Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 1 | #include <linux/kernel.h> |
| 2 | #include <linux/errno.h> |
| 3 | #include <linux/err.h> |
| 4 | #include <linux/spinlock.h> |
| 5 | |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 6 | #include <linux/mm.h> |
| 7 | #include <linux/pagemap.h> |
| 8 | #include <linux/rmap.h> |
| 9 | #include <linux/swap.h> |
| 10 | #include <linux/swapops.h> |
| 11 | |
Steve Capper | 2667f50 | 2014-10-09 15:29:14 -0700 | [diff] [blame] | 12 | #include <linux/sched.h> |
| 13 | #include <linux/rwsem.h> |
Aneesh Kumar K.V | f30c59e | 2014-11-05 21:57:40 +0530 | [diff] [blame] | 14 | #include <linux/hugetlb.h> |
Steve Capper | 2667f50 | 2014-10-09 15:29:14 -0700 | [diff] [blame] | 15 | #include <asm/pgtable.h> |
| 16 | |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 17 | #include "internal.h" |
| 18 | |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 19 | static struct page *no_page_table(struct vm_area_struct *vma, |
| 20 | unsigned int flags) |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 21 | { |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 22 | /* |
| 23 | * When core dumping an enormous anonymous area that nobody |
| 24 | * has touched so far, we don't want to allocate unnecessary pages or |
| 25 | * page tables. Return error instead of NULL to skip handle_mm_fault, |
| 26 | * then get_dump_page() will return NULL to leave a hole in the dump. |
| 27 | * But we can only make this optimization where a hole would surely |
| 28 | * be zero-filled if handle_mm_fault() actually did handle it. |
| 29 | */ |
| 30 | if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) |
| 31 | return ERR_PTR(-EFAULT); |
| 32 | return NULL; |
| 33 | } |
| 34 | |
| 35 | static struct page *follow_page_pte(struct vm_area_struct *vma, |
| 36 | unsigned long address, pmd_t *pmd, unsigned int flags) |
| 37 | { |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 38 | struct mm_struct *mm = vma->vm_mm; |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 39 | struct page *page; |
| 40 | spinlock_t *ptl; |
| 41 | pte_t *ptep, pte; |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 42 | |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 43 | retry: |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 44 | if (unlikely(pmd_bad(*pmd))) |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 45 | return no_page_table(vma, flags); |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 46 | |
| 47 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 48 | pte = *ptep; |
| 49 | if (!pte_present(pte)) { |
| 50 | swp_entry_t entry; |
| 51 | /* |
| 52 | * KSM's break_ksm() relies upon recognizing a ksm page |
| 53 | * even while it is being migrated, so for that case we |
| 54 | * need migration_entry_wait(). |
| 55 | */ |
| 56 | if (likely(!(flags & FOLL_MIGRATION))) |
| 57 | goto no_page; |
Kirill A. Shutemov | 0661a33 | 2015-02-10 14:10:04 -0800 | [diff] [blame] | 58 | if (pte_none(pte)) |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 59 | goto no_page; |
| 60 | entry = pte_to_swp_entry(pte); |
| 61 | if (!is_migration_entry(entry)) |
| 62 | goto no_page; |
| 63 | pte_unmap_unlock(ptep, ptl); |
| 64 | migration_entry_wait(mm, pmd, address); |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 65 | goto retry; |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 66 | } |
| 67 | if ((flags & FOLL_NUMA) && pte_numa(pte)) |
| 68 | goto no_page; |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 69 | if ((flags & FOLL_WRITE) && !pte_write(pte)) { |
| 70 | pte_unmap_unlock(ptep, ptl); |
| 71 | return NULL; |
| 72 | } |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 73 | |
| 74 | page = vm_normal_page(vma, address, pte); |
| 75 | if (unlikely(!page)) { |
| 76 | if ((flags & FOLL_DUMP) || |
| 77 | !is_zero_pfn(pte_pfn(pte))) |
| 78 | goto bad_page; |
| 79 | page = pte_page(pte); |
| 80 | } |
| 81 | |
| 82 | if (flags & FOLL_GET) |
| 83 | get_page_foll(page); |
| 84 | if (flags & FOLL_TOUCH) { |
| 85 | if ((flags & FOLL_WRITE) && |
| 86 | !pte_dirty(pte) && !PageDirty(page)) |
| 87 | set_page_dirty(page); |
| 88 | /* |
| 89 | * pte_mkyoung() would be more correct here, but atomic care |
| 90 | * is needed to avoid losing the dirty bit: it is easier to use |
| 91 | * mark_page_accessed(). |
| 92 | */ |
| 93 | mark_page_accessed(page); |
| 94 | } |
| 95 | if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { |
| 96 | /* |
| 97 | * The preliminary mapping check is mainly to avoid the |
| 98 | * pointless overhead of lock_page on the ZERO_PAGE |
| 99 | * which might bounce very badly if there is contention. |
| 100 | * |
| 101 | * If the page is already locked, we don't need to |
| 102 | * handle it now - vmscan will handle it later if and |
| 103 | * when it attempts to reclaim the page. |
| 104 | */ |
| 105 | if (page->mapping && trylock_page(page)) { |
| 106 | lru_add_drain(); /* push cached pages to LRU */ |
| 107 | /* |
| 108 | * Because we lock page here, and migration is |
| 109 | * blocked by the pte's page reference, and we |
| 110 | * know the page is still mapped, we don't even |
| 111 | * need to check for file-cache page truncation. |
| 112 | */ |
| 113 | mlock_vma_page(page); |
| 114 | unlock_page(page); |
| 115 | } |
| 116 | } |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 117 | pte_unmap_unlock(ptep, ptl); |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 118 | return page; |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 119 | bad_page: |
| 120 | pte_unmap_unlock(ptep, ptl); |
| 121 | return ERR_PTR(-EFAULT); |
| 122 | |
| 123 | no_page: |
| 124 | pte_unmap_unlock(ptep, ptl); |
| 125 | if (!pte_none(pte)) |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 126 | return NULL; |
