
| |
| // Explicitly instantiate DwarfSectionImpl |
| template class DwarfSectionImpl<uint32_t>; |
| template class DwarfSectionImpl<uint64_t>; |
| |
| // Explicitly instantiate DwarfDebugFrame |
| template class DwarfDebugFrame<uint32_t>; |
| template class DwarfDebugFrame<uint64_t>; |
| |
| // Explicitly instantiate DwarfEhFrame |
| template class DwarfEhFrame<uint32_t>; |
| template class DwarfEhFrame<uint64_t>; |
| |
| } // namespace unwindstack |