blob: e78530c18e6f888e59b675ac645732e0c3397eeb [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define TRACE_TAG SOCKETS
#include "sysdeps.h"
#include <ctype.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <algorithm>
#include <chrono>
#include <mutex>
#include <string>
#include <vector>
#include <android-base/strings.h>
#if !ADB_HOST
#include <android-base/properties.h>
#include <log/log_properties.h>
#endif
#include "adb.h"
#include "adb_io.h"
#include "adb_utils.h"
#include "transport.h"
#include "types.h"
using namespace std::chrono_literals;
static std::recursive_mutex& local_socket_list_lock = *new std::recursive_mutex();
static unsigned local_socket_next_id = 1;
static auto& local_socket_list = *new std::vector<asocket*>();
/* the the list of currently closing local sockets.
** these have no peer anymore, but still packets to
** write to their fd.
*/
static auto& local_socket_closing_list = *new std::vector<asocket*>();
// Parse the global list of sockets to find one with id |local_id|.
// If |peer_id| is not 0, also check that it is connected to a peer
// with id |peer_id|. Returns an asocket handle on success, NULL on failure.
asocket* find_local_socket(unsigned local_id, unsigned peer_id) {
asocket* result = nullptr;
std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock);
for (asocket* s : local_socket_list) {
if (s->id != local_id) {
continue;
}
if (peer_id == 0 || (s->peer && s->peer->id == peer_id)) {
result = s;
}
break;
}
return result;
}
void install_local_socket(asocket* s) {
std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock);
s->id = local_socket_next_id++;
// Socket ids should never be 0.
if (local_socket_next_id == 0) {
LOG(FATAL) << "local socket id overflow";
}
local_socket_list.push_back(s);
}
void remove_socket(asocket* s) {
std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock);
for (auto list : { &local_socket_list, &local_socket_closing_list }) {
list->erase(std::remove_if(list->begin(), list->end(), [s](asocket* x) { return x == s; }),
list->end());
}
}
void close_all_sockets(atransport* t) {
/* this is a little gross, but since s->close() *will* modify
** the list out from under you, your options are limited.
*/
std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock);
restart:
for (asocket* s : local_socket_list) {
if (s->transport == t || (s->peer && s->peer->transport == t)) {
s->close(s);
goto restart;
}
}
}
enum class SocketFlushResult {
Destroyed,
TryAgain,
Completed,
};
static SocketFlushResult local_socket_flush_incoming(asocket* s) {
if (!s->packet_queue.empty()) {
std::vector<adb_iovec> iov = s->packet_queue.iovecs();
ssize_t rc = adb_writev(s->fd, iov.data(), iov.size());
if (rc > 0 && static_cast<size_t>(rc) == s->packet_queue.size()) {
s->packet_queue.clear();
} else if (rc > 0) {
// TODO: Implement a faster drop_front?
s->packet_queue.take_front(rc);
fdevent_add(s->fde, FDE_WRITE);
return SocketFlushResult::TryAgain;
} else if (rc == -1 && errno == EAGAIN) {
fdevent_add(s->fde, FDE_WRITE);
return SocketFlushResult::TryAgain;
} else {
// We failed to write, but it's possible that we can still read from the socket.
// Give that a try before giving up.
s->has_write_error = true;
}
}
// If we sent the last packet of a closing socket, we can now destroy it.
if (s->closing) {
s->close(s);
return SocketFlushResult::Destroyed;
}
fdevent_del(s->fde, FDE_WRITE);
return SocketFlushResult::Completed;
}
// Returns false if the socket has been closed and destroyed as a side-effect of this function.
static bool local_socket_flush_outgoing(asocket* s) {
const size_t max_payload = s->get_max_payload();
apacket::payload_type data;
data.resize(max_payload);
char* x = &data[0];
size_t avail = max_payload;
int r = 0;
int is_eof = 0;
while (avail > 0) {
r = adb_read(s->fd, x, avail);
D("LS(%d): post adb_read(fd=%d,...) r=%d (errno=%d) avail=%zu", s->id, s->fd, r,
r < 0 ? errno : 0, avail);
if (r == -1) {
if (errno == EAGAIN) {
break;
}
} else if (r > 0) {
avail -= r;
x += r;
continue;
}
/* r = 0 or unhandled error */
is_eof = 1;
break;
}
D("LS(%d): fd=%d post avail loop. r=%d is_eof=%d forced_eof=%d", s->id, s->fd, r, is_eof,
s->fde->force_eof);
if (avail != max_payload && s->peer) {
data.resize(max_payload - avail);
// s->peer->enqueue() may call s->close() and free s,
// so save variables for debug printing below.
unsigned saved_id = s->id;
int saved_fd = s->fd;
r = s->peer->enqueue(s->peer, std::move(data));
D("LS(%u): fd=%d post peer->enqueue(). r=%d", saved_id, saved_fd, r);
if (r < 0) {
// Error return means they closed us as a side-effect and we must
// return immediately.
