blob: 98809025f6a2729444032a4712d675417dd5b15e [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define TRACE_TAG TRANSPORT
#include "sysdeps.h"
#include "transport.h"
#include <ctype.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <algorithm>
#include <list>
#include <mutex>
#include <android-base/logging.h>
#include <android-base/parsenetaddress.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include "adb.h"
#include "adb_auth.h"
#include "adb_utils.h"
#include "diagnose_usb.h"
static void transport_unref(atransport *t);
static auto& transport_list = *new std::list<atransport*>();
static auto& pending_list = *new std::list<atransport*>();
static std::mutex& transport_lock = *new std::mutex();
const char* const kFeatureShell2 = "shell_v2";
const char* const kFeatureCmd = "cmd";
static std::string dump_packet(const char* name, const char* func, apacket* p) {
unsigned command = p->msg.command;
int len = p->msg.data_length;
char cmd[9];
char arg0[12], arg1[12];
int n;
for (n = 0; n < 4; n++) {
int b = (command >> (n*8)) & 255;
if (b < 32 || b >= 127)
break;
cmd[n] = (char)b;
}
if (n == 4) {
cmd[4] = 0;
} else {
/* There is some non-ASCII name in the command, so dump
* the hexadecimal value instead */
snprintf(cmd, sizeof cmd, "%08x", command);
}
if (p->msg.arg0 < 256U)
snprintf(arg0, sizeof arg0, "%d", p->msg.arg0);
else
snprintf(arg0, sizeof arg0, "0x%x", p->msg.arg0);
if (p->msg.arg1 < 256U)
snprintf(arg1, sizeof arg1, "%d", p->msg.arg1);
else
snprintf(arg1, sizeof arg1, "0x%x", p->msg.arg1);
std::string result = android::base::StringPrintf("%s: %s: [%s] arg0=%s arg1=%s (len=%d) ",
name, func, cmd, arg0, arg1, len);
result += dump_hex(p->data, len);
return result;
}
static int
read_packet(int fd, const char* name, apacket** ppacket)
{
char buff[8];
if (!name) {
snprintf(buff, sizeof buff, "fd=%d", fd);
name = buff;
}
char* p = reinterpret_cast<char*>(ppacket); /* really read a packet address */
int len = sizeof(apacket*);
while(len > 0) {
int r = adb_read(fd, p, len);
if(r > 0) {
len -= r;
p += r;
} else {
D("%s: read_packet (fd=%d), error ret=%d: %s", name, fd, r, strerror(errno));
return -1;
}
}
VLOG(TRANSPORT) << dump_packet(name, "from remote", *ppacket);
return 0;
}
static int
write_packet(int fd, const char* name, apacket** ppacket)
{
char buff[8];
if (!name) {
snprintf(buff, sizeof buff, "fd=%d", fd);
name = buff;
}
VLOG(TRANSPORT) << dump_packet(name, "to remote", *ppacket);
char* p = reinterpret_cast<char*>(ppacket); /* we really write the packet address */
int len = sizeof(apacket*);
while(len > 0) {
int r = adb_write(fd, p, len);
if(r > 0) {
len -= r;
p += r;
} else {
D("%s: write_packet (fd=%d) error ret=%d: %s", name, fd, r, strerror(errno));
return -1;
}
}
return 0;
}
static void transport_socket_events(int fd, unsigned events, void *_t)
{
atransport *t = reinterpret_cast<atransport*>(_t);
D("transport_socket_events(fd=%d, events=%04x,...)", fd, events);
if(events & FDE_READ){
apacket *p = 0;
if(read_packet(fd, t->serial, &p)){
D("%s: failed to read packet from transport socket on fd %d", t->serial, fd);
} else {
handle_packet(p, (atransport *) _t);
}
}
}
void send_packet(apacket *p, atransport *t)
{
unsigned char *x;
unsigned sum;
unsigned count;
p->msg.magic = p->msg.command ^ 0xffffffff;
count = p->msg.data_length;
x = (unsigned char *) p->data;
sum = 0;
while(count-- > 0){
sum += *x++;
}
p->msg.data_check = sum;
print_packet("send", p);
if (t == NULL) {
D("Transport is null");
// Zap errno because print_packet() and other stuff have errno effect.
