Kristian Høgsberg | ed56891 | 2006-12-19 19:58:35 -0500 | [diff] [blame^] | 1 | /* -*- c-basic-offset: 8 -*- |
| 2 | * |
| 3 | * fw-ohci.c - Driver for OHCI 1394 boards |
| 4 | * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net> |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License as published by |
| 8 | * the Free Software Foundation; either version 2 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License |
| 17 | * along with this program; if not, write to the Free Software Foundation, |
| 18 | * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 19 | */ |
| 20 | |
| 21 | #include <linux/kernel.h> |
| 22 | #include <linux/module.h> |
| 23 | #include <linux/init.h> |
| 24 | #include <linux/interrupt.h> |
| 25 | #include <linux/pci.h> |
| 26 | #include <linux/delay.h> |
| 27 | #include <linux/poll.h> |
| 28 | #include <asm/uaccess.h> |
| 29 | #include <asm/semaphore.h> |
| 30 | |
| 31 | #include "fw-transaction.h" |
| 32 | #include "fw-ohci.h" |
| 33 | |
| 34 | #define descriptor_output_more 0 |
| 35 | #define descriptor_output_last (1 << 12) |
| 36 | #define descriptor_input_more (2 << 12) |
| 37 | #define descriptor_input_last (3 << 12) |
| 38 | #define descriptor_status (1 << 11) |
| 39 | #define descriptor_key_immediate (2 << 8) |
| 40 | #define descriptor_ping (1 << 7) |
| 41 | #define descriptor_yy (1 << 6) |
| 42 | #define descriptor_no_irq (0 << 4) |
| 43 | #define descriptor_irq_error (1 << 4) |
| 44 | #define descriptor_irq_always (3 << 4) |
| 45 | #define descriptor_branch_always (3 << 2) |
| 46 | |
| 47 | struct descriptor { |
| 48 | __le16 req_count; |
| 49 | __le16 control; |
| 50 | __le32 data_address; |
| 51 | __le32 branch_address; |
| 52 | __le16 res_count; |
| 53 | __le16 transfer_status; |
| 54 | } __attribute__((aligned(16))); |
| 55 | |
| 56 | struct ar_context { |
| 57 | struct fw_ohci *ohci; |
| 58 | struct descriptor descriptor; |
| 59 | __le32 buffer[512]; |
| 60 | dma_addr_t descriptor_bus; |
| 61 | dma_addr_t buffer_bus; |
| 62 | |
| 63 | u32 command_ptr; |
| 64 | u32 control_set; |
| 65 | u32 control_clear; |
| 66 | |
| 67 | struct tasklet_struct tasklet; |
| 68 | }; |
| 69 | |
| 70 | struct at_context { |
| 71 | struct fw_ohci *ohci; |
| 72 | dma_addr_t descriptor_bus; |
| 73 | dma_addr_t buffer_bus; |
| 74 | |
| 75 | struct list_head list; |
| 76 | |
| 77 | struct { |
| 78 | struct descriptor more; |
| 79 | __le32 header[4]; |
| 80 | struct descriptor last; |
| 81 | } d; |
| 82 | |
| 83 | u32 command_ptr; |
| 84 | u32 control_set; |
| 85 | u32 control_clear; |
| 86 | |
| 87 | struct tasklet_struct tasklet; |
| 88 | }; |
| 89 | |
| 90 | #define it_header_sy(v) ((v) << 0) |
| 91 | #define it_header_tcode(v) ((v) << 4) |
| 92 | #define it_header_channel(v) ((v) << 8) |
| 93 | #define it_header_tag(v) ((v) << 14) |
| 94 | #define it_header_speed(v) ((v) << 16) |
| 95 | #define it_header_data_length(v) ((v) << 16) |
| 96 | |
| 97 | struct iso_context { |
| 98 | struct fw_iso_context base; |
| 99 | struct tasklet_struct tasklet; |
| 100 | u32 control_set; |
| 101 | u32 control_clear; |
| 102 | u32 command_ptr; |
| 103 | u32 context_match; |
| 104 | |
| 105 | struct descriptor *buffer; |
| 106 | dma_addr_t buffer_bus; |
| 107 | struct descriptor *head_descriptor; |
| 108 | struct descriptor *tail_descriptor; |
| 109 | struct descriptor *tail_descriptor_last; |
| 110 | struct descriptor *prev_descriptor; |
| 111 | }; |
| 112 | |
| 113 | #define CONFIG_ROM_SIZE 1024 |
| 114 | |
| 115 | struct fw_ohci { |
| 116 | struct fw_card card; |
| 117 | |
| 118 | __iomem char *registers; |
| 119 | dma_addr_t self_id_bus; |
| 120 | __le32 *self_id_cpu; |
| 121 | struct tasklet_struct bus_reset_tasklet; |
| 122 | int generation; |
| 123 | int request_generation; |
| 124 | |
| 125 | /* Spinlock for accessing fw_ohci data. Never call out of |
| 126 | * this driver with this lock held. */ |
| 127 | spinlock_t lock; |
| 128 | u32 self_id_buffer[512]; |
| 129 | |
| 130 | /* Config rom buffers */ |
| 131 | __be32 *config_rom; |
| 132 | dma_addr_t config_rom_bus; |
| 133 | __be32 *next_config_rom; |
| 134 | dma_addr_t next_config_rom_bus; |
| 135 | u32 next_header; |
| 136 | |
| 137 | struct ar_context ar_request_ctx; |
| 138 | struct ar_context ar_response_ctx; |
| 139 | struct at_context at_request_ctx; |
| 140 | struct at_context at_response_ctx; |
| 141 | |
| 142 | u32 it_context_mask; |
| 143 | struct iso_context *it_context_list; |
| 144 | u32 ir_context_mask; |
| 145 | struct iso_context *ir_context_list; |
| 146 | }; |
| 147 | |
| 148 | extern inline struct fw_ohci *fw_ohci(struct fw_card *card) |
| 149 | { |
| 150 | return container_of(card, struct fw_ohci, card); |
| 151 | } |
| 152 | |
| 153 | #define CONTEXT_CYCLE_MATCH_ENABLE 0x80000000 |
| 154 | |
| 155 | #define CONTEXT_RUN 0x8000 |
| 156 | #define CONTEXT_WAKE 0x1000 |
| 157 | #define CONTEXT_DEAD 0x0800 |
| 158 | #define CONTEXT_ACTIVE 0x0400 |
| 159 | |
| 160 | #define OHCI1394_MAX_AT_REQ_RETRIES 0x2 |
| 161 | #define OHCI1394_MAX_AT_RESP_RETRIES 0x2 |
| 162 | #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8 |
| 163 | |
| 164 | #define FW_OHCI_MAJOR 240 |
| 165 | #define OHCI1394_REGISTER_SIZE 0x800 |
| 166 | #define OHCI_LOOP_COUNT 500 |
| 167 | #define OHCI1394_PCI_HCI_Control 0x40 |
| 168 | #define SELF_ID_BUF_SIZE 0x800 |
| 169 | |
| 170 | /* FIXME: Move this to linux/pci_ids.h */ |
| 171 | #define PCI_CLASS_SERIAL_FIREWIRE_OHCI 0x0c0010 |
| 172 | |
| 173 | static char ohci_driver_name[] = KBUILD_MODNAME; |
| 174 | |
| 175 | extern inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data) |
| 176 | { |
| 177 | writel(data, ohci->registers + offset); |
| 178 | } |
| 179 | |
| 180 | extern inline u32 reg_read(const struct fw_ohci *ohci, int offset) |
| 181 | { |
| 182 | return readl(ohci->registers + offset); |
| 183 | } |
| 184 | |
| 185 | extern inline void flush_writes(const struct fw_ohci *ohci) |
| 186 | { |
| 187 | /* Do a dummy read to flush writes. */ |
| 188 | reg_read(ohci, OHCI1394_Version); |
| 189 | } |
| 190 | |
| 191 | static int |
| 192 | ohci_update_phy_reg(struct fw_card *card, int addr, |
| 193 | int clear_bits, int set_bits) |
| 194 | { |
| 195 | struct fw_ohci *ohci = fw_ohci(card); |
| 196 | u32 val, old; |
| 197 | |
| 198 | reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr)); |
| 199 | msleep(2); |
| 200 | val = reg_read(ohci, OHCI1394_PhyControl); |
| 201 | if ((val & OHCI1394_PhyControl_ReadDone) == 0) { |
