blob: e7522f6da69d2bd03dc87318f3fa93328385921e [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * eeh.c
3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
Linas Vepstas69376502005-11-03 18:47:50 -06004 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07005 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
Linas Vepstas69376502005-11-03 18:47:50 -06009 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070010 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
Linas Vepstas69376502005-11-03 18:47:50 -060014 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070015 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#include <linux/init.h>
21#include <linux/list.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include <linux/notifier.h>
23#include <linux/pci.h>
24#include <linux/proc_fs.h>
25#include <linux/rbtree.h>
26#include <linux/seq_file.h>
27#include <linux/spinlock.h>
Linas Vepstas69376502005-11-03 18:47:50 -060028#include <asm/atomic.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070029#include <asm/eeh.h>
30#include <asm/io.h>
31#include <asm/machdep.h>
32#include <asm/rtas.h>
33#include <asm/atomic.h>
34#include <asm/systemcfg.h>
Stephen Rothwelld3878992005-09-28 02:50:25 +100035#include <asm/ppc-pci.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070036
37#undef DEBUG
38
39/** Overview:
40 * EEH, or "Extended Error Handling" is a PCI bridge technology for
41 * dealing with PCI bus errors that can't be dealt with within the
42 * usual PCI framework, except by check-stopping the CPU. Systems
43 * that are designed for high-availability/reliability cannot afford
44 * to crash due to a "mere" PCI error, thus the need for EEH.
45 * An EEH-capable bridge operates by converting a detected error
46 * into a "slot freeze", taking the PCI adapter off-line, making
47 * the slot behave, from the OS'es point of view, as if the slot
48 * were "empty": all reads return 0xff's and all writes are silently
49 * ignored. EEH slot isolation events can be triggered by parity
50 * errors on the address or data busses (e.g. during posted writes),
Linas Vepstas69376502005-11-03 18:47:50 -060051 * which in turn might be caused by low voltage on the bus, dust,
52 * vibration, humidity, radioactivity or plain-old failed hardware.
Linus Torvalds1da177e2005-04-16 15:20:36 -070053 *
54 * Note, however, that one of the leading causes of EEH slot
55 * freeze events are buggy device drivers, buggy device microcode,
56 * or buggy device hardware. This is because any attempt by the
57 * device to bus-master data to a memory address that is not
58 * assigned to the device will trigger a slot freeze. (The idea
59 * is to prevent devices-gone-wild from corrupting system memory).
60 * Buggy hardware/drivers will have a miserable time co-existing
61 * with EEH.
62 *
63 * Ideally, a PCI device driver, when suspecting that an isolation
64 * event has occured (e.g. by reading 0xff's), will then ask EEH
65 * whether this is the case, and then take appropriate steps to
66 * reset the PCI slot, the PCI device, and then resume operations.
67 * However, until that day, the checking is done here, with the
68 * eeh_check_failure() routine embedded in the MMIO macros. If
69 * the slot is found to be isolated, an "EEH Event" is synthesized
70 * and sent out for processing.
71 */
72
Linus Torvalds1da177e2005-04-16 15:20:36 -070073/* EEH event workqueue setup. */
74static DEFINE_SPINLOCK(eeh_eventlist_lock);
75LIST_HEAD(eeh_eventlist);
76static void eeh_event_handler(void *);
77DECLARE_WORK(eeh_event_wq, eeh_event_handler, NULL);
78
79static struct notifier_block *eeh_notifier_chain;
80
81/*
82 * If a device driver keeps reading an MMIO register in an interrupt
83 * handler after a slot isolation event has occurred, we assume it
84 * is broken and panic. This sets the threshold for how many read
85 * attempts we allow before panicking.
86 */
87#define EEH_MAX_FAILS 1000
88static atomic_t eeh_fail_count;
89
90/* RTAS tokens */
91static int ibm_set_eeh_option;
92static int ibm_set_slot_reset;
93static int ibm_read_slot_reset_state;
94static int ibm_read_slot_reset_state2;
95static int ibm_slot_error_detail;
96
97static int eeh_subsystem_enabled;
98
Linas Vepstasfd761fd2005-11-03 18:49:23 -060099/* Lock to avoid races due to multiple reports of an error */
100static DEFINE_SPINLOCK(confirm_error_lock);
101
Linus Torvalds1da177e2005-04-16 15:20:36 -0700102/* Buffer for reporting slot-error-detail rtas calls */
103static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
104static DEFINE_SPINLOCK(slot_errbuf_lock);
105static int eeh_error_buf_size;
106
107/* System monitoring statistics */
Linas Vepstas177bc932005-11-03 18:48:52 -0600108static DEFINE_PER_CPU(unsigned long, no_device);
109static DEFINE_PER_CPU(unsigned long, no_dn);
110static DEFINE_PER_CPU(unsigned long, no_cfg_addr);
111static DEFINE_PER_CPU(unsigned long, ignored_check);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700112static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
113static DEFINE_PER_CPU(unsigned long, false_positives);
114static DEFINE_PER_CPU(unsigned long, ignored_failures);
115static DEFINE_PER_CPU(unsigned long, slot_resets);
116
117/**
118 * The pci address cache subsystem. This subsystem places
119 * PCI device address resources into a red-black tree, sorted
120 * according to the address range, so that given only an i/o
121 * address, the corresponding PCI device can be **quickly**
122 * found. It is safe to perform an address lookup in an interrupt
123 * context; this ability is an important feature.