| 127 | return no_page_table(vma, flags); |
| 128 | } |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 129 | |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 130 | /** |
| 131 | * follow_page_mask - look up a page descriptor from a user-virtual address |
| 132 | * @vma: vm_area_struct mapping @address |
| 133 | * @address: virtual address to look up |
| 134 | * @flags: flags modifying lookup behaviour |
| 135 | * @page_mask: on output, *page_mask is set according to the size of the page |
| 136 | * |
| 137 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> |
| 138 | * |
| 139 | * Returns the mapped (struct page *), %NULL if no mapping exists, or |
| 140 | * an error pointer if there is a mapping to something not represented |
| 141 | * by a page descriptor (see also vm_normal_page()). |
| 142 | */ |
| 143 | struct page *follow_page_mask(struct vm_area_struct *vma, |
| 144 | unsigned long address, unsigned int flags, |
| 145 | unsigned int *page_mask) |
| 146 | { |
| 147 | pgd_t *pgd; |
| 148 | pud_t *pud; |
| 149 | pmd_t *pmd; |
| 150 | spinlock_t *ptl; |
| 151 | struct page *page; |
| 152 | struct mm_struct *mm = vma->vm_mm; |
| 153 | |
| 154 | *page_mask = 0; |
| 155 | |
| 156 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); |
| 157 | if (!IS_ERR(page)) { |
| 158 | BUG_ON(flags & FOLL_GET); |
| 159 | return page; |
| 160 | } |
| 161 | |
| 162 | pgd = pgd_offset(mm, address); |
| 163 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) |
| 164 | return no_page_table(vma, flags); |
| 165 | |
| 166 | pud = pud_offset(pgd, address); |
| 167 | if (pud_none(*pud)) |
| 168 | return no_page_table(vma, flags); |
| 169 | if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { |
| 170 | if (flags & FOLL_GET) |
| 171 | return NULL; |
| 172 | page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); |
| 173 | return page; |
| 174 | } |
| 175 | if (unlikely(pud_bad(*pud))) |
| 176 | return no_page_table(vma, flags); |
| 177 | |
| 178 | pmd = pmd_offset(pud, address); |
| 179 | if (pmd_none(*pmd)) |
| 180 | return no_page_table(vma, flags); |
| 181 | if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { |
| 182 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); |
| 183 | if (flags & FOLL_GET) { |
| 184 | /* |
| 185 | * Refcount on tail pages are not well-defined and |
| 186 | * shouldn't be taken. The caller should handle a NULL |
| 187 | * return when trying to follow tail pages. |
| 188 | */ |
| 189 | if (PageHead(page)) |
| 190 | get_page(page); |
| 191 | else |
| 192 | page = NULL; |
| 193 | } |
| 194 | return page; |
| 195 | } |
| 196 | if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) |
| 197 | return no_page_table(vma, flags); |
| 198 | if (pmd_trans_huge(*pmd)) { |
| 199 | if (flags & FOLL_SPLIT) { |
| 200 | split_huge_page_pmd(vma, address, pmd); |
| 201 | return follow_page_pte(vma, address, pmd, flags); |
| 202 | } |
| 203 | ptl = pmd_lock(mm, pmd); |
| 204 | if (likely(pmd_trans_huge(*pmd))) { |
| 205 | if (unlikely(pmd_trans_splitting(*pmd))) { |
| 206 | spin_unlock(ptl); |
| 207 | wait_split_huge_page(vma->anon_vma, pmd); |
| 208 | } else { |
| 209 | page = follow_trans_huge_pmd(vma, address, |
| 210 | pmd, flags); |
| 211 | spin_unlock(ptl); |
| 212 | *page_mask = HPAGE_PMD_NR - 1; |
| 213 | return page; |
| 214 | } |
| 215 | } else |
| 216 | spin_unlock(ptl); |
| 217 | } |
| 218 | return follow_page_pte(vma, address, pmd, flags); |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 219 | } |
| 220 | |
Kirill A. Shutemov | f2b495c | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 221 | static int get_gate_page(struct mm_struct *mm, unsigned long address, |
| 222 | unsigned int gup_flags, struct vm_area_struct **vma, |
| 223 | struct page **page) |
| 224 | { |
| 225 | pgd_t *pgd; |
| 226 | pud_t *pud; |
| 227 | pmd_t *pmd; |
| 228 | pte_t *pte; |
| 229 | int ret = -EFAULT; |
| 230 | |
| 231 | /* user gate pages are read-only */ |
| 232 | if (gup_flags & FOLL_WRITE) |
| 233 | return -EFAULT; |
| 234 | if (address > TASK_SIZE) |
| 235 | pgd = pgd_offset_k(address); |
| 236 | else |
| 237 | pgd = pgd_offset_gate(mm, address); |
| 238 | BUG_ON(pgd_none(*pgd)); |
| 239 | pud = pud_offset(pgd, address); |
| 240 | BUG_ON(pud_none(*pud)); |
| 241 | pmd = pmd_offset(pud, address); |
| 242 | if (pmd_none(*pmd)) |
| 243 | return -EFAULT; |
| 244 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
| 245 | pte = pte_offset_map(pmd, address); |
| 246 | if (pte_none(*pte)) |
| 247 | goto unmap; |
| 248 | *vma = get_gate_vma(mm); |
| 249 | if (!page) |
| 250 | goto out; |
| 251 | *page = vm_normal_page(*vma, address, *pte); |
| 252 | if (!*page) { |
| 253 | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) |
| 254 | goto unmap; |
| 255 | *page = pte_page(*pte); |
| 256 | } |
| 257 | get_page(*page); |
| 258 | out: |
| 259 | ret = 0; |
| 260 | unmap: |
| 261 | pte_unmap(pte); |
| 262 | return ret; |
| 263 | } |
| 264 | |
Paul Cassella | 9a95f3c | 2014-08-06 16:07:24 -0700 | [diff] [blame] | 265 | /* |
| 266 | * mmap_sem must be held on entry. If @nonblocking != NULL and |
| 267 | * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. |
| 268 | * If it is, *@nonblocking will be set to 0 and -EBUSY returned. |
| 269 | */ |
Kirill A. Shutemov | 1674448 | 2014-06-04 16:08:12 -0700 | [diff] [blame] | 270 | static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, |
| 271 | unsigned long address, unsigned int *flags, int *nonblocking) |
| 272 | { |
| 273 | struct mm_struct *mm = vma->vm_mm; |
| 274 | unsigned int fault_flags = 0; |
| 275 | int ret; |
| 276 | |
| 277 | /* For mlock, just skip the stack guard page. */ |
| 278 | if ((*flags & FOLL_MLOCK) && |