| 202 | fw_error("failed to set phy reg bits.\n"); |
| 203 | return -EBUSY; |
| 204 | } |
| 205 | |
| 206 | old = OHCI1394_PhyControl_ReadData(val); |
| 207 | old = (old & ~clear_bits) | set_bits; |
| 208 | reg_write(ohci, OHCI1394_PhyControl, |
| 209 | OHCI1394_PhyControl_Write(addr, old)); |
| 210 | |
| 211 | return 0; |
| 212 | } |
| 213 | |
| 214 | static void ar_context_run(struct ar_context *ctx) |
| 215 | { |
| 216 | reg_write(ctx->ohci, ctx->command_ptr, ctx->descriptor_bus | 1); |
| 217 | reg_write(ctx->ohci, ctx->control_set, CONTEXT_RUN); |
| 218 | flush_writes(ctx->ohci); |
| 219 | } |
| 220 | |
| 221 | static void ar_context_tasklet(unsigned long data) |
| 222 | { |
| 223 | struct ar_context *ctx = (struct ar_context *)data; |
| 224 | struct fw_ohci *ohci = ctx->ohci; |
| 225 | u32 status; |
| 226 | int length, speed, ack, timestamp, tcode; |
| 227 | |
| 228 | /* FIXME: What to do about evt_* errors? */ |
| 229 | length = le16_to_cpu(ctx->descriptor.req_count) - |
| 230 | le16_to_cpu(ctx->descriptor.res_count) - 4; |
| 231 | status = le32_to_cpu(ctx->buffer[length / 4]); |
| 232 | ack = ((status >> 16) & 0x1f) - 16; |
| 233 | speed = (status >> 21) & 0x7; |
| 234 | timestamp = status & 0xffff; |
| 235 | |
| 236 | ctx->buffer[0] = le32_to_cpu(ctx->buffer[0]); |
| 237 | ctx->buffer[1] = le32_to_cpu(ctx->buffer[1]); |
| 238 | ctx->buffer[2] = le32_to_cpu(ctx->buffer[2]); |
| 239 | |
| 240 | tcode = (ctx->buffer[0] >> 4) & 0x0f; |
| 241 | if (TCODE_IS_BLOCK_PACKET(tcode)) |
| 242 | ctx->buffer[3] = le32_to_cpu(ctx->buffer[3]); |
| 243 | |
| 244 | /* The OHCI bus reset handler synthesizes a phy packet with |
| 245 | * the new generation number when a bus reset happens (see |
| 246 | * section 8.4.2.3). This helps us determine when a request |
| 247 | * was received and make sure we send the response in the same |
| 248 | * generation. We only need this for requests; for responses |
| 249 | * we use the unique tlabel for finding the matching |
| 250 | * request. */ |
| 251 | |
| 252 | if (ack + 16 == 0x09) |
| 253 | ohci->request_generation = (ctx->buffer[2] >> 16) & 0xff; |
| 254 | else if (ctx == &ohci->ar_request_ctx) |
| 255 | fw_core_handle_request(&ohci->card, speed, ack, timestamp, |
| 256 | ohci->request_generation, |
| 257 | length, ctx->buffer); |
| 258 | else |
| 259 | fw_core_handle_response(&ohci->card, speed, ack, timestamp, |
| 260 | length, ctx->buffer); |
| 261 | |
| 262 | ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus); |
| 263 | ctx->descriptor.req_count = cpu_to_le16(sizeof ctx->buffer); |
| 264 | ctx->descriptor.res_count = cpu_to_le16(sizeof ctx->buffer); |
| 265 | |
| 266 | dma_sync_single_for_device(ohci->card.device, ctx->descriptor_bus, |
| 267 | sizeof ctx->descriptor_bus, DMA_TO_DEVICE); |
| 268 | |
| 269 | /* FIXME: We stop and restart the ar context here, what if we |
| 270 | * stop while a receive is in progress? Maybe we could just |
| 271 | * loop the context back to itself and use it in buffer fill |
| 272 | * mode as intended... */ |
| 273 | |
| 274 | reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN); |
| 275 | ar_context_run(ctx); |
| 276 | } |
| 277 | |
| 278 | static int |
| 279 | ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 control_set) |
| 280 | { |
| 281 | ctx->descriptor_bus = |
| 282 | dma_map_single(ohci->card.device, &ctx->descriptor, |
| 283 | sizeof ctx->descriptor, DMA_TO_DEVICE); |
| 284 | if (ctx->descriptor_bus == 0) |
| 285 | return -ENOMEM; |
| 286 | |
| 287 | if (ctx->descriptor_bus & 0xf) |
| 288 | fw_notify("descriptor not 16-byte aligned: 0x%08x\n", |
| 289 | ctx->descriptor_bus); |
| 290 | |
| 291 | ctx->buffer_bus = |
| 292 | dma_map_single(ohci->card.device, ctx->buffer, |
| 293 | sizeof ctx->buffer, DMA_FROM_DEVICE); |
| 294 | |
| 295 | if (ctx->buffer_bus == 0) { |
| 296 | dma_unmap_single(ohci->card.device, ctx->descriptor_bus, |
| 297 | sizeof ctx->descriptor, DMA_TO_DEVICE); |
| 298 | return -ENOMEM; |
| 299 | } |
| 300 | |
| 301 | memset(&ctx->descriptor, 0, sizeof ctx->descriptor); |
| 302 | ctx->descriptor.control = cpu_to_le16(descriptor_input_more | |
| 303 | descriptor_status | |
| 304 | descriptor_branch_always); |
| 305 | ctx->descriptor.req_count = cpu_to_le16(sizeof ctx->buffer); |
| 306 | ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus); |
| 307 | ctx->descriptor.res_count = cpu_to_le16(sizeof ctx->buffer); |
| 308 | |
| 309 | ctx->control_set = control_set; |
| 310 | ctx->control_clear = control_set + 4; |
| 311 | ctx->command_ptr = control_set + 12; |
| 312 | ctx->ohci = ohci; |
| 313 | |
| 314 | tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx); |
| 315 | |
| 316 | ar_context_run(ctx); |
| 317 | |
| 318 | return 0; |
| 319 | } |
| 320 | |
| 321 | static void |
| 322 | do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list) |
| 323 | { |
| 324 | struct fw_packet *p, *next; |
| 325 | |
| 326 | list_for_each_entry_safe(p, next, list, link) |
| 327 | p->callback(p, &ohci->card, p->status); |
| 328 | } |
| 329 | |
| 330 | static void |
| 331 | complete_transmission(struct fw_packet *packet, |
| 332 | int status, struct list_head *list) |
| 333 | { |
| 334 | list_move_tail(&packet->link, list); |
| 335 | packet->status = status; |
| 336 | } |
| 337 | |
| 338 | /* This function prepares the first packet in the context queue for |
| 339 | * transmission. Must always be called with the ochi->lock held to |
| 340 | * ensure proper generation handling and locking around packet queue |
| 341 | * manipulation. */ |
| 342 | static void |
| 343 | at_context_setup_packet(struct at_context *ctx, struct list_head *list) |
| 344 | { |
| 345 | struct fw_packet *packet; |
| 346 | struct fw_ohci *ohci = ctx->ohci; |
| 347 | int z, tcode; |
| 348 | |
| 349 | packet = fw_packet(ctx->list.next); |
| 350 | |
| 351 | memset(&ctx->d, 0, sizeof ctx->d); |
| 352 | if (packet->payload_length > 0) { |
| 353 | packet->payload_bus = dma_map_single(ohci->card.device, |
| 354 | packet->payload, |
| 355 | packet->payload_length, |
| 356 | DMA_TO_DEVICE); |
| 357 | if (packet->payload_bus == 0) { |
| 358 | complete_transmission(packet, -ENOMEM, list); |
| 359 | return; |
| 360 | } |
| 361 | |
| 362 | ctx->d.more.control = |
| 363 | cpu_to_le16(descriptor_output_more | |
| 364 | descriptor_key_immediate); |
| 365 | ctx->d.more.req_count = cpu_to_le16(packet->header_length); |
| 366 | ctx->d.more.res_count = cpu_to_le16(packet->timestamp); |
| 367 | ctx->d.last.control = |
