blob: a1a6d6bf87b48049c6a722aabffec5439dd0f872 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is for IA-64 platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 */
16
17#include <linux/cache.h>
18#include <linux/mm.h>
19#include <linux/module.h>
20#include <linux/pci.h>
21#include <linux/spinlock.h>
22#include <linux/string.h>
23#include <linux/types.h>
24#include <linux/ctype.h>
25
26#include <asm/io.h>
27#include <asm/pci.h>
28#include <asm/dma.h>
29
30#include <linux/init.h>
31#include <linux/bootmem.h>
32
33#define OFFSET(val,align) ((unsigned long) \
34 ( (val) & ( (align) - 1)))
35
36#define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset)
37#define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG))
38
39/*
40 * Maximum allowable number of contiguous slabs to map,
41 * must be a power of 2. What is the appropriate value ?
42 * The complexity of {map,unmap}_single is linearly dependent on this value.
43 */
44#define IO_TLB_SEGSIZE 128
45
46/*
47 * log of the size of each IO TLB slab. The number of slabs is command line
48 * controllable.
49 */
50#define IO_TLB_SHIFT 11
51
Alex Williamson0b9afed2005-09-06 11:20:49 -060052#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
53
54/*
55 * Minimum IO TLB size to bother booting with. Systems with mainly
56 * 64bit capable cards will only lightly use the swiotlb. If we can't
57 * allocate a contiguous 1MB, we're probably in trouble anyway.
58 */
59#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
60
John W. Linvillede69e0f2005-09-29 14:44:57 -070061/*
62 * Enumeration for sync targets
63 */
64enum dma_sync_target {
65 SYNC_FOR_CPU = 0,
66 SYNC_FOR_DEVICE = 1,
67};
68
Linus Torvalds1da177e2005-04-16 15:20:36 -070069int swiotlb_force;
70
71/*
72 * Used to do a quick range check in swiotlb_unmap_single and
73 * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
74 * API.
75 */
76static char *io_tlb_start, *io_tlb_end;
77
78/*
79 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
80 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
81 */
82static unsigned long io_tlb_nslabs;
83
84/*
85 * When the IOMMU overflows we return a fallback buffer. This sets the size.
86 */
87static unsigned long io_tlb_overflow = 32*1024;
88
89void *io_tlb_overflow_buffer;
90
91/*
92 * This is a free list describing the number of free entries available from
93 * each index
94 */
95static unsigned int *io_tlb_list;
96static unsigned int io_tlb_index;
97
98/*
99 * We need to save away the original address corresponding to a mapped entry
100 * for the sync operations.
101 */
102static unsigned char **io_tlb_orig_addr;
103
104/*
105 * Protect the above data structures in the map and unmap calls
106 */
107static DEFINE_SPINLOCK(io_tlb_lock);
108
109static int __init
110setup_io_tlb_npages(char *str)
111{
112 if (isdigit(*str)) {
Alex Williamsone8579e72005-08-04 13:06:00 -0700113 io_tlb_nslabs = simple_strtoul(str, &str, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114 /* avoid tail segment of size < IO_TLB_SEGSIZE */
115 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
116 }
117 if (*str == ',')
118 ++str;
119 if (!strcmp(str, "force"))
120 swiotlb_force = 1;
121 return 1;
122}
123__setup("swiotlb=", setup_io_tlb_npages);
124/* make io_tlb_overflow tunable too? */
125
126/*
127 * Statically reserve bounce buffer space and initialize bounce buffer data
128 * structures for the software IO TLB used to implement the PCI DMA API.
129 */
130void
131swiotlb_init_with_default_size (size_t default_size)
132{
133 unsigned long i;
134
135 if (!io_tlb_nslabs) {
Alex Williamsone8579e72005-08-04 13:06:00 -0700136 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700137 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
138 }
139
140 /*
141 * Get IO TLB memory from the low pages
142 */
143 io_tlb_start = alloc_bootmem_low_pages(io_tlb_nslabs *
144 (1 << IO_TLB_SHIFT));
145 if (!io_tlb_start)
146 panic("Cannot allocate SWIOTLB buffer");
147 io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
148
149 /*
150 * Allocate and initialize the free list array. This array is used
151 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
152 * between io_tlb_start and io_tlb_end.
153 */
154 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
155 for (i = 0; i < io_tlb_nslabs; i++)
156 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
157 io_tlb_index = 0;
158 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *));
159
160 /*
161 * Get the overflow emergency buffer
162 */
163 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
164 printk(KERN_INFO "Placing software IO TLB between 0x%lx - 0x%lx\n",
165 virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end));
166}
167
168void
169swiotlb_init (void)
170{
171 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
172}
173
Alex Williamson0b9afed2005-09-06 11:20:49 -0600174/*
175 * Systems with larger DMA zones (those that don't support ISA) can
176 * initialize the swiotlb later using the slab allocator if needed.