errno = 0;
fatal_errno("Transport is null");
}
if(write_packet(t->transport_socket, t->serial, &p)){
fatal_errno("cannot enqueue packet on transport socket");
}
}
// The transport is opened by transport_register_func before
// the read_transport and write_transport threads are started.
//
// The read_transport thread issues a SYNC(1, token) message to let
// the write_transport thread know to start things up. In the event
// of transport IO failure, the read_transport thread will post a
// SYNC(0,0) message to ensure shutdown.
//
// The transport will not actually be closed until both threads exit, but the threads
// will kick the transport on their way out to disconnect the underlying device.
//
// read_transport thread reads data from a transport (representing a usb/tcp connection),
// and makes the main thread call handle_packet().
static void read_transport_thread(void* _t) {
atransport *t = reinterpret_cast<atransport*>(_t);
apacket *p;
adb_thread_setname(android::base::StringPrintf("<-%s",
(t->serial != nullptr ? t->serial : "transport")));
D("%s: starting read_transport thread on fd %d, SYNC online (%d)",
t->serial, t->fd, t->sync_token + 1);
p = get_apacket();
p->msg.command = A_SYNC;
p->msg.arg0 = 1;
p->msg.arg1 = ++(t->sync_token);
p->msg.magic = A_SYNC ^ 0xffffffff;
if(write_packet(t->fd, t->serial, &p)) {
put_apacket(p);
D("%s: failed to write SYNC packet", t->serial);
goto oops;
}
D("%s: data pump started", t->serial);
for(;;) {
p = get_apacket();
if(t->read_from_remote(p, t) == 0){
D("%s: received remote packet, sending to transport",
t->serial);
if(write_packet(t->fd, t->serial, &p)){
put_apacket(p);
D("%s: failed to write apacket to transport", t->serial);
goto oops;
}
} else {
D("%s: remote read failed for transport", t->serial);
put_apacket(p);
break;
}
}
D("%s: SYNC offline for transport", t->serial);
p = get_apacket();
p->msg.command = A_SYNC;
p->msg.arg0 = 0;
p->msg.arg1 = 0;
p->msg.magic = A_SYNC ^ 0xffffffff;
if(write_packet(t->fd, t->serial, &p)) {
put_apacket(p);
D("%s: failed to write SYNC apacket to transport", t->serial);
}
oops:
D("%s: read_transport thread is exiting", t->serial);
kick_transport(t);
transport_unref(t);
}
// write_transport thread gets packets sent by the main thread (through send_packet()),
// and writes to a transport (representing a usb/tcp connection).
static void write_transport_thread(void* _t) {
atransport *t = reinterpret_cast<atransport*>(_t);
apacket *p;
int active = 0;
adb_thread_setname(android::base::StringPrintf("->%s",
(t->serial != nullptr ? t->serial : "transport")));
D("%s: starting write_transport thread, reading from fd %d",
t->serial, t->fd);
for(;;){
if(read_packet(t->fd, t->serial, &p)) {
D("%s: failed to read apacket from transport on fd %d",
t->serial, t->fd );
break;
}
if(p->msg.command == A_SYNC){
if(p->msg.arg0 == 0) {
D("%s: transport SYNC offline", t->serial);
put_apacket(p);
break;
} else {
if(p->msg.arg1 == t->sync_token) {
D("%s: transport SYNC online", t->serial);
active = 1;
} else {
D("%s: transport ignoring SYNC %d != %d",
t->serial, p->msg.arg1, t->sync_token);
}
}
} else {
if(active) {
D("%s: transport got packet, sending to remote", t->serial);
t->write_to_remote(p, t);
} else {
D("%s: transport ignoring packet while offline", t->serial);
}
}
put_apacket(p);
}
D("%s: write_transport thread is exiting, fd %d", t->serial, t->fd);
kick_transport(t);
transport_unref(t);
}
void kick_transport(atransport* t) {
std::lock_guard<std::mutex> lock(transport_lock);
// As kick_transport() can be called from threads without guarantee that t is valid,
// check if the transport is in transport_list first.