//
// Note that if we still have buffered packets, the socket will be
// placed on the closing socket list. This handler function will be
// called again to process FDE_WRITE events.
return false;
}
if (r > 0) {
/* if the remote cannot accept further events,
** we disable notification of READs. They'll
** be enabled again when we get a call to ready()
*/
fdevent_del(s->fde, FDE_READ);
}
}
// Don't allow a forced eof if data is still there.
if ((s->fde->force_eof && !r) || is_eof) {
D(" closing because is_eof=%d r=%d s->fde.force_eof=%d", is_eof, r, s->fde->force_eof);
s->close(s);
return false;
}
return true;
}
static int local_socket_enqueue(asocket* s, apacket::payload_type data) {
D("LS(%d): enqueue %zu", s->id, data.size());
s->packet_queue.append(std::move(data));
switch (local_socket_flush_incoming(s)) {
case SocketFlushResult::Destroyed:
return -1;
case SocketFlushResult::TryAgain:
return 1;
case SocketFlushResult::Completed:
return 0;
}
return !s->packet_queue.empty();
}
static void local_socket_ready(asocket* s) {
/* far side is ready for data, pay attention to
readable events */
fdevent_add(s->fde, FDE_READ);
}
struct ClosingSocket {
std::chrono::steady_clock::time_point begin;
};
// The standard (RFC 1122 - 4.2.2.13) says that if we call close on a
// socket while we have pending data, a TCP RST should be sent to the
// other end to notify it that we didn't read all of its data. However,
// this can result in data that we've successfully written out to be dropped
// on the other end. To avoid this, instead of immediately closing a
// socket, call shutdown on it instead, and then read from the file
// descriptor until we hit EOF or an error before closing.
static void deferred_close(unique_fd fd) {
// Shutdown the socket in the outgoing direction only, so that
// we don't have the same problem on the opposite end.
adb_shutdown(fd.get(), SHUT_WR);
auto callback = [](fdevent* fde, unsigned event, void* arg) {
auto socket_info = static_cast<ClosingSocket*>(arg);
if (event & FDE_READ) {
ssize_t rc;
char buf[BUFSIZ];
while ((rc = adb_read(fde->fd.get(), buf, sizeof(buf))) > 0) {
continue;
}
if (rc == -1 && errno == EAGAIN) {
// There's potentially more data to read.
auto duration = std::chrono::steady_clock::now() - socket_info->begin;
if (duration > 1s) {
LOG(WARNING) << "timeout expired while flushing socket, closing";
} else {
return;
}
}
} else if (event & FDE_TIMEOUT) {
LOG(WARNING) << "timeout expired while flushing socket, closing";
}
// Either there was an error, we hit the end of the socket, or our timeout expired.