177 * This should be just like above, but with some error catching.
178 */
179int
180swiotlb_late_init_with_default_size (size_t default_size)
181{
182 unsigned long i, req_nslabs = io_tlb_nslabs;
183 unsigned int order;
184
185 if (!io_tlb_nslabs) {
186 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
187 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
188 }
189
190 /*
191 * Get IO TLB memory from the low pages
192 */
193 order = get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT));
194 io_tlb_nslabs = SLABS_PER_PAGE << order;
195
196 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
197 io_tlb_start = (char *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
198 order);
199 if (io_tlb_start)
200 break;
201 order--;
202 }
203
204 if (!io_tlb_start)
205 goto cleanup1;
206
207 if (order != get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT))) {
208 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
209 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
210 io_tlb_nslabs = SLABS_PER_PAGE << order;
211 }
212 io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
213 memset(io_tlb_start, 0, io_tlb_nslabs * (1 << IO_TLB_SHIFT));
214
215 /*
216 * Allocate and initialize the free list array. This array is used
217 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
218 * between io_tlb_start and io_tlb_end.
219 */
220 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
221 get_order(io_tlb_nslabs * sizeof(int)));
222 if (!io_tlb_list)
223 goto cleanup2;
224
225 for (i = 0; i < io_tlb_nslabs; i++)
226 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
227 io_tlb_index = 0;
228
229 io_tlb_orig_addr = (unsigned char **)__get_free_pages(GFP_KERNEL,
230 get_order(io_tlb_nslabs * sizeof(char *)));
231 if (!io_tlb_orig_addr)
232 goto cleanup3;
233
234 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(char *));
235
236 /*
237 * Get the overflow emergency buffer
238 */
239 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
240 get_order(io_tlb_overflow));
241 if (!io_tlb_overflow_buffer)
242 goto cleanup4;
243
244 printk(KERN_INFO "Placing %ldMB software IO TLB between 0x%lx - "
245 "0x%lx\n", (io_tlb_nslabs * (1 << IO_TLB_SHIFT)) >> 20,
246 virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end));
247
248 return 0;
249
250cleanup4:
251 free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs *
252 sizeof(char *)));
253 io_tlb_orig_addr = NULL;
254cleanup3:
255 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
256 sizeof(int)));
257 io_tlb_list = NULL;
258 io_tlb_end = NULL;
259cleanup2:
260 free_pages((unsigned long)io_tlb_start, order);
261 io_tlb_start = NULL;
262cleanup1:
263 io_tlb_nslabs = req_nslabs;
264 return -ENOMEM;
265}
266
Linus Torvalds1da177e2005-04-16 15:20:36 -0700267static inline int
268address_needs_mapping(struct device *hwdev, dma_addr_t addr)
269{
270 dma_addr_t mask = 0xffffffff;
271 /* If the device has a mask, use it, otherwise default to 32 bits */
272 if (hwdev && hwdev->dma_mask)
273 mask = *hwdev->dma_mask;
274 return (addr & ~mask) != 0;
275}
276
277/*
278 * Allocates bounce buffer and returns its kernel virtual address.
279 */
280static void *
281map_single(struct device *hwdev, char *buffer, size_t size, int dir)
282{
283 unsigned long flags;
284 char *dma_addr;
285 unsigned int nslots, stride, index, wrap;
286 int i;
287
288 /*
289 * For mappings greater than a page, we limit the stride (and
290 * hence alignment) to a page size.
291 */
292 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
293 if (size > PAGE_SIZE)
294 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
295 else
296 stride = 1;
297
298 if (!nslots)
299 BUG();
300
301 /*
302 * Find suitable number of IO TLB entries size that will fit this
303 * request and allocate a buffer from that IO TLB pool.
304 */
305 spin_lock_irqsave(&io_tlb_lock, flags);
306 {
307 wrap = index = ALIGN(io_tlb_index, stride);
308
309 if (index >= io_tlb_nslabs)
310 wrap = index = 0;
311
312 do {
313 /*
314 * If we find a slot that indicates we have 'nslots'
315 * number of contiguous buffers, we allocate the
316 * buffers from that slot and mark the entries as '0'
317 * indicating unavailable.
318 */
319 if (io_tlb_list[index] >= nslots) {
320 int count = 0;
321
322 for (i = index; i < (int) (index + nslots); i++)
323 io_tlb_list[i] = 0;
324 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
325 io_tlb_list[i] = ++count;
326 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
327
328 /*
329 * Update the indices to avoid searching in
330 * the next round.