if (std::find(transport_list.begin(), transport_list.end(), t) != transport_list.end()) {
t->Kick();
}
}
static int transport_registration_send = -1;
static int transport_registration_recv = -1;
static fdevent transport_registration_fde;
#if ADB_HOST
/* this adds support required by the 'track-devices' service.
* this is used to send the content of "list_transport" to any
* number of client connections that want it through a single
* live TCP connection
*/
struct device_tracker {
asocket socket;
int update_needed;
device_tracker* next;
};
/* linked list of all device trackers */
static device_tracker* device_tracker_list;
static void
device_tracker_remove( device_tracker* tracker )
{
device_tracker** pnode = &device_tracker_list;
device_tracker* node = *pnode;
std::lock_guard<std::mutex> lock(transport_lock);
while (node) {
if (node == tracker) {
*pnode = node->next;
break;
}
pnode = &node->next;
node = *pnode;
}
}
static void
device_tracker_close( asocket* socket )
{
device_tracker* tracker = (device_tracker*) socket;
asocket* peer = socket->peer;
D( "device tracker %p removed", tracker);
if (peer) {
peer->peer = NULL;
peer->close(peer);
}
device_tracker_remove(tracker);
free(tracker);
}
static int
device_tracker_enqueue( asocket* socket, apacket* p )
{
/* you can't read from a device tracker, close immediately */
put_apacket(p);
device_tracker_close(socket);
return -1;
}
static int device_tracker_send(device_tracker* tracker, const std::string& string) {
apacket* p = get_apacket();
asocket* peer = tracker->socket.peer;
snprintf(reinterpret_cast<char*>(p->data), 5, "%04x", static_cast<int>(string.size()));
memcpy(&p->data[4], string.data(), string.size());
p->len = 4 + string.size();
return peer->enqueue(peer, p);
}
static void device_tracker_ready(asocket* socket) {
device_tracker* tracker = reinterpret_cast<device_tracker*>(socket);
// We want to send the device list when the tracker connects
// for the first time, even if no update occurred.
if (tracker->update_needed > 0) {
tracker->update_needed = 0;
std::string transports = list_transports(false);
device_tracker_send(tracker, transports);
}
}
asocket*
create_device_tracker(void)
{
device_tracker* tracker = reinterpret_cast<device_tracker*>(calloc(1, sizeof(*tracker)));
if (tracker == nullptr) fatal("cannot allocate device tracker");
D( "device tracker %p created", tracker);
tracker->socket.enqueue = device_tracker_enqueue;
tracker->socket.ready = device_tracker_ready;
tracker->socket.close = device_tracker_close;
tracker->update_needed = 1;
tracker->next = device_tracker_list;
device_tracker_list = tracker;
return &tracker->socket;
}
// Call this function each time the transport list has changed.
void update_transports() {
std::string transports = list_transports(false);
device_tracker* tracker = device_tracker_list;
while (tracker != nullptr) {
device_tracker* next = tracker->next;
// This may destroy the tracker if the connection is closed.
device_tracker_send(tracker, transports);
tracker = next;
}
}
#else
void update_transports() {
// Nothing to do on the device side.