| 279 | (stack_guard_page_start(vma, address) || |
| 280 | stack_guard_page_end(vma, address + PAGE_SIZE))) |
| 281 | return -ENOENT; |
| 282 | if (*flags & FOLL_WRITE) |
| 283 | fault_flags |= FAULT_FLAG_WRITE; |
| 284 | if (nonblocking) |
| 285 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; |
| 286 | if (*flags & FOLL_NOWAIT) |
| 287 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; |
Andres Lagar-Cavilla | 234b239 | 2014-09-17 10:51:48 -0700 | [diff] [blame] | 288 | if (*flags & FOLL_TRIED) { |
| 289 | VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); |
| 290 | fault_flags |= FAULT_FLAG_TRIED; |
| 291 | } |
Kirill A. Shutemov | 1674448 | 2014-06-04 16:08:12 -0700 | [diff] [blame] | 292 | |
| 293 | ret = handle_mm_fault(mm, vma, address, fault_flags); |
| 294 | if (ret & VM_FAULT_ERROR) { |
| 295 | if (ret & VM_FAULT_OOM) |
| 296 | return -ENOMEM; |
| 297 | if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) |
| 298 | return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT; |
Linus Torvalds | 33692f2 | 2015-01-29 10:51:32 -0800 | [diff] [blame] | 299 | if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) |
Kirill A. Shutemov | 1674448 | 2014-06-04 16:08:12 -0700 | [diff] [blame] | 300 | return -EFAULT; |
| 301 | BUG(); |
| 302 | } |
| 303 | |
| 304 | if (tsk) { |
| 305 | if (ret & VM_FAULT_MAJOR) |
| 306 | tsk->maj_flt++; |
| 307 | else |
| 308 | tsk->min_flt++; |
| 309 | } |
| 310 | |
| 311 | if (ret & VM_FAULT_RETRY) { |
| 312 | if (nonblocking) |
| 313 | *nonblocking = 0; |
| 314 | return -EBUSY; |
| 315 | } |
| 316 | |
| 317 | /* |
| 318 | * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when |
| 319 | * necessary, even if maybe_mkwrite decided not to set pte_write. We |
| 320 | * can thus safely do subsequent page lookups as if they were reads. |
| 321 | * But only do so when looping for pte_write is futile: in some cases |
| 322 | * userspace may also be wanting to write to the gotten user page, |
| 323 | * which a read fault here might prevent (a readonly page might get |
| 324 | * reCOWed by userspace write). |
| 325 | */ |
| 326 | if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) |
| 327 | *flags &= ~FOLL_WRITE; |
| 328 | return 0; |
| 329 | } |
| 330 | |
Kirill A. Shutemov | fa5bb20 | 2014-06-04 16:08:13 -0700 | [diff] [blame] | 331 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) |
| 332 | { |
| 333 | vm_flags_t vm_flags = vma->vm_flags; |
| 334 | |
| 335 | if (vm_flags & (VM_IO | VM_PFNMAP)) |
| 336 | return -EFAULT; |
| 337 | |
| 338 | if (gup_flags & FOLL_WRITE) { |
| 339 | if (!(vm_flags & VM_WRITE)) { |
| 340 | if (!(gup_flags & FOLL_FORCE)) |
| 341 | return -EFAULT; |
| 342 | /* |
| 343 | * We used to let the write,force case do COW in a |
| 344 | * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could |
| 345 | * set a breakpoint in a read-only mapping of an |
| 346 | * executable, without corrupting the file (yet only |
| 347 | * when that file had been opened for writing!). |
| 348 | * Anon pages in shared mappings are surprising: now |
| 349 | * just reject it. |
| 350 | */ |
| 351 | if (!is_cow_mapping(vm_flags)) { |
| 352 | WARN_ON_ONCE(vm_flags & VM_MAYWRITE); |
| 353 | return -EFAULT; |
| 354 | } |
| 355 | } |
| 356 | } else if (!(vm_flags & VM_READ)) { |
| 357 | if (!(gup_flags & FOLL_FORCE)) |
| 358 | return -EFAULT; |
| 359 | /* |
| 360 | * Is there actually any vma we can reach here which does not |
| 361 | * have VM_MAYREAD set? |
| 362 | */ |
| 363 | if (!(vm_flags & VM_MAYREAD)) |
| 364 | return -EFAULT; |
| 365 | } |
| 366 | return 0; |
| 367 | } |
| 368 | |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 369 | /** |
| 370 | * __get_user_pages() - pin user pages in memory |
| 371 | * @tsk: task_struct of target task |
| 372 | * @mm: mm_struct of target mm |
| 373 | * @start: starting user address |
| 374 | * @nr_pages: number of pages from start to pin |
| 375 | * @gup_flags: flags modifying pin behaviour |
| 376 | * @pages: array that receives pointers to the pages pinned. |
| 377 | * Should be at least nr_pages long. Or NULL, if caller |
| 378 | * only intends to ensure the pages are faulted in. |
| 379 | * @vmas: array of pointers to vmas corresponding to each page. |
| 380 | * Or NULL if the caller does not require them. |
| 381 | * @nonblocking: whether waiting for disk IO or mmap_sem contention |
| 382 | * |
| 383 | * Returns number of pages pinned. This may be fewer than the number |
| 384 | * requested. If nr_pages is 0 or negative, returns 0. If no pages |
| 385 | * were pinned, returns -errno. Each page returned must be released |
| 386 | * with a put_page() call when it is finished with. vmas will only |
| 387 | * remain valid while mmap_sem is held. |
| 388 | * |
Paul Cassella | 9a95f3c | 2014-08-06 16:07:24 -0700 | [diff] [blame] | 389 | * Must be called with mmap_sem held. It may be released. See below. |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 390 | * |
| 391 | * __get_user_pages walks a process's page tables and takes a reference to |
| 392 | * each struct page that each user address corresponds to at a given |
| 393 | * instant. That is, it takes the page that would be accessed if a user |
| 394 | * thread accesses the given user virtual address at that instant. |
| 395 | * |
| 396 | * This does not guarantee that the page exists in the user mappings when |
| 397 | * __get_user_pages returns, and there may even be a completely different |
| 398 | * page there in some cases (eg. if mmapped pagecache has been invalidated |
| 399 | * and subsequently re faulted). However it does guarantee that the page |
| 400 | * won't be freed completely. And mostly callers simply care that the page |
