| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "fdevent.h" |
| |
| #include <gtest/gtest.h> |
| |
| #include <chrono> |
| #include <limits> |
| #include <memory> |
| #include <queue> |
| #include <string> |
| #include <thread> |
| #include <vector> |
| |
| #include "adb_io.h" |
| #include "fdevent_test.h" |
| |
| using namespace std::chrono_literals; |
| |
| class FdHandler { |
| public: |
| FdHandler(int read_fd, int write_fd, bool use_new_callback) |
| : read_fd_(read_fd), write_fd_(write_fd) { |
| if (use_new_callback) { |
| read_fde_ = fdevent_create(read_fd_, FdEventNewCallback, this); |
| write_fde_ = fdevent_create(write_fd_, FdEventNewCallback, this); |
| } else { |
| read_fde_ = fdevent_create(read_fd_, FdEventCallback, this); |
| write_fde_ = fdevent_create(write_fd_, FdEventCallback, this); |
| } |
| fdevent_add(read_fde_, FDE_READ); |
| } |
| |
| ~FdHandler() { |
| fdevent_destroy(read_fde_); |
| fdevent_destroy(write_fde_); |
| } |
| |
| private: |
| static void FdEventCallback(int fd, unsigned events, void* userdata) { |
| FdHandler* handler = reinterpret_cast<FdHandler*>(userdata); |
| ASSERT_EQ(0u, (events & ~(FDE_READ | FDE_WRITE))) << "unexpected events: " << events; |
| if (events & FDE_READ) { |
| ASSERT_EQ(fd, handler->read_fd_); |
| char c; |
| ASSERT_EQ(1, adb_read(fd, &c, 1)); |
| handler->queue_.push(c); |
| fdevent_add(handler->write_fde_, FDE_WRITE); |
| } |
| if (events & FDE_WRITE) { |
| ASSERT_EQ(fd, handler->write_fd_); |
| ASSERT_FALSE(handler->queue_.empty()); |
| char c = handler->queue_.front(); |
| handler->queue_.pop(); |
| ASSERT_EQ(1, adb_write(fd, &c, 1)); |
| if (handler->queue_.empty()) { |
| fdevent_del(handler->write_fde_, FDE_WRITE); |
| } |
| } |
| } |
| |
| static void FdEventNewCallback(fdevent* fde, unsigned events, void* userdata) { |
| int fd = fde->fd.get(); |
| FdHandler* handler = reinterpret_cast<FdHandler*>(userdata); |
| ASSERT_EQ(0u, (events & ~(FDE_READ | FDE_WRITE))) << "unexpected events: " << events; |
| if (events & FDE_READ) { |
| ASSERT_EQ(fd, handler->read_fd_); |
| char c; |
| ASSERT_EQ(1, adb_read(fd, &c, 1)); |
| handler->queue_.push(c); |
| fdevent_add(handler->write_fde_, FDE_WRITE); |
| } |
| if (events & FDE_WRITE) { |
| ASSERT_EQ(fd, handler->write_fd_); |
| ASSERT_FALSE(handler->queue_.empty()); |
| char c = handler->queue_.front(); |
| handler->queue_.pop(); |
| ASSERT_EQ(1, adb_write(fd, &c, 1)); |
| if (handler->queue_.empty()) { |
| fdevent_del(handler->write_fde_, FDE_WRITE); |
| } |
| } |
| } |
| |
| private: |
| const int read_fd_; |
| const int write_fd_; |
| fdevent* read_fde_; |
| fdevent* write_fde_; |
| std::queue<char> queue_; |
| }; |
| |
| struct ThreadArg { |
| int first_read_fd; |
| int last_write_fd; |
| size_t middle_pipe_count; |
| }; |
| |
| TEST_F(FdeventTest, fdevent_terminate) { |
| PrepareThread(); |
| TerminateThread(); |
| } |
| |