}
#endif // ADB_HOST
struct tmsg
{
atransport *transport;
int action;
};
static int
transport_read_action(int fd, struct tmsg* m)
{
char *p = (char*)m;
int len = sizeof(*m);
int r;
while(len > 0) {
r = adb_read(fd, p, len);
if(r > 0) {
len -= r;
p += r;
} else {
D("transport_read_action: on fd %d: %s", fd, strerror(errno));
return -1;
}
}
return 0;
}
static int
transport_write_action(int fd, struct tmsg* m)
{
char *p = (char*)m;
int len = sizeof(*m);
int r;
while(len > 0) {
r = adb_write(fd, p, len);
if(r > 0) {
len -= r;
p += r;
} else {
D("transport_write_action: on fd %d: %s", fd, strerror(errno));
return -1;
}
}
return 0;
}
static void transport_registration_func(int _fd, unsigned ev, void *data)
{
tmsg m;
int s[2];
atransport *t;
if(!(ev & FDE_READ)) {
return;
}
if(transport_read_action(_fd, &m)) {
fatal_errno("cannot read transport registration socket");
}
t = m.transport;
if (m.action == 0) {
D("transport: %s removing and free'ing %d", t->serial, t->transport_socket);
/* IMPORTANT: the remove closes one half of the
** socket pair. The close closes the other half.
*/
fdevent_remove(&(t->transport_fde));
adb_close(t->fd);
{
std::lock_guard<std::mutex> lock(transport_lock);
transport_list.remove(t);
}
if (t->product)
free(t->product);
if (t->serial)
free(t->serial);
if (t->model)
free(t->model);
if (t->device)
free(t->device);
if (t->devpath)
free(t->devpath);
delete t;
update_transports();
return;
}
/* don't create transport threads for inaccessible devices */
if (t->connection_state != kCsNoPerm) {
/* initial references are the two threads */
t->ref_count = 2;
if (adb_socketpair(s)) {
fatal_errno("cannot open transport socketpair");
}
D("transport: %s socketpair: (%d,%d) starting", t->serial, s[0], s[1]);
t->transport_socket = s[0];
t->fd = s[1];
fdevent_install(&(t->transport_fde),
t->transport_socket,
transport_socket_events,
t);
fdevent_set(&(t->transport_fde), FDE_READ);
if (!adb_thread_create(write_transport_thread, t)) {
fatal_errno("cannot create write_transport thread");
}
if (!adb_thread_create(read_transport_thread, t)) {
fatal_errno("cannot create read_transport thread");
}
}
{
std::lock_guard<std::mutex> lock(transport_lock);
pending_list.remove(t);
transport_list.push_front(t);
}
update_transports();
}
void init_transport_registration(void)
{
int s[2];
if(adb_socketpair(s)){
fatal_errno("cannot open transport registration socketpair");
}
D("socketpair: (%d,%d)", s[0], s[1]);
transport_registration_send = s[0];
transport_registration_recv = s[1];
fdevent_install(&transport_registration_fde,
transport_registration_recv,
transport_registration_func,
0);
fdevent_set(&transport_registration_fde, FDE_READ);
}
/* the fdevent select pump is single threaded */
static void register_transport(atransport *transport)
{
tmsg m;
m.transport = transport;
m.action = 1;
D("transport: %s registered", transport->serial);
if(transport_write_action(transport_registration_send, &m)) {
fatal_errno("cannot write transport registration socket\n");
}
}
static void remove_transport(atransport *transport)
{
tmsg m;
m.transport = transport;
m.action = 0;
D("transport: %s removed", transport->serial);
if(transport_write_action(transport_registration_send, &m)) {
fatal_errno("cannot write transport registration socket\n");
}
}
static void transport_unref(atransport* t) {
CHECK(t != nullptr);
std::lock_guard<std::mutex> lock(transport_lock);
CHECK_GT(t->ref_count, 0u);
t->ref_count--;
if (t->ref_count == 0) {
D("transport: %s unref (kicking and closing)", t->serial);
t->close(t);
remove_transport(t);
} else {
D("transport: %s unref (count=%zu)", t->serial, t->ref_count);
}
}
static int qual_match(const char *to_test,
const char *prefix, const char *qual, bool sanitize_qual)
{
if (!to_test || !*to_test)
/* Return true if both the qual and to_test are null strings. */