| 401 | * contains data that was valid *at some point in time*. Typically, an IO |
| 402 | * or similar operation cannot guarantee anything stronger anyway because |
| 403 | * locks can't be held over the syscall boundary. |
| 404 | * |
| 405 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If |
| 406 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as |
| 407 | * appropriate) must be called after the page is finished with, and |
| 408 | * before put_page is called. |
| 409 | * |
| 410 | * If @nonblocking != NULL, __get_user_pages will not wait for disk IO |
| 411 | * or mmap_sem contention, and if waiting is needed to pin all pages, |
Paul Cassella | 9a95f3c | 2014-08-06 16:07:24 -0700 | [diff] [blame] | 412 | * *@nonblocking will be set to 0. Further, if @gup_flags does not |
| 413 | * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in |
| 414 | * this case. |
| 415 | * |
| 416 | * A caller using such a combination of @nonblocking and @gup_flags |
| 417 | * must therefore hold the mmap_sem for reading only, and recognize |
| 418 | * when it's been released. Otherwise, it must be held for either |
| 419 | * reading or writing and will not be released. |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 420 | * |
| 421 | * In most cases, get_user_pages or get_user_pages_fast should be used |
| 422 | * instead of __get_user_pages. __get_user_pages should be used only if |
| 423 | * you need some special @gup_flags. |
| 424 | */ |
| 425 | long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
| 426 | unsigned long start, unsigned long nr_pages, |
| 427 | unsigned int gup_flags, struct page **pages, |
| 428 | struct vm_area_struct **vmas, int *nonblocking) |
| 429 | { |
Kirill A. Shutemov | fa5bb20 | 2014-06-04 16:08:13 -0700 | [diff] [blame] | 430 | long i = 0; |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 431 | unsigned int page_mask; |
Kirill A. Shutemov | fa5bb20 | 2014-06-04 16:08:13 -0700 | [diff] [blame] | 432 | struct vm_area_struct *vma = NULL; |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 433 | |
| 434 | if (!nr_pages) |
| 435 | return 0; |
| 436 | |
| 437 | VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); |
| 438 | |
| 439 | /* |
| 440 | * If FOLL_FORCE is set then do not force a full fault as the hinting |
| 441 | * fault information is unrelated to the reference behaviour of a task |
| 442 | * using the address space |
| 443 | */ |
| 444 | if (!(gup_flags & FOLL_FORCE)) |
| 445 | gup_flags |= FOLL_NUMA; |
| 446 | |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 447 | do { |
Kirill A. Shutemov | fa5bb20 | 2014-06-04 16:08:13 -0700 | [diff] [blame] | 448 | struct page *page; |
| 449 | unsigned int foll_flags = gup_flags; |
| 450 | unsigned int page_increm; |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 451 | |
Kirill A. Shutemov | fa5bb20 | 2014-06-04 16:08:13 -0700 | [diff] [blame] | 452 | /* first iteration or cross vma bound */ |
| 453 | if (!vma || start >= vma->vm_end) { |
| 454 | vma = find_extend_vma(mm, start); |
| 455 | if (!vma && in_gate_area(mm, start)) { |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 456 | int ret; |
Kirill A. Shutemov | fa5bb20 | 2014-06-04 16:08:13 -0700 | [diff] [blame] | 457 | ret = get_gate_page(mm, start & PAGE_MASK, |
| 458 | gup_flags, &vma, |
| 459 | pages ? &pages[i] : NULL); |
| 460 | if (ret) |
| 461 | return i ? : ret; |
| 462 | page_mask = 0; |
| 463 | goto next_page; |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 464 | } |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 465 | |
Kirill A. Shutemov | fa5bb20 | 2014-06-04 16:08:13 -0700 | [diff] [blame] | 466 | if (!vma || check_vma_flags(vma, gup_flags)) |
| 467 | return i ? : -EFAULT; |
| 468 | if (is_vm_hugetlb_page(vma)) { |
| 469 | i = follow_hugetlb_page(mm, vma, pages, vmas, |
| 470 | &start, &nr_pages, i, |
| 471 | gup_flags); |
| 472 | continue; |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 473 | } |
Kirill A. Shutemov | fa5bb20 | 2014-06-04 16:08:13 -0700 | [diff] [blame] | 474 | } |
| 475 | retry: |
| 476 | /* |
| 477 | * If we have a pending SIGKILL, don't keep faulting pages and |
| 478 | * potentially allocating memory. |
| 479 | */ |
| 480 | if (unlikely(fatal_signal_pending(current))) |
| 481 | return i ? i : -ERESTARTSYS; |
| 482 | cond_resched(); |
| 483 | page = follow_page_mask(vma, start, foll_flags, &page_mask); |
| 484 | if (!page) { |
| 485 | int ret; |
| 486 | ret = faultin_page(tsk, vma, start, &foll_flags, |
| 487 | nonblocking); |
| 488 | switch (ret) { |
| 489 | case 0: |
| 490 | goto retry; |
| 491 | case -EFAULT: |
| 492 | case -ENOMEM: |
| 493 | case -EHWPOISON: |
| 494 | return i ? i : ret; |
| 495 | case -EBUSY: |
| 496 | return i; |
| 497 | case -ENOENT: |
| 498 | goto next_page; |
| 499 | } |
| 500 | BUG(); |
| 501 | } |
| 502 | if (IS_ERR(page)) |
| 503 | return i ? i : PTR_ERR(page); |
| 504 | if (pages) { |
| 505 | pages[i] = page; |
| 506 | flush_anon_page(vma, page, start); |
| 507 | flush_dcache_page(page); |
| 508 | page_mask = 0; |
| 509 | } |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 510 | next_page: |
Kirill A. Shutemov | fa5bb20 | 2014-06-04 16:08:13 -0700 | [diff] [blame] | 511 | if (vmas) { |
| 512 | vmas[i] = vma; |
| 513 | page_mask = 0; |
| 514 | } |
| 515 | page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); |
| 516 | if (page_increm > nr_pages) |
| 517 | page_increm = nr_pages; |
| 518 | i += page_increm; |
| 519 | start += page_increm * PAGE_SIZE; |
| 520 | nr_pages -= page_increm; |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 521 | } while (nr_pages); |
| 522 | return i; |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 523 | } |
| 524 | EXPORT_SYMBOL(__get_user_pages); |