124 *
125 * Currently, the only customer of this code is the EEH subsystem;
126 * thus, this code has been somewhat tailored to suit EEH better.
127 * In particular, the cache does *not* hold the addresses of devices
128 * for which EEH is not enabled.
129 *
130 * (Implementation Note: The RB tree seems to be better/faster
131 * than any hash algo I could think of for this problem, even
132 * with the penalty of slow pointer chases for d-cache misses).
133 */
134struct pci_io_addr_range
135{
136 struct rb_node rb_node;
137 unsigned long addr_lo;
138 unsigned long addr_hi;
139 struct pci_dev *pcidev;
140 unsigned int flags;
141};
142
143static struct pci_io_addr_cache
144{
145 struct rb_root rb_root;
146 spinlock_t piar_lock;
147} pci_io_addr_cache_root;
148
149static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
150{
151 struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
152
153 while (n) {
154 struct pci_io_addr_range *piar;
155 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
156
157 if (addr < piar->addr_lo) {
158 n = n->rb_left;
159 } else {
160 if (addr > piar->addr_hi) {
161 n = n->rb_right;
162 } else {
163 pci_dev_get(piar->pcidev);
164 return piar->pcidev;
165 }
166 }
167 }
168
169 return NULL;
170}
171
172/**
173 * pci_get_device_by_addr - Get device, given only address
174 * @addr: mmio (PIO) phys address or i/o port number
175 *
176 * Given an mmio phys address, or a port number, find a pci device
177 * that implements this address. Be sure to pci_dev_put the device
178 * when finished. I/O port numbers are assumed to be offset
179 * from zero (that is, they do *not* have pci_io_addr added in).
180 * It is safe to call this function within an interrupt.
181 */
182static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
183{
184 struct pci_dev *dev;
185 unsigned long flags;
186
187 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
188 dev = __pci_get_device_by_addr(addr);
189 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
190 return dev;
191}
192
193#ifdef DEBUG
194/*
195 * Handy-dandy debug print routine, does nothing more
196 * than print out the contents of our addr cache.
197 */
198static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
199{
200 struct rb_node *n;
201 int cnt = 0;
202
203 n = rb_first(&cache->rb_root);
204 while (n) {
205 struct pci_io_addr_range *piar;
206 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
Adrian Bunk982245f2005-07-17 04:22:20 +0200207 printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700208 (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
Adrian Bunk982245f2005-07-17 04:22:20 +0200209 piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700210 cnt++;
211 n = rb_next(n);
212 }
213}
214#endif
215
216/* Insert address range into the rb tree. */
217static struct pci_io_addr_range *
218pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
219 unsigned long ahi, unsigned int flags)
220{
221 struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
222 struct rb_node *parent = NULL;
223 struct pci_io_addr_range *piar;
224
225 /* Walk tree, find a place to insert into tree */
226 while (*p) {
227 parent = *p;
228 piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
Linas Vepstas56b0fca2005-11-03 18:48:45 -0600229 if (ahi < piar->addr_lo) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700230 p = &parent->rb_left;
Linas Vepstas56b0fca2005-11-03 18:48:45 -0600231 } else if (alo > piar->addr_hi) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700232 p = &parent->rb_right;
233 } else {
234 if (dev != piar->pcidev ||
235 alo != piar->addr_lo || ahi != piar->addr_hi) {
236 printk(KERN_WARNING "PIAR: overlapping address range\n");
237 }
238 return piar;
239 }
240 }
241 piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
242 if (!piar)
243 return NULL;
244
245 piar->addr_lo = alo;
246 piar->addr_hi = ahi;
247 piar->pcidev = dev;
248 piar->flags = flags;
249
Linas Vepstas56b0fca2005-11-03 18:48:45 -0600250#ifdef DEBUG
251 printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
252 alo, ahi, pci_name (dev));
253#endif
254
Linus Torvalds1da177e2005-04-16 15:20:36 -0700255 rb_link_node(&piar->rb_node, parent, p);
256 rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
257
258 return piar;
259}
260
261static void __pci_addr_cache_insert_device(struct pci_dev *dev)
262{
263 struct device_node *dn;
Paul Mackerras16353172005-09-06 13:17:54 +1000264 struct pci_dn *pdn;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700265 int i;
266 int inserted = 0;
267
268 dn = pci_device_to_OF_node(dev);
269 if (!dn) {
Linas Vepstas69376502005-11-03 18:47:50 -0600270 printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700271 return;
272 }
273
274 /* Skip any devices for which EEH is not enabled. */
Linas Vepstas69376502005-11-03 18:47:50 -0600275 pdn = PCI_DN(dn);
Paul Mackerras16353172005-09-06 13:17:54 +1000276 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
277 pdn->eeh_mode & EEH_MODE_NOCHECK) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700278#ifdef DEBUG
Linas Vepstas69376502005-11-03 18:47:50 -0600279 printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
280 pci_name(dev), pdn->node->full_name);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700281#endif
282 return;
283 }
284
285 /* The cache holds a reference to the device... */
286 pci_dev_get(dev);
287
288 /* Walk resources on this device, poke them into the tree */
289 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
290 unsigned long start = pci_resource_start(dev,i);
291 unsigned long end = pci_resource_end(dev,i);
292 unsigned int flags = pci_resource_flags(dev,i);
293
294 /* We are interested only bus addresses, not dma or other stuff */
295 if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
296 continue;
297 if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
298 continue;
299 pci_addr_cache_insert(dev, start, end, flags);
300 inserted = 1;
301 }
302
303 /* If there was nothing to add, the cache has no reference... */
304 if (!inserted)
305 pci_dev_put(dev);
306}
307
308/**
309 * pci_addr_cache_insert_device - Add a device to the address cache
310 * @dev: PCI device whose I/O addresses we are interested in.