331 */
332 io_tlb_index = ((index + nslots) < io_tlb_nslabs
333 ? (index + nslots) : 0);
334
335 goto found;
336 }
337 index += stride;
338 if (index >= io_tlb_nslabs)
339 index = 0;
340 } while (index != wrap);
341
342 spin_unlock_irqrestore(&io_tlb_lock, flags);
343 return NULL;
344 }
345 found:
346 spin_unlock_irqrestore(&io_tlb_lock, flags);
347
348 /*
349 * Save away the mapping from the original address to the DMA address.
350 * This is needed when we sync the memory. Then we sync the buffer if
351 * needed.
352 */
353 io_tlb_orig_addr[index] = buffer;
354 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
355 memcpy(dma_addr, buffer, size);
356
357 return dma_addr;
358}
359
360/*
361 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
362 */
363static void
364unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
365{
366 unsigned long flags;
367 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
368 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
369 char *buffer = io_tlb_orig_addr[index];
370
371 /*
372 * First, sync the memory before unmapping the entry
373 */
374 if (buffer && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
375 /*
376 * bounce... copy the data back into the original buffer * and
377 * delete the bounce buffer.
378 */
379 memcpy(buffer, dma_addr, size);
380
381 /*
382 * Return the buffer to the free list by setting the corresponding
383 * entries to indicate the number of contigous entries available.
384 * While returning the entries to the free list, we merge the entries
385 * with slots below and above the pool being returned.
386 */
387 spin_lock_irqsave(&io_tlb_lock, flags);
388 {
389 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
390 io_tlb_list[index + nslots] : 0);
391 /*
392 * Step 1: return the slots to the free list, merging the
393 * slots with superceeding slots
394 */
395 for (i = index + nslots - 1; i >= index; i--)
396 io_tlb_list[i] = ++count;
397 /*
398 * Step 2: merge the returned slots with the preceding slots,
399 * if available (non zero)
400 */
401 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
402 io_tlb_list[i] = ++count;
403 }
404 spin_unlock_irqrestore(&io_tlb_lock, flags);
405}
406
407static void
John W. Linvillede69e0f2005-09-29 14:44:57 -0700408sync_single(struct device *hwdev, char *dma_addr, size_t size,
409 int dir, int target)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700410{
411 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
412 char *buffer = io_tlb_orig_addr[index];
413
John W. Linvillede69e0f2005-09-29 14:44:57 -0700414 switch (target) {
415 case SYNC_FOR_CPU:
416 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
417 memcpy(buffer, dma_addr, size);
418 else if (dir != DMA_TO_DEVICE)
419 BUG();
420 break;
421 case SYNC_FOR_DEVICE:
422 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
423 memcpy(dma_addr, buffer, size);
424 else if (dir != DMA_FROM_DEVICE)
425 BUG();
426 break;
427 default:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700428 BUG();
John W. Linvillede69e0f2005-09-29 14:44:57 -0700429 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700430}
431
432void *
433swiotlb_alloc_coherent(struct device *hwdev, size_t size,
434 dma_addr_t *dma_handle, int flags)
435{
436 unsigned long dev_addr;
437 void *ret;
438 int order = get_order(size);
439
440 /*
441 * XXX fix me: the DMA API should pass us an explicit DMA mask
442 * instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32
443 * bit range instead of a 16MB one).
444 */
445 flags |= GFP_DMA;
446
447 ret = (void *)__get_free_pages(flags, order);
448 if (ret && address_needs_mapping(hwdev, virt_to_phys(ret))) {
449 /*
450 * The allocated memory isn't reachable by the device.
451 * Fall back on swiotlb_map_single().
452 */
453 free_pages((unsigned long) ret, order);
454 ret = NULL;
455 }
456 if (!ret) {
457 /*
458 * We are either out of memory or the device can't DMA
459 * to GFP_DMA memory; fall back on
460 * swiotlb_map_single(), which will grab memory from
461 * the lowest available address range.
462 */
463 dma_addr_t handle;
464 handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE);
465 if (dma_mapping_error(handle))
466 return NULL;
467
468 ret = phys_to_virt(handle);
469 }
470
471 memset(ret, 0, size);
472 dev_addr = virt_to_phys(ret);
473
474 /* Confirm address can be DMA'd by device */
475 if (address_needs_mapping(hwdev, dev_addr)) {
476 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016lx\n",
477 (unsigned long long)*hwdev->dma_mask, dev_addr);
478 panic("swiotlb_alloc_coherent: allocated memory is out of "
479 "range for device");
480 }
481 *dma_handle = dev_addr;
482 return ret;
483}
484
485void
486swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
487 dma_addr_t dma_handle)
488{
489 if (!(vaddr >= (void *)io_tlb_start
490 && vaddr < (void *)io_tlb_end))
491 free_pages((unsigned long) vaddr, get_order(size));
492 else
493 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
494 swiotlb_unmap_single (hwdev, dma_handle, size, DMA_TO_DEVICE);
495}
496
497static void
498swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
499{
500 /*
501 * Ran out of IOMMU space for this operation. This is very bad.
