blob: b629c9fc4915105915d4d78e9e7d1eded63b28a5 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <jni.h>
#include <math.h>
#include <android/bitmap.h>
#ifdef __cplusplus
extern "C" {
#endif
#define PI_F 3.141592653589f
class ImageRGBA {
public:
ImageRGBA(unsigned char* image, int width, int height)
: image_(image), width_(width), height_(height) {
width_step_ = width * 4;
}
int Width() const {
return width_;
}
int Height() const {
return height_;
}
// Pixel accessor.
unsigned char* operator()(int x, int y) {
return image_ + y * width_step_ + x * 4;
}
const unsigned char* operator()(int x, int y) const {
return image_ + y * width_step_ + x * 4;
}
private:
unsigned char* image_;
int width_;
int height_;
int width_step_;
};
// Interpolate a pixel in a 3 channel image.
inline void InterpolatePixel(const ImageRGBA &image, float x, float y,
unsigned char* dest) {
// Get pointers and scale factors for the source pixels.
float ax = x - floor(x);
float ay = y - floor(y);
float axn = 1.0f - ax;
float ayn = 1.0f - ay;
const unsigned char *p = image(x, y);
const unsigned char *p2 = image(x, y + 1);
// Interpolate each image color plane.
dest[0] = static_cast<unsigned char>(axn * ayn * p[0] + ax * ayn * p[4] +
ax * ay * p2[4] + axn * ay * p2[0] + 0.5f);
p++;
p2++;
dest[1] = static_cast<unsigned char>(axn * ayn * p[0] + ax * ayn * p[4] +
ax * ay * p2[4] + axn * ay * p2[0] + 0.5f);
p++;
p2++;
dest[2] = static_cast<unsigned char>(axn * ayn * p[0] + ax * ayn * p[4] +
ax * ay * p2[4] + axn * ay * p2[0] + 0.5f);
p++;
p2++;
dest[3] = 0xFF;
}
// Wrap circular coordinates around the globe
inline float wrap(float value, float dimension) {
return value - (dimension * floor(value/dimension));
}
void StereographicProjection(float scale, float angle, unsigned char* input_image,
int input_width, int input_height,
unsigned char* output_image, int output_width,
int output_height) {
ImageRGBA input(input_image, input_width, input_height);
ImageRGBA output(output_image, output_width, output_height);
const float image_scale = output_width * scale;
for (int x = 0; x < output_width; x++) {
// Center and scale x
float xf = (x - output_width / 2.0f) / image_scale;
for (int y = 0; y < output_height; y++) {
// Center and scale y
float yf = (y - output_height / 2.0f) / image_scale;
// Convert to polar
float r = hypotf(xf, yf);
float theta = angle+atan2(yf, xf);
if (theta>PI_F) theta-=2*PI_F;
// Project onto plane
float phi = 2 * atan(1 / r);
// (theta stays the same)
// Map to panorama image
float px = (theta / (2 * PI_F)) * input_width;
float py = (phi / PI_F) * input_height;
// Wrap around the globe
px = wrap(px, input_width);
py = wrap(py, input_height);
// Write the interpolated pixel
InterpolatePixel(input, px, py, output(x, y));
}
}
}
JNIEXPORT void JNICALL Java_com_android_camera_tinyplanet_TinyPlanetNative_process(JNIEnv* env, jobject obj, jobject bitmap_in, jint width, jint height, jobject bitmap_out, jint output_size, jfloat scale, jfloat angle)
{
(void)obj;
char* source = 0;
char* destination = 0;
AndroidBitmap_lockPixels(env, bitmap_in, (void**) &source);
AndroidBitmap_lockPixels(env, bitmap_out, (void**) &destination);
unsigned char * rgb_in = (unsigned char * )source;
unsigned char * rgb_out = (unsigned char * )destination;
StereographicProjection(scale, angle, rgb_in, width, height, rgb_out, output_size, output_size);
AndroidBitmap_unlockPixels(env, bitmap_in);
AndroidBitmap_unlockPixels(env, bitmap_out);
}
#ifdef __cplusplus
}
#endif