blob: f7742f03cdcbea4a367115398ccd1d2df75dfa1e [file] [log] [blame]
Amir Goldsteindae1e522011-06-27 19:40:50 -04001/*
2 * linux/fs/ext4/indirect.c
3 *
4 * from
5 *
6 * linux/fs/ext4/inode.c
7 *
8 * Copyright (C) 1992, 1993, 1994, 1995
9 * Remy Card (card@masi.ibp.fr)
10 * Laboratoire MASI - Institut Blaise Pascal
11 * Universite Pierre et Marie Curie (Paris VI)
12 *
13 * from
14 *
15 * linux/fs/minix/inode.c
16 *
17 * Copyright (C) 1991, 1992 Linus Torvalds
18 *
19 * Goal-directed block allocation by Stephen Tweedie
20 * (sct@redhat.com), 1993, 1998
21 */
22
Kent Overstreeta27bb332013-05-07 16:19:08 -070023#include <linux/aio.h>
Amir Goldsteindae1e522011-06-27 19:40:50 -040024#include "ext4_jbd2.h"
25#include "truncate.h"
Theodore Ts'o4a092d72012-11-28 13:03:30 -050026#include "ext4_extents.h" /* Needed for EXT_MAX_BLOCKS */
Amir Goldsteindae1e522011-06-27 19:40:50 -040027
28#include <trace/events/ext4.h>
29
30typedef struct {
31 __le32 *p;
32 __le32 key;
33 struct buffer_head *bh;
34} Indirect;
35
36static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
37{
38 p->key = *(p->p = v);
39 p->bh = bh;
40}
41
42/**
43 * ext4_block_to_path - parse the block number into array of offsets
44 * @inode: inode in question (we are only interested in its superblock)
45 * @i_block: block number to be parsed
46 * @offsets: array to store the offsets in
47 * @boundary: set this non-zero if the referred-to block is likely to be
48 * followed (on disk) by an indirect block.
49 *
50 * To store the locations of file's data ext4 uses a data structure common
51 * for UNIX filesystems - tree of pointers anchored in the inode, with
52 * data blocks at leaves and indirect blocks in intermediate nodes.
53 * This function translates the block number into path in that tree -
54 * return value is the path length and @offsets[n] is the offset of
55 * pointer to (n+1)th node in the nth one. If @block is out of range
56 * (negative or too large) warning is printed and zero returned.
57 *
58 * Note: function doesn't find node addresses, so no IO is needed. All
59 * we need to know is the capacity of indirect blocks (taken from the
60 * inode->i_sb).
61 */
62
63/*
64 * Portability note: the last comparison (check that we fit into triple
65 * indirect block) is spelled differently, because otherwise on an
66 * architecture with 32-bit longs and 8Kb pages we might get into trouble
67 * if our filesystem had 8Kb blocks. We might use long long, but that would
68 * kill us on x86. Oh, well, at least the sign propagation does not matter -
69 * i_block would have to be negative in the very beginning, so we would not
70 * get there at all.
71 */
72
73static int ext4_block_to_path(struct inode *inode,
74 ext4_lblk_t i_block,
75 ext4_lblk_t offsets[4], int *boundary)
76{
77 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
78 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
79 const long direct_blocks = EXT4_NDIR_BLOCKS,
80 indirect_blocks = ptrs,
81 double_blocks = (1 << (ptrs_bits * 2));
82 int n = 0;
83 int final = 0;
84
85 if (i_block < direct_blocks) {
86 offsets[n++] = i_block;
87 final = direct_blocks;
88 } else if ((i_block -= direct_blocks) < indirect_blocks) {
89 offsets[n++] = EXT4_IND_BLOCK;
90 offsets[n++] = i_block;
91 final = ptrs;
92 } else if ((i_block -= indirect_blocks) < double_blocks) {
93 offsets[n++] = EXT4_DIND_BLOCK;
94 offsets[n++] = i_block >> ptrs_bits;
95 offsets[n++] = i_block & (ptrs - 1);
96 final = ptrs;
97 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
98 offsets[n++] = EXT4_TIND_BLOCK;
99 offsets[n++] = i_block >> (ptrs_bits * 2);
100 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
101 offsets[n++] = i_block & (ptrs - 1);
102 final = ptrs;
103 } else {
104 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
105 i_block + direct_blocks +
106 indirect_blocks + double_blocks, inode->i_ino);
107 }
108 if (boundary)
109 *boundary = final - 1 - (i_block & (ptrs - 1));
110 return n;
111}
112
113/**
114 * ext4_get_branch - read the chain of indirect blocks leading to data
115 * @inode: inode in question
116 * @depth: depth of the chain (1 - direct pointer, etc.)
117 * @offsets: offsets of pointers in inode/indirect blocks
118 * @chain: place to store the result
119 * @err: here we store the error value
120 *
121 * Function fills the array of triples <key, p, bh> and returns %NULL
122 * if everything went OK or the pointer to the last filled triple
123 * (incomplete one) otherwise. Upon the return chain[i].key contains
124 * the number of (i+1)-th block in the chain (as it is stored in memory,
125 * i.e. little-endian 32-bit), chain[i].p contains the address of that
126 * number (it points into struct inode for i==0 and into the bh->b_data
127 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
128 * block for i>0 and NULL for i==0. In other words, it holds the block
129 * numbers of the chain, addresses they were taken from (and where we can
130 * verify that chain did not change) and buffer_heads hosting these
131 * numbers.
132 *
133 * Function stops when it stumbles upon zero pointer (absent block)
134 * (pointer to last triple returned, *@err == 0)
135 * or when it gets an IO error reading an indirect block
136 * (ditto, *@err == -EIO)
137 * or when it reads all @depth-1 indirect blocks successfully and finds
138 * the whole chain, all way to the data (returns %NULL, *err == 0).