311 *
312 * In order to support the fast lookup of devices based on addresses,
313 * we maintain a cache of devices that can be quickly searched.
314 * This routine adds a device to that cache.
315 */
Linas Vepstas56b0fca2005-11-03 18:48:45 -0600316static void pci_addr_cache_insert_device(struct pci_dev *dev)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700317{
318 unsigned long flags;
319
320 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
321 __pci_addr_cache_insert_device(dev);
322 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
323}
324
325static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
326{
327 struct rb_node *n;
328 int removed = 0;
329
330restart:
331 n = rb_first(&pci_io_addr_cache_root.rb_root);
332 while (n) {
333 struct pci_io_addr_range *piar;
334 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
335
336 if (piar->pcidev == dev) {
337 rb_erase(n, &pci_io_addr_cache_root.rb_root);
338 removed = 1;
339 kfree(piar);
340 goto restart;
341 }
342 n = rb_next(n);
343 }
344
345 /* The cache no longer holds its reference to this device... */
346 if (removed)
347 pci_dev_put(dev);
348}
349
350/**
351 * pci_addr_cache_remove_device - remove pci device from addr cache
352 * @dev: device to remove
353 *
354 * Remove a device from the addr-cache tree.
355 * This is potentially expensive, since it will walk
356 * the tree multiple times (once per resource).
357 * But so what; device removal doesn't need to be that fast.
358 */
Linas Vepstas56b0fca2005-11-03 18:48:45 -0600359static void pci_addr_cache_remove_device(struct pci_dev *dev)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700360{
361 unsigned long flags;
362
363 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
364 __pci_addr_cache_remove_device(dev);
365 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
366}
367
368/**
369 * pci_addr_cache_build - Build a cache of I/O addresses
370 *
371 * Build a cache of pci i/o addresses. This cache will be used to
372 * find the pci device that corresponds to a given address.
373 * This routine scans all pci busses to build the cache.
374 * Must be run late in boot process, after the pci controllers
375 * have been scaned for devices (after all device resources are known).
376 */
377void __init pci_addr_cache_build(void)
378{
379 struct pci_dev *dev = NULL;
380
Linas Vepstas56b0fca2005-11-03 18:48:45 -0600381 if (!eeh_subsystem_enabled)
382 return;
383
Linus Torvalds1da177e2005-04-16 15:20:36 -0700384 spin_lock_init(&pci_io_addr_cache_root.piar_lock);
385
386 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
387 /* Ignore PCI bridges ( XXX why ??) */
388 if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
389 continue;
390 }
391 pci_addr_cache_insert_device(dev);
392 }
393
394#ifdef DEBUG
395 /* Verify tree built up above, echo back the list of addrs. */
396 pci_addr_cache_print(&pci_io_addr_cache_root);
397#endif
398}
399
400/* --------------------------------------------------------------- */
401/* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
402
Linas Vepstasdf7242b2005-11-03 18:49:01 -0600403void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
404{
405 unsigned long flags;
406 int rc;
407
408 /* Log the error with the rtas logger */
409 spin_lock_irqsave(&slot_errbuf_lock, flags);
410 memset(slot_errbuf, 0, eeh_error_buf_size);
411
412 rc = rtas_call(ibm_slot_error_detail,
413 8, 1, NULL, pdn->eeh_config_addr,
414 BUID_HI(pdn->phb->buid),
415 BUID_LO(pdn->phb->buid), NULL, 0,
416 virt_to_phys(slot_errbuf),
417 eeh_error_buf_size,
418 severity);
419
420 if (rc == 0)
421 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
422 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
423}
424
Linus Torvalds1da177e2005-04-16 15:20:36 -0700425/**
426 * eeh_register_notifier - Register to find out about EEH events.
427 * @nb: notifier block to callback on events
428 */
429int eeh_register_notifier(struct notifier_block *nb)
430{
431 return notifier_chain_register(&eeh_notifier_chain, nb);
432}
433
434/**
435 * eeh_unregister_notifier - Unregister to an EEH event notifier.
