| /* |
| * Copyright (C) 2007 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define TRACE_TAG USB |
| |
| #include "sysdeps.h" |
| |
| #include <ctype.h> |
| #include <dirent.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <linux/usb/ch9.h> |
| #include <linux/usbdevice_fs.h> |
| #include <linux/version.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/ioctl.h> |
| #include <sys/time.h> |
| #include <sys/sysmacros.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <chrono> |
| #include <condition_variable> |
| #include <list> |
| #include <mutex> |
| #include <string> |
| #include <string_view> |
| #include <thread> |
| |
| #include <android-base/file.h> |
| #include <android-base/stringprintf.h> |
| #include <android-base/strings.h> |
| |
| #include "adb.h" |
| #include "transport.h" |
| #include "usb.h" |
| |
| using namespace std::chrono_literals; |
| using namespace std::literals; |
| |
| /* usb scan debugging is waaaay too verbose */ |
| #define DBGX(x...) |
| |
| namespace native { |
| struct usb_handle : public ::usb_handle { |
| ~usb_handle() { |
| if (fd != -1) unix_close(fd); |
| } |
| |
| std::string path; |
| int fd = -1; |
| unsigned char ep_in; |
| unsigned char ep_out; |
| |
| size_t max_packet_size; |
| unsigned zero_mask; |
| unsigned writeable = 1; |
| |
| usbdevfs_urb urb_in; |
| usbdevfs_urb urb_out; |
| |
| bool urb_in_busy = false; |
| bool urb_out_busy = false; |
| bool dead = false; |
| |
| std::condition_variable cv; |
| std::mutex mutex; |
| |
| // for garbage collecting disconnected devices |
| bool mark; |
| |
| // ID of thread currently in REAPURB |
| pthread_t reaper_thread = 0; |
| }; |
| |
| static auto& g_usb_handles_mutex = *new std::mutex(); |
| static auto& g_usb_handles = *new std::list<usb_handle*>(); |
| |
| static int is_known_device(std::string_view dev_name) { |
| std::lock_guard<std::mutex> lock(g_usb_handles_mutex); |
| for (usb_handle* usb : g_usb_handles) { |
| if (usb->path == dev_name) { |
| // set mark flag to indicate this device is still alive |
| usb->mark = true; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static void kick_disconnected_devices() { |
| std::lock_guard<std::mutex> lock(g_usb_handles_mutex); |
| // kick any devices in the device list that were not found in the device scan |
| for (usb_handle* usb : g_usb_handles) { |
| if (!usb->mark) { |
| usb_kick(usb); |
| } else { |
| usb->mark = false; |
| } |
| } |
| } |
| |
| static inline bool contains_non_digit(const char* name) { |
| while (*name) { |
| if (!isdigit(*name++)) return true; |
| } |
| return false; |
| } |
| |
| static void find_usb_device(const std::string& base, |
| void (*register_device_callback)(const char*, const char*, |
| unsigned char, unsigned char, int, int, |
| unsigned, size_t)) { |
| std::unique_ptr<DIR, int(*)(DIR*)> bus_dir(opendir(base.c_str()), closedir); |
| if (!bus_dir) return; |
| |
| dirent* de; |
| while ((de = readdir(bus_dir.get())) != nullptr) { |
| if (contains_non_digit(de->d_name)) continue; |
| |
| std::string bus_name = base + "/" + de->d_name; |
| |
| std::unique_ptr<DIR, int(*)(DIR*)> dev_dir(opendir(bus_name.c_str()), closedir); |
| if (!dev_dir) continue; |
| |
| while ((de = readdir(dev_dir.get()))) { |
| unsigned char devdesc[4096]; |
| unsigned char* bufptr = devdesc; |
| unsigned char* bufend; |
| struct usb_device_descriptor* device; |
| struct usb_config_descriptor* config; |
| struct usb_interface_descriptor* interface; |
| struct usb_endpoint_descriptor *ep1, *ep2; |