139 *
140 * Need to be called with
141 * down_read(&EXT4_I(inode)->i_data_sem)
142 */
143static Indirect *ext4_get_branch(struct inode *inode, int depth,
144 ext4_lblk_t *offsets,
145 Indirect chain[4], int *err)
146{
147 struct super_block *sb = inode->i_sb;
148 Indirect *p = chain;
149 struct buffer_head *bh;
Theodore Ts'o860d21e2013-01-12 16:19:36 -0500150 int ret = -EIO;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400151
152 *err = 0;
153 /* i_data is not going away, no lock needed */
154 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
155 if (!p->key)
156 goto no_block;
157 while (--depth) {
158 bh = sb_getblk(sb, le32_to_cpu(p->key));
Theodore Ts'o860d21e2013-01-12 16:19:36 -0500159 if (unlikely(!bh)) {
160 ret = -ENOMEM;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400161 goto failure;
Theodore Ts'o860d21e2013-01-12 16:19:36 -0500162 }
Amir Goldsteindae1e522011-06-27 19:40:50 -0400163
164 if (!bh_uptodate_or_lock(bh)) {
165 if (bh_submit_read(bh) < 0) {
166 put_bh(bh);
167 goto failure;
168 }
169 /* validate block references */
170 if (ext4_check_indirect_blockref(inode, bh)) {
171 put_bh(bh);
172 goto failure;
173 }
174 }
175
176 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
177 /* Reader: end */
178 if (!p->key)
179 goto no_block;
180 }
181 return NULL;
182
183failure:
Theodore Ts'o860d21e2013-01-12 16:19:36 -0500184 *err = ret;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400185no_block:
186 return p;
187}
188
189/**
190 * ext4_find_near - find a place for allocation with sufficient locality
191 * @inode: owner
192 * @ind: descriptor of indirect block.
193 *
194 * This function returns the preferred place for block allocation.
195 * It is used when heuristic for sequential allocation fails.
196 * Rules are:
197 * + if there is a block to the left of our position - allocate near it.
198 * + if pointer will live in indirect block - allocate near that block.
199 * + if pointer will live in inode - allocate in the same
200 * cylinder group.
201 *
202 * In the latter case we colour the starting block by the callers PID to
203 * prevent it from clashing with concurrent allocations for a different inode
204 * in the same block group. The PID is used here so that functionally related
205 * files will be close-by on-disk.
206 *
207 * Caller must make sure that @ind is valid and will stay that way.
208 */
209static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
210{
211 struct ext4_inode_info *ei = EXT4_I(inode);
212 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
213 __le32 *p;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400214
215 /* Try to find previous block */
216 for (p = ind->p - 1; p >= start; p--) {
217 if (*p)
218 return le32_to_cpu(*p);
219 }
220
221 /* No such thing, so let's try location of indirect block */
222 if (ind->bh)
223 return ind->bh->b_blocknr;
224
225 /*
226 * It is going to be referred to from the inode itself? OK, just put it
227 * into the same cylinder group then.
228 */
Eric Sandeenf86186b2011-06-28 10:01:31 -0400229 return ext4_inode_to_goal_block(inode);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400230}
231
232/**
233 * ext4_find_goal - find a preferred place for allocation.
234 * @inode: owner
235 * @block: block we want
236 * @partial: pointer to the last triple within a chain
237 *
238 * Normally this function find the preferred place for block allocation,
239 * returns it.
240 * Because this is only used for non-extent files, we limit the block nr
241 * to 32 bits.
242 */
243static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
244 Indirect *partial)
245{
246 ext4_fsblk_t goal;
247
248 /*
249 * XXX need to get goal block from mballoc's data structures
250 */
251
252 goal = ext4_find_near(inode, partial);
253 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
254 return goal;
255}
256
257/**
258 * ext4_blks_to_allocate - Look up the block map and count the number
259 * of direct blocks need to be allocated for the given branch.
260 *
261 * @branch: chain of indirect blocks
262 * @k: number of blocks need for indirect blocks
263 * @blks: number of data blocks to be mapped.
264 * @blocks_to_boundary: the offset in the indirect block
265 *
266 * return the total number of blocks to be allocate, including the
267 * direct and indirect blocks.
268 */
269static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
270 int blocks_to_boundary)
271{
272 unsigned int count = 0;
273
274 /*
275 * Simple case, [t,d]Indirect block(s) has not allocated yet
276 * then it's clear blocks on that path have not allocated
277 */
278 if (k > 0) {
279 /* right now we don't handle cross boundary allocation */
280 if (blks < blocks_to_boundary + 1)
281 count += blks;
282 else
283 count += blocks_to_boundary + 1;
284 return count;
285 }
286
287 count++;
288 while (count < blks && count <= blocks_to_boundary &&
289 le32_to_cpu(*(branch[0].p + count)) == 0) {
290 count++;
291 }
292 return count;
293}
294
295/**
Amir Goldsteindae1e522011-06-27 19:40:50 -0400296 * ext4_alloc_branch - allocate and set up a chain of blocks.
297 * @handle: handle for this transaction
298 * @inode: owner
299 * @indirect_blks: number of allocated indirect blocks
300 * @blks: number of allocated direct blocks
301 * @goal: preferred place for allocation
302 * @offsets: offsets (in the blocks) to store the pointers to next.
303 * @branch: place to store the chain in.
304 *
305 * This function allocates blocks, zeroes out all but the last one,
306 * links them into chain and (if we are synchronous) writes them to disk.
307 * In other words, it prepares a branch that can be spliced onto the
308 * inode. It stores the information about that chain in the branch[], in
309 * the same format as ext4_get_branch() would do. We are calling it after
310 * we had read the existing part of chain and partial points to the last
311 * triple of that (one with zero ->key). Upon the exit we have the same
312 * picture as after the successful ext4_get_block(), except that in one
313 * place chain is disconnected - *branch->p is still zero (we did not
314 * set the last link), but branch->key contains the number that should
315 * be placed into *branch->p to fill that gap.
316 *
317 * If allocation fails we free all blocks we've allocated (and forget
318 * their buffer_heads) and return the error value the from failed
319 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
320 * as described above and return 0.