| 368 | cpu_to_le16(descriptor_output_last | |
| 369 | descriptor_irq_always | |
| 370 | descriptor_branch_always); |
| 371 | ctx->d.last.req_count = cpu_to_le16(packet->payload_length); |
| 372 | ctx->d.last.data_address = cpu_to_le32(packet->payload_bus); |
| 373 | z = 3; |
| 374 | } else { |
| 375 | ctx->d.more.control = |
| 376 | cpu_to_le16(descriptor_output_last | |
| 377 | descriptor_key_immediate | |
| 378 | descriptor_irq_always | |
| 379 | descriptor_branch_always); |
| 380 | ctx->d.more.req_count = cpu_to_le16(packet->header_length); |
| 381 | ctx->d.more.res_count = cpu_to_le16(packet->timestamp); |
| 382 | z = 2; |
| 383 | } |
| 384 | |
| 385 | /* The DMA format for asyncronous link packets is different |
| 386 | * from the IEEE1394 layout, so shift the fields around |
| 387 | * accordingly. If header_length is 8, it's a PHY packet, to |
| 388 | * which we need to prepend an extra quadlet. */ |
| 389 | if (packet->header_length > 8) { |
| 390 | ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) | |
| 391 | (packet->speed << 16)); |
| 392 | ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) | |
| 393 | (packet->header[0] & 0xffff0000)); |
| 394 | ctx->d.header[2] = cpu_to_le32(packet->header[2]); |
| 395 | |
| 396 | tcode = (packet->header[0] >> 4) & 0x0f; |
| 397 | if (TCODE_IS_BLOCK_PACKET(tcode)) |
| 398 | ctx->d.header[3] = cpu_to_le32(packet->header[3]); |
| 399 | else |
| 400 | ctx->d.header[3] = packet->header[3]; |
| 401 | } else { |
| 402 | ctx->d.header[0] = |
| 403 | cpu_to_le32((OHCI1394_phy_tcode << 4) | |
| 404 | (packet->speed << 16)); |
| 405 | ctx->d.header[1] = cpu_to_le32(packet->header[0]); |
| 406 | ctx->d.header[2] = cpu_to_le32(packet->header[1]); |
| 407 | ctx->d.more.req_count = cpu_to_le16(12); |
| 408 | } |
| 409 | |
| 410 | /* FIXME: Document how the locking works. */ |
| 411 | if (ohci->generation == packet->generation) { |
| 412 | reg_write(ctx->ohci, ctx->command_ptr, |
| 413 | ctx->descriptor_bus | z); |
| 414 | reg_write(ctx->ohci, ctx->control_set, |
| 415 | CONTEXT_RUN | CONTEXT_WAKE); |
| 416 | } else { |
| 417 | /* We dont return error codes from this function; all |
| 418 | * transmission errors are reported through the |
| 419 | * callback. */ |
| 420 | complete_transmission(packet, -ESTALE, list); |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | static void at_context_stop(struct at_context *ctx) |
| 425 | { |
| 426 | u32 reg; |
| 427 | |
| 428 | reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN); |
| 429 | |
| 430 | reg = reg_read(ctx->ohci, ctx->control_set); |
| 431 | if (reg & CONTEXT_ACTIVE) |
| 432 | fw_notify("Tried to stop context, but it is still active " |
| 433 | "(0x%08x).\n", reg); |
| 434 | } |
| 435 | |
| 436 | static void at_context_tasklet(unsigned long data) |
| 437 | { |
| 438 | struct at_context *ctx = (struct at_context *)data; |
| 439 | struct fw_ohci *ohci = ctx->ohci; |
| 440 | struct fw_packet *packet; |
| 441 | LIST_HEAD(list); |
| 442 | unsigned long flags; |
| 443 | int evt; |
| 444 | |
| 445 | spin_lock_irqsave(&ohci->lock, flags); |
| 446 | |
| 447 | packet = fw_packet(ctx->list.next); |
| 448 | |
| 449 | at_context_stop(ctx); |
| 450 | |
| 451 | if (packet->payload_length > 0) { |
| 452 | dma_unmap_single(ohci->card.device, packet->payload_bus, |
| 453 | packet->payload_length, DMA_TO_DEVICE); |
| 454 | evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f; |
| 455 | packet->timestamp = le16_to_cpu(ctx->d.last.res_count); |
| 456 | } |
| 457 | else { |
| 458 | evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f; |
| 459 | packet->timestamp = le16_to_cpu(ctx->d.more.res_count); |
| 460 | } |
| 461 | |
| 462 | if (evt < 16) { |
| 463 | switch (evt) { |
| 464 | case OHCI1394_evt_timeout: |
| 465 | /* Async response transmit timed out. */ |
| 466 | complete_transmission(packet, -ETIMEDOUT, &list); |
| 467 | break; |
| 468 | |
| 469 | case OHCI1394_evt_flushed: |
| 470 | /* The packet was flushed should give same |
| 471 | * error as when we try to use a stale |
| 472 | * generation count. */ |
| 473 | complete_transmission(packet, -ESTALE, &list); |
| 474 | break; |
| 475 | |
| 476 | case OHCI1394_evt_missing_ack: |
| 477 | /* This would be a higher level software |
| 478 | * error, it is using a valid (current) |
| 479 | * generation count, but the node is not on |
| 480 | * the bus. */ |
| 481 | complete_transmission(packet, -ENODEV, &list); |
| 482 | break; |
| 483 | |
| 484 | default: |
| 485 | complete_transmission(packet, -EIO, &list); |
| 486 | break; |
| 487 | } |
| 488 | } else |
| 489 | complete_transmission(packet, evt - 16, &list); |
| 490 | |
| 491 | /* If more packets are queued, set up the next one. */ |
| 492 | if (!list_empty(&ctx->list)) |
| 493 | at_context_setup_packet(ctx, &list); |
| 494 | |
| 495 | spin_unlock_irqrestore(&ohci->lock, flags); |
| 496 | |
| 497 | do_packet_callbacks(ohci, &list); |
| 498 | } |
| 499 | |
| 500 | static int |
| 501 | at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 control_set) |
| 502 | { |
| 503 | INIT_LIST_HEAD(&ctx->list); |
| 504 | |
| 505 | ctx->descriptor_bus = |
| 506 | dma_map_single(ohci->card.device, &ctx->d, |
| 507 | sizeof ctx->d, DMA_TO_DEVICE); |
| 508 | if (ctx->descriptor_bus == 0) |
| 509 | return -ENOMEM; |
| 510 | |
| 511 | ctx->control_set = control_set; |
| 512 | ctx->control_clear = control_set + 4; |
| 513 | ctx->command_ptr = control_set + 12; |
| 514 | ctx->ohci = ohci; |
| 515 | |
| 516 | tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx); |
| 517 | |
| 518 | return 0; |
| 519 | } |
| 520 | |
| 521 | static void |
| 522 | at_context_transmit(struct at_context *ctx, struct fw_packet *packet) |
| 523 | { |
| 524 | LIST_HEAD(list); |
| 525 | unsigned long flags; |
| 526 | int was_empty; |
| 527 | |
| 528 | spin_lock_irqsave(&ctx->ohci->lock, flags); |
| 529 | |
| 530 | was_empty = list_empty(&ctx->list); |
| 531 | list_add_tail(&packet->link, &ctx->list); |
| 532 | if (was_empty) |
| 533 | at_context_setup_packet(ctx, &list); |
| 534 | |
| 535 | spin_unlock_irqrestore(&ctx->ohci->lock, flags); |
| 536 | |
| 537 | do_packet_callbacks(ctx->ohci, &list); |
| 538 | } |
| 539 | |
| 540 | static void bus_reset_tasklet(unsigned long data) |
| 541 | { |
| 542 | struct fw_ohci *ohci = (struct fw_ohci *)data; |
| 543 | int self_id_count, i, j, reg, node_id; |
| 544 | int generation, new_generation; |
| 545 | unsigned long flags; |
| 546 | |
| 547 | reg = reg_read(ohci, OHCI1394_NodeID); |