return !qual || !*qual;
if (!qual)
return 0;
if (prefix) {
while (*prefix) {
if (*prefix++ != *to_test++)
return 0;
}
}
while (*qual) {
char ch = *qual++;
if (sanitize_qual && !isalnum(ch))
ch = '_';
if (ch != *to_test++)
return 0;
}
/* Everything matched so far. Return true if *to_test is a NUL. */
return !*to_test;
}
atransport* acquire_one_transport(TransportType type, const char* serial,
bool* is_ambiguous, std::string* error_out) {
atransport* result = nullptr;
if (serial) {
*error_out = android::base::StringPrintf("device '%s' not found", serial);
} else if (type == kTransportLocal) {
*error_out = "no emulators found";
} else if (type == kTransportAny) {
*error_out = "no devices/emulators found";
} else {
*error_out = "no devices found";
}
std::unique_lock<std::mutex> lock(transport_lock);
for (const auto& t : transport_list) {
if (t->connection_state == kCsNoPerm) {
#if ADB_HOST
*error_out = UsbNoPermissionsLongHelpText();
#endif
continue;
}
// Check for matching serial number.
if (serial) {
if (t->MatchesTarget(serial)) {
if (result) {
*error_out = "more than one device";
if (is_ambiguous) *is_ambiguous = true;
result = nullptr;
break;
}
result = t;
}
} else {
if (type == kTransportUsb && t->type == kTransportUsb) {
if (result) {
*error_out = "more than one device";
if (is_ambiguous) *is_ambiguous = true;
result = nullptr;
break;
}
result = t;
} else if (type == kTransportLocal && t->type == kTransportLocal) {
if (result) {
*error_out = "more than one emulator";
if (is_ambiguous) *is_ambiguous = true;
result = nullptr;
break;
}
result = t;
} else if (type == kTransportAny) {
if (result) {
*error_out = "more than one device/emulator";
if (is_ambiguous) *is_ambiguous = true;
result = nullptr;
break;
}
result = t;
}
}
}
lock.unlock();
// Don't return unauthorized devices; the caller can't do anything with them.
if (result && result->connection_state == kCsUnauthorized) {
*error_out = "device unauthorized.\n";
char* ADB_VENDOR_KEYS = getenv("ADB_VENDOR_KEYS");
*error_out += "This adb server's $ADB_VENDOR_KEYS is ";
*error_out += ADB_VENDOR_KEYS ? ADB_VENDOR_KEYS : "not set";
*error_out += "\n";
*error_out += "Try 'adb kill-server' if that seems wrong.\n";
*error_out += "Otherwise check for a confirmation dialog on your device.";
result = nullptr;
}
// Don't return offline devices; the caller can't do anything with them.
if (result && result->connection_state == kCsOffline) {
*error_out = "device offline";
result = nullptr;
}
if (result) {
*error_out = "success";
}
return result;
}
void atransport::Kick() {
if (!kicked_) {
kicked_ = true;
CHECK(kick_func_ != nullptr);
kick_func_(this);
}
}
const std::string atransport::connection_state_name() const {
switch (connection_state) {
case kCsOffline: return "offline";
case kCsBootloader: return "bootloader";
case kCsDevice: return "device";
case kCsHost: return "host";
case kCsRecovery: return "recovery";
case kCsNoPerm: return UsbNoPermissionsShortHelpText();
case kCsSideload: return "sideload";
case kCsUnauthorized: return "unauthorized";
default: return "unknown";
}
}
void atransport::update_version(int version, size_t payload) {
protocol_version = std::min(version, A_VERSION);
max_payload = std::min(payload, MAX_PAYLOAD);
}
int atransport::get_protocol_version() const {
return protocol_version;
}
size_t atransport::get_max_payload() const {
return max_payload;
}
namespace {
constexpr char kFeatureStringDelimiter = ',';
} // namespace
const FeatureSet& supported_features() {
// Local static allocation to avoid global non-POD variables.
static const FeatureSet* features = new FeatureSet{
kFeatureShell2,
kFeatureCmd
// Increment ADB_SERVER_VERSION whenever the feature list changes to
// make sure that the adb client and server features stay in sync
// (http://b/24370690).