321 */
322static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
323 ext4_lblk_t iblock, int indirect_blks,
324 int *blks, ext4_fsblk_t goal,
325 ext4_lblk_t *offsets, Indirect *branch)
326{
Theodore Ts'o781f1432013-04-03 12:43:17 -0400327 struct ext4_allocation_request ar;
328 struct buffer_head * bh;
329 ext4_fsblk_t b, new_blocks[4];
330 __le32 *p;
331 int i, j, err, len = 1;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400332
Amir Goldsteindae1e522011-06-27 19:40:50 -0400333 /*
Theodore Ts'o781f1432013-04-03 12:43:17 -0400334 * Set up for the direct block allocation
Amir Goldsteindae1e522011-06-27 19:40:50 -0400335 */
Theodore Ts'o781f1432013-04-03 12:43:17 -0400336 memset(&ar, 0, sizeof(ar));
337 ar.inode = inode;
338 ar.len = *blks;
339 ar.logical = iblock;
340 if (S_ISREG(inode->i_mode))
341 ar.flags = EXT4_MB_HINT_DATA;
342
343 for (i = 0; i <= indirect_blks; i++) {
344 if (i == indirect_blks) {
345 ar.goal = goal;
346 new_blocks[i] = ext4_mb_new_blocks(handle, &ar, &err);
347 } else
348 goal = new_blocks[i] = ext4_new_meta_blocks(handle, inode,
349 goal, 0, NULL, &err);
350 if (err) {
351 i--;
352 goto failed;
353 }
354 branch[i].key = cpu_to_le32(new_blocks[i]);
355 if (i == 0)
356 continue;
357
358 bh = branch[i].bh = sb_getblk(inode->i_sb, new_blocks[i-1]);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400359 if (unlikely(!bh)) {
Theodore Ts'o860d21e2013-01-12 16:19:36 -0500360 err = -ENOMEM;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400361 goto failed;
362 }
Amir Goldsteindae1e522011-06-27 19:40:50 -0400363 lock_buffer(bh);
364 BUFFER_TRACE(bh, "call get_create_access");
365 err = ext4_journal_get_create_access(handle, bh);
366 if (err) {
Amir Goldsteindae1e522011-06-27 19:40:50 -0400367 unlock_buffer(bh);
368 goto failed;
369 }
370
Theodore Ts'o781f1432013-04-03 12:43:17 -0400371 memset(bh->b_data, 0, bh->b_size);
372 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
373 b = new_blocks[i];
374
375 if (i == indirect_blks)
376 len = ar.len;
377 for (j = 0; j < len; j++)
378 *p++ = cpu_to_le32(b++);
379
Amir Goldsteindae1e522011-06-27 19:40:50 -0400380 BUFFER_TRACE(bh, "marking uptodate");
381 set_buffer_uptodate(bh);
382 unlock_buffer(bh);
383
384 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
385 err = ext4_handle_dirty_metadata(handle, inode, bh);
386 if (err)
387 goto failed;
388 }
Theodore Ts'o781f1432013-04-03 12:43:17 -0400389 *blks = ar.len;
390 return 0;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400391failed:
Theodore Ts'o781f1432013-04-03 12:43:17 -0400392 for (; i >= 0; i--) {
393 if (i != indirect_blks && branch[i].bh)
394 ext4_forget(handle, 1, inode, branch[i].bh,
395 branch[i].bh->b_blocknr);
396 ext4_free_blocks(handle, inode, NULL, new_blocks[i],
397 (i == indirect_blks) ? ar.len : 1, 0);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400398 }
Amir Goldsteindae1e522011-06-27 19:40:50 -0400399 return err;
400}
401
402/**
403 * ext4_splice_branch - splice the allocated branch onto inode.
404 * @handle: handle for this transaction
405 * @inode: owner
406 * @block: (logical) number of block we are adding
407 * @chain: chain of indirect blocks (with a missing link - see
408 * ext4_alloc_branch)
409 * @where: location of missing link
410 * @num: number of indirect blocks we are adding
411 * @blks: number of direct blocks we are adding
412 *
413 * This function fills the missing link and does all housekeeping needed in
414 * inode (->i_blocks, etc.). In case of success we end up with the full
415 * chain to new block and return 0.
416 */
417static int ext4_splice_branch(handle_t *handle, struct inode *inode,
418 ext4_lblk_t block, Indirect *where, int num,
419 int blks)
420{
421 int i;
422 int err = 0;
423 ext4_fsblk_t current_block;
424
425 /*
426 * If we're splicing into a [td]indirect block (as opposed to the
427 * inode) then we need to get write access to the [td]indirect block
428 * before the splice.
429 */
430 if (where->bh) {
431 BUFFER_TRACE(where->bh, "get_write_access");
432 err = ext4_journal_get_write_access(handle, where->bh);
433 if (err)
434 goto err_out;
435 }
436 /* That's it */
437
438 *where->p = where->key;
439
440 /*
441 * Update the host buffer_head or inode to point to more just allocated
442 * direct blocks blocks
443 */
444 if (num == 0 && blks > 1) {
445 current_block = le32_to_cpu(where->key) + 1;
446 for (i = 1; i < blks; i++)
447 *(where->p + i) = cpu_to_le32(current_block++);
448 }
449
450 /* We are done with atomic stuff, now do the rest of housekeeping */
451 /* had we spliced it onto indirect block? */
452 if (where->bh) {
453 /*
454 * If we spliced it onto an indirect block, we haven't
455 * altered the inode. Note however that if it is being spliced
456 * onto an indirect block at the very end of the file (the
457 * file is growing) then we *will* alter the inode to reflect
458 * the new i_size. But that is not done here - it is done in
459 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
460 */
461 jbd_debug(5, "splicing indirect only\n");
462 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
463 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
464 if (err)
465 goto err_out;
466 } else {
467 /*
468 * OK, we spliced it into the inode itself on a direct block.
469 */
470 ext4_mark_inode_dirty(handle, inode);
471 jbd_debug(5, "splicing direct\n");
472 }
473 return err;
474
475err_out:
476 for (i = 1; i <= num; i++) {
477 /*
478 * branch[i].bh is newly allocated, so there is no
479 * need to revoke the block, which is why we don't
480 * need to set EXT4_FREE_BLOCKS_METADATA.
481 */
482 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
483 EXT4_FREE_BLOCKS_FORGET);
484 }
485 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
486 blks, 0);
487
488 return err;
489}
490
491/*
492 * The ext4_ind_map_blocks() function handles non-extents inodes
493 * (i.e., using the traditional indirect/double-indirect i_blocks
494 * scheme) for ext4_map_blocks().