| 548 | if (!(reg & OHCI1394_NodeID_idValid)) { |
| 549 | fw_error("node ID not valid, new bus reset in progress\n"); |
| 550 | return; |
| 551 | } |
| 552 | node_id = reg & 0xffff; |
| 553 | |
| 554 | /* The count in the SelfIDCount register is the number of |
| 555 | * bytes in the self ID receive buffer. Since we also receive |
| 556 | * the inverted quadlets and a header quadlet, we shift one |
| 557 | * bit extra to get the actual number of self IDs. */ |
| 558 | |
| 559 | self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff; |
| 560 | generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff; |
| 561 | |
| 562 | for (i = 1, j = 0; j < self_id_count; i += 2, j++) { |
| 563 | if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) |
| 564 | fw_error("inconsistent self IDs\n"); |
| 565 | ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]); |
| 566 | } |
| 567 | |
| 568 | /* Check the consistency of the self IDs we just read. The |
| 569 | * problem we face is that a new bus reset can start while we |
| 570 | * read out the self IDs from the DMA buffer. If this happens, |
| 571 | * the DMA buffer will be overwritten with new self IDs and we |
| 572 | * will read out inconsistent data. The OHCI specification |
| 573 | * (section 11.2) recommends a technique similar to |
| 574 | * linux/seqlock.h, where we remember the generation of the |
| 575 | * self IDs in the buffer before reading them out and compare |
| 576 | * it to the current generation after reading them out. If |
| 577 | * the two generations match we know we have a consistent set |
| 578 | * of self IDs. */ |
| 579 | |
| 580 | new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff; |
| 581 | if (new_generation != generation) { |
| 582 | fw_notify("recursive bus reset detected, " |
| 583 | "discarding self ids\n"); |
| 584 | return; |
| 585 | } |
| 586 | |
| 587 | /* FIXME: Document how the locking works. */ |
| 588 | spin_lock_irqsave(&ohci->lock, flags); |
| 589 | |
| 590 | ohci->generation = generation; |
| 591 | at_context_stop(&ohci->at_request_ctx); |
| 592 | at_context_stop(&ohci->at_response_ctx); |
| 593 | reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset); |
| 594 | |
| 595 | /* This next bit is unrelated to the AT context stuff but we |
| 596 | * have to do it under the spinlock also. If a new config rom |
| 597 | * was set up before this reset, the old one is now no longer |
| 598 | * in use and we can free it. Update the config rom pointers |
| 599 | * to point to the current config rom and clear the |
| 600 | * next_config_rom pointer so a new udpate can take place. */ |
| 601 | |
| 602 | if (ohci->next_config_rom != NULL) { |
| 603 | dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, |
| 604 | ohci->config_rom, ohci->config_rom_bus); |
| 605 | ohci->config_rom = ohci->next_config_rom; |
| 606 | ohci->config_rom_bus = ohci->next_config_rom_bus; |
| 607 | ohci->next_config_rom = NULL; |
| 608 | |
| 609 | /* Restore config_rom image and manually update |
| 610 | * config_rom registers. Writing the header quadlet |
| 611 | * will indicate that the config rom is ready, so we |
| 612 | * do that last. */ |
| 613 | reg_write(ohci, OHCI1394_BusOptions, |
| 614 | be32_to_cpu(ohci->config_rom[2])); |
| 615 | ohci->config_rom[0] = cpu_to_be32(ohci->next_header); |
| 616 | reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header); |
| 617 | } |
| 618 | |
| 619 | spin_unlock_irqrestore(&ohci->lock, flags); |
| 620 | |
| 621 | fw_core_handle_bus_reset(&ohci->card, node_id, generation, |
| 622 | self_id_count, ohci->self_id_buffer); |
| 623 | } |
| 624 | |
| 625 | static irqreturn_t irq_handler(int irq, void *data) |
| 626 | { |
| 627 | struct fw_ohci *ohci = data; |
| 628 | u32 event, iso_event; |
| 629 | int i; |
| 630 | |
| 631 | event = reg_read(ohci, OHCI1394_IntEventClear); |
| 632 | |
| 633 | if (!event) |
| 634 | return IRQ_NONE; |
| 635 | |
| 636 | reg_write(ohci, OHCI1394_IntEventClear, event); |
| 637 | |
| 638 | if (event & OHCI1394_selfIDComplete) |
| 639 | tasklet_schedule(&ohci->bus_reset_tasklet); |
| 640 | |
| 641 | if (event & OHCI1394_RQPkt) |
| 642 | tasklet_schedule(&ohci->ar_request_ctx.tasklet); |
| 643 | |
| 644 | if (event & OHCI1394_RSPkt) |
| 645 | tasklet_schedule(&ohci->ar_response_ctx.tasklet); |
| 646 | |
| 647 | if (event & OHCI1394_reqTxComplete) |
| 648 | tasklet_schedule(&ohci->at_request_ctx.tasklet); |
| 649 | |
| 650 | if (event & OHCI1394_respTxComplete) |
| 651 | tasklet_schedule(&ohci->at_response_ctx.tasklet); |
| 652 | |
| 653 | iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet); |
| 654 | reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event); |
| 655 | |
| 656 | while (iso_event) { |
| 657 | i = ffs(iso_event) - 1; |
| 658 | tasklet_schedule(&ohci->ir_context_list[i].tasklet); |
| 659 | iso_event &= ~(1 << i); |
| 660 | } |
| 661 | |
| 662 | iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet); |
| 663 | reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event); |
| 664 | |
| 665 | while (iso_event) { |
| 666 | i = ffs(iso_event) - 1; |
| 667 | tasklet_schedule(&ohci->it_context_list[i].tasklet); |
| 668 | iso_event &= ~(1 << i); |
| 669 | } |
| 670 | |
| 671 | return IRQ_HANDLED; |
| 672 | } |
| 673 | |
| 674 | static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length) |
| 675 | { |
| 676 | struct fw_ohci *ohci = fw_ohci(card); |
| 677 | struct pci_dev *dev = to_pci_dev(card->device); |
| 678 | |
| 679 | /* When the link is not yet enabled, the atomic config rom |
| 680 | * update mechanism described below in ohci_set_config_rom() |
| 681 | * is not active. We have to update ConfigRomHeader and |
| 682 | * BusOptions manually, and the write to ConfigROMmap takes |
| 683 | * effect immediately. We tie this to the enabling of the |
| 684 | * link, so we have a valid config rom before enabling - the |
| 685 | * OHCI requires that ConfigROMhdr and BusOptions have valid |
| 686 | * values before enabling. |
| 687 | * |
| 688 | * However, when the ConfigROMmap is written, some controllers |
| 689 | * always read back quadlets 0 and 2 from the config rom to |
| 690 | * the ConfigRomHeader and BusOptions registers on bus reset. |
| 691 | * They shouldn't do that in this initial case where the link |
| 692 | * isn't enabled. This means we have to use the same |
| 693 | * workaround here, setting the bus header to 0 and then write |
| 694 | * the right values in the bus reset tasklet. |