| unsigned zero_mask = 0; |
| size_t max_packet_size = 0; |
| unsigned vid, pid; |
| |
| if (contains_non_digit(de->d_name)) continue; |
| |
| std::string dev_name = bus_name + "/" + de->d_name; |
| if (is_known_device(dev_name)) { |
| continue; |
| } |
| |
| int fd = unix_open(dev_name, O_RDONLY | O_CLOEXEC); |
| if (fd == -1) { |
| continue; |
| } |
| |
| size_t desclength = unix_read(fd, devdesc, sizeof(devdesc)); |
| bufend = bufptr + desclength; |
| |
| // should have device and configuration descriptors, and atleast two endpoints |
| if (desclength < USB_DT_DEVICE_SIZE + USB_DT_CONFIG_SIZE) { |
| D("desclength %zu is too small", desclength); |
| unix_close(fd); |
| continue; |
| } |
| |
| device = (struct usb_device_descriptor*)bufptr; |
| bufptr += USB_DT_DEVICE_SIZE; |
| |
| if((device->bLength != USB_DT_DEVICE_SIZE) || (device->bDescriptorType != USB_DT_DEVICE)) { |
| unix_close(fd); |
| continue; |
| } |
| |
| vid = device->idVendor; |
| pid = device->idProduct; |
| DBGX("[ %s is V:%04x P:%04x ]\n", dev_name.c_str(), vid, pid); |
| |
| // should have config descriptor next |
| config = (struct usb_config_descriptor *)bufptr; |
| bufptr += USB_DT_CONFIG_SIZE; |
| if (config->bLength != USB_DT_CONFIG_SIZE || config->bDescriptorType != USB_DT_CONFIG) { |
| D("usb_config_descriptor not found"); |
| unix_close(fd); |
| continue; |
| } |
| |
| // loop through all the descriptors and look for the ADB interface |
| while (bufptr < bufend) { |
| unsigned char length = bufptr[0]; |
| unsigned char type = bufptr[1]; |
| |
| if (type == USB_DT_INTERFACE) { |
| interface = (struct usb_interface_descriptor *)bufptr; |
| bufptr += length; |
| |
| if (length != USB_DT_INTERFACE_SIZE) { |
| D("interface descriptor has wrong size"); |
| break; |
| } |
| |
| DBGX("bInterfaceClass: %d, bInterfaceSubClass: %d," |
| "bInterfaceProtocol: %d, bNumEndpoints: %d\n", |
| interface->bInterfaceClass, interface->bInterfaceSubClass, |
| interface->bInterfaceProtocol, interface->bNumEndpoints); |
| |
| if (interface->bNumEndpoints == 2 && |
| is_adb_interface(interface->bInterfaceClass, interface->bInterfaceSubClass, |
| interface->bInterfaceProtocol)) { |
| struct stat st; |
| char pathbuf[128]; |
| char link[256]; |
| char *devpath = nullptr; |
| |
| DBGX("looking for bulk endpoints\n"); |
| // looks like ADB... |
| ep1 = (struct usb_endpoint_descriptor *)bufptr; |
| bufptr += USB_DT_ENDPOINT_SIZE; |
| // For USB 3.0 SuperSpeed devices, skip potential |
| // USB 3.0 SuperSpeed Endpoint Companion descriptor |
| if (bufptr+2 <= devdesc + desclength && |
| bufptr[0] == USB_DT_SS_EP_COMP_SIZE && |
| bufptr[1] == USB_DT_SS_ENDPOINT_COMP) { |
| bufptr += USB_DT_SS_EP_COMP_SIZE; |
| } |
| ep2 = (struct usb_endpoint_descriptor *)bufptr; |
| bufptr += USB_DT_ENDPOINT_SIZE; |
| if (bufptr+2 <= devdesc + desclength && |
| bufptr[0] == USB_DT_SS_EP_COMP_SIZE && |
| bufptr[1] == USB_DT_SS_ENDPOINT_COMP) { |
| bufptr += USB_DT_SS_EP_COMP_SIZE; |
| } |
| |
| if (bufptr > devdesc + desclength || |
| ep1->bLength != USB_DT_ENDPOINT_SIZE || |
| ep1->bDescriptorType != USB_DT_ENDPOINT || |
| ep2->bLength != USB_DT_ENDPOINT_SIZE || |
| ep2->bDescriptorType != USB_DT_ENDPOINT) { |
| D("endpoints not found"); |
| break; |
| } |
| |
| // both endpoints should be bulk |
| if (ep1->bmAttributes != USB_ENDPOINT_XFER_BULK || |
| ep2->bmAttributes != USB_ENDPOINT_XFER_BULK) { |
| D("bulk endpoints not found"); |
| continue; |
| } |
| /* aproto 01 needs 0 termination */ |
