blob: de93cb750352f6e8a344b6006b35834ddf3fa1ea [file] [log] [blame] [edit]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "incremental.h"
#include "incremental_utils.h"
#include <android-base/file.h>
#include <android-base/stringprintf.h>
#include <openssl/base64.h>
#include "adb_client.h"
#include "adb_utils.h"
#include "commandline.h"
#include "sysdeps.h"
using namespace std::literals;
namespace incremental {
using android::base::StringPrintf;
// Read, verify and return the signature bytes. Keeping fd at the position of start of verity tree.
static std::pair<unique_fd, std::vector<char>> read_signature(Size file_size,
std::string signature_file,
bool silent) {
signature_file += IDSIG;
struct stat st;
if (stat(signature_file.c_str(), &st)) {
if (!silent) {
fprintf(stderr, "Failed to stat signature file %s.\n", signature_file.c_str());
}
return {};
}
unique_fd fd(adb_open(signature_file.c_str(), O_RDONLY));
if (fd < 0) {
if (!silent) {
fprintf(stderr, "Failed to open signature file: %s.\n", signature_file.c_str());
}
return {};
}
auto [signature, tree_size] = read_id_sig_headers(fd);
std::vector<char> invalid_signature;
if (signature.empty()) {
if (!silent) {
fprintf(stderr, "Invalid signature format. Abort.\n");
}
return {std::move(fd), std::move(invalid_signature)};
}
if (signature.size() > kMaxSignatureSize) {
if (!silent) {
fprintf(stderr, "Signature is too long: %lld. Max allowed is %d. Abort.\n",
(long long)signature.size(), kMaxSignatureSize);
}
return {std::move(fd), std::move(invalid_signature)};
}
if (auto expected = verity_tree_size_for_file(file_size); tree_size != expected) {
if (!silent) {
fprintf(stderr,
"Verity tree size mismatch in signature file: %s [was %lld, expected %lld].\n",
signature_file.c_str(), (long long)tree_size, (long long)expected);
}
return {std::move(fd), std::move(invalid_signature)};
}
return {std::move(fd), std::move(signature)};
}
// Base64-encode signature bytes. Keeping fd at the position of start of verity tree.
static std::pair<unique_fd, std::string> read_and_encode_signature(Size file_size,
std::string signature_file,
bool silent) {
std::string encoded_signature;
auto [fd, signature] = read_signature(file_size, std::move(signature_file), silent);
if (!fd.ok() || signature.empty()) {
return {std::move(fd), std::move(encoded_signature)};
}
size_t base64_len = 0;
if (!EVP_EncodedLength(&base64_len, signature.size())) {
if (!silent) {
fprintf(stderr, "Fail to estimate base64 encoded length. Abort.\n");
}
return {std::move(fd), std::move(encoded_signature)};
}
encoded_signature.resize(base64_len, '\0');
encoded_signature.resize(EVP_EncodeBlock((uint8_t*)encoded_signature.data(),
(const uint8_t*)signature.data(), signature.size()));
return {std::move(fd), std::move(encoded_signature)};
}
// Send install-incremental to the device along with properly configured file descriptors in
// streaming format. Once connection established, send all fs-verity tree bytes.
static unique_fd start_install(const Files& files, const Args& passthrough_args, bool silent) {
std::vector<std::string> command_args{"package", "install-incremental"};
command_args.insert(command_args.end(), passthrough_args.begin(), passthrough_args.end());
for (int i = 0, size = files.size(); i < size; ++i) {
const auto& file = files[i];
struct stat st;
if (stat(file.c_str(), &st)) {
if (!silent) {
fprintf(stderr, "Failed to stat input file %s. Abort.\n", file.c_str());
}
return {};
}
auto [signature_fd, signature] = read_and_encode_signature(st.st_size, file, silent);
if (signature_fd.ok() && signature.empty()) {
return {};
}
auto file_desc = StringPrintf("%s:%lld:%d:%s:1", android::base::Basename(file).c_str(),
(long long)st.st_size, i, signature.c_str());
command_args.push_back(std::move(file_desc));
}
std::string error;
auto connection_fd = unique_fd(send_abb_exec_command(command_args, &error));
if (connection_fd < 0) {
if (!silent) {
fprintf(stderr, "Failed to run: %s, error: %s\n",
android::base::Join(command_args, " ").c_str(), error.c_str());
}
return {};
}
return connection_fd;
}
bool can_install(const Files& files) {
for (const auto& file : files) {
struct stat st;
if (stat(file.c_str(), &st)) {
return false;
}
if (android::base::EndsWithIgnoreCase(file, ".apk")) {
// Signature has to be present for APKs.