495 *
496 * Allocation strategy is simple: if we have to allocate something, we will
497 * have to go the whole way to leaf. So let's do it before attaching anything
498 * to tree, set linkage between the newborn blocks, write them if sync is
499 * required, recheck the path, free and repeat if check fails, otherwise
500 * set the last missing link (that will protect us from any truncate-generated
501 * removals - all blocks on the path are immune now) and possibly force the
502 * write on the parent block.
503 * That has a nice additional property: no special recovery from the failed
504 * allocations is needed - we simply release blocks and do not touch anything
505 * reachable from inode.
506 *
507 * `handle' can be NULL if create == 0.
508 *
509 * return > 0, # of blocks mapped or allocated.
510 * return = 0, if plain lookup failed.
511 * return < 0, error case.
512 *
513 * The ext4_ind_get_blocks() function should be called with
514 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
515 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
516 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
517 * blocks.
518 */
519int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
520 struct ext4_map_blocks *map,
521 int flags)
522{
523 int err = -EIO;
524 ext4_lblk_t offsets[4];
525 Indirect chain[4];
526 Indirect *partial;
527 ext4_fsblk_t goal;
528 int indirect_blks;
529 int blocks_to_boundary = 0;
530 int depth;
531 int count = 0;
532 ext4_fsblk_t first_block = 0;
533
534 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
535 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
536 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
537 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
538 &blocks_to_boundary);
539
540 if (depth == 0)
541 goto out;
542
543 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
544
545 /* Simplest case - block found, no allocation needed */
546 if (!partial) {
547 first_block = le32_to_cpu(chain[depth - 1].key);
548 count++;
549 /*map more blocks*/
550 while (count < map->m_len && count <= blocks_to_boundary) {
551 ext4_fsblk_t blk;
552
553 blk = le32_to_cpu(*(chain[depth-1].p + count));
554
555 if (blk == first_block + count)
556 count++;
557 else
558 break;
559 }
560 goto got_it;
561 }
562
563 /* Next simple case - plain lookup or failed read of indirect block */
564 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
565 goto cleanup;
566
567 /*
568 * Okay, we need to do block allocation.
569 */
Theodore Ts'obab08ab2011-09-09 18:36:51 -0400570 if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
571 EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
572 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
573 "non-extent mapped inodes with bigalloc");
574 return -ENOSPC;
575 }
576
Amir Goldsteindae1e522011-06-27 19:40:50 -0400577 goal = ext4_find_goal(inode, map->m_lblk, partial);
578
579 /* the number of blocks need to allocate for [d,t]indirect blocks */
580 indirect_blks = (chain + depth) - partial - 1;
581
582 /*
583 * Next look up the indirect map to count the totoal number of
584 * direct blocks to allocate for this branch.
585 */
586 count = ext4_blks_to_allocate(partial, indirect_blks,
587 map->m_len, blocks_to_boundary);
588 /*
589 * Block out ext4_truncate while we alter the tree
590 */
591 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
592 &count, goal,
593 offsets + (partial - chain), partial);
594
595 /*
596 * The ext4_splice_branch call will free and forget any buffers
597 * on the new chain if there is a failure, but that risks using
598 * up transaction credits, especially for bitmaps where the
599 * credits cannot be returned. Can we handle this somehow? We
600 * may need to return -EAGAIN upwards in the worst case. --sct
601 */
602 if (!err)
603 err = ext4_splice_branch(handle, inode, map->m_lblk,
604 partial, indirect_blks, count);
605 if (err)
606 goto cleanup;
607
608 map->m_flags |= EXT4_MAP_NEW;
609
610 ext4_update_inode_fsync_trans(handle, inode, 1);
611got_it:
612 map->m_flags |= EXT4_MAP_MAPPED;
613 map->m_pblk = le32_to_cpu(chain[depth-1].key);
614 map->m_len = count;
615 if (count > blocks_to_boundary)
616 map->m_flags |= EXT4_MAP_BOUNDARY;
617 err = count;
618 /* Clean up and exit */
619 partial = chain + depth - 1; /* the whole chain */
620cleanup:
621 while (partial > chain) {
622 BUFFER_TRACE(partial->bh, "call brelse");
623 brelse(partial->bh);
624 partial--;
625 }
626out:
Zheng Liu19b303d2012-11-08 14:34:04 -0500627 trace_ext4_ind_map_blocks_exit(inode, map, err);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400628 return err;
629}
630
631/*
632 * O_DIRECT for ext3 (or indirect map) based files
633 *
634 * If the O_DIRECT write will extend the file then add this inode to the
635 * orphan list. So recovery will truncate it back to the original size
636 * if the machine crashes during the write.
637 *
638 * If the O_DIRECT write is intantiating holes inside i_size and the machine
639 * crashes then stale disk data _may_ be exposed inside the file. But current
640 * VFS code falls back into buffered path in that case so we are safe.
641 */
642ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
643 const struct iovec *iov, loff_t offset,
644 unsigned long nr_segs)
645{
646 struct file *file = iocb->ki_filp;
647 struct inode *inode = file->f_mapping->host;
648 struct ext4_inode_info *ei = EXT4_I(inode);
649 handle_t *handle;
650 ssize_t ret;
651 int orphan = 0;
652 size_t count = iov_length(iov, nr_segs);
653 int retries = 0;
654
655 if (rw == WRITE) {
656 loff_t final_size = offset + count;
657
658 if (final_size > inode->i_size) {
659 /* Credits for sb + inode write */
Theodore Ts'o9924a922013-02-08 21:59:22 -0500660 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400661 if (IS_ERR(handle)) {
662 ret = PTR_ERR(handle);
663 goto out;
664 }
665 ret = ext4_orphan_add(handle, inode);
666 if (ret) {
667 ext4_journal_stop(handle);
668 goto out;
669 }
670 orphan = 1;
671 ei->i_disksize = inode->i_size;
672 ext4_journal_stop(handle);
673 }
674 }
675
676retry:
Jiaying Zhangdccaf332011-08-19 19:13:32 -0400677 if (rw == READ && ext4_should_dioread_nolock(inode)) {
Dmitry Monakhovc2785312012-10-05 11:31:55 -0400678 if (unlikely(atomic_read(&EXT4_I(inode)->i_unwritten))) {
679 mutex_lock(&inode->i_mutex);
680 ext4_flush_unwritten_io(inode);
681 mutex_unlock(&inode->i_mutex);
682 }
Dmitry Monakhov17335dc2012-09-29 00:41:21 -0400683 /*
684 * Nolock dioread optimization may be dynamically disabled
685 * via ext4_inode_block_unlocked_dio(). Check inode's state
686 * while holding extra i_dio_count ref.
