blob: 5392a2b13540ac5599cec013dacd627970f33fd6 [file] [log] [blame]
Kristian Høgsberged568912006-12-19 19:58:35 -05001/* -*- c-basic-offset: 8 -*-
2 *
3 * fw-ohci.c - Driver for OHCI 1394 boards
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/kernel.h>
22#include <linux/module.h>
23#include <linux/init.h>
24#include <linux/interrupt.h>
25#include <linux/pci.h>
26#include <linux/delay.h>
27#include <linux/poll.h>
28#include <asm/uaccess.h>
29#include <asm/semaphore.h>
30
31#include "fw-transaction.h"
32#include "fw-ohci.h"
33
34#define descriptor_output_more 0
35#define descriptor_output_last (1 << 12)
36#define descriptor_input_more (2 << 12)
37#define descriptor_input_last (3 << 12)
38#define descriptor_status (1 << 11)
39#define descriptor_key_immediate (2 << 8)
40#define descriptor_ping (1 << 7)
41#define descriptor_yy (1 << 6)
42#define descriptor_no_irq (0 << 4)
43#define descriptor_irq_error (1 << 4)
44#define descriptor_irq_always (3 << 4)
45#define descriptor_branch_always (3 << 2)
46
47struct descriptor {
48 __le16 req_count;
49 __le16 control;
50 __le32 data_address;
51 __le32 branch_address;
52 __le16 res_count;
53 __le16 transfer_status;
54} __attribute__((aligned(16)));
55
56struct ar_context {
57 struct fw_ohci *ohci;
58 struct descriptor descriptor;
59 __le32 buffer[512];
60 dma_addr_t descriptor_bus;
61 dma_addr_t buffer_bus;
62
63 u32 command_ptr;
64 u32 control_set;
65 u32 control_clear;
66
67 struct tasklet_struct tasklet;
68};
69
70struct at_context {
71 struct fw_ohci *ohci;
72 dma_addr_t descriptor_bus;
73 dma_addr_t buffer_bus;
74
75 struct list_head list;
76
77 struct {
78 struct descriptor more;
79 __le32 header[4];
80 struct descriptor last;
81 } d;
82
83 u32 command_ptr;
84 u32 control_set;
85 u32 control_clear;
86
87 struct tasklet_struct tasklet;
88};
89
90#define it_header_sy(v) ((v) << 0)
91#define it_header_tcode(v) ((v) << 4)
92#define it_header_channel(v) ((v) << 8)
93#define it_header_tag(v) ((v) << 14)
94#define it_header_speed(v) ((v) << 16)
95#define it_header_data_length(v) ((v) << 16)
96
97struct iso_context {
98 struct fw_iso_context base;
99 struct tasklet_struct tasklet;
100 u32 control_set;
101 u32 control_clear;
102 u32 command_ptr;
103 u32 context_match;
104
105 struct descriptor *buffer;
106 dma_addr_t buffer_bus;
107 struct descriptor *head_descriptor;
108 struct descriptor *tail_descriptor;
109 struct descriptor *tail_descriptor_last;
110 struct descriptor *prev_descriptor;
111};
112
113#define CONFIG_ROM_SIZE 1024
114
115struct fw_ohci {
116 struct fw_card card;
117
118 __iomem char *registers;
119 dma_addr_t self_id_bus;
120 __le32 *self_id_cpu;
121 struct tasklet_struct bus_reset_tasklet;
122 int generation;
123 int request_generation;
124
125 /* Spinlock for accessing fw_ohci data. Never call out of
126 * this driver with this lock held. */
127 spinlock_t lock;
128 u32 self_id_buffer[512];
129
130 /* Config rom buffers */
131 __be32 *config_rom;
132 dma_addr_t config_rom_bus;
133 __be32 *next_config_rom;
134 dma_addr_t next_config_rom_bus;
135 u32 next_header;
136
137 struct ar_context ar_request_ctx;
138 struct ar_context ar_response_ctx;
139 struct at_context at_request_ctx;
140 struct at_context at_response_ctx;
141
142 u32 it_context_mask;
143 struct iso_context *it_context_list;
144 u32 ir_context_mask;
145 struct iso_context *ir_context_list;
146};
147
148extern inline struct fw_ohci *fw_ohci(struct fw_card *card)
149{
150 return container_of(card, struct fw_ohci, card);
151}
152
153#define CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
154
155#define CONTEXT_RUN 0x8000
156#define CONTEXT_WAKE 0x1000
157#define CONTEXT_DEAD 0x0800
158#define CONTEXT_ACTIVE 0x0400
159
160#define OHCI1394_MAX_AT_REQ_RETRIES 0x2
161#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
162#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
163
164#define FW_OHCI_MAJOR 240
165#define OHCI1394_REGISTER_SIZE 0x800
166#define OHCI_LOOP_COUNT 500
167#define OHCI1394_PCI_HCI_Control 0x40
168#define SELF_ID_BUF_SIZE 0x800
169
170/* FIXME: Move this to linux/pci_ids.h */
171#define PCI_CLASS_SERIAL_FIREWIRE_OHCI 0x0c0010
172
173static char ohci_driver_name[] = KBUILD_MODNAME;
174
175extern inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
176{
177 writel(data, ohci->registers + offset);
178}
179
180extern inline u32 reg_read(const struct fw_ohci *ohci, int offset)
181{
182 return readl(ohci->registers + offset);
183}
184
185extern inline void flush_writes(const struct fw_ohci *ohci)
186{
187 /* Do a dummy read to flush writes. */
188 reg_read(ohci, OHCI1394_Version);
189}
190
191static int
192ohci_update_phy_reg(struct fw_card *card, int addr,
193 int clear_bits, int set_bits)
194{
195 struct fw_ohci *ohci = fw_ohci(card);
196 u32 val, old;
197
198 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
199 msleep(2);
200 val = reg_read(ohci, OHCI1394_PhyControl);
201 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
202 fw_error("failed to set phy reg bits.\n");
203 return -EBUSY;
204 }
205
206 old = OHCI1394_PhyControl_ReadData(val);
207 old = (old & ~clear_bits) | set_bits;
208 reg_write(ohci, OHCI1394_PhyControl,
209 OHCI1394_PhyControl_Write(addr, old));