436 * @nb: notifier block to callback on events
437 */
438int eeh_unregister_notifier(struct notifier_block *nb)
439{
440 return notifier_chain_unregister(&eeh_notifier_chain, nb);
441}
442
443/**
444 * read_slot_reset_state - Read the reset state of a device node's slot
445 * @dn: device node to read
446 * @rets: array to return results in
447 */
Linas Vepstas69376502005-11-03 18:47:50 -0600448static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
Linus Torvalds1da177e2005-04-16 15:20:36 -0700449{
450 int token, outputs;
451
452 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
453 token = ibm_read_slot_reset_state2;
454 outputs = 4;
455 } else {
456 token = ibm_read_slot_reset_state;
Linas Vepstas69376502005-11-03 18:47:50 -0600457 rets[2] = 0; /* fake PE Unavailable info */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700458 outputs = 3;
459 }
460
Paul Mackerras16353172005-09-06 13:17:54 +1000461 return rtas_call(token, 3, outputs, rets, pdn->eeh_config_addr,
462 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700463}
464
465/**
466 * eeh_panic - call panic() for an eeh event that cannot be handled.
467 * The philosophy of this routine is that it is better to panic and
468 * halt the OS than it is to risk possible data corruption by
469 * oblivious device drivers that don't know better.
470 *
471 * @dev pci device that had an eeh event
472 * @reset_state current reset state of the device slot
473 */
474static void eeh_panic(struct pci_dev *dev, int reset_state)
475{
476 /*
477 * XXX We should create a separate sysctl for this.
478 *
479 * Since the panic_on_oops sysctl is used to halt the system
480 * in light of potential corruption, we can use it here.
481 */
Linas Vepstasdf7242b2005-11-03 18:49:01 -0600482 if (panic_on_oops) {
483 struct device_node *dn = pci_device_to_OF_node(dev);
484 eeh_slot_error_detail (PCI_DN(dn), 2 /* Permanent Error */);
Adrian Bunk982245f2005-07-17 04:22:20 +0200485 panic("EEH: MMIO failure (%d) on device:%s\n", reset_state,
486 pci_name(dev));
Linas Vepstasdf7242b2005-11-03 18:49:01 -0600487 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700488 else {
489 __get_cpu_var(ignored_failures)++;
Adrian Bunk982245f2005-07-17 04:22:20 +0200490 printk(KERN_INFO "EEH: Ignored MMIO failure (%d) on device:%s\n",
491 reset_state, pci_name(dev));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700492 }
493}
494
495/**
496 * eeh_event_handler - dispatch EEH events. The detection of a frozen
497 * slot can occur inside an interrupt, where it can be hard to do
498 * anything about it. The goal of this routine is to pull these
499 * detection events out of the context of the interrupt handler, and
500 * re-dispatch them for processing at a later time in a normal context.
501 *
502 * @dummy - unused
503 */
504static void eeh_event_handler(void *dummy)
505{
506 unsigned long flags;
507 struct eeh_event *event;
508
509 while (1) {
510 spin_lock_irqsave(&eeh_eventlist_lock, flags);
511 event = NULL;
512 if (!list_empty(&eeh_eventlist)) {
513 event = list_entry(eeh_eventlist.next, struct eeh_event, list);
514 list_del(&event->list);
515 }
516 spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
517 if (event == NULL)
518 break;
519
520 printk(KERN_INFO "EEH: MMIO failure (%d), notifiying device "
Adrian Bunk982245f2005-07-17 04:22:20 +0200521 "%s\n", event->reset_state,
522 pci_name(event->dev));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700523
524 atomic_set(&eeh_fail_count, 0);
525 notifier_call_chain (&eeh_notifier_chain,
526 EEH_NOTIFY_FREEZE, event);
527
Linus Torvalds1da177e2005-04-16 15:20:36 -0700528 pci_dev_put(event->dev);
529 kfree(event);
530 }
531}
532
533/**
534 * eeh_token_to_phys - convert EEH address token to phys address
Linas Vepstas69376502005-11-03 18:47:50 -0600535 * @token i/o token, should be address in the form 0xA....
Linus Torvalds1da177e2005-04-16 15:20:36 -0700536 */
537static inline unsigned long eeh_token_to_phys(unsigned long token)
538{
539 pte_t *ptep;
540 unsigned long pa;
541
David Gibson20cee162005-06-21 17:15:31 -0700542 ptep = find_linux_pte(init_mm.pgd, token);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700543 if (!ptep)
544 return token;
545 pa = pte_pfn(*ptep) << PAGE_SHIFT;
546
547 return pa | (token & (PAGE_SIZE-1));
548}
549
Linas Vepstasfd761fd2005-11-03 18:49:23 -0600550/**
551 * Return the "partitionable endpoint" (pe) under which this device lies
552 */
553static struct device_node * find_device_pe(struct device_node *dn)
554{
555 while ((dn->parent) && PCI_DN(dn->parent) &&
556 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
557 dn = dn->parent;
558 }
559 return dn;
560}
561
562/** Mark all devices that are peers of this device as failed.
563 * Mark the device driver too, so that it can see the failure
564 * immediately; this is critical, since some drivers poll
565 * status registers in interrupts ... If a driver is polling,
566 * and the slot is frozen, then the driver can deadlock in
567 * an interrupt context, which is bad.