687 */
688 atomic_inc(&inode->i_dio_count);
689 smp_mb();
690 if (unlikely(ext4_test_inode_state(inode,
691 EXT4_STATE_DIOREAD_LOCK))) {
692 inode_dio_done(inode);
693 goto locked;
694 }
Amir Goldsteindae1e522011-06-27 19:40:50 -0400695 ret = __blockdev_direct_IO(rw, iocb, inode,
696 inode->i_sb->s_bdev, iov,
697 offset, nr_segs,
698 ext4_get_block, NULL, NULL, 0);
Dmitry Monakhov17335dc2012-09-29 00:41:21 -0400699 inode_dio_done(inode);
Jiaying Zhangdccaf332011-08-19 19:13:32 -0400700 } else {
Dmitry Monakhov17335dc2012-09-29 00:41:21 -0400701locked:
Linus Torvalds60ad4462011-08-01 13:56:03 -1000702 ret = blockdev_direct_IO(rw, iocb, inode, iov,
703 offset, nr_segs, ext4_get_block);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400704
705 if (unlikely((rw & WRITE) && ret < 0)) {
706 loff_t isize = i_size_read(inode);
707 loff_t end = offset + iov_length(iov, nr_segs);
708
709 if (end > isize)
710 ext4_truncate_failed_write(inode);
711 }
712 }
713 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
714 goto retry;
715
716 if (orphan) {
717 int err;
718
719 /* Credits for sb + inode write */
Theodore Ts'o9924a922013-02-08 21:59:22 -0500720 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400721 if (IS_ERR(handle)) {
722 /* This is really bad luck. We've written the data
723 * but cannot extend i_size. Bail out and pretend
724 * the write failed... */
725 ret = PTR_ERR(handle);
726 if (inode->i_nlink)
727 ext4_orphan_del(NULL, inode);
728
729 goto out;
730 }
731 if (inode->i_nlink)
732 ext4_orphan_del(handle, inode);
733 if (ret > 0) {
734 loff_t end = offset + ret;
735 if (end > inode->i_size) {
736 ei->i_disksize = end;
737 i_size_write(inode, end);
738 /*
739 * We're going to return a positive `ret'
740 * here due to non-zero-length I/O, so there's
741 * no way of reporting error returns from
742 * ext4_mark_inode_dirty() to userspace. So
743 * ignore it.
744 */
745 ext4_mark_inode_dirty(handle, inode);
746 }
747 }
748 err = ext4_journal_stop(handle);
749 if (ret == 0)
750 ret = err;
751 }
752out:
753 return ret;
754}
755
756/*
757 * Calculate the number of metadata blocks need to reserve
758 * to allocate a new block at @lblocks for non extent file based file
759 */
760int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
761{
762 struct ext4_inode_info *ei = EXT4_I(inode);
763 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
764 int blk_bits;
765
766 if (lblock < EXT4_NDIR_BLOCKS)
767 return 0;
768
769 lblock -= EXT4_NDIR_BLOCKS;
770
771 if (ei->i_da_metadata_calc_len &&
772 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
773 ei->i_da_metadata_calc_len++;
774 return 0;
775 }
776 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
777 ei->i_da_metadata_calc_len = 1;
778 blk_bits = order_base_2(lblock);
779 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
780}
781
Jan Karafa55a0e2013-06-04 12:56:55 -0400782/*
783 * Calculate number of indirect blocks touched by mapping @nrblocks logically
784 * contiguous blocks
785 */
786int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
Amir Goldsteindae1e522011-06-27 19:40:50 -0400787{
Amir Goldsteindae1e522011-06-27 19:40:50 -0400788 /*
Jan Karafa55a0e2013-06-04 12:56:55 -0400789 * With N contiguous data blocks, we need at most
790 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
791 * 2 dindirect blocks, and 1 tindirect block
Amir Goldsteindae1e522011-06-27 19:40:50 -0400792 */
Jan Karafa55a0e2013-06-04 12:56:55 -0400793 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400794}
795
796/*
797 * Truncate transactions can be complex and absolutely huge. So we need to
798 * be able to restart the transaction at a conventient checkpoint to make
799 * sure we don't overflow the journal.
800 *
Theodore Ts'o819c4922013-04-03 12:47:17 -0400801 * Try to extend this transaction for the purposes of truncation. If
Amir Goldsteindae1e522011-06-27 19:40:50 -0400802 * extend fails, we need to propagate the failure up and restart the
803 * transaction in the top-level truncate loop. --sct
Amir Goldsteindae1e522011-06-27 19:40:50 -0400804 *
805 * Returns 0 if we managed to create more room. If we can't create more
806 * room, and the transaction must be restarted we return 1.
807 */
808static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
809{
810 if (!ext4_handle_valid(handle))
811 return 0;
812 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
813 return 0;
814 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
815 return 0;
816 return 1;
817}
818
819/*
820 * Probably it should be a library function... search for first non-zero word
821 * or memcmp with zero_page, whatever is better for particular architecture.
822 * Linus?
823 */
824static inline int all_zeroes(__le32 *p, __le32 *q)
825{
826 while (p < q)
827 if (*p++)
828 return 0;
829 return 1;
830}
831
832/**
833 * ext4_find_shared - find the indirect blocks for partial truncation.
834 * @inode: inode in question
835 * @depth: depth of the affected branch
836 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
837 * @chain: place to store the pointers to partial indirect blocks
838 * @top: place to the (detached) top of branch
839 *
840 * This is a helper function used by ext4_truncate().
841 *
842 * When we do truncate() we may have to clean the ends of several
843 * indirect blocks but leave the blocks themselves alive. Block is
844 * partially truncated if some data below the new i_size is referred
845 * from it (and it is on the path to the first completely truncated
846 * data block, indeed). We have to free the top of that path along
847 * with everything to the right of the path. Since no allocation
848 * past the truncation point is possible until ext4_truncate()
849 * finishes, we may safely do the latter, but top of branch may
850 * require special attention - pageout below the truncation point
851 * might try to populate it.