fdevent_destroy(fde);
delete socket_info;
};
ClosingSocket* socket_info = new ClosingSocket{
.begin = std::chrono::steady_clock::now(),
};
fdevent* fde = fdevent_create(fd.release(), callback, socket_info);
fdevent_add(fde, FDE_READ);
fdevent_set_timeout(fde, 1s);
}
// be sure to hold the socket list lock when calling this
static void local_socket_destroy(asocket* s) {
int exit_on_close = s->exit_on_close;
D("LS(%d): destroying fde.fd=%d", s->id, s->fd);
deferred_close(fdevent_release(s->fde));
remove_socket(s);
delete s;
if (exit_on_close) {
D("local_socket_destroy: exiting");
exit(1);
}
}
static void local_socket_close(asocket* s) {
D("entered local_socket_close. LS(%d) fd=%d", s->id, s->fd);
std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock);
if (s->peer) {
D("LS(%d): closing peer. peer->id=%d peer->fd=%d", s->id, s->peer->id, s->peer->fd);
/* Note: it's important to call shutdown before disconnecting from
* the peer, this ensures that remote sockets can still get the id
* of the local socket they're connected to, to send a CLOSE()
* protocol event. */
if (s->peer->shutdown) {
s->peer->shutdown(s->peer);
}
s->peer->peer = nullptr;
s->peer->close(s->peer);
s->peer = nullptr;
}
/* If we are already closing, or if there are no
** pending packets, destroy immediately
*/
if (s->closing || s->has_write_error || s->packet_queue.empty()) {
int id = s->id;
local_socket_destroy(s);
D("LS(%d): closed", id);
return;
}
/* otherwise, put on the closing list
*/
D("LS(%d): closing", s->id);
s->closing = 1;
fdevent_del(s->fde, FDE_READ);
remove_socket(s);
D("LS(%d): put on socket_closing_list fd=%d", s->id, s->fd);
local_socket_closing_list.push_back(s);
CHECK_EQ(FDE_WRITE, s->fde->state & FDE_WRITE);
}
static void local_socket_event_func(int fd, unsigned ev, void* _s) {
asocket* s = reinterpret_cast<asocket*>(_s);
D("LS(%d): event_func(fd=%d(==%d), ev=%04x)", s->id, s->fd, fd, ev);
/* put the FDE_WRITE processing before the FDE_READ
** in order to simplify the code.
*/
if (ev & FDE_WRITE) {
switch (local_socket_flush_incoming(s)) {
case SocketFlushResult::Destroyed:
return;
case SocketFlushResult::TryAgain:
break;
case SocketFlushResult::Completed:
s->peer->ready(s->peer);
break;
}
}
if (ev & FDE_READ) {
if (!local_socket_flush_outgoing(s)) {
return;
}
}
if (ev & FDE_ERROR) {
/* this should be caught be the next read or write
** catching it here means we may skip the last few
** bytes of readable data.
*/
D("LS(%d): FDE_ERROR (fd=%d)", s->id, s->fd);
return;
}
}
asocket* create_local_socket(unique_fd ufd) {
int fd = ufd.release();
asocket* s = new asocket();
s->fd = fd;
s->enqueue = local_socket_enqueue;
s->ready = local_socket_ready;
s->shutdown = nullptr;
s->close = local_socket_close;
install_local_socket(s);
s->fde = fdevent_create(fd, local_socket_event_func, s);
D("LS(%d): created (fd=%d)", s->id, s->fd);
return s;
}
asocket* create_local_service_socket(std::string_view name, atransport* transport) {
#if !ADB_HOST
if (asocket* s = daemon_service_to_socket(name); s) {
return s;
}
#endif
unique_fd fd = service_to_fd(name, transport);
if (fd < 0) {
return nullptr;
}
int fd_value = fd.get();
asocket* s = create_local_socket(std::move(fd));
LOG(VERBOSE) << "LS(" << s->id << "): bound to '" << name << "' via " << fd_value;
#if !ADB_HOST
if ((name.starts_with("root:") && getuid() != 0 && __android_log_is_debuggable()) ||
(name.starts_with("unroot:") && getuid() == 0) || name.starts_with("usb:") ||
name.starts_with("tcpip:")) {
D("LS(%d): enabling exit_on_close", s->id);
s->exit_on_close = 1;
}
#endif
return s;
}
static int remote_socket_enqueue(asocket* s, apacket::payload_type data) {
D("entered remote_socket_enqueue RS(%d) WRITE fd=%d peer.fd=%d", s->id, s->fd, s->peer->fd);
apacket* p = get_apacket();
p->msg.command = A_WRTE;
p->msg.arg0 = s->peer->id;
p->msg.arg1 = s->id;
if (data.size() > MAX_PAYLOAD) {
put_apacket(p);
return -1;
}
p->payload = std::move(data);
p->msg.data_length = p->payload.size();
send_packet(p, s->transport);
return 1;
}
static void remote_socket_ready(asocket* s) {
D("entered remote_socket_ready RS(%d) OKAY fd=%d peer.fd=%d", s->id, s->fd, s->peer->fd);
apacket* p = get_apacket();
p->msg.command = A_OKAY;
p->msg.arg0 = s->peer->id;
p->msg.arg1 = s->id;
send_packet(p, s->transport);
}
static void remote_socket_shutdown(asocket* s) {
D("entered remote_socket_shutdown RS(%d) CLOSE fd=%d peer->fd=%d", s->id, s->fd,
s->peer ? s->peer->fd : -1);
apacket* p = get_apacket();
p->msg.command = A_CLSE;
if (s->peer) {
p->msg.arg0 = s->peer->id;
}
p->msg.arg1 = s->id;
send_packet(p, s->transport);
}
static void remote_socket_close(asocket* s) {
if (s->peer) {
s->peer->peer = nullptr;
D("RS(%d) peer->close()ing peer->id=%d peer->fd=%d", s->id, s->peer->id, s->peer->fd);
s->peer->close(s->peer);
}
D("entered remote_socket_close RS(%d) CLOSE fd=%d peer->fd=%d", s->id, s->fd,
s->peer ? s->peer->fd : -1);
D("RS(%d): closed", s->id);
delete s;
}
// Create a remote socket to exchange packets with a remote service through transport
// |t|. Where |id| is the socket id of the corresponding service on the other
// side of the transport (it is allocated by the remote side and _cannot_ be 0).
// Returns a new non-NULL asocket handle.
asocket* create_remote_socket(unsigned id, atransport* t) {
if (id == 0) {
LOG(FATAL) << "invalid remote socket id (0)";
}
asocket* s = new asocket();
s->id = id;
s->enqueue = remote_socket_enqueue;
s->ready = remote_socket_ready;
s->shutdown = remote_socket_shutdown;
s->close = remote_socket_close;
s->transport = t;
D("RS(%d): created", s->id);
return s;
}
void connect_to_remote(asocket* s, std::string_view destination) {
D("Connect_to_remote call RS(%d) fd=%d", s->id, s->fd);
apacket* p = get_apacket();
LOG(VERBOSE) << "LS(" << s->id << ": connect(" << destination << ")";
p->msg.command = A_OPEN;
p->msg.arg0 = s->id;
// adbd used to expect a null-terminated string.
// Keep doing so to maintain backward compatibility.
p->payload.resize(destination.size() + 1);
memcpy(p->payload.data(), destination.data(), destination.size());
p->payload[destination.size()] = '\0';
p->msg.data_length = p->payload.size();
CHECK_LE(p->msg.data_length, s->get_max_payload());
send_packet(p, s->transport);
}
/* this is used by magic sockets to rig local sockets to
send the go-ahead message when they connect */
static void local_socket_ready_notify(asocket* s) {
s->ready = local_socket_ready;
s->shutdown = nullptr;
s->close = local_socket_close;
SendOkay(s->fd);
s->ready(s);
}
/* this is used by magic sockets to rig local sockets to
send the failure message if they are closed before
connected (to avoid closing them without a status message) */
static void local_socket_close_notify(asocket* s) {
s->ready = local_socket_ready;
s->shutdown = nullptr;
s->close = local_socket_close;
SendFail(s->fd, "closed");
s->close(s);
}
static unsigned unhex(const char* s, int len) {
unsigned n = 0, c;
while (len-- > 0) {
switch ((c = *s++)) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
c -= '0';
break;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
c = c - 'a' + 10;
break;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
c = c - 'A' + 10;
break;
default:
return 0xffffffff;
}
n = (n << 4) | c;
}
return n;
}
#if ADB_HOST
namespace internal {
// Parses a host service string of the following format:
// * [tcp:|udp:]<serial>[:<port>]:<command>
// * <prefix>:<serial>:<command>
// Where <port> must be a base-10 number and <prefix> may be any of {usb,product,model,device}.
bool parse_host_service(std::string_view* out_serial, std::string_view* out_command,
std::string_view full_service) {
if (full_service.empty()) {
return false;
}
std::string_view serial;
std::string_view command = full_service;
// Remove |count| bytes from the beginning of command and add them to |serial|.
auto consume = [&full_service, &serial, &command](size_t count) {
CHECK_LE(count, command.size());
if (!serial.empty()) {
CHECK_EQ(serial.data() + serial.size(), command.data());
}
serial = full_service.substr(0, serial.size() + count);
command.remove_prefix(count);
};
// Remove the trailing : from serial, and assign the values to the output parameters.
auto finish = [out_serial, out_command, &serial, &command] {
if (serial.empty() || command.empty()) {
return false;
}
CHECK_EQ(':', serial.back());
serial.remove_suffix(1);
*out_serial = serial;
*out_command = command;
return true;
};
static constexpr std::string_view prefixes[] = {"usb:", "product:", "model:", "device:"};
for (std::string_view prefix : prefixes) {
if (command.starts_with(prefix)) {
consume(prefix.size());
size_t offset = command.find_first_of(':');
if (offset == std::string::npos) {
return false;
}
consume(offset + 1);
return finish();
}
}
// For fastboot compatibility, ignore protocol prefixes.
if (command.starts_with("tcp:") || command.starts_with("udp:")) {
consume(4);
if (command.empty()) {
return false;
}
}
if (command.starts_with("vsock:")) {
// vsock serials are vsock:cid:port, which have an extra colon compared to tcp.
size_t next_colon = command.find(':');
if (next_colon == std::string::npos) {
return false;
}
consume(next_colon + 1);
}
bool found_address = false;
if (command[0] == '[') {
// Read an IPv6 address. `adb connect` creates the serial number from the canonical
// network address so it will always have the [] delimiters.
size_t ipv6_end = command.find_first_of(']');
if (ipv6_end != std::string::npos) {
consume(ipv6_end + 1);
if (command.empty()) {
// Nothing after the IPv6 address.
return false;
} else if (command[0] != ':') {
// Garbage after the IPv6 address.
return false;
}
consume(1);
found_address = true;
}
}
if (!found_address) {
// Scan ahead to the next colon.
size_t offset = command.find_first_of(':');
if (offset == std::string::npos) {
return false;
}
consume(offset + 1);
}
// We're either at the beginning of a port, or the command itself.
// Look for a port in between colons.
size_t next_colon = command.find_first_of(':');
if (next_colon == std::string::npos) {
// No colon, we must be at the command.
return finish();
}
bool port_valid = true;
if (command.size() <= next_colon) {
return false;
}
std::string_view port = command.substr(0, next_colon);
for (auto digit : port) {
if (!isdigit(digit)) {
// Port isn't a number.
port_valid = false;
break;
}
}
if (port_valid) {
consume(next_colon + 1);
}
return finish();
}
} // namespace internal
#endif // ADB_HOST
static int smart_socket_enqueue(asocket* s, apacket::payload_type data) {
#if ADB_HOST
std::string_view service;
std::string_view serial;
TransportId transport_id = 0;
TransportType type = kTransportAny;
#endif
D("SS(%d): enqueue %zu", s->id, data.size());
if (s->smart_socket_data.empty()) {
// TODO: Make this an IOVector?
s->smart_socket_data.assign(data.begin(), data.end());
} else {
std::copy(data.begin(), data.end(), std::back_inserter(s->smart_socket_data));
}
/* don't bother if we can't decode the length */
if (s->smart_socket_data.size() < 4) {
return 0;
}
uint32_t len = unhex(s->smart_socket_data.data(), 4);
if (len == 0 || len > MAX_PAYLOAD) {
D("SS(%d): bad size (%u)", s->id, len);
goto fail;
}
D("SS(%d): len is %u", s->id, len);
/* can't do anything until we have the full header */
if ((len + 4) > s->smart_socket_data.size()) {
D("SS(%d): waiting for %zu more bytes", s->id, len + 4 - s->smart_socket_data.size());
return 0;
}
s->smart_socket_data[len + 4] = 0;
D("SS(%d): '%s'", s->id, (char*)(s->smart_socket_data.data() + 4));
#if ADB_HOST
service = std::string_view(s->smart_socket_data).substr(4);
// TODO: These should be handled in handle_host_request.
if (android::base::ConsumePrefix(&service, "host-serial:")) {
// serial number should follow "host:" and could be a host:port string.
if (!internal::parse_host_service(&serial, &service, service)) {
LOG(ERROR) << "SS(" << s->id << "): failed to parse host service: " << service;
goto fail;
}
} else if (android::base::ConsumePrefix(&service, "host-transport-id:")) {
if (!ParseUint(&transport_id, service, &service)) {
LOG(ERROR) << "SS(" << s->id << "): failed to parse host transport id: " << service;
return -1;
}
if (!android::base::ConsumePrefix(&service, ":")) {
LOG(ERROR) << "SS(" << s->id << "): host-transport-id without command";
return -1;
}
} else if (android::base::ConsumePrefix(&service, "host-usb:")) {
type = kTransportUsb;
} else if (android::base::ConsumePrefix(&service, "host-local:")) {
type = kTransportLocal;
} else if (android::base::ConsumePrefix(&service, "host:")) {
type = kTransportAny;
} else {
service = std::string_view{};
}
if (!service.empty()) {
asocket* s2;
// Some requests are handled immediately -- in that case the handle_host_request() routine
// has sent the OKAY or FAIL message and all we have to do is clean up.
auto host_request_result = handle_host_request(
service, type, serial.empty() ? nullptr : std::string(serial).c_str(), transport_id,
s->peer->fd, s);
switch (host_request_result) {
case HostRequestResult::Handled:
LOG(VERBOSE) << "SS(" << s->id << "): handled host service '" << service << "'";
goto fail;
case HostRequestResult::SwitchedTransport:
D("SS(%d): okay transport", s->id);
s->smart_socket_data.clear();
return 0;
case HostRequestResult::Unhandled:
break;
}
/* try to find a local service with this name.
** if no such service exists, we'll fail out
** and tear down here.
*/
// TODO: Convert to string_view.
s2 = host_service_to_socket(service, serial, transport_id);
if (s2 == nullptr) {
LOG(VERBOSE) << "SS(" << s->id << "): couldn't create host service '" << service << "'";
SendFail(s->peer->fd, "unknown host service");
goto fail;
}
/* we've connected to a local host service,
** so we make our peer back into a regular
** local socket and bind it to the new local
** service socket, acknowledge the successful
** connection, and close this smart socket now
** that its work is done.
*/
SendOkay(s->peer->fd);
s->peer->ready = local_socket_ready;
s->peer->shutdown = nullptr;
s->peer->close = local_socket_close;
s->peer->peer = s2;
s2->peer = s->peer;
s->peer = nullptr;
D("SS(%d): okay", s->id);
s->close(s);
/* initial state is "ready" */
s2->ready(s2);
return 0;
}
#else /* !ADB_HOST */
if (s->transport == nullptr) {
std::string error_msg = "unknown failure";
s->transport = acquire_one_transport(kTransportAny, nullptr, 0, nullptr, &error_msg);
if (s->transport == nullptr) {
SendFail(s->peer->fd, error_msg);
goto fail;
}
}
#endif
if (!s->transport) {
SendFail(s->peer->fd, "device offline (no transport)");
goto fail;
} else if (!ConnectionStateIsOnline(s->transport->GetConnectionState())) {
/* if there's no remote we fail the connection
** right here and terminate it
*/
SendFail(s->peer->fd, "device offline (transport offline)");
goto fail;
}
/* instrument our peer to pass the success or fail
** message back once it connects or closes, then
** detach from it, request the connection, and
** tear down
*/
s->peer->ready = local_socket_ready_notify;
s->peer->shutdown = nullptr;
s->peer->close = local_socket_close_notify;
s->peer->peer = nullptr;
/* give him our transport and upref it */
s->peer->transport = s->transport;
connect_to_remote(s->peer, std::string_view(s->smart_socket_data).substr(4));
s->peer = nullptr;
s->close(s);
return 1;
fail:
/* we're going to close our peer as a side-effect, so
** return -1 to signal that state to the local socket
** who is enqueueing against us
*/
s->close(s);
return -1;
}
static void smart_socket_ready(asocket* s) {
D("SS(%d): ready", s->id);
}
static void smart_socket_close(asocket* s) {
D("SS(%d): closed", s->id);
if (s->peer) {
s->peer->peer = nullptr;
s->peer->close(s->peer);
s->peer = nullptr;
}
delete s;
}
static asocket* create_smart_socket(void) {
D("Creating smart socket");
asocket* s = new asocket();
s->enqueue = smart_socket_enqueue;
s->ready = smart_socket_ready;
s->shutdown = nullptr;
s->close = smart_socket_close;
D("SS(%d)", s->id);
return s;
}
void connect_to_smartsocket(asocket* s) {
D("Connecting to smart socket");
asocket* ss = create_smart_socket();
s->peer = ss;
ss->peer = s;
s->ready(s);
}
size_t asocket::get_max_payload() const {
size_t max_payload = MAX_PAYLOAD;
if (transport) {
max_payload = std::min(max_payload, transport->get_max_payload());
}
if (peer && peer->transport) {
max_payload = std::min(max_payload, peer->transport->get_max_payload());
}
return max_payload;
}