568 */
569
570static inline void __eeh_mark_slot (struct device_node *dn)
571{
572 while (dn) {
573 PCI_DN(dn)->eeh_mode |= EEH_MODE_ISOLATED;
574
575 if (dn->child)
576 __eeh_mark_slot (dn->child);
577 dn = dn->sibling;
578 }
579}
580
581static inline void __eeh_clear_slot (struct device_node *dn)
582{
583 while (dn) {
584 PCI_DN(dn)->eeh_mode &= ~EEH_MODE_ISOLATED;
585 if (dn->child)
586 __eeh_clear_slot (dn->child);
587 dn = dn->sibling;
588 }
589}
590
591static inline void eeh_clear_slot (struct device_node *dn)
592{
593 unsigned long flags;
594 spin_lock_irqsave(&confirm_error_lock, flags);
595 __eeh_clear_slot (dn);
596 spin_unlock_irqrestore(&confirm_error_lock, flags);
597}
598
Linus Torvalds1da177e2005-04-16 15:20:36 -0700599/**
600 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
601 * @dn device node
602 * @dev pci device, if known
603 *
604 * Check for an EEH failure for the given device node. Call this
605 * routine if the result of a read was all 0xff's and you want to
606 * find out if this is due to an EEH slot freeze. This routine
607 * will query firmware for the EEH status.
608 *
609 * Returns 0 if there has not been an EEH error; otherwise returns
Linas Vepstas69376502005-11-03 18:47:50 -0600610 * a non-zero value and queues up a slot isolation event notification.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700611 *
612 * It is safe to call this routine in an interrupt context.
613 */
614int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
615{
616 int ret;
617 int rets[3];
618 unsigned long flags;
Linas Vepstasdf7242b2005-11-03 18:49:01 -0600619 int reset_state;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700620 struct eeh_event *event;
Paul Mackerras16353172005-09-06 13:17:54 +1000621 struct pci_dn *pdn;
Linas Vepstasfd761fd2005-11-03 18:49:23 -0600622 struct device_node *pe_dn;
623 int rc = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700624
625 __get_cpu_var(total_mmio_ffs)++;
626
627 if (!eeh_subsystem_enabled)
628 return 0;
629
Linas Vepstas177bc932005-11-03 18:48:52 -0600630 if (!dn) {
631 __get_cpu_var(no_dn)++;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632 return 0;
Linas Vepstas177bc932005-11-03 18:48:52 -0600633 }
Linas Vepstas69376502005-11-03 18:47:50 -0600634 pdn = PCI_DN(dn);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700635
636 /* Access to IO BARs might get this far and still not want checking. */
Paul Mackerras16353172005-09-06 13:17:54 +1000637 if (!pdn->eeh_capable || !(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
638 pdn->eeh_mode & EEH_MODE_NOCHECK) {
Linas Vepstas177bc932005-11-03 18:48:52 -0600639 __get_cpu_var(ignored_check)++;
640#ifdef DEBUG
641 printk ("EEH:ignored check for %s %s\n", pci_name (dev), dn->full_name);
642#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700643 return 0;
644 }
645
Paul Mackerras16353172005-09-06 13:17:54 +1000646 if (!pdn->eeh_config_addr) {
Linas Vepstas177bc932005-11-03 18:48:52 -0600647 __get_cpu_var(no_cfg_addr)++;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700648 return 0;
649 }
650
Linas Vepstasfd761fd2005-11-03 18:49:23 -0600651 /* If we already have a pending isolation event for this
652 * slot, we know it's bad already, we don't need to check.
653 * Do this checking under a lock; as multiple PCI devices
654 * in one slot might report errors simultaneously, and we
655 * only want one error recovery routine running.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700656 */
Linas Vepstasfd761fd2005-11-03 18:49:23 -0600657 spin_lock_irqsave(&confirm_error_lock, flags);
658 rc = 1;
Paul Mackerras16353172005-09-06 13:17:54 +1000659 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700660 atomic_inc(&eeh_fail_count);
661 if (atomic_read(&eeh_fail_count) >= EEH_MAX_FAILS) {
662 /* re-read the slot reset state */
Linas Vepstas69376502005-11-03 18:47:50 -0600663 if (read_slot_reset_state(pdn, rets) != 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700664 rets[0] = -1; /* reset state unknown */
665 eeh_panic(dev, rets[0]);
666 }
Linas Vepstasfd761fd2005-11-03 18:49:23 -0600667 goto dn_unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700668 }
669
670 /*
671 * Now test for an EEH failure. This is VERY expensive.
672 * Note that the eeh_config_addr may be a parent device
673 * in the case of a device behind a bridge, or it may be
674 * function zero of a multi-function device.
675 * In any case they must share a common PHB.