210
211 return 0;
212}
213
214static void ar_context_run(struct ar_context *ctx)
215{
216 reg_write(ctx->ohci, ctx->command_ptr, ctx->descriptor_bus | 1);
217 reg_write(ctx->ohci, ctx->control_set, CONTEXT_RUN);
218 flush_writes(ctx->ohci);
219}
220
221static void ar_context_tasklet(unsigned long data)
222{
223 struct ar_context *ctx = (struct ar_context *)data;
224 struct fw_ohci *ohci = ctx->ohci;
225 u32 status;
226 int length, speed, ack, timestamp, tcode;
227
228 /* FIXME: What to do about evt_* errors? */
229 length = le16_to_cpu(ctx->descriptor.req_count) -
230 le16_to_cpu(ctx->descriptor.res_count) - 4;
231 status = le32_to_cpu(ctx->buffer[length / 4]);
232 ack = ((status >> 16) & 0x1f) - 16;
233 speed = (status >> 21) & 0x7;
234 timestamp = status & 0xffff;
235
236 ctx->buffer[0] = le32_to_cpu(ctx->buffer[0]);
237 ctx->buffer[1] = le32_to_cpu(ctx->buffer[1]);
238 ctx->buffer[2] = le32_to_cpu(ctx->buffer[2]);
239
240 tcode = (ctx->buffer[0] >> 4) & 0x0f;
241 if (TCODE_IS_BLOCK_PACKET(tcode))
242 ctx->buffer[3] = le32_to_cpu(ctx->buffer[3]);
243
244 /* The OHCI bus reset handler synthesizes a phy packet with
245 * the new generation number when a bus reset happens (see
246 * section 8.4.2.3). This helps us determine when a request
247 * was received and make sure we send the response in the same
248 * generation. We only need this for requests; for responses
249 * we use the unique tlabel for finding the matching
250 * request. */
251
252 if (ack + 16 == 0x09)
253 ohci->request_generation = (ctx->buffer[2] >> 16) & 0xff;
254 else if (ctx == &ohci->ar_request_ctx)
255 fw_core_handle_request(&ohci->card, speed, ack, timestamp,
256 ohci->request_generation,
257 length, ctx->buffer);
258 else
259 fw_core_handle_response(&ohci->card, speed, ack, timestamp,
260 length, ctx->buffer);
261
262 ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
263 ctx->descriptor.req_count = cpu_to_le16(sizeof ctx->buffer);
264 ctx->descriptor.res_count = cpu_to_le16(sizeof ctx->buffer);
265
266 dma_sync_single_for_device(ohci->card.device, ctx->descriptor_bus,
267 sizeof ctx->descriptor_bus, DMA_TO_DEVICE);
268
269 /* FIXME: We stop and restart the ar context here, what if we
270 * stop while a receive is in progress? Maybe we could just
271 * loop the context back to itself and use it in buffer fill
272 * mode as intended... */
273
274 reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
275 ar_context_run(ctx);
276}
277
278static int
279ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 control_set)
280{
281 ctx->descriptor_bus =
282 dma_map_single(ohci->card.device, &ctx->descriptor,
283 sizeof ctx->descriptor, DMA_TO_DEVICE);
284 if (ctx->descriptor_bus == 0)
285 return -ENOMEM;
286
287 if (ctx->descriptor_bus & 0xf)
288 fw_notify("descriptor not 16-byte aligned: 0x%08x\n",
289 ctx->descriptor_bus);
290
291 ctx->buffer_bus =
292 dma_map_single(ohci->card.device, ctx->buffer,
293 sizeof ctx->buffer, DMA_FROM_DEVICE);
294
295 if (ctx->buffer_bus == 0) {
296 dma_unmap_single(ohci->card.device, ctx->descriptor_bus,
297 sizeof ctx->descriptor, DMA_TO_DEVICE);
298 return -ENOMEM;
299 }
300
301 memset(&ctx->descriptor, 0, sizeof ctx->descriptor);
302 ctx->descriptor.control = cpu_to_le16(descriptor_input_more |
303 descriptor_status |
304 descriptor_branch_always);
305 ctx->descriptor.req_count = cpu_to_le16(sizeof ctx->buffer);
306 ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
307 ctx->descriptor.res_count = cpu_to_le16(sizeof ctx->buffer);
308
309 ctx->control_set = control_set;
310 ctx->control_clear = control_set + 4;
311 ctx->command_ptr = control_set + 12;
312 ctx->ohci = ohci;
313
314 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
315
316 ar_context_run(ctx);
317
318 return 0;
319}
320
321static void
322do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
323{
324 struct fw_packet *p, *next;
325
326 list_for_each_entry_safe(p, next, list, link)
327 p->callback(p, &ohci->card, p->status);
328}
329
330static void
331complete_transmission(struct fw_packet *packet,
332 int status, struct list_head *list)
333{
334 list_move_tail(&packet->link, list);
335 packet->status = status;
336}
337
338/* This function prepares the first packet in the context queue for
339 * transmission. Must always be called with the ochi->lock held to
340 * ensure proper generation handling and locking around packet queue
341 * manipulation. */
342static void
343at_context_setup_packet(struct at_context *ctx, struct list_head *list)
344{
345 struct fw_packet *packet;
346 struct fw_ohci *ohci = ctx->ohci;
347 int z, tcode;
348
349 packet = fw_packet(ctx->list.next);
350
351 memset(&ctx->d, 0, sizeof ctx->d);
352 if (packet->payload_length > 0) {
353 packet->payload_bus = dma_map_single(ohci->card.device,
354 packet->payload,
355 packet->payload_length,
356 DMA_TO_DEVICE);
357 if (packet->payload_bus == 0) {
358 complete_transmission(packet, -ENOMEM, list);
359 return;
360 }
361
362 ctx->d.more.control =
363 cpu_to_le16(descriptor_output_more |
364 descriptor_key_immediate);
365 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
366 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
367 ctx->d.last.control =