};
return *features;
}
std::string FeatureSetToString(const FeatureSet& features) {
return android::base::Join(features, kFeatureStringDelimiter);
}
FeatureSet StringToFeatureSet(const std::string& features_string) {
if (features_string.empty()) {
return FeatureSet();
}
auto names = android::base::Split(features_string,
{kFeatureStringDelimiter});
return FeatureSet(names.begin(), names.end());
}
bool CanUseFeature(const FeatureSet& feature_set, const std::string& feature) {
return feature_set.count(feature) > 0 &&
supported_features().count(feature) > 0;
}
bool atransport::has_feature(const std::string& feature) const {
return features_.count(feature) > 0;
}
void atransport::SetFeatures(const std::string& features_string) {
features_ = StringToFeatureSet(features_string);
}
void atransport::AddDisconnect(adisconnect* disconnect) {
disconnects_.push_back(disconnect);
}
void atransport::RemoveDisconnect(adisconnect* disconnect) {
disconnects_.remove(disconnect);
}
void atransport::RunDisconnects() {
for (const auto& disconnect : disconnects_) {
disconnect->func(disconnect->opaque, this);
}
disconnects_.clear();
}
bool atransport::MatchesTarget(const std::string& target) const {
if (serial) {
if (target == serial) {
return true;
} else if (type == kTransportLocal) {
// Local transports can match [tcp:|udp:]<hostname>[:port].
const char* local_target_ptr = target.c_str();
// For fastboot compatibility, ignore protocol prefixes.
if (android::base::StartsWith(target, "tcp:") ||
android::base::StartsWith(target, "udp:")) {
local_target_ptr += 4;
}
// Parse our |serial| and the given |target| to check if the hostnames and ports match.
std::string serial_host, error;
int serial_port = -1;
if (android::base::ParseNetAddress(serial, &serial_host, &serial_port, nullptr,
&error)) {
// |target| may omit the port to default to ours.
std::string target_host;
int target_port = serial_port;
if (android::base::ParseNetAddress(local_target_ptr, &target_host, &target_port,
nullptr, &error) &&
serial_host == target_host && serial_port == target_port) {
return true;
}
}
}
}
return (devpath && target == devpath) ||
qual_match(target.c_str(), "product:", product, false) ||
qual_match(target.c_str(), "model:", model, true) ||
qual_match(target.c_str(), "device:", device, false);
}
#if ADB_HOST
static void append_transport_info(std::string* result, const char* key,
const char* value, bool sanitize) {
if (value == nullptr || *value == '\0') {
return;
}
*result += ' ';
*result += key;
for (const char* p = value; *p; ++p) {
result->push_back((!sanitize || isalnum(*p)) ? *p : '_');
}
}
static void append_transport(const atransport* t, std::string* result,
bool long_listing) {
const char* serial = t->serial;
if (!serial || !serial[0]) {
serial = "(no serial number)";
}
if (!long_listing) {
*result += serial;
*result += '\t';
*result += t->connection_state_name();
} else {
android::base::StringAppendF(result, "%-22s %s", serial,
t->connection_state_name().c_str());
append_transport_info(result, "", t->devpath, false);
append_transport_info(result, "product:", t->product, false);
append_transport_info(result, "model:", t->model, true);
append_transport_info(result, "device:", t->device, false);
}
*result += '\n';
}
std::string list_transports(bool long_listing) {
std::string result;
std::lock_guard<std::mutex> lock(transport_lock);
for (const auto& t : transport_list) {
append_transport(t, &result, long_listing);
}
return result;
}