676 */
Linas Vepstas69376502005-11-03 18:47:50 -0600677 ret = read_slot_reset_state(pdn, rets);
Linas Vepstas76e6faf2005-11-03 18:49:15 -0600678
679 /* If the call to firmware failed, punt */
680 if (ret != 0) {
681 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
682 ret, dn->full_name);
683 __get_cpu_var(false_positives)++;
Linas Vepstasfd761fd2005-11-03 18:49:23 -0600684 rc = 0;
685 goto dn_unlock;
Linas Vepstas76e6faf2005-11-03 18:49:15 -0600686 }
687
688 /* If EEH is not supported on this device, punt. */
689 if (rets[1] != 1) {
690 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
691 ret, dn->full_name);
692 __get_cpu_var(false_positives)++;
Linas Vepstasfd761fd2005-11-03 18:49:23 -0600693 rc = 0;
694 goto dn_unlock;
Linas Vepstas76e6faf2005-11-03 18:49:15 -0600695 }
696
697 /* If not the kind of error we know about, punt. */
698 if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
699 __get_cpu_var(false_positives)++;
Linas Vepstasfd761fd2005-11-03 18:49:23 -0600700 rc = 0;
701 goto dn_unlock;
Linas Vepstas76e6faf2005-11-03 18:49:15 -0600702 }
703
704 /* Note that config-io to empty slots may fail;
705 * we recognize empty because they don't have children. */
706 if ((rets[0] == 5) && (dn->child == NULL)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700707 __get_cpu_var(false_positives)++;
Linas Vepstasfd761fd2005-11-03 18:49:23 -0600708 rc = 0;
709 goto dn_unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700710 }
711
Linas Vepstasfd761fd2005-11-03 18:49:23 -0600712 __get_cpu_var(slot_resets)++;
713
714 /* Avoid repeated reports of this failure, including problems
715 * with other functions on this device, and functions under
716 * bridges. */
717 pe_dn = find_device_pe (dn);
718 __eeh_mark_slot (pe_dn);
719 spin_unlock_irqrestore(&confirm_error_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700720
721 reset_state = rets[0];
722
Linas Vepstasdf7242b2005-11-03 18:49:01 -0600723 eeh_slot_error_detail (pdn, 1 /* Temporary Error */);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700724
725 printk(KERN_INFO "EEH: MMIO failure (%d) on device: %s %s\n",
726 rets[0], dn->name, dn->full_name);
727 event = kmalloc(sizeof(*event), GFP_ATOMIC);
728 if (event == NULL) {
729 eeh_panic(dev, reset_state);
730 return 1;
731 }
732
733 event->dev = dev;
734 event->dn = dn;
735 event->reset_state = reset_state;
736
737 /* We may or may not be called in an interrupt context */
738 spin_lock_irqsave(&eeh_eventlist_lock, flags);
739 list_add(&event->list, &eeh_eventlist);
740 spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
741
742 /* Most EEH events are due to device driver bugs. Having
743 * a stack trace will help the device-driver authors figure
744 * out what happened. So print that out. */
Linas Vepstas76e6faf2005-11-03 18:49:15 -0600745 if (rets[0] != 5) dump_stack();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700746 schedule_work(&eeh_event_wq);
747
Linas Vepstasfd761fd2005-11-03 18:49:23 -0600748 return 1;
749
750dn_unlock:
751 spin_unlock_irqrestore(&confirm_error_lock, flags);
752 return rc;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700753}
754
Linas Vepstasfd761fd2005-11-03 18:49:23 -0600755EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700756
757/**
758 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
759 * @token i/o token, should be address in the form 0xA....
760 * @val value, should be all 1's (XXX why do we need this arg??)
761 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700762 * Check for an EEH failure at the given token address. Call this
763 * routine if the result of a read was all 0xff's and you want to
764 * find out if this is due to an EEH slot freeze event. This routine
765 * will query firmware for the EEH status.
766 *
767 * Note this routine is safe to call in an interrupt context.
768 */
769unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
770{
771 unsigned long addr;
772 struct pci_dev *dev;
773 struct device_node *dn;
774
775 /* Finding the phys addr + pci device; this is pretty quick. */
776 addr = eeh_token_to_phys((unsigned long __force) token);
777 dev = pci_get_device_by_addr(addr);
Linas Vepstas177bc932005-11-03 18:48:52 -0600778 if (!dev) {
779 __get_cpu_var(no_device)++;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700780 return val;
Linas Vepstas177bc932005-11-03 18:48:52 -0600781 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700782
783 dn = pci_device_to_OF_node(dev);
784 eeh_dn_check_failure (dn, dev);
785
786 pci_dev_put(dev);
787 return val;
788}
789
790EXPORT_SYMBOL(eeh_check_failure);
791
792struct eeh_early_enable_info {
793 unsigned int buid_hi;
794 unsigned int buid_lo;
795};
796
797/* Enable eeh for the given device node. */
798static void *early_enable_eeh(struct device_node *dn, void *data)
799{
800 struct eeh_early_enable_info *info = data;
801 int ret;
802 char *status = get_property(dn, "status", NULL);
803 u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
804 u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
805 u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
806 u32 *regs;
807 int enable;
Linas Vepstas69376502005-11-03 18:47:50 -0600808 struct pci_dn *pdn = PCI_DN(dn);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700809
Paul Mackerras16353172005-09-06 13:17:54 +1000810 pdn->eeh_mode = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700811
812 if (status && strcmp(status, "ok") != 0)
813 return NULL; /* ignore devices with bad status */
814
815 /* Ignore bad nodes. */
816 if (!class_code || !vendor_id || !device_id)
817 return NULL;
818
819 /* There is nothing to check on PCI to ISA bridges */
820 if (dn->type && !strcmp(dn->type, "isa")) {
Paul Mackerras16353172005-09-06 13:17:54 +1000821 pdn->eeh_mode |= EEH_MODE_NOCHECK;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700822 return NULL;
823 }
824
825 /*
826 * Now decide if we are going to "Disable" EEH checking
827 * for this device. We still run with the EEH hardware active,
828 * but we won't be checking for ff's. This means a driver
829 * could return bad data (very bad!), an interrupt handler could
830 * hang waiting on status bits that won't change, etc.