368 cpu_to_le16(descriptor_output_last |
369 descriptor_irq_always |
370 descriptor_branch_always);
371 ctx->d.last.req_count = cpu_to_le16(packet->payload_length);
372 ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
373 z = 3;
374 } else {
375 ctx->d.more.control =
376 cpu_to_le16(descriptor_output_last |
377 descriptor_key_immediate |
378 descriptor_irq_always |
379 descriptor_branch_always);
380 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
381 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
382 z = 2;
383 }
384
385 /* The DMA format for asyncronous link packets is different
386 * from the IEEE1394 layout, so shift the fields around
387 * accordingly. If header_length is 8, it's a PHY packet, to
388 * which we need to prepend an extra quadlet. */
389 if (packet->header_length > 8) {
390 ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
391 (packet->speed << 16));
392 ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
393 (packet->header[0] & 0xffff0000));
394 ctx->d.header[2] = cpu_to_le32(packet->header[2]);
395
396 tcode = (packet->header[0] >> 4) & 0x0f;
397 if (TCODE_IS_BLOCK_PACKET(tcode))
398 ctx->d.header[3] = cpu_to_le32(packet->header[3]);
399 else
400 ctx->d.header[3] = packet->header[3];
401 } else {
402 ctx->d.header[0] =
403 cpu_to_le32((OHCI1394_phy_tcode << 4) |
404 (packet->speed << 16));
405 ctx->d.header[1] = cpu_to_le32(packet->header[0]);
406 ctx->d.header[2] = cpu_to_le32(packet->header[1]);
407 ctx->d.more.req_count = cpu_to_le16(12);
408 }
409
410 /* FIXME: Document how the locking works. */
411 if (ohci->generation == packet->generation) {
412 reg_write(ctx->ohci, ctx->command_ptr,
413 ctx->descriptor_bus | z);
414 reg_write(ctx->ohci, ctx->control_set,
415 CONTEXT_RUN | CONTEXT_WAKE);
416 } else {
417 /* We dont return error codes from this function; all
418 * transmission errors are reported through the
419 * callback. */
420 complete_transmission(packet, -ESTALE, list);
421 }
422}
423
424static void at_context_stop(struct at_context *ctx)
425{
426 u32 reg;
427
428 reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
429
430 reg = reg_read(ctx->ohci, ctx->control_set);
431 if (reg & CONTEXT_ACTIVE)
432 fw_notify("Tried to stop context, but it is still active "
433 "(0x%08x).\n", reg);
434}
435
436static void at_context_tasklet(unsigned long data)
437{
438 struct at_context *ctx = (struct at_context *)data;
439 struct fw_ohci *ohci = ctx->ohci;
440 struct fw_packet *packet;
441 LIST_HEAD(list);
442 unsigned long flags;
443 int evt;
444
445 spin_lock_irqsave(&ohci->lock, flags);
446
447 packet = fw_packet(ctx->list.next);
448
449 at_context_stop(ctx);
450
451 if (packet->payload_length > 0) {
452 dma_unmap_single(ohci->card.device, packet->payload_bus,
453 packet->payload_length, DMA_TO_DEVICE);
454 evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
455 packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
456 }
457 else {
458 evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
459 packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
460 }
461
462 if (evt < 16) {
463 switch (evt) {
464 case OHCI1394_evt_timeout:
465 /* Async response transmit timed out. */
466 complete_transmission(packet, -ETIMEDOUT, &list);
467 break;
468
469 case OHCI1394_evt_flushed:
470 /* The packet was flushed should give same
471 * error as when we try to use a stale
472 * generation count. */
473 complete_transmission(packet, -ESTALE, &list);
474 break;
475
476 case OHCI1394_evt_missing_ack:
477 /* This would be a higher level software
478 * error, it is using a valid (current)
479 * generation count, but the node is not on
480 * the bus. */
481 complete_transmission(packet, -ENODEV, &list);
482 break;
483
484 default:
485 complete_transmission(packet, -EIO, &list);
486 break;
487 }
488 } else
489 complete_transmission(packet, evt - 16, &list);
490
491 /* If more packets are queued, set up the next one. */
492 if (!list_empty(&ctx->list))
493 at_context_setup_packet(ctx, &list);
494
495 spin_unlock_irqrestore(&ohci->lock, flags);
496
497 do_packet_callbacks(ohci, &list);
498}
499
500static int
501at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 control_set)
502{
503 INIT_LIST_HEAD(&ctx->list);
504
505 ctx->descriptor_bus =
506 dma_map_single(ohci->card.device, &ctx->d,
507 sizeof ctx->d, DMA_TO_DEVICE);
508 if (ctx->descriptor_bus == 0)
509 return -ENOMEM;
510
511 ctx->control_set = control_set;
512 ctx->control_clear = control_set + 4;
513 ctx->command_ptr = control_set + 12;
514 ctx->ohci = ohci;
515
516 tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);
517
518 return 0;
519}
520
521static void
522at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
523{
524 LIST_HEAD(list);
525 unsigned long flags;
526 int was_empty;
527
528 spin_lock_irqsave(&ctx->ohci->lock, flags);
529
530 was_empty = list_empty(&ctx->list);
531 list_add_tail(&packet->link, &ctx->list);
532 if (was_empty)
533 at_context_setup_packet(ctx, &list);
534
535 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
536
537 do_packet_callbacks(ctx->ohci, &list);
538}
539
540static void bus_reset_tasklet(unsigned long data)
541{
542 struct fw_ohci *ohci = (struct fw_ohci *)data;
543 int self_id_count, i, j, reg, node_id;