| TEST_F(FdeventTest, smoke) { |
| for (bool use_new_callback : {true, false}) { |
| fdevent_reset(); |
| const size_t PIPE_COUNT = 512; |
| const size_t MESSAGE_LOOP_COUNT = 10; |
| const std::string MESSAGE = "fdevent_test"; |
| int fd_pair1[2]; |
| int fd_pair2[2]; |
| ASSERT_EQ(0, adb_socketpair(fd_pair1)); |
| ASSERT_EQ(0, adb_socketpair(fd_pair2)); |
| ThreadArg thread_arg; |
| thread_arg.first_read_fd = fd_pair1[0]; |
| thread_arg.last_write_fd = fd_pair2[1]; |
| thread_arg.middle_pipe_count = PIPE_COUNT; |
| int writer = fd_pair1[1]; |
| int reader = fd_pair2[0]; |
| |
| PrepareThread(); |
| |
| std::vector<std::unique_ptr<FdHandler>> fd_handlers; |
| fdevent_run_on_main_thread([&thread_arg, &fd_handlers, use_new_callback]() { |
| std::vector<int> read_fds; |
| std::vector<int> write_fds; |
| |
| read_fds.push_back(thread_arg.first_read_fd); |
| for (size_t i = 0; i < thread_arg.middle_pipe_count; ++i) { |
| int fds[2]; |
| ASSERT_EQ(0, adb_socketpair(fds)); |
| read_fds.push_back(fds[0]); |
| write_fds.push_back(fds[1]); |
| } |
| write_fds.push_back(thread_arg.last_write_fd); |
| |
| for (size_t i = 0; i < read_fds.size(); ++i) { |
| fd_handlers.push_back( |
| std::make_unique<FdHandler>(read_fds[i], write_fds[i], use_new_callback)); |
| } |
| }); |
| WaitForFdeventLoop(); |
| |
| for (size_t i = 0; i < MESSAGE_LOOP_COUNT; ++i) { |
| std::string read_buffer = MESSAGE; |
| std::string write_buffer(MESSAGE.size(), 'a'); |
| ASSERT_TRUE(WriteFdExactly(writer, read_buffer.c_str(), read_buffer.size())); |
| ASSERT_TRUE(ReadFdExactly(reader, &write_buffer[0], write_buffer.size())); |
| ASSERT_EQ(read_buffer, write_buffer); |
| } |
| |
| fdevent_run_on_main_thread([&fd_handlers]() { fd_handlers.clear(); }); |
| WaitForFdeventLoop(); |
| |
| TerminateThread(); |
| ASSERT_EQ(0, adb_close(writer)); |
| ASSERT_EQ(0, adb_close(reader)); |
| } |
| } |
| |
| TEST_F(FdeventTest, run_on_main_thread) { |
| std::vector<int> vec; |
| |
| PrepareThread(); |
| |
| // Block the main thread for a long time while we queue our callbacks. |
| fdevent_run_on_main_thread([]() { |
| check_main_thread(); |
| std::this_thread::sleep_for(std::chrono::seconds(1)); |
| }); |
| |
| for (int i = 0; i < 1000000; ++i) { |
| fdevent_run_on_main_thread([i, &vec]() { |
| check_main_thread(); |
| vec.push_back(i); |
| }); |
| } |
| |
| TerminateThread(); |
| |
| ASSERT_EQ(1000000u, vec.size()); |
| for (int i = 0; i < 1000000; ++i) { |
| ASSERT_EQ(i, vec[i]); |
| } |
| } |
| |
| static std::function<void()> make_appender(std::vector<int>* vec, int value) { |
| return [vec, value]() { |
| check_main_thread(); |
| if (value == 100) { |
| return; |
| } |
| |
| vec->push_back(value); |
| fdevent_run_on_main_thread(make_appender(vec, value + 1)); |
| }; |
| } |
| |
| TEST_F(FdeventTest, run_on_main_thread_reentrant) { |
| std::vector<int> vec; |
| |
| PrepareThread(); |