| 525 | |
| 526 | /* |
| 527 | * fixup_user_fault() - manually resolve a user page fault |
| 528 | * @tsk: the task_struct to use for page fault accounting, or |
| 529 | * NULL if faults are not to be recorded. |
| 530 | * @mm: mm_struct of target mm |
| 531 | * @address: user address |
| 532 | * @fault_flags:flags to pass down to handle_mm_fault() |
| 533 | * |
| 534 | * This is meant to be called in the specific scenario where for locking reasons |
| 535 | * we try to access user memory in atomic context (within a pagefault_disable() |
| 536 | * section), this returns -EFAULT, and we want to resolve the user fault before |
| 537 | * trying again. |
| 538 | * |
| 539 | * Typically this is meant to be used by the futex code. |
| 540 | * |
| 541 | * The main difference with get_user_pages() is that this function will |
| 542 | * unconditionally call handle_mm_fault() which will in turn perform all the |
| 543 | * necessary SW fixup of the dirty and young bits in the PTE, while |
| 544 | * handle_mm_fault() only guarantees to update these in the struct page. |
| 545 | * |
| 546 | * This is important for some architectures where those bits also gate the |
| 547 | * access permission to the page because they are maintained in software. On |
| 548 | * such architectures, gup() will not be enough to make a subsequent access |
| 549 | * succeed. |
| 550 | * |
Paul Cassella | 9a95f3c | 2014-08-06 16:07:24 -0700 | [diff] [blame] | 551 | * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault(). |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 552 | */ |
| 553 | int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, |
| 554 | unsigned long address, unsigned int fault_flags) |
| 555 | { |
| 556 | struct vm_area_struct *vma; |
| 557 | vm_flags_t vm_flags; |
| 558 | int ret; |
| 559 | |
| 560 | vma = find_extend_vma(mm, address); |
| 561 | if (!vma || address < vma->vm_start) |
| 562 | return -EFAULT; |
| 563 | |
| 564 | vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ; |
| 565 | if (!(vm_flags & vma->vm_flags)) |
| 566 | return -EFAULT; |
| 567 | |
| 568 | ret = handle_mm_fault(mm, vma, address, fault_flags); |
| 569 | if (ret & VM_FAULT_ERROR) { |
| 570 | if (ret & VM_FAULT_OOM) |
| 571 | return -ENOMEM; |
| 572 | if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) |
| 573 | return -EHWPOISON; |
Linus Torvalds | 33692f2 | 2015-01-29 10:51:32 -0800 | [diff] [blame] | 574 | if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 575 | return -EFAULT; |
| 576 | BUG(); |
| 577 | } |
| 578 | if (tsk) { |
| 579 | if (ret & VM_FAULT_MAJOR) |
| 580 | tsk->maj_flt++; |
| 581 | else |
| 582 | tsk->min_flt++; |
| 583 | } |
| 584 | return 0; |
| 585 | } |
| 586 | |
| 587 | /* |
| 588 | * get_user_pages() - pin user pages in memory |
| 589 | * @tsk: the task_struct to use for page fault accounting, or |
| 590 | * NULL if faults are not to be recorded. |
| 591 | * @mm: mm_struct of target mm |
| 592 | * @start: starting user address |
| 593 | * @nr_pages: number of pages from start to pin |
| 594 | * @write: whether pages will be written to by the caller |
| 595 | * @force: whether to force access even when user mapping is currently |
| 596 | * protected (but never forces write access to shared mapping). |
| 597 | * @pages: array that receives pointers to the pages pinned. |
| 598 | * Should be at least nr_pages long. Or NULL, if caller |
| 599 | * only intends to ensure the pages are faulted in. |
| 600 | * @vmas: array of pointers to vmas corresponding to each page. |
| 601 | * Or NULL if the caller does not require them. |
| 602 | * |
| 603 | * Returns number of pages pinned. This may be fewer than the number |
| 604 | * requested. If nr_pages is 0 or negative, returns 0. If no pages |
| 605 | * were pinned, returns -errno. Each page returned must be released |
| 606 | * with a put_page() call when it is finished with. vmas will only |
| 607 | * remain valid while mmap_sem is held. |
| 608 | * |
| 609 | * Must be called with mmap_sem held for read or write. |
| 610 | * |
| 611 | * get_user_pages walks a process's page tables and takes a reference to |
| 612 | * each struct page that each user address corresponds to at a given |
| 613 | * instant. That is, it takes the page that would be accessed if a user |
| 614 | * thread accesses the given user virtual address at that instant. |
| 615 | * |
| 616 | * This does not guarantee that the page exists in the user mappings when |
| 617 | * get_user_pages returns, and there may even be a completely different |
| 618 | * page there in some cases (eg. if mmapped pagecache has been invalidated |
| 619 | * and subsequently re faulted). However it does guarantee that the page |
| 620 | * won't be freed completely. And mostly callers simply care that the page |
| 621 | * contains data that was valid *at some point in time*. Typically, an IO |
| 622 | * or similar operation cannot guarantee anything stronger anyway because |
| 623 | * locks can't be held over the syscall boundary. |
| 624 | * |
| 625 | * If write=0, the page must not be written to. If the page is written to, |
| 626 | * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called |
| 627 | * after the page is finished with, and before put_page is called. |
| 628 | * |
| 629 | * get_user_pages is typically used for fewer-copy IO operations, to get a |
| 630 | * handle on the memory by some means other than accesses via the user virtual |
| 631 | * addresses. The pages may be submitted for DMA to devices or accessed via |
| 632 | * their kernel linear mapping (via the kmap APIs). Care should be taken to |
| 633 | * use the correct cache flushing APIs. |
| 634 | * |
| 635 | * See also get_user_pages_fast, for performance critical applications. |