544 int generation, new_generation;
545 unsigned long flags;
546
547 reg = reg_read(ohci, OHCI1394_NodeID);
548 if (!(reg & OHCI1394_NodeID_idValid)) {
549 fw_error("node ID not valid, new bus reset in progress\n");
550 return;
551 }
552 node_id = reg & 0xffff;
553
554 /* The count in the SelfIDCount register is the number of
555 * bytes in the self ID receive buffer. Since we also receive
556 * the inverted quadlets and a header quadlet, we shift one
557 * bit extra to get the actual number of self IDs. */
558
559 self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
560 generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
561
562 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
563 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
564 fw_error("inconsistent self IDs\n");
565 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
566 }
567
568 /* Check the consistency of the self IDs we just read. The
569 * problem we face is that a new bus reset can start while we
570 * read out the self IDs from the DMA buffer. If this happens,
571 * the DMA buffer will be overwritten with new self IDs and we
572 * will read out inconsistent data. The OHCI specification
573 * (section 11.2) recommends a technique similar to
574 * linux/seqlock.h, where we remember the generation of the
575 * self IDs in the buffer before reading them out and compare
576 * it to the current generation after reading them out. If
577 * the two generations match we know we have a consistent set
578 * of self IDs. */
579
580 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
581 if (new_generation != generation) {
582 fw_notify("recursive bus reset detected, "
583 "discarding self ids\n");
584 return;
585 }
586
587 /* FIXME: Document how the locking works. */
588 spin_lock_irqsave(&ohci->lock, flags);
589
590 ohci->generation = generation;
591 at_context_stop(&ohci->at_request_ctx);
592 at_context_stop(&ohci->at_response_ctx);
593 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
594
595 /* This next bit is unrelated to the AT context stuff but we
596 * have to do it under the spinlock also. If a new config rom
597 * was set up before this reset, the old one is now no longer
598 * in use and we can free it. Update the config rom pointers
599 * to point to the current config rom and clear the
600 * next_config_rom pointer so a new udpate can take place. */
601
602 if (ohci->next_config_rom != NULL) {
603 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
604 ohci->config_rom, ohci->config_rom_bus);
605 ohci->config_rom = ohci->next_config_rom;
606 ohci->config_rom_bus = ohci->next_config_rom_bus;
607 ohci->next_config_rom = NULL;
608
609 /* Restore config_rom image and manually update
610 * config_rom registers. Writing the header quadlet
611 * will indicate that the config rom is ready, so we
612 * do that last. */
613 reg_write(ohci, OHCI1394_BusOptions,
614 be32_to_cpu(ohci->config_rom[2]));
615 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
616 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
617 }
618
619 spin_unlock_irqrestore(&ohci->lock, flags);
620
621 fw_core_handle_bus_reset(&ohci->card, node_id, generation,
622 self_id_count, ohci->self_id_buffer);
623}
624
625static irqreturn_t irq_handler(int irq, void *data)
626{
627 struct fw_ohci *ohci = data;
628 u32 event, iso_event;
629 int i;
630
631 event = reg_read(ohci, OHCI1394_IntEventClear);
632
633 if (!event)
634 return IRQ_NONE;
635
636 reg_write(ohci, OHCI1394_IntEventClear, event);
637
638 if (event & OHCI1394_selfIDComplete)
639 tasklet_schedule(&ohci->bus_reset_tasklet);
640
641 if (event & OHCI1394_RQPkt)
642 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
643
644 if (event & OHCI1394_RSPkt)
645 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
646
647 if (event & OHCI1394_reqTxComplete)
648 tasklet_schedule(&ohci->at_request_ctx.tasklet);
649
650 if (event & OHCI1394_respTxComplete)
651 tasklet_schedule(&ohci->at_response_ctx.tasklet);
652
653 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
654 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
655
656 while (iso_event) {
657 i = ffs(iso_event) - 1;
658 tasklet_schedule(&ohci->ir_context_list[i].tasklet);
659 iso_event &= ~(1 << i);
660 }
661
662 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
663 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
664
665 while (iso_event) {
666 i = ffs(iso_event) - 1;
667 tasklet_schedule(&ohci->it_context_list[i].tasklet);
668 iso_event &= ~(1 << i);
669 }
670
671 return IRQ_HANDLED;
672}
673
674static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
675{
676 struct fw_ohci *ohci = fw_ohci(card);
677 struct pci_dev *dev = to_pci_dev(card->device);
678
679 /* When the link is not yet enabled, the atomic config rom
680 * update mechanism described below in ohci_set_config_rom()
681 * is not active. We have to update ConfigRomHeader and
682 * BusOptions manually, and the write to ConfigROMmap takes
683 * effect immediately. We tie this to the enabling of the
684 * link, so we have a valid config rom before enabling - the
685 * OHCI requires that ConfigROMhdr and BusOptions have valid
686 * values before enabling.