| 695 | */ |
| 696 | |
| 697 | ohci->next_config_rom = |
| 698 | dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, |
| 699 | &ohci->next_config_rom_bus, GFP_KERNEL); |
| 700 | if (ohci->next_config_rom == NULL) |
| 701 | return -ENOMEM; |
| 702 | |
| 703 | memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE); |
| 704 | fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4); |
| 705 | |
| 706 | ohci->next_header = config_rom[0]; |
| 707 | ohci->next_config_rom[0] = 0; |
| 708 | reg_write(ohci, OHCI1394_ConfigROMhdr, 0); |
| 709 | reg_write(ohci, OHCI1394_BusOptions, config_rom[2]); |
| 710 | reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); |
| 711 | |
| 712 | reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000); |
| 713 | |
| 714 | if (request_irq(dev->irq, irq_handler, |
| 715 | SA_SHIRQ, ohci_driver_name, ohci)) { |
| 716 | fw_error("Failed to allocate shared interrupt %d.\n", |
| 717 | dev->irq); |
| 718 | dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, |
| 719 | ohci->config_rom, ohci->config_rom_bus); |
| 720 | return -EIO; |
| 721 | } |
| 722 | |
| 723 | reg_write(ohci, OHCI1394_HCControlSet, |
| 724 | OHCI1394_HCControl_linkEnable | |
| 725 | OHCI1394_HCControl_BIBimageValid); |
| 726 | flush_writes(ohci); |
| 727 | |
| 728 | /* We are ready to go, initiate bus reset to finish the |
| 729 | * initialization. */ |
| 730 | |
| 731 | fw_core_initiate_bus_reset(&ohci->card, 1); |
| 732 | |
| 733 | return 0; |
| 734 | } |
| 735 | |
| 736 | static int |
| 737 | ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length) |
| 738 | { |
| 739 | struct fw_ohci *ohci; |
| 740 | unsigned long flags; |
| 741 | int retval = 0; |
| 742 | __be32 *next_config_rom; |
| 743 | dma_addr_t next_config_rom_bus; |
| 744 | |
| 745 | ohci = fw_ohci(card); |
| 746 | |
| 747 | /* When the OHCI controller is enabled, the config rom update |
| 748 | * mechanism is a bit tricky, but easy enough to use. See |
| 749 | * section 5.5.6 in the OHCI specification. |
| 750 | * |
| 751 | * The OHCI controller caches the new config rom address in a |
| 752 | * shadow register (ConfigROMmapNext) and needs a bus reset |
| 753 | * for the changes to take place. When the bus reset is |
| 754 | * detected, the controller loads the new values for the |
| 755 | * ConfigRomHeader and BusOptions registers from the specified |
| 756 | * config rom and loads ConfigROMmap from the ConfigROMmapNext |
| 757 | * shadow register. All automatically and atomically. |
| 758 | * |
| 759 | * Now, there's a twist to this story. The automatic load of |
| 760 | * ConfigRomHeader and BusOptions doesn't honor the |
| 761 | * noByteSwapData bit, so with a be32 config rom, the |
| 762 | * controller will load be32 values in to these registers |
| 763 | * during the atomic update, even on litte endian |
| 764 | * architectures. The workaround we use is to put a 0 in the |
| 765 | * header quadlet; 0 is endian agnostic and means that the |
| 766 | * config rom isn't ready yet. In the bus reset tasklet we |
| 767 | * then set up the real values for the two registers. |
| 768 | * |
| 769 | * We use ohci->lock to avoid racing with the code that sets |
| 770 | * ohci->next_config_rom to NULL (see bus_reset_tasklet). |
| 771 | */ |
| 772 | |
| 773 | next_config_rom = |
| 774 | dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, |
| 775 | &next_config_rom_bus, GFP_KERNEL); |
| 776 | if (next_config_rom == NULL) |
| 777 | return -ENOMEM; |
| 778 | |
| 779 | spin_lock_irqsave(&ohci->lock, flags); |
| 780 | |
| 781 | if (ohci->next_config_rom == NULL) { |
| 782 | ohci->next_config_rom = next_config_rom; |
| 783 | ohci->next_config_rom_bus = next_config_rom_bus; |
| 784 | |
| 785 | memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE); |
| 786 | fw_memcpy_to_be32(ohci->next_config_rom, config_rom, |
| 787 | length * 4); |
| 788 | |
| 789 | ohci->next_header = config_rom[0]; |
| 790 | ohci->next_config_rom[0] = 0; |
| 791 | |
| 792 | reg_write(ohci, OHCI1394_ConfigROMmap, |
| 793 | ohci->next_config_rom_bus); |
| 794 | } else { |
| 795 | dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, |
| 796 | next_config_rom, next_config_rom_bus); |
| 797 | retval = -EBUSY; |
| 798 | } |
| 799 | |
| 800 | spin_unlock_irqrestore(&ohci->lock, flags); |
| 801 | |
| 802 | /* Now initiate a bus reset to have the changes take |
| 803 | * effect. We clean up the old config rom memory and DMA |
| 804 | * mappings in the bus reset tasklet, since the OHCI |
| 805 | * controller could need to access it before the bus reset |
| 806 | * takes effect. */ |
| 807 | if (retval == 0) |
| 808 | fw_core_initiate_bus_reset(&ohci->card, 1); |
| 809 | |
| 810 | return retval; |
| 811 | } |
| 812 | |
| 813 | static void ohci_send_request(struct fw_card *card, struct fw_packet *packet) |
| 814 | { |
| 815 | struct fw_ohci *ohci = fw_ohci(card); |
| 816 | |
| 817 | at_context_transmit(&ohci->at_request_ctx, packet); |
| 818 | } |
| 819 | |
| 820 | static void ohci_send_response(struct fw_card *card, struct fw_packet *packet) |
| 821 | { |
| 822 | struct fw_ohci *ohci = fw_ohci(card); |
| 823 | |
| 824 | at_context_transmit(&ohci->at_response_ctx, packet); |
| 825 | } |
| 826 | |
| 827 | static int |
| 828 | ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation) |
| 829 | { |
| 830 | struct fw_ohci *ohci = fw_ohci(card); |
| 831 | unsigned long flags; |
| 832 | int retval = 0; |
| 833 | |
| 834 | /* FIXME: make sure this bitmask is cleared when we clear the |
| 835 | * busReset interrupt bit. */ |
| 836 | |
| 837 | spin_lock_irqsave(&ohci->lock, flags); |
| 838 | |
| 839 | if (ohci->generation != generation) { |
| 840 | retval = -ESTALE; |
| 841 | goto out; |
| 842 | } |
| 843 | |
| 844 | if (node_id < 32) { |
| 845 | reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << node_id); |
| 846 | } else { |
| 847 | reg_write(ohci, OHCI1394_PhyReqFilterHiSet, |
| 848 | 1 << (node_id - 32)); |
| 849 | } |
| 850 | flush_writes(ohci); |
| 851 | |
| 852 | spin_unlock_irqrestore(&ohci->lock, flags); |
| 853 | |
| 854 | out: |
| 855 | return retval; |
| 856 | } |
| 857 | |
| 858 | static void ir_context_tasklet(unsigned long data) |
| 859 | { |
| 860 | struct iso_context *ctx = (struct iso_context *)data; |
| 861 | |
| 862 | (void)ctx; |
| 863 | } |
| 864 | |
| 865 | #define ISO_BUFFER_SIZE (64 * 1024) |
| 866 | |
| 867 | static void flush_iso_context(struct iso_context *ctx) |
| 868 | { |
| 869 | struct fw_ohci *ohci = fw_ohci(ctx->base.card); |