| 636 | */ |
| 637 | long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
| 638 | unsigned long start, unsigned long nr_pages, int write, |
| 639 | int force, struct page **pages, struct vm_area_struct **vmas) |
| 640 | { |
| 641 | int flags = FOLL_TOUCH; |
| 642 | |
| 643 | if (pages) |
| 644 | flags |= FOLL_GET; |
| 645 | if (write) |
| 646 | flags |= FOLL_WRITE; |
| 647 | if (force) |
| 648 | flags |= FOLL_FORCE; |
| 649 | |
| 650 | return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, |
| 651 | NULL); |
| 652 | } |
| 653 | EXPORT_SYMBOL(get_user_pages); |
| 654 | |
| 655 | /** |
| 656 | * get_dump_page() - pin user page in memory while writing it to core dump |
| 657 | * @addr: user address |
| 658 | * |
| 659 | * Returns struct page pointer of user page pinned for dump, |
| 660 | * to be freed afterwards by page_cache_release() or put_page(). |
| 661 | * |
| 662 | * Returns NULL on any kind of failure - a hole must then be inserted into |
| 663 | * the corefile, to preserve alignment with its headers; and also returns |
| 664 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - |
| 665 | * allowing a hole to be left in the corefile to save diskspace. |
| 666 | * |
| 667 | * Called without mmap_sem, but after all other threads have been killed. |
| 668 | */ |
| 669 | #ifdef CONFIG_ELF_CORE |
| 670 | struct page *get_dump_page(unsigned long addr) |
| 671 | { |
| 672 | struct vm_area_struct *vma; |
| 673 | struct page *page; |
| 674 | |
| 675 | if (__get_user_pages(current, current->mm, addr, 1, |
| 676 | FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, |
| 677 | NULL) < 1) |
| 678 | return NULL; |
| 679 | flush_cache_page(vma, addr, page_to_pfn(page)); |
| 680 | return page; |
| 681 | } |
| 682 | #endif /* CONFIG_ELF_CORE */ |
Steve Capper | 2667f50 | 2014-10-09 15:29:14 -0700 | [diff] [blame] | 683 | |
| 684 | /* |
| 685 | * Generic RCU Fast GUP |
| 686 | * |
| 687 | * get_user_pages_fast attempts to pin user pages by walking the page |
| 688 | * tables directly and avoids taking locks. Thus the walker needs to be |
| 689 | * protected from page table pages being freed from under it, and should |
| 690 | * block any THP splits. |
| 691 | * |
| 692 | * One way to achieve this is to have the walker disable interrupts, and |
| 693 | * rely on IPIs from the TLB flushing code blocking before the page table |
| 694 | * pages are freed. This is unsuitable for architectures that do not need |
| 695 | * to broadcast an IPI when invalidating TLBs. |
| 696 | * |
| 697 | * Another way to achieve this is to batch up page table containing pages |
| 698 | * belonging to more than one mm_user, then rcu_sched a callback to free those |
| 699 | * pages. Disabling interrupts will allow the fast_gup walker to both block |
| 700 | * the rcu_sched callback, and an IPI that we broadcast for splitting THPs |
| 701 | * (which is a relatively rare event). The code below adopts this strategy. |
| 702 | * |
| 703 | * Before activating this code, please be aware that the following assumptions |
| 704 | * are currently made: |
| 705 | * |
| 706 | * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free |
| 707 | * pages containing page tables. |
| 708 | * |
| 709 | * *) THP splits will broadcast an IPI, this can be achieved by overriding |
| 710 | * pmdp_splitting_flush. |
| 711 | * |
| 712 | * *) ptes can be read atomically by the architecture. |
| 713 | * |
| 714 | * *) access_ok is sufficient to validate userspace address ranges. |
| 715 | * |
| 716 | * The last two assumptions can be relaxed by the addition of helper functions. |
| 717 | * |
| 718 | * This code is based heavily on the PowerPC implementation by Nick Piggin. |
| 719 | */ |
| 720 | #ifdef CONFIG_HAVE_GENERIC_RCU_GUP |
| 721 | |
| 722 | #ifdef __HAVE_ARCH_PTE_SPECIAL |
| 723 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, |
| 724 | int write, struct page **pages, int *nr) |
| 725 | { |
| 726 | pte_t *ptep, *ptem; |
| 727 | int ret = 0; |
| 728 | |
| 729 | ptem = ptep = pte_offset_map(&pmd, addr); |
| 730 | do { |
| 731 | /* |
| 732 | * In the line below we are assuming that the pte can be read |
| 733 | * atomically. If this is not the case for your architecture, |
| 734 | * please wrap this in a helper function! |
| 735 | * |
| 736 | * for an example see gup_get_pte in arch/x86/mm/gup.c |
| 737 | */ |
| 738 | pte_t pte = ACCESS_ONCE(*ptep); |
| 739 | struct page *page; |
| 740 | |
| 741 | /* |
| 742 | * Similar to the PMD case below, NUMA hinting must take slow |
| 743 | * path |
| 744 | */ |
| 745 | if (!pte_present(pte) || pte_special(pte) || |
| 746 | pte_numa(pte) || (write && !pte_write(pte))) |
| 747 | goto pte_unmap; |
| 748 | |
| 749 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); |
| 750 | page = pte_page(pte); |
| 751 | |
| 752 | if (!page_cache_get_speculative(page)) |
| 753 | goto pte_unmap; |
| 754 | |
| 755 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { |
| 756 | put_page(page); |
| 757 | goto pte_unmap; |
| 758 | } |
| 759 | |
| 760 | pages[*nr] = page; |
| 761 | (*nr)++; |
| 762 | |
| 763 | } while (ptep++, addr += PAGE_SIZE, addr != end); |
| 764 | |
| 765 | ret = 1; |
| 766 | |
| 767 | pte_unmap: |
| 768 | pte_unmap(ptem); |
| 769 | return ret; |
| 770 | } |
| 771 | #else |
| 772 | |
| 773 | /* |
| 774 | * If we can't determine whether or not a pte is special, then fail immediately |
| 775 | * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not |
| 776 | * to be special. |
| 777 | * |
| 778 | * For a futex to be placed on a THP tail page, get_futex_key requires a |
| 779 | * __get_user_pages_fast implementation that can pin pages. Thus it's still |
| 780 | * useful to have gup_huge_pmd even if we can't operate on ptes. |