687 *
688 * However, when the ConfigROMmap is written, some controllers
689 * always read back quadlets 0 and 2 from the config rom to
690 * the ConfigRomHeader and BusOptions registers on bus reset.
691 * They shouldn't do that in this initial case where the link
692 * isn't enabled. This means we have to use the same
693 * workaround here, setting the bus header to 0 and then write
694 * the right values in the bus reset tasklet.
695 */
696
697 ohci->next_config_rom =
698 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
699 &ohci->next_config_rom_bus, GFP_KERNEL);
700 if (ohci->next_config_rom == NULL)
701 return -ENOMEM;
702
703 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
704 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
705
706 ohci->next_header = config_rom[0];
707 ohci->next_config_rom[0] = 0;
708 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
709 reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
710 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
711
712 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
713
714 if (request_irq(dev->irq, irq_handler,
715 SA_SHIRQ, ohci_driver_name, ohci)) {
716 fw_error("Failed to allocate shared interrupt %d.\n",
717 dev->irq);
718 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
719 ohci->config_rom, ohci->config_rom_bus);
720 return -EIO;
721 }
722
723 reg_write(ohci, OHCI1394_HCControlSet,
724 OHCI1394_HCControl_linkEnable |
725 OHCI1394_HCControl_BIBimageValid);
726 flush_writes(ohci);
727
728 /* We are ready to go, initiate bus reset to finish the
729 * initialization. */
730
731 fw_core_initiate_bus_reset(&ohci->card, 1);
732
733 return 0;
734}
735
736static int
737ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
738{
739 struct fw_ohci *ohci;
740 unsigned long flags;
741 int retval = 0;
742 __be32 *next_config_rom;
743 dma_addr_t next_config_rom_bus;
744
745 ohci = fw_ohci(card);
746
747 /* When the OHCI controller is enabled, the config rom update
748 * mechanism is a bit tricky, but easy enough to use. See
749 * section 5.5.6 in the OHCI specification.
750 *
751 * The OHCI controller caches the new config rom address in a
752 * shadow register (ConfigROMmapNext) and needs a bus reset
753 * for the changes to take place. When the bus reset is
754 * detected, the controller loads the new values for the
755 * ConfigRomHeader and BusOptions registers from the specified
756 * config rom and loads ConfigROMmap from the ConfigROMmapNext
757 * shadow register. All automatically and atomically.
758 *
759 * Now, there's a twist to this story. The automatic load of
760 * ConfigRomHeader and BusOptions doesn't honor the
761 * noByteSwapData bit, so with a be32 config rom, the
762 * controller will load be32 values in to these registers
763 * during the atomic update, even on litte endian
764 * architectures. The workaround we use is to put a 0 in the
765 * header quadlet; 0 is endian agnostic and means that the
766 * config rom isn't ready yet. In the bus reset tasklet we
767 * then set up the real values for the two registers.
768 *
769 * We use ohci->lock to avoid racing with the code that sets
770 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
771 */
772
773 next_config_rom =
774 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
775 &next_config_rom_bus, GFP_KERNEL);
776 if (next_config_rom == NULL)
777 return -ENOMEM;
778
779 spin_lock_irqsave(&ohci->lock, flags);
780
781 if (ohci->next_config_rom == NULL) {
782 ohci->next_config_rom = next_config_rom;
783 ohci->next_config_rom_bus = next_config_rom_bus;
784
785 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
786 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
787 length * 4);
788
789 ohci->next_header = config_rom[0];
790 ohci->next_config_rom[0] = 0;
791
792 reg_write(ohci, OHCI1394_ConfigROMmap,
793 ohci->next_config_rom_bus);
794 } else {
795 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
796 next_config_rom, next_config_rom_bus);
797 retval = -EBUSY;
798 }
799
800 spin_unlock_irqrestore(&ohci->lock, flags);
801
802 /* Now initiate a bus reset to have the changes take
803 * effect. We clean up the old config rom memory and DMA
804 * mappings in the bus reset tasklet, since the OHCI
805 * controller could need to access it before the bus reset
806 * takes effect. */
807 if (retval == 0)
808 fw_core_initiate_bus_reset(&ohci->card, 1);
809
810 return retval;
811}
812
813static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
814{
815 struct fw_ohci *ohci = fw_ohci(card);
816
817 at_context_transmit(&ohci->at_request_ctx, packet);
818}
819
820static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
821{
822 struct fw_ohci *ohci = fw_ohci(card);
823
824 at_context_transmit(&ohci->at_response_ctx, packet);
825}
826
827static int
828ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
829{
830 struct fw_ohci *ohci = fw_ohci(card);
831 unsigned long flags;
832 int retval = 0;
833
834 /* FIXME: make sure this bitmask is cleared when we clear the
835 * busReset interrupt bit. */
836
837 spin_lock_irqsave(&ohci->lock, flags);
838
839 if (ohci->generation != generation) {
840 retval = -ESTALE;
841 goto out;
842 }
843
844 if (node_id < 32) {
845 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << node_id);
846 } else {
847 reg_write(ohci, OHCI1394_PhyReqFilterHiSet,
848 1 << (node_id - 32));
849 }
850 flush_writes(ohci);
851
852 spin_unlock_irqrestore(&ohci->lock, flags);
853
854 out:
855 return retval;
856}
857
858static void ir_context_tasklet(unsigned long data)
859{
860 struct iso_context *ctx = (struct iso_context *)data;
861
862 (void)ctx;
863}
864
865#define ISO_BUFFER_SIZE (64 * 1024)
866
867static void flush_iso_context(struct iso_context *ctx)
868{
869 struct fw_ohci *ohci = fw_ohci(ctx->base.card);
870 struct descriptor *d, *last;
871 u32 address;
872 int z;
873
874 dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
875 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
876
877 d = ctx->tail_descriptor;
878 last = ctx->tail_descriptor_last;
879
880 while (last->branch_address != 0 && last->transfer_status != 0) {
881 address = le32_to_cpu(last->branch_address);
882 z = address & 0xf;
883 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
884
885 if (z == 2)
886 last = d;
887 else
888 last = d + z - 1;
889
890 if (le16_to_cpu(last->control) & descriptor_irq_always)
891 ctx->base.callback(&ctx->base,
892 0, le16_to_cpu(last->res_count),
893 ctx->base.callback_data);
894 }
895
896 ctx->tail_descriptor = d;
897 ctx->tail_descriptor_last = last;
898}
899
900static void it_context_tasklet(unsigned long data)
901{
902 struct iso_context *ctx = (struct iso_context *)data;
903
904 flush_iso_context(ctx);
905}
906
907static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
908 int type)
909{
910 struct fw_ohci *ohci = fw_ohci(card);
911 struct iso_context *ctx, *list;
912 void (*tasklet) (unsigned long data);
913 u32 *mask;
914 unsigned long flags;
915 int index;
916
917 if (type == FW_ISO_CONTEXT_TRANSMIT) {
918 mask = &ohci->it_context_mask;
919 list = ohci->it_context_list;
920 tasklet = it_context_tasklet;
921 } else {
922 mask = &ohci->ir_context_mask;
923 list = ohci->ir_context_list;
924 tasklet = ir_context_tasklet;
925 }
926
927 spin_lock_irqsave(&ohci->lock, flags);
928 index = ffs(*mask) - 1;
929 if (index >= 0)
930 *mask &= ~(1 << index);
931 spin_unlock_irqrestore(&ohci->lock, flags);
932
933 if (index < 0)
934 return ERR_PTR(-EBUSY);
935
936 ctx = &list[index];
937 memset(ctx, 0, sizeof *ctx);
938 tasklet_init(&ctx->tasklet, tasklet, (unsigned long)ctx);
939
940 ctx->buffer = kmalloc(ISO_BUFFER_SIZE, GFP_KERNEL);
941 if (ctx->buffer == NULL) {
942 spin_lock_irqsave(&ohci->lock, flags);
943 *mask |= 1 << index;
944 spin_unlock_irqrestore(&ohci->lock, flags);
945 return ERR_PTR(-ENOMEM);
946 }
947
948 ctx->buffer_bus =
949 dma_map_single(card->device, ctx->buffer,
950 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
951
952 ctx->head_descriptor = ctx->buffer;
953 ctx->prev_descriptor = ctx->buffer;
954 ctx->tail_descriptor = ctx->buffer;
955 ctx->tail_descriptor_last = ctx->buffer;
956
957 /* We put a dummy descriptor in the buffer that has a NULL
958 * branch address and looks like it's been sent. That way we
959 * have a descriptor to append DMA programs to. Also, the
960 * ring buffer invariant is that it always has at least one
961 * element so that head == tail means buffer full. */
962
963 memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
964 ctx->head_descriptor->control =
965 cpu_to_le16(descriptor_output_last);
966 ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
967 ctx->head_descriptor++;
968
969 return &ctx->base;
970}
971
972static int ohci_send_iso(struct fw_iso_context *base, s32 cycle)
973{
974 struct iso_context *ctx = (struct iso_context *)base;
975 struct fw_ohci *ohci = fw_ohci(ctx->base.card);
976 u32 cycle_match = 0;
977 int index;
978
979 index = ctx - ohci->it_context_list;
980 if (cycle > 0)
981 cycle_match = CONTEXT_CYCLE_MATCH_ENABLE |
982 (cycle & 0x7fff) << 16;
983
984 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
985 reg_write(ohci, OHCI1394_IsoXmitCommandPtr(index),
986 le32_to_cpu(ctx->tail_descriptor_last->branch_address));
987 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
988 reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index),
989 CONTEXT_RUN | cycle_match);
990 flush_writes(ohci);
991
992 return 0;
993}
994
995static void ohci_free_iso_context(struct fw_iso_context *base)
996{
997 struct fw_ohci *ohci = fw_ohci(base->card);
998 struct iso_context *ctx = (struct iso_context *)base;
999 unsigned long flags;
1000 int index;
1001
1002 flush_iso_context(ctx);
1003
1004 spin_lock_irqsave(&ohci->lock, flags);
1005
1006 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1007 index = ctx - ohci->it_context_list;
1008 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1009 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1010 ohci->it_context_mask |= 1 << index;
1011 } else {
1012 index = ctx - ohci->ir_context_list;
1013 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0);
1014 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1015 ohci->ir_context_mask |= 1 << index;
1016 }
1017 flush_writes(ohci);
1018
1019 dma_unmap_single(ohci->card.device, ctx->buffer_bus,
1020 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1021
1022 spin_unlock_irqrestore(&ohci->lock, flags);
1023}
1024
1025static int
1026ohci_queue_iso(struct fw_iso_context *base,
1027 struct fw_iso_packet *packet, void *payload)
1028{
1029 struct iso_context *ctx = (struct iso_context *)base;
1030 struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1031 struct descriptor *d, *end, *last, *tail, *pd;
1032 struct fw_iso_packet *p;
1033 __le32 *header;
1034 dma_addr_t d_bus;
1035 u32 z, header_z, payload_z, irq;
1036 u32 payload_index, payload_end_index, next_page_index;
1037 int index, page, end_page, i, length, offset;
1038
1039 /* FIXME: Cycle lost behavior should be configurable: lose
1040 * packet, retransmit or terminate.. */
1041
1042 p = packet;
1043 payload_index = payload - ctx->base.buffer;
1044 d = ctx->head_descriptor;
1045 tail = ctx->tail_descriptor;
1046 end = ctx->buffer + ISO_BUFFER_SIZE / sizeof(struct descriptor);
1047
1048 if (p->skip)
1049 z = 1;
1050 else
1051 z = 2;
1052 if (p->header_length > 0)
1053 z++;
1054
1055 /* Determine the first page the payload isn't contained in. */
1056 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1057 if (p->payload_length > 0)
1058 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1059 else
1060 payload_z = 0;
1061
1062 z += payload_z;
1063
1064 /* Get header size in number of descriptors. */
1065 header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1066
1067 if (d + z + header_z <= tail) {
1068 goto has_space;
1069 } else if (d > tail && d + z + header_z <= end) {
1070 goto has_space;
1071 } else if (d > tail && ctx->buffer + z + header_z <= tail) {
1072 d = ctx->buffer;
1073 goto has_space;
1074 }
1075
1076 /* No space in buffer */
1077 return -1;
1078
1079 has_space:
1080 memset(d, 0, (z + header_z) * sizeof *d);
1081 d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
1082
1083 if (!p->skip) {
1084 d[0].control = cpu_to_le16(descriptor_key_immediate);
1085 d[0].req_count = cpu_to_le16(8);
1086
1087 header = (__le32 *) &d[1];
1088 header[0] = cpu_to_le32(it_header_sy(p->sy) |
1089 it_header_tag(p->tag) |
1090 it_header_tcode(TCODE_STREAM_DATA) |
1091 it_header_channel(ctx->base.channel) |
1092 it_header_speed(ctx->base.speed));
1093 header[1] =
1094 cpu_to_le32(it_header_data_length(p->header_length +
1095 p->payload_length));
1096 }
1097
1098 if (p->header_length > 0) {
1099 d[2].req_count = cpu_to_le16(p->header_length);
1100 d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
1101 memcpy(&d[z], p->header, p->header_length);
1102 }
1103
1104 pd = d + z - payload_z;
1105 payload_end_index = payload_index + p->payload_length;
1106 for (i = 0; i < payload_z; i++) {
1107 page = payload_index >> PAGE_SHIFT;
1108 offset = payload_index & ~PAGE_MASK;
1109 next_page_index = (page + 1) << PAGE_SHIFT;
1110 length =
1111 min(next_page_index, payload_end_index) - payload_index;
1112 pd[i].req_count = cpu_to_le16(length);
1113 pd[i].data_address = cpu_to_le32(ctx->base.pages[page] + offset);
1114
1115 payload_index += length;
1116 }
1117
1118 if (z == 2)
1119 last = d;
1120 else
1121 last = d + z - 1;
1122
1123 if (p->interrupt)
1124 irq = descriptor_irq_always;
1125 else
1126 irq = descriptor_no_irq;
1127
1128 last->control = cpu_to_le16(descriptor_output_last |
1129 descriptor_status |
1130 descriptor_branch_always |
1131 irq);
1132
1133 dma_sync_single_for_device(ohci->card.device, ctx->buffer_bus,
1134 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1135
1136 ctx->head_descriptor = d + z + header_z;
1137 ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
1138 ctx->prev_descriptor = last;
1139
1140 index = ctx - ohci->it_context_list;
1141 reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), CONTEXT_WAKE);
1142 flush_writes(ohci);
1143
1144 return 0;
1145}
1146
1147static struct fw_card_driver ohci_driver = {
1148 .name = ohci_driver_name,
1149 .enable = ohci_enable,
1150 .update_phy_reg = ohci_update_phy_reg,
1151 .set_config_rom = ohci_set_config_rom,
1152 .send_request = ohci_send_request,
1153 .send_response = ohci_send_response,
1154 .enable_phys_dma = ohci_enable_phys_dma,
1155
1156 .allocate_iso_context = ohci_allocate_iso_context,
1157 .free_iso_context = ohci_free_iso_context,
1158 .queue_iso = ohci_queue_iso,
1159 .send_iso = ohci_send_iso
1160};
1161
1162static int software_reset(struct fw_ohci *ohci)
1163{
1164 int i;
1165
1166 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1167
1168 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1169 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1170 OHCI1394_HCControl_softReset) == 0)
1171 return 0;
1172 msleep(1);
1173 }
1174
1175 return -EBUSY;
1176}
1177
1178/* ---------- pci subsystem interface ---------- */
1179
1180enum {
1181 CLEANUP_SELF_ID,
1182 CLEANUP_REGISTERS,
1183 CLEANUP_IOMEM,
1184 CLEANUP_DISABLE,
1185 CLEANUP_PUT_CARD,
1186};
1187
1188static int cleanup(struct fw_ohci *ohci, int stage, int code)
1189{
1190 struct pci_dev *dev = to_pci_dev(ohci->card.device);
1191
1192 switch (stage) {
1193 case CLEANUP_SELF_ID:
1194 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1195 ohci->self_id_cpu, ohci->self_id_bus);
1196 case CLEANUP_REGISTERS:
1197 kfree(ohci->it_context_list);
1198 kfree(ohci->ir_context_list);
1199 pci_iounmap(dev, ohci->registers);
1200 case CLEANUP_IOMEM:
1201 pci_release_region(dev, 0);
1202 case CLEANUP_DISABLE:
1203 pci_disable_device(dev);
1204 case CLEANUP_PUT_CARD:
1205 fw_card_put(&ohci->card);
1206 }
1207
1208 return code;
1209}
1210
1211static int __devinit
1212pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1213{
1214 struct fw_ohci *ohci;
1215 u32 bus_options, max_receive, link_speed;
1216 u64 guid;
1217 int error_code;
1218 size_t size;
1219
1220 ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
1221 if (ohci == NULL) {
1222 fw_error("Could not malloc fw_ohci data.\n");
1223 return -ENOMEM;
1224 }
1225
1226 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1227
1228 if (pci_enable_device(dev)) {
1229 fw_error("Failed to enable OHCI hardware.\n");
1230 return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
1231 }
1232
1233 pci_set_master(dev);
1234 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1235 pci_set_drvdata(dev, ohci);
1236
1237 spin_lock_init(&ohci->lock);
1238
1239 tasklet_init(&ohci->bus_reset_tasklet,
1240 bus_reset_tasklet, (unsigned long)ohci);
1241
1242 if (pci_request_region(dev, 0, ohci_driver_name)) {
1243 fw_error("MMIO resource unavailable\n");
1244 return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
1245 }
1246
1247 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1248 if (ohci->registers == NULL) {
1249 fw_error("Failed to remap registers\n");
1250 return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
1251 }
1252
1253 if (software_reset(ohci)) {
1254 fw_error("Failed to reset ohci card.\n");
1255 return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
1256 }
1257
1258 /* Now enable LPS, which we need in order to start accessing
1259 * most of the registers. In fact, on some cards (ALI M5251),
1260 * accessing registers in the SClk domain without LPS enabled
1261 * will lock up the machine. Wait 50msec to make sure we have
1262 * full link enabled. */
1263 reg_write(ohci, OHCI1394_HCControlSet,
1264 OHCI1394_HCControl_LPS |
1265 OHCI1394_HCControl_postedWriteEnable);
1266 flush_writes(ohci);
1267 msleep(50);
1268
1269 reg_write(ohci, OHCI1394_HCControlClear,
1270 OHCI1394_HCControl_noByteSwapData);
1271
1272 reg_write(ohci, OHCI1394_LinkControlSet,
1273 OHCI1394_LinkControl_rcvSelfID |
1274 OHCI1394_LinkControl_cycleTimerEnable |
1275 OHCI1394_LinkControl_cycleMaster);
1276
1277 ar_context_init(&ohci->ar_request_ctx, ohci,
1278 OHCI1394_AsReqRcvContextControlSet);
1279
1280 ar_context_init(&ohci->ar_response_ctx, ohci,
1281 OHCI1394_AsRspRcvContextControlSet);
1282
1283 at_context_init(&ohci->at_request_ctx, ohci,
1284 OHCI1394_AsReqTrContextControlSet);
1285
1286 at_context_init(&ohci->at_response_ctx, ohci,
1287 OHCI1394_AsRspTrContextControlSet);
1288
1289 reg_write(ohci, OHCI1394_ATRetries,
1290 OHCI1394_MAX_AT_REQ_RETRIES |
1291 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1292 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1293
1294 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1295 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1296 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1297 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1298 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1299
1300 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1301 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1302 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1303 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1304 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1305
1306 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1307 fw_error("Out of memory for it/ir contexts.\n");
1308 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1309 }
1310
1311 /* self-id dma buffer allocation */
1312 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1313 SELF_ID_BUF_SIZE,
1314 &ohci->self_id_bus,
1315 GFP_KERNEL);
1316 if (ohci->self_id_cpu == NULL) {
1317 fw_error("Out of memory for self ID buffer.\n");
1318 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1319 }
1320
1321 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1322 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1323 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1324 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1325 reg_write(ohci, OHCI1394_IntMaskSet,
1326 OHCI1394_selfIDComplete |
1327 OHCI1394_RQPkt | OHCI1394_RSPkt |
1328 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1329 OHCI1394_isochRx | OHCI1394_isochTx |
1330 OHCI1394_masterIntEnable);
1331
1332 bus_options = reg_read(ohci, OHCI1394_BusOptions);
1333 max_receive = (bus_options >> 12) & 0xf;
1334 link_speed = bus_options & 0x7;
1335 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1336 reg_read(ohci, OHCI1394_GUIDLo);
1337
1338 error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1339 if (error_code < 0)
1340 return cleanup(ohci, CLEANUP_SELF_ID, error_code);
1341
1342 fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id);
1343
1344 return 0;
1345}
1346
1347static void pci_remove(struct pci_dev *dev)
1348{
1349 struct fw_ohci *ohci;
1350
1351 ohci = pci_get_drvdata(dev);
1352 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
1353 fw_core_remove_card(&ohci->card);
1354
1355 /* FIXME: Fail all pending packets here, now that the upper
1356 * layers can't queue any more. */
1357
1358 software_reset(ohci);
1359 free_irq(dev->irq, ohci);
1360 cleanup(ohci, CLEANUP_SELF_ID, 0);
1361
1362 fw_notify("Removed fw-ohci device.\n");
1363}
1364
1365static struct pci_device_id pci_table[] = {
1366 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1367 { }
1368};
1369
1370MODULE_DEVICE_TABLE(pci, pci_table);
1371
1372static struct pci_driver fw_ohci_pci_driver = {
1373 .name = ohci_driver_name,
1374 .id_table = pci_table,
1375 .probe = pci_probe,
1376 .remove = pci_remove,
1377};
1378
1379MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1380MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1381MODULE_LICENSE("GPL");
1382
1383static int __init fw_ohci_init(void)
1384{
1385 return pci_register_driver(&fw_ohci_pci_driver);
1386}
1387
1388static void __exit fw_ohci_cleanup(void)
1389{
1390 pci_unregister_driver(&fw_ohci_pci_driver);
1391}
1392
1393module_init(fw_ohci_init);
1394module_exit(fw_ohci_cleanup);