auto [fd, _] = read_signature(st.st_size, file, /*silent=*/true);
if (!fd.ok()) {
return false;
}
}
}
return true;
}
std::optional<Process> install(const Files& files, const Args& passthrough_args, bool silent) {
auto connection_fd = start_install(files, passthrough_args, silent);
if (connection_fd < 0) {
if (!silent) {
fprintf(stderr, "adb: failed to initiate installation on device.\n");
}
return {};
}
std::string adb_path = android::base::GetExecutablePath();
auto osh = cast_handle_to_int(adb_get_os_handle(connection_fd.get()));
auto fd_param = std::to_string(osh);
// pipe for child process to write output
int print_fds[2];
if (adb_socketpair(print_fds) != 0) {
if (!silent) {
fprintf(stderr, "adb: failed to create socket pair for child to print to parent\n");
}
return {};
}
auto [pipe_read_fd, pipe_write_fd] = print_fds;
auto pipe_write_fd_param = std::to_string(cast_handle_to_int(adb_get_os_handle(pipe_write_fd)));
close_on_exec(pipe_read_fd);
std::vector<std::string> args(std::move(files));
args.insert(args.begin(), {"inc-server", fd_param, pipe_write_fd_param});
auto child =
adb_launch_process(adb_path, std::move(args), {connection_fd.get(), pipe_write_fd});
if (!child) {
if (!silent) {
fprintf(stderr, "adb: failed to fork: %s\n", strerror(errno));
}
return {};
}
adb_close(pipe_write_fd);
auto killOnExit = [](Process* p) { p->kill(); };
std::unique_ptr<Process, decltype(killOnExit)> serverKiller(&child, killOnExit);
Result result = wait_for_installation(pipe_read_fd);
adb_close(pipe_read_fd);
if (result != Result::Success) {
if (!silent) {
fprintf(stderr, "adb: install command failed");
}
return {};
}
// adb client exits now but inc-server can continue
serverKiller.release();
return child;
}
Result wait_for_installation(int read_fd) {
static constexpr int maxMessageSize = 256;
std::vector<char> child_stdout(CHUNK_SIZE);
int bytes_read;
int buf_size = 0;
// TODO(b/150865433): optimize child's output parsing
while ((bytes_read = adb_read(read_fd, child_stdout.data() + buf_size,
child_stdout.size() - buf_size)) > 0) {
// print to parent's stdout
fprintf(stdout, "%.*s", bytes_read, child_stdout.data() + buf_size);
buf_size += bytes_read;
const std::string_view stdout_str(child_stdout.data(), buf_size);
// wait till installation either succeeds or fails
if (stdout_str.find("Success") != std::string::npos) {
return Result::Success;
}
// on failure, wait for full message
static constexpr auto failure_msg_head = "Failure ["sv;
if (const auto begin_itr = stdout_str.find(failure_msg_head);
begin_itr != std::string::npos) {
if (buf_size >= maxMessageSize) {
return Result::Failure;
}
const auto end_itr = stdout_str.rfind("]");
if (end_itr != std::string::npos && end_itr >= begin_itr + failure_msg_head.size()) {
return Result::Failure;
}
}
child_stdout.resize(buf_size + CHUNK_SIZE);
}
return Result::None;
}
} // namespace incremental