| fdevent_run_on_main_thread(make_appender(&vec, 0)); |
| TerminateThread(); |
| |
| ASSERT_EQ(100u, vec.size()); |
| for (int i = 0; i < 100; ++i) { |
| ASSERT_EQ(i, vec[i]); |
| } |
| } |
| |
| TEST_F(FdeventTest, timeout) { |
| fdevent_reset(); |
| PrepareThread(); |
| |
| enum class TimeoutEvent { |
| read, |
| timeout, |
| done, |
| }; |
| |
| struct TimeoutTest { |
| std::vector<std::pair<TimeoutEvent, std::chrono::steady_clock::time_point>> events; |
| fdevent* fde; |
| }; |
| TimeoutTest test; |
| |
| int fds[2]; |
| ASSERT_EQ(0, adb_socketpair(fds)); |
| static constexpr auto delta = 100ms; |
| fdevent_run_on_main_thread([&]() { |
| test.fde = fdevent_create(fds[0], [](fdevent* fde, unsigned events, void* arg) { |
| auto test = static_cast<TimeoutTest*>(arg); |
| auto now = std::chrono::steady_clock::now(); |
| CHECK((events & FDE_READ) ^ (events & FDE_TIMEOUT)); |
| TimeoutEvent event; |
| if ((events & FDE_READ)) { |
| char buf[2]; |
| ssize_t rc = adb_read(fde->fd.get(), buf, sizeof(buf)); |
| if (rc == 0) { |
| event = TimeoutEvent::done; |
| } else if (rc == 1) { |
| event = TimeoutEvent::read; |
| } else { |
| abort(); |
| } |
| } else if ((events & FDE_TIMEOUT)) { |
| event = TimeoutEvent::timeout; |
| } else { |
| abort(); |
| } |
| |
| CHECK_EQ(fde, test->fde); |
| test->events.emplace_back(event, now); |
| |
| if (event == TimeoutEvent::done) { |
| fdevent_destroy(fde); |
| } |
| }, &test); |
| fdevent_add(test.fde, FDE_READ); |
| fdevent_set_timeout(test.fde, delta); |
| }); |
| |
| ASSERT_EQ(1, adb_write(fds[1], "", 1)); |
| |
| // Timeout should happen here |
| std::this_thread::sleep_for(delta); |
| |
| // and another. |
| std::this_thread::sleep_for(delta); |
| |
| // No timeout should happen here. |
| std::this_thread::sleep_for(delta / 2); |
| adb_close(fds[1]); |
| |
| TerminateThread(); |
| |
| ASSERT_EQ(4ULL, test.events.size()); |
| ASSERT_EQ(TimeoutEvent::read, test.events[0].first); |
| ASSERT_EQ(TimeoutEvent::timeout, test.events[1].first); |
| ASSERT_EQ(TimeoutEvent::timeout, test.events[2].first); |
| ASSERT_EQ(TimeoutEvent::done, test.events[3].first); |
| |
| std::vector<int> time_deltas; |
| for (size_t i = 0; i < test.events.size() - 1; ++i) { |
| auto before = test.events[i].second; |
| auto after = test.events[i + 1].second; |
| auto diff = std::chrono::duration_cast<std::chrono::milliseconds>(after - before); |
| time_deltas.push_back(diff.count()); |
| } |
| |
| std::vector<int> expected = { |
| delta.count(), |
| delta.count(), |
| delta.count() / 2, |
| }; |
| |
| std::vector<int> diff; |
| ASSERT_EQ(time_deltas.size(), expected.size()); |
| for (size_t i = 0; i < time_deltas.size(); ++i) { |
| diff.push_back(std::abs(time_deltas[i] - expected[i])); |
| } |
| |
| ASSERT_LT(diff[0], delta.count() * 0.5); |
| ASSERT_LT(diff[1], delta.count() * 0.5); |
| ASSERT_LT(diff[2], delta.count() * 0.5); |
| } |