852 *
853 * We atomically detach the top of branch from the tree, store the
854 * block number of its root in *@top, pointers to buffer_heads of
855 * partially truncated blocks - in @chain[].bh and pointers to
856 * their last elements that should not be removed - in
857 * @chain[].p. Return value is the pointer to last filled element
858 * of @chain.
859 *
860 * The work left to caller to do the actual freeing of subtrees:
861 * a) free the subtree starting from *@top
862 * b) free the subtrees whose roots are stored in
863 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
864 * c) free the subtrees growing from the inode past the @chain[0].
865 * (no partially truncated stuff there). */
866
867static Indirect *ext4_find_shared(struct inode *inode, int depth,
868 ext4_lblk_t offsets[4], Indirect chain[4],
869 __le32 *top)
870{
871 Indirect *partial, *p;
872 int k, err;
873
874 *top = 0;
875 /* Make k index the deepest non-null offset + 1 */
876 for (k = depth; k > 1 && !offsets[k-1]; k--)
877 ;
878 partial = ext4_get_branch(inode, k, offsets, chain, &err);
879 /* Writer: pointers */
880 if (!partial)
881 partial = chain + k-1;
882 /*
883 * If the branch acquired continuation since we've looked at it -
884 * fine, it should all survive and (new) top doesn't belong to us.
885 */
886 if (!partial->key && *partial->p)
887 /* Writer: end */
888 goto no_top;
889 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
890 ;
891 /*
892 * OK, we've found the last block that must survive. The rest of our
893 * branch should be detached before unlocking. However, if that rest
894 * of branch is all ours and does not grow immediately from the inode
895 * it's easier to cheat and just decrement partial->p.
896 */
897 if (p == chain + k - 1 && p > chain) {
898 p->p--;
899 } else {
900 *top = *p->p;
901 /* Nope, don't do this in ext4. Must leave the tree intact */
902#if 0
903 *p->p = 0;
904#endif
905 }
906 /* Writer: end */
907
908 while (partial > p) {
909 brelse(partial->bh);
910 partial--;
911 }
912no_top:
913 return partial;
914}
915
916/*
917 * Zero a number of block pointers in either an inode or an indirect block.
918 * If we restart the transaction we must again get write access to the
919 * indirect block for further modification.
920 *
921 * We release `count' blocks on disk, but (last - first) may be greater
922 * than `count' because there can be holes in there.
923 *
924 * Return 0 on success, 1 on invalid block range
925 * and < 0 on fatal error.
926 */
927static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
928 struct buffer_head *bh,
929 ext4_fsblk_t block_to_free,
930 unsigned long count, __le32 *first,
931 __le32 *last)
932{
933 __le32 *p;
934 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
935 int err;
936
937 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
938 flags |= EXT4_FREE_BLOCKS_METADATA;
939
940 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
941 count)) {
942 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
943 "blocks %llu len %lu",
944 (unsigned long long) block_to_free, count);
945 return 1;
946 }
947
948 if (try_to_extend_transaction(handle, inode)) {
949 if (bh) {
950 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
951 err = ext4_handle_dirty_metadata(handle, inode, bh);
952 if (unlikely(err))
953 goto out_err;
954 }
955 err = ext4_mark_inode_dirty(handle, inode);
956 if (unlikely(err))
957 goto out_err;
958 err = ext4_truncate_restart_trans(handle, inode,
959 ext4_blocks_for_truncate(inode));
960 if (unlikely(err))
961 goto out_err;
962 if (bh) {
963 BUFFER_TRACE(bh, "retaking write access");
964 err = ext4_journal_get_write_access(handle, bh);
965 if (unlikely(err))
966 goto out_err;
967 }
968 }
969
970 for (p = first; p < last; p++)
971 *p = 0;
972
973 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
974 return 0;
975out_err:
976 ext4_std_error(inode->i_sb, err);
977 return err;
978}
979
980/**
981 * ext4_free_data - free a list of data blocks
982 * @handle: handle for this transaction
983 * @inode: inode we are dealing with
984 * @this_bh: indirect buffer_head which contains *@first and *@last
985 * @first: array of block numbers
986 * @last: points immediately past the end of array
987 *
988 * We are freeing all blocks referred from that array (numbers are stored as
989 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
990 *
991 * We accumulate contiguous runs of blocks to free. Conveniently, if these
992 * blocks are contiguous then releasing them at one time will only affect one
993 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
994 * actually use a lot of journal space.
995 *
996 * @this_bh will be %NULL if @first and @last point into the inode's direct
997 * block pointers.
998 */
999static void ext4_free_data(handle_t *handle, struct inode *inode,
1000 struct buffer_head *this_bh,
1001 __le32 *first, __le32 *last)
1002{
1003 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
1004 unsigned long count = 0; /* Number of blocks in the run */
1005 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
1006 corresponding to
1007 block_to_free */
1008 ext4_fsblk_t nr; /* Current block # */
1009 __le32 *p; /* Pointer into inode/ind
1010 for current block */
1011 int err = 0;
1012
1013 if (this_bh) { /* For indirect block */
1014 BUFFER_TRACE(this_bh, "get_write_access");
1015 err = ext4_journal_get_write_access(handle, this_bh);
1016 /* Important: if we can't update the indirect pointers
1017 * to the blocks, we can't free them. */
1018 if (err)
1019 return;
1020 }
1021
1022 for (p = first; p < last; p++) {
1023 nr = le32_to_cpu(*p);
1024 if (nr) {
1025 /* accumulate blocks to free if they're contiguous */
1026 if (count == 0) {
1027 block_to_free = nr;
1028 block_to_free_p = p;
1029 count = 1;
1030 } else if (nr == block_to_free + count) {
1031 count++;
1032 } else {
1033 err = ext4_clear_blocks(handle, inode, this_bh,
1034 block_to_free, count,
1035 block_to_free_p, p);
1036 if (err)
1037 break;
1038 block_to_free = nr;
1039 block_to_free_p = p;
1040 count = 1;
1041 }
1042 }
1043 }
1044
1045 if (!err && count > 0)
1046 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1047 count, block_to_free_p, p);
1048 if (err < 0)
1049 /* fatal error */
1050 return;
1051
1052 if (this_bh) {
1053 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1054
1055 /*
1056 * The buffer head should have an attached journal head at this
1057 * point. However, if the data is corrupted and an indirect
1058 * block pointed to itself, it would have been detached when
1059 * the block was cleared. Check for this instead of OOPSing.