| if (interface->bInterfaceProtocol == ADB_PROTOCOL) { |
| max_packet_size = ep1->wMaxPacketSize; |
| zero_mask = ep1->wMaxPacketSize - 1; |
| } |
| |
| // we have a match. now we just need to figure out which is in and which is out. |
| unsigned char local_ep_in, local_ep_out; |
| if (ep1->bEndpointAddress & USB_ENDPOINT_DIR_MASK) { |
| local_ep_in = ep1->bEndpointAddress; |
| local_ep_out = ep2->bEndpointAddress; |
| } else { |
| local_ep_in = ep2->bEndpointAddress; |
| local_ep_out = ep1->bEndpointAddress; |
| } |
| |
| // Determine the device path |
| if (!fstat(fd, &st) && S_ISCHR(st.st_mode)) { |
| snprintf(pathbuf, sizeof(pathbuf), "/sys/dev/char/%d:%d", |
| major(st.st_rdev), minor(st.st_rdev)); |
| ssize_t link_len = readlink(pathbuf, link, sizeof(link) - 1); |
| if (link_len > 0) { |
| link[link_len] = '\0'; |
| const char* slash = strrchr(link, '/'); |
| if (slash) { |
| snprintf(pathbuf, sizeof(pathbuf), |
| "usb:%s", slash + 1); |
| devpath = pathbuf; |
| } |
| } |
| } |
| |
| register_device_callback(dev_name.c_str(), devpath, local_ep_in, |
| local_ep_out, interface->bInterfaceNumber, |
| device->iSerialNumber, zero_mask, max_packet_size); |
| break; |
| } |
| } else { |
| bufptr += length; |
| } |
| } // end of while |
| |
| unix_close(fd); |
| } |
| } |
| } |
| |
| static int usb_bulk_write(usb_handle* h, const void* data, int len) { |
| std::unique_lock<std::mutex> lock(h->mutex); |
| D("++ usb_bulk_write ++"); |
| |
| usbdevfs_urb* urb = &h->urb_out; |
| memset(urb, 0, sizeof(*urb)); |
| urb->type = USBDEVFS_URB_TYPE_BULK; |
| urb->endpoint = h->ep_out; |
| urb->status = -1; |
| urb->buffer = const_cast<void*>(data); |
| urb->buffer_length = len; |
| |
| if (h->dead) { |
| errno = EINVAL; |
| return -1; |
| } |
| |
| if (TEMP_FAILURE_RETRY(ioctl(h->fd, USBDEVFS_SUBMITURB, urb)) == -1) { |
| return -1; |
| } |
| |
| h->urb_out_busy = true; |
| while (true) { |
| auto now = std::chrono::steady_clock::now(); |
| if (h->cv.wait_until(lock, now + 5s) == std::cv_status::timeout || h->dead) { |
| // TODO: call USBDEVFS_DISCARDURB? |
| errno = ETIMEDOUT; |
| return -1; |
| } |
| if (!h->urb_out_busy) { |
| if (urb->status != 0) { |
| errno = -urb->status; |
| return -1; |
| } |
| return urb->actual_length; |
| } |
| } |
| } |
| |
| static int usb_bulk_read(usb_handle* h, void* data, int len) { |
| std::unique_lock<std::mutex> lock(h->mutex); |
| D("++ usb_bulk_read ++"); |
| |
| usbdevfs_urb* urb = &h->urb_in; |
| memset(urb, 0, sizeof(*urb)); |
| urb->type = USBDEVFS_URB_TYPE_BULK; |
| urb->endpoint = h->ep_in; |
| urb->status = -1; |
| urb->buffer = data; |
| urb->buffer_length = len; |
| |
| if (h->dead) { |
| errno = EINVAL; |
| return -1; |
| } |
| |
| if (TEMP_FAILURE_RETRY(ioctl(h->fd, USBDEVFS_SUBMITURB, urb)) == -1) { |
| return -1; |
| } |
| |
| h->urb_in_busy = true; |
| while (true) { |
| D("[ reap urb - wait ]"); |
| h->reaper_thread = pthread_self(); |
| int fd = h->fd; |
| lock.unlock(); |
| |
| // This ioctl must not have TEMP_FAILURE_RETRY because we send SIGALRM to break out. |
| usbdevfs_urb* out = nullptr; |
| int res = ioctl(fd, USBDEVFS_REAPURB, &out); |
| int saved_errno = errno; |
| |
| lock.lock(); |
| h->reaper_thread = 0; |
| if (h->dead) { |
| errno = EINVAL; |
| return -1; |
| } |
| if (res < 0) { |
| if (saved_errno == EINTR) { |
| continue; |
| } |
| D("[ reap urb - error ]"); |
| errno = saved_errno; |
| return -1; |
| } |
| D("[ urb @%p status = %d, actual = %d ]", out, out->status, out->actual_length); |
| |
| if (out == &h->urb_in) { |
| D("[ reap urb - IN complete ]"); |
| h->urb_in_busy = false; |
| if (urb->status != 0) { |
| errno = -urb->status; |
| return -1; |
| } |
| return urb->actual_length; |
| } |
| if (out == &h->urb_out) { |
| D("[ reap urb - OUT compelete ]"); |
| h->urb_out_busy = false; |
| h->cv.notify_all(); |
| } |
| } |
| } |
| |
| static int usb_write_split(usb_handle* h, unsigned char* data, int len) { |
| for (int i = 0; i < len; i += 16384) { |
| int chunk_size = (i + 16384 > len) ? len - i : 16384; |
| int n = usb_bulk_write(h, data + i, chunk_size); |
| if (n != chunk_size) { |
| D("ERROR: n = %d, errno = %d (%s)", n, errno, strerror(errno)); |
| return -1; |
| } |
| } |
| |
| return len; |
| } |
| |
| int usb_write(usb_handle* h, const void* _data, int len) { |
| D("++ usb_write ++"); |
| |
| unsigned char* data = (unsigned char*)_data; |
| |
| // The kernel will attempt to allocate a contiguous buffer for each write we submit. |
| // This might fail due to heap fragmentation, so attempt a contiguous write once, and if that |
| // fails, retry after having split the data into 16kB chunks to avoid allocation failure. |
| int n = usb_bulk_write(h, data, len); |
| if (n == -1 && errno == ENOMEM) { |
| n = usb_write_split(h, data, len); |
| } |
| |
| if (n == -1) { |
| return -1; |
| } |
| |
| if (h->zero_mask && !(len & h->zero_mask)) { |
| // If we need 0-markers and our transfer is an even multiple of the packet size, |
| // then send a zero marker. |
| return usb_bulk_write(h, _data, 0) == 0 ? len : -1; |
| } |
| |
| D("-- usb_write --"); |
| return len; |
| } |
| |
| int usb_read(usb_handle *h, void *_data, int len) |
| { |
| unsigned char *data = (unsigned char*) _data; |
| int n; |
| |
| D("++ usb_read ++"); |
| int orig_len = len; |
| while (len == orig_len) { |
| int xfer = len; |
| |
| D("[ usb read %d fd = %d], path=%s", xfer, h->fd, h->path.c_str()); |
| n = usb_bulk_read(h, data, xfer); |
| D("[ usb read %d ] = %d, path=%s", xfer, n, h->path.c_str()); |
| if (n <= 0) { |
| if((errno == ETIMEDOUT) && (h->fd != -1)) { |
| D("[ timeout ]"); |
| continue; |
| } |
| D("ERROR: n = %d, errno = %d (%s)", |
| n, errno, strerror(errno)); |
| return -1; |
| } |
| |
| len -= n; |
| data += n; |
| } |
| |
| D("-- usb_read --"); |
| return orig_len - len; |
| } |
| |
| void usb_reset(usb_handle* h) { |
| ioctl(h->fd, USBDEVFS_RESET); |
| usb_kick(h); |
| } |
| |
| void usb_kick(usb_handle* h) { |
| std::lock_guard<std::mutex> lock(h->mutex); |
| D("[ kicking %p (fd = %d) ]", h, h->fd); |
| if (!h->dead) { |
| h->dead = true; |
| |
| if (h->writeable) { |
| /* HACK ALERT! |
| ** Sometimes we get stuck in ioctl(USBDEVFS_REAPURB). |
| ** This is a workaround for that problem. |
| */ |
| if (h->reaper_thread) { |
| pthread_kill(h->reaper_thread, SIGALRM); |
| } |
| |
| /* cancel any pending transactions |
| ** these will quietly fail if the txns are not active, |
| ** but this ensures that a reader blocked on REAPURB |
| ** will get unblocked |
| */ |
| ioctl(h->fd, USBDEVFS_DISCARDURB, &h->urb_in); |
| ioctl(h->fd, USBDEVFS_DISCARDURB, &h->urb_out); |
| h->urb_in.status = -ENODEV; |
| h->urb_out.status = -ENODEV; |
| h->urb_in_busy = false; |
| h->urb_out_busy = false; |
| h->cv.notify_all(); |
| } else { |
| unregister_usb_transport(h); |
| } |
| } |
| } |
| |
| int usb_close(usb_handle* h) { |
| std::lock_guard<std::mutex> lock(g_usb_handles_mutex); |
| g_usb_handles.remove(h); |
| |
| D("-- usb close %p (fd = %d) --", h, h->fd); |
| |
| delete h; |
| |
| return 0; |
| } |
| |
| size_t usb_get_max_packet_size(usb_handle* h) { |
| return h->max_packet_size; |
| } |
| |
| static void register_device(const char* dev_name, const char* dev_path, unsigned char ep_in, |
| unsigned char ep_out, int interface, int serial_index, |
| unsigned zero_mask, size_t max_packet_size) { |
| // Since Linux will not reassign the device ID (and dev_name) as long as the |
| // device is open, we can add to the list here once we open it and remove |
| // from the list when we're finally closed and everything will work out |
| // fine. |
| // |
| // If we have a usb_handle on the list of handles with a matching name, we |
| // have no further work to do. |
| { |
| std::lock_guard<std::mutex> lock(g_usb_handles_mutex); |
| for (usb_handle* usb: g_usb_handles) { |
| if (usb->path == dev_name) { |
| return; |
| } |
| } |
| } |
| |
| D("[ usb located new device %s (%d/%d/%d) ]", dev_name, ep_in, ep_out, interface); |
| std::unique_ptr<usb_handle> usb(new usb_handle); |
| usb->path = dev_name; |
| usb->ep_in = ep_in; |
| usb->ep_out = ep_out; |
| usb->zero_mask = zero_mask; |
| usb->max_packet_size = max_packet_size; |
| |
| // Initialize mark so we don't get garbage collected after the device scan. |
| usb->mark = true; |
| |
| usb->fd = unix_open(usb->path, O_RDWR | O_CLOEXEC); |
| if (usb->fd == -1) { |
| // Opening RW failed, so see if we have RO access. |
| usb->fd = unix_open(usb->path, O_RDONLY | O_CLOEXEC); |
| if (usb->fd == -1) { |
| D("[ usb open %s failed: %s]", usb->path.c_str(), strerror(errno)); |
| return; |
| } |
| usb->writeable = 0; |
| } |
| |
| D("[ usb opened %s%s, fd=%d]", |
| usb->path.c_str(), (usb->writeable ? "" : " (read-only)"), usb->fd); |
| |
| if (usb->writeable) { |
| if (ioctl(usb->fd, USBDEVFS_CLAIMINTERFACE, &interface) != 0) { |
| D("[ usb ioctl(%d, USBDEVFS_CLAIMINTERFACE) failed: %s]", usb->fd, strerror(errno)); |
| return; |
| } |
| } |
| |
| // Read the device's serial number. |
| std::string serial_path = android::base::StringPrintf( |
| "/sys/bus/usb/devices/%s/serial", dev_path + 4); |
| std::string serial; |
| if (!android::base::ReadFileToString(serial_path, &serial)) { |
| D("[ usb read %s failed: %s ]", serial_path.c_str(), strerror(errno)); |
| // We don't actually want to treat an unknown serial as an error because |
| // devices aren't able to communicate a serial number in early bringup. |
| // http://b/20883914 |
| serial = ""; |
| } |
| serial = android::base::Trim(serial); |
| |
| // Add to the end of the active handles. |
| usb_handle* done_usb = usb.release(); |
| { |
| std::lock_guard<std::mutex> lock(g_usb_handles_mutex); |
| g_usb_handles.push_back(done_usb); |
| } |
| register_usb_transport(done_usb, serial.c_str(), dev_path, done_usb->writeable); |
| } |
| |
| static void device_poll_thread() { |
| adb_thread_setname("device poll"); |
| D("Created device thread"); |
| while (true) { |
| // TODO: Use inotify. |
| find_usb_device("/dev/bus/usb", register_device); |
| adb_notify_device_scan_complete(); |
| kick_disconnected_devices(); |
| std::this_thread::sleep_for(1s); |
| } |
| } |
| |
| void usb_init() { |
| struct sigaction actions; |
| memset(&actions, 0, sizeof(actions)); |
| sigemptyset(&actions.sa_mask); |
| actions.sa_flags = 0; |
| actions.sa_handler = [](int) {}; |
| sigaction(SIGALRM, &actions, nullptr); |
| |
| std::thread(device_poll_thread).detach(); |
| } |
| |
| void usb_cleanup() {} |
| |
| } // namespace native |