| 870 | struct descriptor *d, *last; |
| 871 | u32 address; |
| 872 | int z; |
| 873 | |
| 874 | dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus, |
| 875 | ISO_BUFFER_SIZE, DMA_TO_DEVICE); |
| 876 | |
| 877 | d = ctx->tail_descriptor; |
| 878 | last = ctx->tail_descriptor_last; |
| 879 | |
| 880 | while (last->branch_address != 0 && last->transfer_status != 0) { |
| 881 | address = le32_to_cpu(last->branch_address); |
| 882 | z = address & 0xf; |
| 883 | d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d; |
| 884 | |
| 885 | if (z == 2) |
| 886 | last = d; |
| 887 | else |
| 888 | last = d + z - 1; |
| 889 | |
| 890 | if (le16_to_cpu(last->control) & descriptor_irq_always) |
| 891 | ctx->base.callback(&ctx->base, |
| 892 | 0, le16_to_cpu(last->res_count), |
| 893 | ctx->base.callback_data); |
| 894 | } |
| 895 | |
| 896 | ctx->tail_descriptor = d; |
| 897 | ctx->tail_descriptor_last = last; |
| 898 | } |
| 899 | |
| 900 | static void it_context_tasklet(unsigned long data) |
| 901 | { |
| 902 | struct iso_context *ctx = (struct iso_context *)data; |
| 903 | |
| 904 | flush_iso_context(ctx); |
| 905 | } |
| 906 | |
| 907 | static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card, |
| 908 | int type) |
| 909 | { |
| 910 | struct fw_ohci *ohci = fw_ohci(card); |
| 911 | struct iso_context *ctx, *list; |
| 912 | void (*tasklet) (unsigned long data); |
| 913 | u32 *mask; |
| 914 | unsigned long flags; |
| 915 | int index; |
| 916 | |
| 917 | if (type == FW_ISO_CONTEXT_TRANSMIT) { |
| 918 | mask = &ohci->it_context_mask; |
| 919 | list = ohci->it_context_list; |
| 920 | tasklet = it_context_tasklet; |
| 921 | } else { |
| 922 | mask = &ohci->ir_context_mask; |
| 923 | list = ohci->ir_context_list; |
| 924 | tasklet = ir_context_tasklet; |
| 925 | } |
| 926 | |
| 927 | spin_lock_irqsave(&ohci->lock, flags); |
| 928 | index = ffs(*mask) - 1; |
| 929 | if (index >= 0) |
| 930 | *mask &= ~(1 << index); |
| 931 | spin_unlock_irqrestore(&ohci->lock, flags); |
| 932 | |
| 933 | if (index < 0) |
| 934 | return ERR_PTR(-EBUSY); |
| 935 | |
| 936 | ctx = &list[index]; |
| 937 | memset(ctx, 0, sizeof *ctx); |
| 938 | tasklet_init(&ctx->tasklet, tasklet, (unsigned long)ctx); |
| 939 | |
| 940 | ctx->buffer = kmalloc(ISO_BUFFER_SIZE, GFP_KERNEL); |
| 941 | if (ctx->buffer == NULL) { |
| 942 | spin_lock_irqsave(&ohci->lock, flags); |
| 943 | *mask |= 1 << index; |
| 944 | spin_unlock_irqrestore(&ohci->lock, flags); |
| 945 | return ERR_PTR(-ENOMEM); |
| 946 | } |
| 947 | |
| 948 | ctx->buffer_bus = |
| 949 | dma_map_single(card->device, ctx->buffer, |
| 950 | ISO_BUFFER_SIZE, DMA_TO_DEVICE); |
| 951 | |
| 952 | ctx->head_descriptor = ctx->buffer; |
| 953 | ctx->prev_descriptor = ctx->buffer; |
| 954 | ctx->tail_descriptor = ctx->buffer; |
| 955 | ctx->tail_descriptor_last = ctx->buffer; |
| 956 | |
| 957 | /* We put a dummy descriptor in the buffer that has a NULL |
| 958 | * branch address and looks like it's been sent. That way we |
| 959 | * have a descriptor to append DMA programs to. Also, the |
| 960 | * ring buffer invariant is that it always has at least one |
| 961 | * element so that head == tail means buffer full. */ |
| 962 | |
| 963 | memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor); |
| 964 | ctx->head_descriptor->control = |
| 965 | cpu_to_le16(descriptor_output_last); |
| 966 | ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011); |
| 967 | ctx->head_descriptor++; |
| 968 | |
| 969 | return &ctx->base; |
| 970 | } |
| 971 | |
| 972 | static int ohci_send_iso(struct fw_iso_context *base, s32 cycle) |
| 973 | { |
| 974 | struct iso_context *ctx = (struct iso_context *)base; |
| 975 | struct fw_ohci *ohci = fw_ohci(ctx->base.card); |
| 976 | u32 cycle_match = 0; |
| 977 | int index; |
| 978 | |
| 979 | index = ctx - ohci->it_context_list; |
| 980 | if (cycle > 0) |
| 981 | cycle_match = CONTEXT_CYCLE_MATCH_ENABLE | |
| 982 | (cycle & 0x7fff) << 16; |
| 983 | |
| 984 | reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index); |
| 985 | reg_write(ohci, OHCI1394_IsoXmitCommandPtr(index), |
| 986 | le32_to_cpu(ctx->tail_descriptor_last->branch_address)); |
| 987 | reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0); |
| 988 | reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), |
| 989 | CONTEXT_RUN | cycle_match); |
| 990 | flush_writes(ohci); |
| 991 | |
| 992 | return 0; |
| 993 | } |
| 994 | |
| 995 | static void ohci_free_iso_context(struct fw_iso_context *base) |
| 996 | { |
| 997 | struct fw_ohci *ohci = fw_ohci(base->card); |
| 998 | struct iso_context *ctx = (struct iso_context *)base; |
| 999 | unsigned long flags; |
| 1000 | int index; |
| 1001 | |
| 1002 | flush_iso_context(ctx); |
| 1003 | |
| 1004 | spin_lock_irqsave(&ohci->lock, flags); |
| 1005 | |
| 1006 | if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) { |
| 1007 | index = ctx - ohci->it_context_list; |
| 1008 | reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0); |
| 1009 | reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index); |
| 1010 | ohci->it_context_mask |= 1 << index; |
| 1011 | } else { |
| 1012 | index = ctx - ohci->ir_context_list; |
| 1013 | reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0); |
| 1014 | reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index); |
| 1015 | ohci->ir_context_mask |= 1 << index; |
| 1016 | } |
| 1017 | flush_writes(ohci); |
| 1018 | |
| 1019 | dma_unmap_single(ohci->card.device, ctx->buffer_bus, |
| 1020 | ISO_BUFFER_SIZE, DMA_TO_DEVICE); |
| 1021 | |
| 1022 | spin_unlock_irqrestore(&ohci->lock, flags); |
| 1023 | } |
| 1024 | |
| 1025 | static int |
| 1026 | ohci_queue_iso(struct fw_iso_context *base, |
| 1027 | struct fw_iso_packet *packet, void *payload) |
| 1028 | { |
| 1029 | struct iso_context *ctx = (struct iso_context *)base; |
| 1030 | struct fw_ohci *ohci = fw_ohci(ctx->base.card); |
| 1031 | struct descriptor *d, *end, *last, *tail, *pd; |
| 1032 | struct fw_iso_packet *p; |
| 1033 | __le32 *header; |
| 1034 | dma_addr_t d_bus; |
| 1035 | u32 z, header_z, payload_z, irq; |
| 1036 | u32 payload_index, payload_end_index, next_page_index; |
| 1037 | int index, page, end_page, i, length, offset; |
| 1038 | |
| 1039 | /* FIXME: Cycle lost behavior should be configurable: lose |
| 1040 | * packet, retransmit or terminate.. */ |
| 1041 | |
| 1042 | p = packet; |
| 1043 | payload_index = payload - ctx->base.buffer; |
| 1044 | d = ctx->head_descriptor; |