1060 */
1061 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1062 ext4_handle_dirty_metadata(handle, inode, this_bh);
1063 else
1064 EXT4_ERROR_INODE(inode,
1065 "circular indirect block detected at "
1066 "block %llu",
1067 (unsigned long long) this_bh->b_blocknr);
1068 }
1069}
1070
1071/**
1072 * ext4_free_branches - free an array of branches
1073 * @handle: JBD handle for this transaction
1074 * @inode: inode we are dealing with
1075 * @parent_bh: the buffer_head which contains *@first and *@last
1076 * @first: array of block numbers
1077 * @last: pointer immediately past the end of array
1078 * @depth: depth of the branches to free
1079 *
1080 * We are freeing all blocks referred from these branches (numbers are
1081 * stored as little-endian 32-bit) and updating @inode->i_blocks
1082 * appropriately.
1083 */
1084static void ext4_free_branches(handle_t *handle, struct inode *inode,
1085 struct buffer_head *parent_bh,
1086 __le32 *first, __le32 *last, int depth)
1087{
1088 ext4_fsblk_t nr;
1089 __le32 *p;
1090
1091 if (ext4_handle_is_aborted(handle))
1092 return;
1093
1094 if (depth--) {
1095 struct buffer_head *bh;
1096 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1097 p = last;
1098 while (--p >= first) {
1099 nr = le32_to_cpu(*p);
1100 if (!nr)
1101 continue; /* A hole */
1102
1103 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1104 nr, 1)) {
1105 EXT4_ERROR_INODE(inode,
1106 "invalid indirect mapped "
1107 "block %lu (level %d)",
1108 (unsigned long) nr, depth);
1109 break;
1110 }
1111
1112 /* Go read the buffer for the next level down */
1113 bh = sb_bread(inode->i_sb, nr);
1114
1115 /*
1116 * A read failure? Report error and clear slot
1117 * (should be rare).
1118 */
1119 if (!bh) {
1120 EXT4_ERROR_INODE_BLOCK(inode, nr,
1121 "Read failure");
1122 continue;
1123 }
1124
1125 /* This zaps the entire block. Bottom up. */
1126 BUFFER_TRACE(bh, "free child branches");
1127 ext4_free_branches(handle, inode, bh,
1128 (__le32 *) bh->b_data,
1129 (__le32 *) bh->b_data + addr_per_block,
1130 depth);
1131 brelse(bh);
1132
1133 /*
1134 * Everything below this this pointer has been
1135 * released. Now let this top-of-subtree go.
1136 *
1137 * We want the freeing of this indirect block to be
1138 * atomic in the journal with the updating of the
1139 * bitmap block which owns it. So make some room in
1140 * the journal.
1141 *
1142 * We zero the parent pointer *after* freeing its
1143 * pointee in the bitmaps, so if extend_transaction()
1144 * for some reason fails to put the bitmap changes and
1145 * the release into the same transaction, recovery
1146 * will merely complain about releasing a free block,
1147 * rather than leaking blocks.
1148 */
1149 if (ext4_handle_is_aborted(handle))
1150 return;
1151 if (try_to_extend_transaction(handle, inode)) {
1152 ext4_mark_inode_dirty(handle, inode);
1153 ext4_truncate_restart_trans(handle, inode,
1154 ext4_blocks_for_truncate(inode));
1155 }
1156
1157 /*
1158 * The forget flag here is critical because if
1159 * we are journaling (and not doing data
1160 * journaling), we have to make sure a revoke
1161 * record is written to prevent the journal
1162 * replay from overwriting the (former)
1163 * indirect block if it gets reallocated as a
1164 * data block. This must happen in the same
1165 * transaction where the data blocks are
1166 * actually freed.
1167 */
1168 ext4_free_blocks(handle, inode, NULL, nr, 1,
1169 EXT4_FREE_BLOCKS_METADATA|
1170 EXT4_FREE_BLOCKS_FORGET);
1171
1172 if (parent_bh) {
1173 /*
1174 * The block which we have just freed is
1175 * pointed to by an indirect block: journal it
1176 */
1177 BUFFER_TRACE(parent_bh, "get_write_access");
1178 if (!ext4_journal_get_write_access(handle,
1179 parent_bh)){
1180 *p = 0;
1181 BUFFER_TRACE(parent_bh,
1182 "call ext4_handle_dirty_metadata");
1183 ext4_handle_dirty_metadata(handle,
1184 inode,
1185 parent_bh);
1186 }
1187 }
1188 }
1189 } else {
1190 /* We have reached the bottom of the tree. */
1191 BUFFER_TRACE(parent_bh, "free data blocks");
1192 ext4_free_data(handle, inode, parent_bh, first, last);
1193 }
1194}
1195
Theodore Ts'o819c4922013-04-03 12:47:17 -04001196void ext4_ind_truncate(handle_t *handle, struct inode *inode)
Amir Goldsteindae1e522011-06-27 19:40:50 -04001197{
Amir Goldsteindae1e522011-06-27 19:40:50 -04001198 struct ext4_inode_info *ei = EXT4_I(inode);
1199 __le32 *i_data = ei->i_data;
1200 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
Amir Goldsteindae1e522011-06-27 19:40:50 -04001201 ext4_lblk_t offsets[4];
1202 Indirect chain[4];
1203 Indirect *partial;
1204 __le32 nr = 0;
1205 int n = 0;
1206 ext4_lblk_t last_block, max_block;
1207 unsigned blocksize = inode->i_sb->s_blocksize;
Amir Goldsteindae1e522011-06-27 19:40:50 -04001208
1209 last_block = (inode->i_size + blocksize-1)
1210 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1211 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1212 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1213
Amir Goldsteindae1e522011-06-27 19:40:50 -04001214 if (last_block != max_block) {
1215 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1216 if (n == 0)
Theodore Ts'o819c4922013-04-03 12:47:17 -04001217 return;
Amir Goldsteindae1e522011-06-27 19:40:50 -04001218 }
1219
Zheng Liu51865fd2012-11-08 21:57:32 -05001220 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
Amir Goldsteindae1e522011-06-27 19:40:50 -04001221
1222 /*
1223 * The orphan list entry will now protect us from any crash which
1224 * occurs before the truncate completes, so it is now safe to propagate
1225 * the new, shorter inode size (held for now in i_size) into the
1226 * on-disk inode. We do this via i_disksize, which is the value which
1227 * ext4 *really* writes onto the disk inode.