| 781 | */ |
| 782 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, |
| 783 | int write, struct page **pages, int *nr) |
| 784 | { |
| 785 | return 0; |
| 786 | } |
| 787 | #endif /* __HAVE_ARCH_PTE_SPECIAL */ |
| 788 | |
| 789 | static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
| 790 | unsigned long end, int write, struct page **pages, int *nr) |
| 791 | { |
| 792 | struct page *head, *page, *tail; |
| 793 | int refs; |
| 794 | |
| 795 | if (write && !pmd_write(orig)) |
| 796 | return 0; |
| 797 | |
| 798 | refs = 0; |
| 799 | head = pmd_page(orig); |
| 800 | page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
| 801 | tail = page; |
| 802 | do { |
| 803 | VM_BUG_ON_PAGE(compound_head(page) != head, page); |
| 804 | pages[*nr] = page; |
| 805 | (*nr)++; |
| 806 | page++; |
| 807 | refs++; |
| 808 | } while (addr += PAGE_SIZE, addr != end); |
| 809 | |
| 810 | if (!page_cache_add_speculative(head, refs)) { |
| 811 | *nr -= refs; |
| 812 | return 0; |
| 813 | } |
| 814 | |
| 815 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { |
| 816 | *nr -= refs; |
| 817 | while (refs--) |
| 818 | put_page(head); |
| 819 | return 0; |
| 820 | } |
| 821 | |
| 822 | /* |
| 823 | * Any tail pages need their mapcount reference taken before we |
| 824 | * return. (This allows the THP code to bump their ref count when |
| 825 | * they are split into base pages). |
| 826 | */ |
| 827 | while (refs--) { |
| 828 | if (PageTail(tail)) |
| 829 | get_huge_page_tail(tail); |
| 830 | tail++; |
| 831 | } |
| 832 | |
| 833 | return 1; |
| 834 | } |
| 835 | |
| 836 | static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, |
| 837 | unsigned long end, int write, struct page **pages, int *nr) |
| 838 | { |
| 839 | struct page *head, *page, *tail; |
| 840 | int refs; |
| 841 | |
| 842 | if (write && !pud_write(orig)) |
| 843 | return 0; |
| 844 | |
| 845 | refs = 0; |
| 846 | head = pud_page(orig); |
| 847 | page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT); |
| 848 | tail = page; |
| 849 | do { |
| 850 | VM_BUG_ON_PAGE(compound_head(page) != head, page); |
| 851 | pages[*nr] = page; |
| 852 | (*nr)++; |
| 853 | page++; |
| 854 | refs++; |
| 855 | } while (addr += PAGE_SIZE, addr != end); |
| 856 | |
| 857 | if (!page_cache_add_speculative(head, refs)) { |
| 858 | *nr -= refs; |
| 859 | return 0; |
| 860 | } |
| 861 | |
| 862 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { |
| 863 | *nr -= refs; |
| 864 | while (refs--) |
| 865 | put_page(head); |
| 866 | return 0; |
| 867 | } |
| 868 | |
| 869 | while (refs--) { |
| 870 | if (PageTail(tail)) |
| 871 | get_huge_page_tail(tail); |
| 872 | tail++; |
| 873 | } |
| 874 | |
| 875 | return 1; |
| 876 | } |
| 877 | |
Aneesh Kumar K.V | f30c59e | 2014-11-05 21:57:40 +0530 | [diff] [blame] | 878 | static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, |
| 879 | unsigned long end, int write, |
| 880 | struct page **pages, int *nr) |
| 881 | { |
| 882 | int refs; |
| 883 | struct page *head, *page, *tail; |
| 884 | |
| 885 | if (write && !pgd_write(orig)) |
| 886 | return 0; |
| 887 | |
| 888 | refs = 0; |
| 889 | head = pgd_page(orig); |
| 890 | page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); |
| 891 | tail = page; |
| 892 | do { |
| 893 | VM_BUG_ON_PAGE(compound_head(page) != head, page); |
| 894 | pages[*nr] = page; |
| 895 | (*nr)++; |
| 896 | page++; |
| 897 | refs++; |
| 898 | } while (addr += PAGE_SIZE, addr != end); |
| 899 | |
| 900 | if (!page_cache_add_speculative(head, refs)) { |
| 901 | *nr -= refs; |
| 902 | return 0; |
| 903 | } |
| 904 | |
| 905 | if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { |
| 906 | *nr -= refs; |
| 907 | while (refs--) |
| 908 | put_page(head); |
| 909 | return 0; |
| 910 | } |
| 911 | |
| 912 | while (refs--) { |
| 913 | if (PageTail(tail)) |
| 914 | get_huge_page_tail(tail); |
| 915 | tail++; |
| 916 | } |
| 917 | |
| 918 | return 1; |
| 919 | } |
| 920 | |
Steve Capper | 2667f50 | 2014-10-09 15:29:14 -0700 | [diff] [blame] | 921 | static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, |
| 922 | int write, struct page **pages, int *nr) |
| 923 | { |
| 924 | unsigned long next; |
| 925 | pmd_t *pmdp; |
| 926 | |
| 927 | pmdp = pmd_offset(&pud, addr); |
| 928 | do { |
| 929 | pmd_t pmd = ACCESS_ONCE(*pmdp); |
| 930 | |
| 931 | next = pmd_addr_end(addr, end); |
| 932 | if (pmd_none(pmd) || pmd_trans_splitting(pmd)) |
| 933 | return 0; |
| 934 | |
| 935 | if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) { |
| 936 | /* |
| 937 | * NUMA hinting faults need to be handled in the GUP |
| 938 | * slowpath for accounting purposes and so that they |
| 939 | * can be serialised against THP migration. |
| 940 | */ |
| 941 | if (pmd_numa(pmd)) |
| 942 | return 0; |
| 943 | |
| 944 | if (!gup_huge_pmd(pmd, pmdp, addr, next, write, |
| 945 | pages, nr)) |
| 946 | return 0; |
| 947 | |
Aneesh Kumar K.V | f30c59e | 2014-11-05 21:57:40 +0530 | [diff] [blame] | 948 | } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { |
| 949 | /* |
| 950 | * architecture have different format for hugetlbfs |
| 951 | * pmd format and THP pmd format |
| 952 | */ |
| 953 | if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, |
| 954 | PMD_SHIFT, next, write, pages, nr)) |
| 955 | return 0; |
Steve Capper | 2667f50 | 2014-10-09 15:29:14 -0700 | [diff] [blame] | 956 | } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) |
| 957 | return 0; |
| 958 | } while (pmdp++, addr = next, addr != end); |
| 959 | |
| 960 | return 1; |
| 961 | } |
| 962 | |
Aneesh Kumar K.V | f30c59e | 2014-11-05 21:57:40 +0530 | [diff] [blame] | 963 | static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end, |
| 964 | int write, struct page **pages, int *nr) |