| 1045 | tail = ctx->tail_descriptor; |
| 1046 | end = ctx->buffer + ISO_BUFFER_SIZE / sizeof(struct descriptor); |
| 1047 | |
| 1048 | if (p->skip) |
| 1049 | z = 1; |
| 1050 | else |
| 1051 | z = 2; |
| 1052 | if (p->header_length > 0) |
| 1053 | z++; |
| 1054 | |
| 1055 | /* Determine the first page the payload isn't contained in. */ |
| 1056 | end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT; |
| 1057 | if (p->payload_length > 0) |
| 1058 | payload_z = end_page - (payload_index >> PAGE_SHIFT); |
| 1059 | else |
| 1060 | payload_z = 0; |
| 1061 | |
| 1062 | z += payload_z; |
| 1063 | |
| 1064 | /* Get header size in number of descriptors. */ |
| 1065 | header_z = DIV_ROUND_UP(p->header_length, sizeof *d); |
| 1066 | |
| 1067 | if (d + z + header_z <= tail) { |
| 1068 | goto has_space; |
| 1069 | } else if (d > tail && d + z + header_z <= end) { |
| 1070 | goto has_space; |
| 1071 | } else if (d > tail && ctx->buffer + z + header_z <= tail) { |
| 1072 | d = ctx->buffer; |
| 1073 | goto has_space; |
| 1074 | } |
| 1075 | |
| 1076 | /* No space in buffer */ |
| 1077 | return -1; |
| 1078 | |
| 1079 | has_space: |
| 1080 | memset(d, 0, (z + header_z) * sizeof *d); |
| 1081 | d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d; |
| 1082 | |
| 1083 | if (!p->skip) { |
| 1084 | d[0].control = cpu_to_le16(descriptor_key_immediate); |
| 1085 | d[0].req_count = cpu_to_le16(8); |
| 1086 | |
| 1087 | header = (__le32 *) &d[1]; |
| 1088 | header[0] = cpu_to_le32(it_header_sy(p->sy) | |
| 1089 | it_header_tag(p->tag) | |
| 1090 | it_header_tcode(TCODE_STREAM_DATA) | |
| 1091 | it_header_channel(ctx->base.channel) | |
| 1092 | it_header_speed(ctx->base.speed)); |
| 1093 | header[1] = |
| 1094 | cpu_to_le32(it_header_data_length(p->header_length + |
| 1095 | p->payload_length)); |
| 1096 | } |
| 1097 | |
| 1098 | if (p->header_length > 0) { |
| 1099 | d[2].req_count = cpu_to_le16(p->header_length); |
| 1100 | d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d); |
| 1101 | memcpy(&d[z], p->header, p->header_length); |
| 1102 | } |
| 1103 | |
| 1104 | pd = d + z - payload_z; |
| 1105 | payload_end_index = payload_index + p->payload_length; |
| 1106 | for (i = 0; i < payload_z; i++) { |
| 1107 | page = payload_index >> PAGE_SHIFT; |
| 1108 | offset = payload_index & ~PAGE_MASK; |
| 1109 | next_page_index = (page + 1) << PAGE_SHIFT; |
| 1110 | length = |
| 1111 | min(next_page_index, payload_end_index) - payload_index; |
| 1112 | pd[i].req_count = cpu_to_le16(length); |
| 1113 | pd[i].data_address = cpu_to_le32(ctx->base.pages[page] + offset); |
| 1114 | |
| 1115 | payload_index += length; |
| 1116 | } |
| 1117 | |
| 1118 | if (z == 2) |
| 1119 | last = d; |
| 1120 | else |
| 1121 | last = d + z - 1; |
| 1122 | |
| 1123 | if (p->interrupt) |
| 1124 | irq = descriptor_irq_always; |
| 1125 | else |
| 1126 | irq = descriptor_no_irq; |
| 1127 | |
| 1128 | last->control = cpu_to_le16(descriptor_output_last | |
| 1129 | descriptor_status | |
| 1130 | descriptor_branch_always | |
| 1131 | irq); |
| 1132 | |
| 1133 | dma_sync_single_for_device(ohci->card.device, ctx->buffer_bus, |
| 1134 | ISO_BUFFER_SIZE, DMA_TO_DEVICE); |
| 1135 | |
| 1136 | ctx->head_descriptor = d + z + header_z; |
| 1137 | ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z); |
| 1138 | ctx->prev_descriptor = last; |
| 1139 | |
| 1140 | index = ctx - ohci->it_context_list; |
| 1141 | reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), CONTEXT_WAKE); |
| 1142 | flush_writes(ohci); |
| 1143 | |
| 1144 | return 0; |
| 1145 | } |
| 1146 | |
| 1147 | static struct fw_card_driver ohci_driver = { |
| 1148 | .name = ohci_driver_name, |
| 1149 | .enable = ohci_enable, |
| 1150 | .update_phy_reg = ohci_update_phy_reg, |
| 1151 | .set_config_rom = ohci_set_config_rom, |
| 1152 | .send_request = ohci_send_request, |
| 1153 | .send_response = ohci_send_response, |
| 1154 | .enable_phys_dma = ohci_enable_phys_dma, |
| 1155 | |
| 1156 | .allocate_iso_context = ohci_allocate_iso_context, |
| 1157 | .free_iso_context = ohci_free_iso_context, |
| 1158 | .queue_iso = ohci_queue_iso, |
| 1159 | .send_iso = ohci_send_iso |
| 1160 | }; |
| 1161 | |
| 1162 | static int software_reset(struct fw_ohci *ohci) |
| 1163 | { |
| 1164 | int i; |
| 1165 | |
| 1166 | reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset); |
| 1167 | |
| 1168 | for (i = 0; i < OHCI_LOOP_COUNT; i++) { |
| 1169 | if ((reg_read(ohci, OHCI1394_HCControlSet) & |
| 1170 | OHCI1394_HCControl_softReset) == 0) |
| 1171 | return 0; |
| 1172 | msleep(1); |
| 1173 | } |
| 1174 | |
| 1175 | return -EBUSY; |
| 1176 | } |
| 1177 | |
| 1178 | /* ---------- pci subsystem interface ---------- */ |
| 1179 | |
| 1180 | enum { |
| 1181 | CLEANUP_SELF_ID, |
| 1182 | CLEANUP_REGISTERS, |
| 1183 | CLEANUP_IOMEM, |
| 1184 | CLEANUP_DISABLE, |
| 1185 | CLEANUP_PUT_CARD, |
| 1186 | }; |
| 1187 | |
| 1188 | static int cleanup(struct fw_ohci *ohci, int stage, int code) |
| 1189 | { |
| 1190 | struct pci_dev *dev = to_pci_dev(ohci->card.device); |
| 1191 | |
| 1192 | switch (stage) { |
| 1193 | case CLEANUP_SELF_ID: |
| 1194 | dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE, |
| 1195 | ohci->self_id_cpu, ohci->self_id_bus); |
| 1196 | case CLEANUP_REGISTERS: |
| 1197 | kfree(ohci->it_context_list); |
| 1198 | kfree(ohci->ir_context_list); |
| 1199 | pci_iounmap(dev, ohci->registers); |
| 1200 | case CLEANUP_IOMEM: |
| 1201 | pci_release_region(dev, 0); |
| 1202 | case CLEANUP_DISABLE: |
| 1203 | pci_disable_device(dev); |
| 1204 | case CLEANUP_PUT_CARD: |
| 1205 | fw_card_put(&ohci->card); |
| 1206 | } |
| 1207 | |
| 1208 | return code; |
| 1209 | } |
| 1210 | |
| 1211 | static int __devinit |
| 1212 | pci_probe(struct pci_dev *dev, const struct pci_device_id *ent) |
| 1213 | { |
| 1214 | struct fw_ohci *ohci; |
| 1215 | u32 bus_options, max_receive, link_speed; |
| 1216 | u64 guid; |
| 1217 | int error_code; |
| 1218 | size_t size; |
| 1219 | |
| 1220 | ohci = kzalloc(sizeof *ohci, GFP_KERNEL); |
| 1221 | if (ohci == NULL) { |
| 1222 | fw_error("Could not malloc fw_ohci data.\n"); |
| 1223 | return -ENOMEM; |
| 1224 | } |
| 1225 | |
| 1226 | fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev); |
| 1227 | |
| 1228 | if (pci_enable_device(dev)) { |
| 1229 | fw_error("Failed to enable OHCI hardware.\n"); |
| 1230 | return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV); |
| 1231 | } |
| 1232 | |
| 1233 | pci_set_master(dev); |
| 1234 | pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0); |
| 1235 | pci_set_drvdata(dev, ohci); |
| 1236 | |
| 1237 | spin_lock_init(&ohci->lock); |
| 1238 | |
| 1239 | tasklet_init(&ohci->bus_reset_tasklet, |
| 1240 | bus_reset_tasklet, (unsigned long)ohci); |
| 1241 | |
| 1242 | if (pci_request_region(dev, 0, ohci_driver_name)) { |
| 1243 | fw_error("MMIO resource unavailable\n"); |
| 1244 | return cleanup(ohci, CLEANUP_DISABLE, -EBUSY); |
| 1245 | } |
| 1246 | |
| 1247 | ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE); |
| 1248 | if (ohci->registers == NULL) { |
| 1249 | fw_error("Failed to remap registers\n"); |
| 1250 | return cleanup(ohci, CLEANUP_IOMEM, -ENXIO); |
| 1251 | } |
| 1252 | |
| 1253 | if (software_reset(ohci)) { |
| 1254 | fw_error("Failed to reset ohci card.\n"); |
| 1255 | return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY); |
| 1256 | } |
| 1257 | |
| 1258 | /* Now enable LPS, which we need in order to start accessing |
| 1259 | * most of the registers. In fact, on some cards (ALI M5251), |
| 1260 | * accessing registers in the SClk domain without LPS enabled |
| 1261 | * will lock up the machine. Wait 50msec to make sure we have |
| 1262 | * full link enabled. */ |
| 1263 | reg_write(ohci, OHCI1394_HCControlSet, |
| 1264 | OHCI1394_HCControl_LPS | |
| 1265 | OHCI1394_HCControl_postedWriteEnable); |
| 1266 | flush_writes(ohci); |
| 1267 | msleep(50); |
| 1268 | |
| 1269 | reg_write(ohci, OHCI1394_HCControlClear, |
| 1270 | OHCI1394_HCControl_noByteSwapData); |
| 1271 | |
| 1272 | reg_write(ohci, OHCI1394_LinkControlSet, |
| 1273 | OHCI1394_LinkControl_rcvSelfID | |
| 1274 | OHCI1394_LinkControl_cycleTimerEnable | |
| 1275 | OHCI1394_LinkControl_cycleMaster); |
| 1276 | |
| 1277 | ar_context_init(&ohci->ar_request_ctx, ohci, |
| 1278 | OHCI1394_AsReqRcvContextControlSet); |
| 1279 | |
| 1280 | ar_context_init(&ohci->ar_response_ctx, ohci, |
| 1281 | OHCI1394_AsRspRcvContextControlSet); |
| 1282 | |
| 1283 | at_context_init(&ohci->at_request_ctx, ohci, |
| 1284 | OHCI1394_AsReqTrContextControlSet); |
| 1285 | |
| 1286 | at_context_init(&ohci->at_response_ctx, ohci, |
| 1287 | OHCI1394_AsRspTrContextControlSet); |
| 1288 | |
| 1289 | reg_write(ohci, OHCI1394_ATRetries, |
| 1290 | OHCI1394_MAX_AT_REQ_RETRIES | |
| 1291 | (OHCI1394_MAX_AT_RESP_RETRIES << 4) | |
| 1292 | (OHCI1394_MAX_PHYS_RESP_RETRIES << 8)); |
| 1293 | |
| 1294 | reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0); |
| 1295 | ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet); |
| 1296 | reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0); |
| 1297 | size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask); |
| 1298 | ohci->it_context_list = kzalloc(size, GFP_KERNEL); |
| 1299 | |
| 1300 | reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0); |
| 1301 | ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet); |
| 1302 | reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0); |
| 1303 | size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask); |
| 1304 | ohci->ir_context_list = kzalloc(size, GFP_KERNEL); |
| 1305 | |
| 1306 | if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) { |
| 1307 | fw_error("Out of memory for it/ir contexts.\n"); |
| 1308 | return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM); |
| 1309 | } |
| 1310 | |
| 1311 | /* self-id dma buffer allocation */ |
| 1312 | ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device, |
| 1313 | SELF_ID_BUF_SIZE, |
| 1314 | &ohci->self_id_bus, |
| 1315 | GFP_KERNEL); |
| 1316 | if (ohci->self_id_cpu == NULL) { |
| 1317 | fw_error("Out of memory for self ID buffer.\n"); |
| 1318 | return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM); |
| 1319 | } |
| 1320 | |
| 1321 | reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus); |
| 1322 | reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000); |
| 1323 | reg_write(ohci, OHCI1394_IntEventClear, ~0); |
| 1324 | reg_write(ohci, OHCI1394_IntMaskClear, ~0); |
| 1325 | reg_write(ohci, OHCI1394_IntMaskSet, |
| 1326 | OHCI1394_selfIDComplete | |
| 1327 | OHCI1394_RQPkt | OHCI1394_RSPkt | |
| 1328 | OHCI1394_reqTxComplete | OHCI1394_respTxComplete | |
| 1329 | OHCI1394_isochRx | OHCI1394_isochTx | |
| 1330 | OHCI1394_masterIntEnable); |
| 1331 | |
| 1332 | bus_options = reg_read(ohci, OHCI1394_BusOptions); |
| 1333 | max_receive = (bus_options >> 12) & 0xf; |
| 1334 | link_speed = bus_options & 0x7; |
| 1335 | guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) | |
| 1336 | reg_read(ohci, OHCI1394_GUIDLo); |
| 1337 | |
| 1338 | error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid); |
| 1339 | if (error_code < 0) |
| 1340 | return cleanup(ohci, CLEANUP_SELF_ID, error_code); |
| 1341 | |
| 1342 | fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id); |
| 1343 | |
| 1344 | return 0; |
| 1345 | } |
| 1346 | |
| 1347 | static void pci_remove(struct pci_dev *dev) |
| 1348 | { |
| 1349 | struct fw_ohci *ohci; |
| 1350 | |
| 1351 | ohci = pci_get_drvdata(dev); |
| 1352 | reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable); |
| 1353 | fw_core_remove_card(&ohci->card); |
| 1354 | |
| 1355 | /* FIXME: Fail all pending packets here, now that the upper |
| 1356 | * layers can't queue any more. */ |
| 1357 | |
| 1358 | software_reset(ohci); |
| 1359 | free_irq(dev->irq, ohci); |
| 1360 | cleanup(ohci, CLEANUP_SELF_ID, 0); |
| 1361 | |
| 1362 | fw_notify("Removed fw-ohci device.\n"); |
| 1363 | } |
| 1364 | |
| 1365 | static struct pci_device_id pci_table[] = { |
| 1366 | { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) }, |
| 1367 | { } |
| 1368 | }; |
| 1369 | |
| 1370 | MODULE_DEVICE_TABLE(pci, pci_table); |
| 1371 | |
| 1372 | static struct pci_driver fw_ohci_pci_driver = { |
| 1373 | .name = ohci_driver_name, |
| 1374 | .id_table = pci_table, |
| 1375 | .probe = pci_probe, |
| 1376 | .remove = pci_remove, |
| 1377 | }; |
| 1378 | |
| 1379 | MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); |
| 1380 | MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers"); |
| 1381 | MODULE_LICENSE("GPL"); |
| 1382 | |
| 1383 | static int __init fw_ohci_init(void) |
| 1384 | { |
| 1385 | return pci_register_driver(&fw_ohci_pci_driver); |
| 1386 | } |
| 1387 | |
| 1388 | static void __exit fw_ohci_cleanup(void) |
| 1389 | { |
| 1390 | pci_unregister_driver(&fw_ohci_pci_driver); |
| 1391 | } |
| 1392 | |
| 1393 | module_init(fw_ohci_init); |
| 1394 | module_exit(fw_ohci_cleanup); |