831 * But there are a few cases like display devices that make sense.
832 */
833 enable = 1; /* i.e. we will do checking */
834 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
835 enable = 0;
836
837 if (!enable)
Paul Mackerras16353172005-09-06 13:17:54 +1000838 pdn->eeh_mode |= EEH_MODE_NOCHECK;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700839
840 /* Ok... see if this device supports EEH. Some do, some don't,
841 * and the only way to find out is to check each and every one. */
842 regs = (u32 *)get_property(dn, "reg", NULL);
843 if (regs) {
844 /* First register entry is addr (00BBSS00) */
845 /* Try to enable eeh */
846 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
847 regs[0], info->buid_hi, info->buid_lo,
848 EEH_ENABLE);
849 if (ret == 0) {
850 eeh_subsystem_enabled = 1;
Paul Mackerras16353172005-09-06 13:17:54 +1000851 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
852 pdn->eeh_config_addr = regs[0];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700853#ifdef DEBUG
854 printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
855#endif
856 } else {
857
858 /* This device doesn't support EEH, but it may have an
859 * EEH parent, in which case we mark it as supported. */
Linas Vepstas69376502005-11-03 18:47:50 -0600860 if (dn->parent && PCI_DN(dn->parent)
Paul Mackerras16353172005-09-06 13:17:54 +1000861 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700862 /* Parent supports EEH. */
Paul Mackerras16353172005-09-06 13:17:54 +1000863 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
864 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700865 return NULL;
866 }
867 }
868 } else {
869 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
870 dn->full_name);
871 }
872
Linas Vepstas69376502005-11-03 18:47:50 -0600873 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700874}
875
876/*
877 * Initialize EEH by trying to enable it for all of the adapters in the system.
878 * As a side effect we can determine here if eeh is supported at all.
879 * Note that we leave EEH on so failed config cycles won't cause a machine
880 * check. If a user turns off EEH for a particular adapter they are really
881 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
882 * grant access to a slot if EEH isn't enabled, and so we always enable
883 * EEH for all slots/all devices.
884 *
885 * The eeh-force-off option disables EEH checking globally, for all slots.
886 * Even if force-off is set, the EEH hardware is still enabled, so that
887 * newer systems can boot.
888 */
889void __init eeh_init(void)
890{
891 struct device_node *phb, *np;
892 struct eeh_early_enable_info info;
893
Linas Vepstasfd761fd2005-11-03 18:49:23 -0600894 spin_lock_init(&confirm_error_lock);
Linas Vepstasdf7242b2005-11-03 18:49:01 -0600895 spin_lock_init(&slot_errbuf_lock);
896
Linus Torvalds1da177e2005-04-16 15:20:36 -0700897 np = of_find_node_by_path("/rtas");
898 if (np == NULL)
899 return;
900
901 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
902 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
903 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
904 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
905 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
906
907 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
908 return;
909
910 eeh_error_buf_size = rtas_token("rtas-error-log-max");
911 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
912 eeh_error_buf_size = 1024;
913 }
914 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
915 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
916 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
917 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
918 }
919
920 /* Enable EEH for all adapters. Note that eeh requires buid's */
921 for (phb = of_find_node_by_name(NULL, "pci"); phb;
922 phb = of_find_node_by_name(phb, "pci")) {
923 unsigned long buid;
924
925 buid = get_phb_buid(phb);
Linas Vepstas69376502005-11-03 18:47:50 -0600926 if (buid == 0 || PCI_DN(phb) == NULL)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700927 continue;
928
929 info.buid_lo = BUID_LO(buid);
930 info.buid_hi = BUID_HI(buid);
931 traverse_pci_devices(phb, early_enable_eeh, &info);
932 }
933
934 if (eeh_subsystem_enabled)
935 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
936 else
937 printk(KERN_WARNING "EEH: No capable adapters found\n");
938}
939
940/**
941 * eeh_add_device_early - enable EEH for the indicated device_node
942 * @dn: device node for which to set up EEH
943 *
944 * This routine must be used to perform EEH initialization for PCI
945 * devices that were added after system boot (e.g. hotplug, dlpar).
946 * This routine must be called before any i/o is performed to the
947 * adapter (inluding any config-space i/o).
948 * Whether this actually enables EEH or not for this device depends
949 * on the CEC architecture, type of the device, on earlier boot
950 * command-line arguments & etc.
951 */
952void eeh_add_device_early(struct device_node *dn)
953{
954 struct pci_controller *phb;
955 struct eeh_early_enable_info info;
956
Linas Vepstas69376502005-11-03 18:47:50 -0600957 if (!dn || !PCI_DN(dn))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700958 return;
Paul Mackerras16353172005-09-06 13:17:54 +1000959 phb = PCI_DN(dn)->phb;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700960 if (NULL == phb || 0 == phb->buid) {
Linas Vepstas69376502005-11-03 18:47:50 -0600961 printk(KERN_WARNING "EEH: Expected buid but found none for %s\n",
962 dn->full_name);
963 dump_stack();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700964 return;
965 }
966
967 info.buid_hi = BUID_HI(phb->buid);
968 info.buid_lo = BUID_LO(phb->buid);
969 early_enable_eeh(dn, &info);
970}
Linas Vepstas56b0fca2005-11-03 18:48:45 -0600971EXPORT_SYMBOL_GPL(eeh_add_device_early);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972
973/**
974 * eeh_add_device_late - perform EEH initialization for the indicated pci device
975 * @dev: pci device for which to set up EEH
976 *
977 * This routine must be used to complete EEH initialization for PCI
978 * devices that were added after system boot (e.g. hotplug, dlpar).