1228 */
1229 ei->i_disksize = inode->i_size;
1230
1231 if (last_block == max_block) {
1232 /*
1233 * It is unnecessary to free any data blocks if last_block is
1234 * equal to the indirect block limit.
1235 */
Theodore Ts'o819c4922013-04-03 12:47:17 -04001236 return;
Amir Goldsteindae1e522011-06-27 19:40:50 -04001237 } else if (n == 1) { /* direct blocks */
1238 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1239 i_data + EXT4_NDIR_BLOCKS);
1240 goto do_indirects;
1241 }
1242
1243 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1244 /* Kill the top of shared branch (not detached) */
1245 if (nr) {
1246 if (partial == chain) {
1247 /* Shared branch grows from the inode */
1248 ext4_free_branches(handle, inode, NULL,
1249 &nr, &nr+1, (chain+n-1) - partial);
1250 *partial->p = 0;
1251 /*
1252 * We mark the inode dirty prior to restart,
1253 * and prior to stop. No need for it here.
1254 */
1255 } else {
1256 /* Shared branch grows from an indirect block */
1257 BUFFER_TRACE(partial->bh, "get_write_access");
1258 ext4_free_branches(handle, inode, partial->bh,
1259 partial->p,
1260 partial->p+1, (chain+n-1) - partial);
1261 }
1262 }
1263 /* Clear the ends of indirect blocks on the shared branch */
1264 while (partial > chain) {
1265 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1266 (__le32*)partial->bh->b_data+addr_per_block,
1267 (chain+n-1) - partial);
1268 BUFFER_TRACE(partial->bh, "call brelse");
1269 brelse(partial->bh);
1270 partial--;
1271 }
1272do_indirects:
1273 /* Kill the remaining (whole) subtrees */
1274 switch (offsets[0]) {
1275 default:
1276 nr = i_data[EXT4_IND_BLOCK];
1277 if (nr) {
1278 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1279 i_data[EXT4_IND_BLOCK] = 0;
1280 }
1281 case EXT4_IND_BLOCK:
1282 nr = i_data[EXT4_DIND_BLOCK];
1283 if (nr) {
1284 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1285 i_data[EXT4_DIND_BLOCK] = 0;
1286 }
1287 case EXT4_DIND_BLOCK:
1288 nr = i_data[EXT4_TIND_BLOCK];
1289 if (nr) {
1290 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1291 i_data[EXT4_TIND_BLOCK] = 0;
1292 }
1293 case EXT4_TIND_BLOCK:
1294 ;
1295 }
Amir Goldsteindae1e522011-06-27 19:40:50 -04001296}
1297
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001298static int free_hole_blocks(handle_t *handle, struct inode *inode,
1299 struct buffer_head *parent_bh, __le32 *i_data,
1300 int level, ext4_lblk_t first,
1301 ext4_lblk_t count, int max)
1302{
1303 struct buffer_head *bh = NULL;
1304 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1305 int ret = 0;
1306 int i, inc;
1307 ext4_lblk_t offset;
1308 __le32 blk;
1309
1310 inc = 1 << ((EXT4_BLOCK_SIZE_BITS(inode->i_sb) - 2) * level);
1311 for (i = 0, offset = 0; i < max; i++, i_data++, offset += inc) {
1312 if (offset >= count + first)
1313 break;
1314 if (*i_data == 0 || (offset + inc) <= first)
1315 continue;
1316 blk = *i_data;
1317 if (level > 0) {
1318 ext4_lblk_t first2;
Zheng Liu8cde7ad2013-04-03 12:27:18 -04001319 bh = sb_bread(inode->i_sb, le32_to_cpu(blk));
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001320 if (!bh) {
Zheng Liu8cde7ad2013-04-03 12:27:18 -04001321 EXT4_ERROR_INODE_BLOCK(inode, le32_to_cpu(blk),
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001322 "Read failure");
1323 return -EIO;
1324 }
1325 first2 = (first > offset) ? first - offset : 0;
1326 ret = free_hole_blocks(handle, inode, bh,
1327 (__le32 *)bh->b_data, level - 1,
1328 first2, count - offset,
1329 inode->i_sb->s_blocksize >> 2);
1330 if (ret) {
1331 brelse(bh);
1332 goto err;
1333 }
1334 }
1335 if (level == 0 ||
1336 (bh && all_zeroes((__le32 *)bh->b_data,
1337 (__le32 *)bh->b_data + addr_per_block))) {
1338 ext4_free_data(handle, inode, parent_bh, &blk, &blk+1);
1339 *i_data = 0;
1340 }
1341 brelse(bh);
1342 bh = NULL;
1343 }
1344
1345err:
1346 return ret;
1347}
1348
Theodore Ts'o26a4c0c2013-04-03 12:45:17 -04001349int ext4_free_hole_blocks(handle_t *handle, struct inode *inode,
1350 ext4_lblk_t first, ext4_lblk_t stop)
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001351{
1352 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1353 int level, ret = 0;
1354 int num = EXT4_NDIR_BLOCKS;
1355 ext4_lblk_t count, max = EXT4_NDIR_BLOCKS;
1356 __le32 *i_data = EXT4_I(inode)->i_data;
1357
1358 count = stop - first;
1359 for (level = 0; level < 4; level++, max *= addr_per_block) {
1360 if (first < max) {
1361 ret = free_hole_blocks(handle, inode, NULL, i_data,
1362 level, first, count, num);
1363 if (ret)
1364 goto err;
1365 if (count > max - first)
1366 count -= max - first;
1367 else
1368 break;
1369 first = 0;
1370 } else {
1371 first -= max;
1372 }
1373 i_data += num;
1374 if (level == 0) {
1375 num = 1;
1376 max = 1;
1377 }
1378 }
1379
1380err:
1381 return ret;
1382}
1383