Steve Capper | 2667f50 | 2014-10-09 15:29:14 -0700 | [diff] [blame] | 965 | { |
| 966 | unsigned long next; |
| 967 | pud_t *pudp; |
| 968 | |
Aneesh Kumar K.V | f30c59e | 2014-11-05 21:57:40 +0530 | [diff] [blame] | 969 | pudp = pud_offset(&pgd, addr); |
Steve Capper | 2667f50 | 2014-10-09 15:29:14 -0700 | [diff] [blame] | 970 | do { |
Christian Borntraeger | e37c698 | 2014-12-07 21:41:33 +0100 | [diff] [blame] | 971 | pud_t pud = READ_ONCE(*pudp); |
Steve Capper | 2667f50 | 2014-10-09 15:29:14 -0700 | [diff] [blame] | 972 | |
| 973 | next = pud_addr_end(addr, end); |
| 974 | if (pud_none(pud)) |
| 975 | return 0; |
Aneesh Kumar K.V | f30c59e | 2014-11-05 21:57:40 +0530 | [diff] [blame] | 976 | if (unlikely(pud_huge(pud))) { |
Steve Capper | 2667f50 | 2014-10-09 15:29:14 -0700 | [diff] [blame] | 977 | if (!gup_huge_pud(pud, pudp, addr, next, write, |
Aneesh Kumar K.V | f30c59e | 2014-11-05 21:57:40 +0530 | [diff] [blame] | 978 | pages, nr)) |
| 979 | return 0; |
| 980 | } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { |
| 981 | if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, |
| 982 | PUD_SHIFT, next, write, pages, nr)) |
Steve Capper | 2667f50 | 2014-10-09 15:29:14 -0700 | [diff] [blame] | 983 | return 0; |
| 984 | } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) |
| 985 | return 0; |
| 986 | } while (pudp++, addr = next, addr != end); |
| 987 | |
| 988 | return 1; |
| 989 | } |
| 990 | |
| 991 | /* |
| 992 | * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to |
| 993 | * the regular GUP. It will only return non-negative values. |
| 994 | */ |
| 995 | int __get_user_pages_fast(unsigned long start, int nr_pages, int write, |
| 996 | struct page **pages) |
| 997 | { |
| 998 | struct mm_struct *mm = current->mm; |
| 999 | unsigned long addr, len, end; |
| 1000 | unsigned long next, flags; |
| 1001 | pgd_t *pgdp; |
| 1002 | int nr = 0; |
| 1003 | |
| 1004 | start &= PAGE_MASK; |
| 1005 | addr = start; |
| 1006 | len = (unsigned long) nr_pages << PAGE_SHIFT; |
| 1007 | end = start + len; |
| 1008 | |
| 1009 | if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, |
| 1010 | start, len))) |
| 1011 | return 0; |
| 1012 | |
| 1013 | /* |
| 1014 | * Disable interrupts. We use the nested form as we can already have |
| 1015 | * interrupts disabled by get_futex_key. |
| 1016 | * |
| 1017 | * With interrupts disabled, we block page table pages from being |
| 1018 | * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h |
| 1019 | * for more details. |
| 1020 | * |
| 1021 | * We do not adopt an rcu_read_lock(.) here as we also want to |
| 1022 | * block IPIs that come from THPs splitting. |
| 1023 | */ |
| 1024 | |
| 1025 | local_irq_save(flags); |
| 1026 | pgdp = pgd_offset(mm, addr); |
| 1027 | do { |
Aneesh Kumar K.V | f30c59e | 2014-11-05 21:57:40 +0530 | [diff] [blame] | 1028 | pgd_t pgd = ACCESS_ONCE(*pgdp); |
| 1029 | |
Steve Capper | 2667f50 | 2014-10-09 15:29:14 -0700 | [diff] [blame] | 1030 | next = pgd_addr_end(addr, end); |
Aneesh Kumar K.V | f30c59e | 2014-11-05 21:57:40 +0530 | [diff] [blame] | 1031 | if (pgd_none(pgd)) |
Steve Capper | 2667f50 | 2014-10-09 15:29:14 -0700 | [diff] [blame] | 1032 | break; |
Aneesh Kumar K.V | f30c59e | 2014-11-05 21:57:40 +0530 | [diff] [blame] | 1033 | if (unlikely(pgd_huge(pgd))) { |
| 1034 | if (!gup_huge_pgd(pgd, pgdp, addr, next, write, |
| 1035 | pages, &nr)) |
| 1036 | break; |
| 1037 | } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { |
| 1038 | if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, |
| 1039 | PGDIR_SHIFT, next, write, pages, &nr)) |
| 1040 | break; |
| 1041 | } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr)) |
Steve Capper | 2667f50 | 2014-10-09 15:29:14 -0700 | [diff] [blame] | 1042 | break; |
| 1043 | } while (pgdp++, addr = next, addr != end); |
| 1044 | local_irq_restore(flags); |
| 1045 | |
| 1046 | return nr; |
| 1047 | } |
| 1048 | |
| 1049 | /** |
| 1050 | * get_user_pages_fast() - pin user pages in memory |
| 1051 | * @start: starting user address |
| 1052 | * @nr_pages: number of pages from start to pin |
| 1053 | * @write: whether pages will be written to |
| 1054 | * @pages: array that receives pointers to the pages pinned. |
| 1055 | * Should be at least nr_pages long. |
| 1056 | * |
| 1057 | * Attempt to pin user pages in memory without taking mm->mmap_sem. |
| 1058 | * If not successful, it will fall back to taking the lock and |
| 1059 | * calling get_user_pages(). |
| 1060 | * |
| 1061 | * Returns number of pages pinned. This may be fewer than the number |
| 1062 | * requested. If nr_pages is 0 or negative, returns 0. If no pages |
| 1063 | * were pinned, returns -errno. |
| 1064 | */ |
| 1065 | int get_user_pages_fast(unsigned long start, int nr_pages, int write, |
| 1066 | struct page **pages) |
| 1067 | { |
| 1068 | struct mm_struct *mm = current->mm; |
| 1069 | int nr, ret; |
| 1070 | |
| 1071 | start &= PAGE_MASK; |
| 1072 | nr = __get_user_pages_fast(start, nr_pages, write, pages); |
| 1073 | ret = nr; |
| 1074 | |
| 1075 | if (nr < nr_pages) { |
| 1076 | /* Try to get the remaining pages with get_user_pages */ |
| 1077 | start += nr << PAGE_SHIFT; |
| 1078 | pages += nr; |
| 1079 | |
| 1080 | down_read(&mm->mmap_sem); |
| 1081 | ret = get_user_pages(current, mm, start, |
| 1082 | nr_pages - nr, write, 0, pages, NULL); |
| 1083 | up_read(&mm->mmap_sem); |
| 1084 | |
| 1085 | /* Have to be a bit careful with return values */ |
| 1086 | if (nr > 0) { |
| 1087 | if (ret < 0) |
| 1088 | ret = nr; |
| 1089 | else |
| 1090 | ret += nr; |
| 1091 | } |
| 1092 | } |
| 1093 | |
| 1094 | return ret; |
| 1095 | } |
| 1096 | |
| 1097 | #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */ |