blob: e06b3b3299452c9ae0c5f56ec8403684283a7293 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdevent.h"
#include <gtest/gtest.h>
#include <chrono>
#include <limits>
#include <memory>
#include <queue>
#include <string>
#include <thread>
#include <vector>
#include "adb_io.h"
#include "fdevent_test.h"
using namespace std::chrono_literals;
class FdHandler {
public:
FdHandler(int read_fd, int write_fd, bool use_new_callback)
: read_fd_(read_fd), write_fd_(write_fd) {
if (use_new_callback) {
read_fde_ = fdevent_create(read_fd_, FdEventNewCallback, this);
write_fde_ = fdevent_create(write_fd_, FdEventNewCallback, this);
} else {
read_fde_ = fdevent_create(read_fd_, FdEventCallback, this);
write_fde_ = fdevent_create(write_fd_, FdEventCallback, this);
}
fdevent_add(read_fde_, FDE_READ);
}
~FdHandler() {
fdevent_destroy(read_fde_);
fdevent_destroy(write_fde_);
}
private:
static void FdEventCallback(int fd, unsigned events, void* userdata) {
FdHandler* handler = reinterpret_cast<FdHandler*>(userdata);
ASSERT_EQ(0u, (events & ~(FDE_READ | FDE_WRITE))) << "unexpected events: " << events;
if (events & FDE_READ) {
ASSERT_EQ(fd, handler->read_fd_);
char c;
ASSERT_EQ(1, adb_read(fd, &c, 1));
handler->queue_.push(c);
fdevent_add(handler->write_fde_, FDE_WRITE);
}
if (events & FDE_WRITE) {
ASSERT_EQ(fd, handler->write_fd_);
ASSERT_FALSE(handler->queue_.empty());
char c = handler->queue_.front();
handler->queue_.pop();
ASSERT_EQ(1, adb_write(fd, &c, 1));
if (handler->queue_.empty()) {
fdevent_del(handler->write_fde_, FDE_WRITE);
}
}
}
static void FdEventNewCallback(fdevent* fde, unsigned events, void* userdata) {
int fd = fde->fd.get();
FdHandler* handler = reinterpret_cast<FdHandler*>(userdata);
ASSERT_EQ(0u, (events & ~(FDE_READ | FDE_WRITE))) << "unexpected events: " << events;
if (events & FDE_READ) {
ASSERT_EQ(fd, handler->read_fd_);
char c;
ASSERT_EQ(1, adb_read(fd, &c, 1));
handler->queue_.push(c);
fdevent_add(handler->write_fde_, FDE_WRITE);
}
if (events & FDE_WRITE) {
ASSERT_EQ(fd, handler->write_fd_);
ASSERT_FALSE(handler->queue_.empty());
char c = handler->queue_.front();
handler->queue_.pop();
ASSERT_EQ(1, adb_write(fd, &c, 1));
if (handler->queue_.empty()) {
fdevent_del(handler->write_fde_, FDE_WRITE);
}
}
}
private:
const int read_fd_;
const int write_fd_;
fdevent* read_fde_;
fdevent* write_fde_;
std::queue<char> queue_;
};
struct ThreadArg {
int first_read_fd;
int last_write_fd;
size_t middle_pipe_count;
};
TEST_F(FdeventTest, fdevent_terminate) {
PrepareThread();
TerminateThread();
}
TEST_F(FdeventTest, smoke) {
for (bool use_new_callback : {true, false}) {
fdevent_reset();
const size_t PIPE_COUNT = 512;
const size_t MESSAGE_LOOP_COUNT = 10;
const std::string MESSAGE = "fdevent_test";
int fd_pair1[2];
int fd_pair2[2];
ASSERT_EQ(0, adb_socketpair(fd_pair1));
ASSERT_EQ(0, adb_socketpair(fd_pair2));
ThreadArg thread_arg;
thread_arg.first_read_fd = fd_pair1[0];
thread_arg.last_write_fd = fd_pair2[1];
thread_arg.middle_pipe_count = PIPE_COUNT;
int writer = fd_pair1[1];
int reader = fd_pair2[0];
PrepareThread();
std::vector<std::unique_ptr<FdHandler>> fd_handlers;
fdevent_run_on_main_thread([&thread_arg, &fd_handlers, use_new_callback]() {
std::vector<int> read_fds;
std::vector<int> write_fds;
read_fds.push_back(thread_arg.first_read_fd);
for (size_t i = 0; i < thread_arg.middle_pipe_count; ++i) {
int fds[2];
ASSERT_EQ(0, adb_socketpair(fds));
read_fds.push_back(fds[0]);
write_fds.push_back(fds[1]);
}
write_fds.push_back(thread_arg.last_write_fd);
for (size_t i = 0; i < read_fds.size(); ++i) {
fd_handlers.push_back(
std::make_unique<FdHandler>(read_fds[i], write_fds[i], use_new_callback));
}
});
WaitForFdeventLoop();
for (size_t i = 0; i < MESSAGE_LOOP_COUNT; ++i) {
std::string read_buffer = MESSAGE;
std::string write_buffer(MESSAGE.size(), 'a');
ASSERT_TRUE(WriteFdExactly(writer, read_buffer.c_str(), read_buffer.size()));
ASSERT_TRUE(ReadFdExactly(reader, &write_buffer[0], write_buffer.size()));
ASSERT_EQ(read_buffer, write_buffer);
}
fdevent_run_on_main_thread([&fd_handlers]() { fd_handlers.clear(); });
WaitForFdeventLoop();
TerminateThread();
ASSERT_EQ(0, adb_close(writer));
ASSERT_EQ(0, adb_close(reader));
}
}
TEST_F(FdeventTest, run_on_main_thread) {
std::vector<int> vec;
PrepareThread();
// Block the main thread for a long time while we queue our callbacks.
fdevent_run_on_main_thread([]() {
check_main_thread();
std::this_thread::sleep_for(std::chrono::seconds(1));
});
for (int i = 0; i < 1000000; ++i) {
fdevent_run_on_main_thread([i, &vec]() {
check_main_thread();
vec.push_back(i);
});
}
TerminateThread();
ASSERT_EQ(1000000u, vec.size());
for (int i = 0; i < 1000000; ++i) {
ASSERT_EQ(i, vec[i]);
}
}
static std::function<void()> make_appender(std::vector<int>* vec, int value) {
return [vec, value]() {
check_main_thread();
if (value == 100) {
return;
}
vec->push_back(value);
fdevent_run_on_main_thread(make_appender(vec, value + 1));
};
}
TEST_F(FdeventTest, run_on_main_thread_reentrant) {
std::vector<int> vec;
PrepareThread();
fdevent_run_on_main_thread(make_appender(&vec, 0));
TerminateThread();
ASSERT_EQ(100u, vec.size());
for (int i = 0; i < 100; ++i) {
ASSERT_EQ(i, vec[i]);
}
}
TEST_F(FdeventTest, timeout) {
fdevent_reset();
PrepareThread();
enum class TimeoutEvent {
read,
timeout,
done,
};
struct TimeoutTest {
std::vector<std::pair<TimeoutEvent, std::chrono::steady_clock::time_point>> events;
fdevent* fde;
};
TimeoutTest test;
int fds[2];
ASSERT_EQ(0, adb_socketpair(fds));
static constexpr auto delta = 100ms;
fdevent_run_on_main_thread([&]() {
test.fde = fdevent_create(fds[0], [](fdevent* fde, unsigned events, void* arg) {
auto test = static_cast<TimeoutTest*>(arg);
auto now = std::chrono::steady_clock::now();
CHECK((events & FDE_READ) ^ (events & FDE_TIMEOUT));
TimeoutEvent event;
if ((events & FDE_READ)) {
char buf[2];
ssize_t rc = adb_read(fde->fd.get(), buf, sizeof(buf));
if (rc == 0) {
event = TimeoutEvent::done;
} else if (rc == 1) {
event = TimeoutEvent::read;
} else {
abort();
}
} else if ((events & FDE_TIMEOUT)) {
event = TimeoutEvent::timeout;
} else {
abort();
}
CHECK_EQ(fde, test->fde);
test->events.emplace_back(event, now);
if (event == TimeoutEvent::done) {
fdevent_destroy(fde);
}
}, &test);
fdevent_add(test.fde, FDE_READ);
fdevent_set_timeout(test.fde, delta);
});
ASSERT_EQ(1, adb_write(fds[1], "", 1));
// Timeout should happen here
std::this_thread::sleep_for(delta);
// and another.
std::this_thread::sleep_for(delta);
// No timeout should happen here.
std::this_thread::sleep_for(delta / 2);
adb_close(fds[1]);
TerminateThread();
ASSERT_EQ(4ULL, test.events.size());
ASSERT_EQ(TimeoutEvent::read, test.events[0].first);
ASSERT_EQ(TimeoutEvent::timeout, test.events[1].first);
ASSERT_EQ(TimeoutEvent::timeout, test.events[2].first);
ASSERT_EQ(TimeoutEvent::done, test.events[3].first);
std::vector<int> time_deltas;
for (size_t i = 0; i < test.events.size() - 1; ++i) {
auto before = test.events[i].second;
auto after = test.events[i + 1].second;
auto diff = std::chrono::duration_cast<std::chrono::milliseconds>(after - before);
time_deltas.push_back(diff.count());
}
std::vector<int> expected = {
delta.count(),
delta.count(),
delta.count() / 2,
};
std::vector<int> diff;
ASSERT_EQ(time_deltas.size(), expected.size());
for (size_t i = 0; i < time_deltas.size(); ++i) {
diff.push_back(std::abs(time_deltas[i] - expected[i]));
}
ASSERT_LT(diff[0], delta.count() * 0.5);
ASSERT_LT(diff[1], delta.count() * 0.5);
ASSERT_LT(diff[2], delta.count() * 0.5);
}