979 */
980void eeh_add_device_late(struct pci_dev *dev)
981{
Linas Vepstas56b0fca2005-11-03 18:48:45 -0600982 struct device_node *dn;
983
Linus Torvalds1da177e2005-04-16 15:20:36 -0700984 if (!dev || !eeh_subsystem_enabled)
985 return;
986
987#ifdef DEBUG
Adrian Bunk982245f2005-07-17 04:22:20 +0200988 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700989#endif
990
Linas Vepstas56b0fca2005-11-03 18:48:45 -0600991 pci_dev_get (dev);
992 dn = pci_device_to_OF_node(dev);
993 PCI_DN(dn)->pcidev = dev;
994
Linus Torvalds1da177e2005-04-16 15:20:36 -0700995 pci_addr_cache_insert_device (dev);
996}
Linas Vepstas56b0fca2005-11-03 18:48:45 -0600997EXPORT_SYMBOL_GPL(eeh_add_device_late);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700998
999/**
1000 * eeh_remove_device - undo EEH setup for the indicated pci device
1001 * @dev: pci device to be removed
1002 *
1003 * This routine should be when a device is removed from a running
1004 * system (e.g. by hotplug or dlpar).
1005 */
1006void eeh_remove_device(struct pci_dev *dev)
1007{
Linas Vepstas56b0fca2005-11-03 18:48:45 -06001008 struct device_node *dn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001009 if (!dev || !eeh_subsystem_enabled)
1010 return;
1011
1012 /* Unregister the device with the EEH/PCI address search system */
1013#ifdef DEBUG
Adrian Bunk982245f2005-07-17 04:22:20 +02001014 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001015#endif
1016 pci_addr_cache_remove_device(dev);
Linas Vepstas56b0fca2005-11-03 18:48:45 -06001017
1018 dn = pci_device_to_OF_node(dev);
1019 PCI_DN(dn)->pcidev = NULL;
1020 pci_dev_put (dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001021}
Linas Vepstas56b0fca2005-11-03 18:48:45 -06001022EXPORT_SYMBOL_GPL(eeh_remove_device);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001023
1024static int proc_eeh_show(struct seq_file *m, void *v)
1025{
1026 unsigned int cpu;
1027 unsigned long ffs = 0, positives = 0, failures = 0;
1028 unsigned long resets = 0;
Linas Vepstas177bc932005-11-03 18:48:52 -06001029 unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001030
1031 for_each_cpu(cpu) {
1032 ffs += per_cpu(total_mmio_ffs, cpu);
1033 positives += per_cpu(false_positives, cpu);
1034 failures += per_cpu(ignored_failures, cpu);
1035 resets += per_cpu(slot_resets, cpu);
Linas Vepstas177bc932005-11-03 18:48:52 -06001036 no_dev += per_cpu(no_device, cpu);
1037 no_dn += per_cpu(no_dn, cpu);
1038 no_cfg += per_cpu(no_cfg_addr, cpu);
1039 no_check += per_cpu(ignored_check, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001040 }
1041
1042 if (0 == eeh_subsystem_enabled) {
1043 seq_printf(m, "EEH Subsystem is globally disabled\n");
1044 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
1045 } else {
1046 seq_printf(m, "EEH Subsystem is enabled\n");
Linas Vepstas177bc932005-11-03 18:48:52 -06001047 seq_printf(m,
1048 "no device=%ld\n"
1049 "no device node=%ld\n"
1050 "no config address=%ld\n"
1051 "check not wanted=%ld\n"
1052 "eeh_total_mmio_ffs=%ld\n"
1053 "eeh_false_positives=%ld\n"
1054 "eeh_ignored_failures=%ld\n"
1055 "eeh_slot_resets=%ld\n",
1056 no_dev, no_dn, no_cfg, no_check,
1057 ffs, positives, failures, resets);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001058 }
1059
1060 return 0;
1061}
1062
1063static int proc_eeh_open(struct inode *inode, struct file *file)
1064{
1065 return single_open(file, proc_eeh_show, NULL);
1066}
1067
1068static struct file_operations proc_eeh_operations = {
1069 .open = proc_eeh_open,
1070 .read = seq_read,
1071 .llseek = seq_lseek,
1072 .release = single_release,
1073};
1074
1075static int __init eeh_init_proc(void)
1076{
1077 struct proc_dir_entry *e;
1078
1079 if (systemcfg->platform & PLATFORM_PSERIES) {
1080 e = create_proc_entry("ppc64/eeh", 0, NULL);
1081 if (e)
1082 e->proc_fops = &proc_eeh_operations;
1083 }
1084
1085 return 0;
1086}
1087__initcall(eeh_init_proc);