/* hack for osx */
void close_usb_devices() {
std::lock_guard<std::mutex> lock(transport_lock);
for (const auto& t : transport_list) {
t->Kick();
}
}
#endif // ADB_HOST
int register_socket_transport(int s, const char *serial, int port, int local) {
atransport* t = new atransport();
if (!serial) {
char buf[32];
snprintf(buf, sizeof(buf), "T-%p", t);
serial = buf;
}
D("transport: %s init'ing for socket %d, on port %d", serial, s, port);
if (init_socket_transport(t, s, port, local) < 0) {
delete t;
return -1;
}
std::unique_lock<std::mutex> lock(transport_lock);
for (const auto& transport : pending_list) {
if (transport->serial && strcmp(serial, transport->serial) == 0) {
VLOG(TRANSPORT) << "socket transport " << transport->serial
<< " is already in pending_list and fails to register";
delete t;
return -1;
}
}
for (const auto& transport : transport_list) {
if (transport->serial && strcmp(serial, transport->serial) == 0) {
VLOG(TRANSPORT) << "socket transport " << transport->serial
<< " is already in transport_list and fails to register";
delete t;
return -1;
}
}
pending_list.push_front(t);
t->serial = strdup(serial);
lock.unlock();
register_transport(t);
return 0;
}
#if ADB_HOST
atransport *find_transport(const char *serial) {
atransport* result = nullptr;
std::lock_guard<std::mutex> lock(transport_lock);
for (auto& t : transport_list) {
if (t->serial && strcmp(serial, t->serial) == 0) {
result = t;
break;
}
}
return result;
}
void kick_all_tcp_devices() {
std::lock_guard<std::mutex> lock(transport_lock);
for (auto& t : transport_list) {
if (t->IsTcpDevice()) {
// Kicking breaks the read_transport thread of this transport out of any read, then
// the read_transport thread will notify the main thread to make this transport
// offline. Then the main thread will notify the write_transport thread to exit.
// Finally, this transport will be closed and freed in the main thread.
t->Kick();
}
}
}
#endif
void register_usb_transport(usb_handle* usb, const char* serial,
const char* devpath, unsigned writeable) {
atransport* t = new atransport();
D("transport: %p init'ing for usb_handle %p (sn='%s')", t, usb,
serial ? serial : "");
init_usb_transport(t, usb, (writeable ? kCsOffline : kCsNoPerm));
if(serial) {
t->serial = strdup(serial);
}
if (devpath) {
t->devpath = strdup(devpath);
}
{
std::lock_guard<std::mutex> lock(transport_lock);
pending_list.push_front(t);
}
register_transport(t);
}
// This should only be used for transports with connection_state == kCsNoPerm.
void unregister_usb_transport(usb_handle *usb) {
std::lock_guard<std::mutex> lock(transport_lock);
transport_list.remove_if([usb](atransport* t) {
return t->usb == usb && t->connection_state == kCsNoPerm;
});
}
int check_header(apacket *p, atransport *t)
{
if(p->msg.magic != (p->msg.command ^ 0xffffffff)) {
VLOG(RWX) << "check_header(): invalid magic";
return -1;
}
if(p->msg.data_length > t->get_max_payload()) {
VLOG(RWX) << "check_header(): " << p->msg.data_length << " atransport::max_payload = "
<< t->get_max_payload();
return -1;
}
return 0;
}
int check_data(apacket *p)
{
unsigned count, sum;
unsigned char *x;
count = p->msg.data_length;
x = p->data;
sum = 0;
while(count-- > 0) {
sum += *x++;
}
if(sum != p->msg.data_check) {
return -1;
} else {
return 0;
}
}
#if ADB_HOST
std::shared_ptr<RSA> atransport::NextKey() {
if (keys_.empty()) keys_ = adb_auth_get_private_keys();
std::shared_ptr<RSA> result = keys_[0];
keys_.pop_front();
return result;
}
#endif