502 * Unfortunately the drivers cannot handle this operation properly.
503 * unless they check for pci_dma_mapping_error (most don't)
504 * When the mapping is small enough return a static buffer to limit
505 * the damage, or panic when the transfer is too big.
506 */
507 printk(KERN_ERR "PCI-DMA: Out of SW-IOMMU space for %lu bytes at "
508 "device %s\n", size, dev ? dev->bus_id : "?");
509
510 if (size > io_tlb_overflow && do_panic) {
511 if (dir == PCI_DMA_FROMDEVICE || dir == PCI_DMA_BIDIRECTIONAL)
512 panic("PCI-DMA: Memory would be corrupted\n");
513 if (dir == PCI_DMA_TODEVICE || dir == PCI_DMA_BIDIRECTIONAL)
514 panic("PCI-DMA: Random memory would be DMAed\n");
515 }
516}
517
518/*
519 * Map a single buffer of the indicated size for DMA in streaming mode. The
520 * PCI address to use is returned.
521 *
522 * Once the device is given the dma address, the device owns this memory until
523 * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
524 */
525dma_addr_t
526swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
527{
528 unsigned long dev_addr = virt_to_phys(ptr);
529 void *map;
530
531 if (dir == DMA_NONE)
532 BUG();
533 /*
534 * If the pointer passed in happens to be in the device's DMA window,
535 * we can safely return the device addr and not worry about bounce
536 * buffering it.
537 */
538 if (!address_needs_mapping(hwdev, dev_addr) && !swiotlb_force)
539 return dev_addr;
540
541 /*
542 * Oh well, have to allocate and map a bounce buffer.
543 */
544 map = map_single(hwdev, ptr, size, dir);
545 if (!map) {
546 swiotlb_full(hwdev, size, dir, 1);
547 map = io_tlb_overflow_buffer;
548 }
549
550 dev_addr = virt_to_phys(map);
551
552 /*
553 * Ensure that the address returned is DMA'ble
554 */
555 if (address_needs_mapping(hwdev, dev_addr))
556 panic("map_single: bounce buffer is not DMA'ble");
557
558 return dev_addr;
559}
560
561/*
562 * Since DMA is i-cache coherent, any (complete) pages that were written via
563 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
564 * flush them when they get mapped into an executable vm-area.
565 */
566static void
567mark_clean(void *addr, size_t size)
568{
569 unsigned long pg_addr, end;
570
571 pg_addr = PAGE_ALIGN((unsigned long) addr);
572 end = (unsigned long) addr + size;
573 while (pg_addr + PAGE_SIZE <= end) {
574 struct page *page = virt_to_page(pg_addr);
575 set_bit(PG_arch_1, &page->flags);
576 pg_addr += PAGE_SIZE;
577 }
578}
579
580/*
581 * Unmap a single streaming mode DMA translation. The dma_addr and size must
582 * match what was provided for in a previous swiotlb_map_single call. All
583 * other usages are undefined.
584 *
585 * After this call, reads by the cpu to the buffer are guaranteed to see
586 * whatever the device wrote there.
587 */
588void
589swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
590 int dir)
591{
592 char *dma_addr = phys_to_virt(dev_addr);
593
594 if (dir == DMA_NONE)
595 BUG();
596 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
597 unmap_single(hwdev, dma_addr, size, dir);
598 else if (dir == DMA_FROM_DEVICE)
599 mark_clean(dma_addr, size);
600}
601
602/*
603 * Make physical memory consistent for a single streaming mode DMA translation
604 * after a transfer.
605 *
606 * If you perform a swiotlb_map_single() but wish to interrogate the buffer
607 * using the cpu, yet do not wish to teardown the PCI dma mapping, you must
608 * call this function before doing so. At the next point you give the PCI dma
609 * address back to the card, you must first perform a
610 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
611 */
John W. Linville8270f3f2005-09-29 14:43:32 -0700612static inline void
613swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
John W. Linvillede69e0f2005-09-29 14:44:57 -0700614 size_t size, int dir, int target)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700615{
616 char *dma_addr = phys_to_virt(dev_addr);
617
618 if (dir == DMA_NONE)
619 BUG();
620 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
John W. Linvillede69e0f2005-09-29 14:44:57 -0700621 sync_single(hwdev, dma_addr, size, dir, target);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700622 else if (dir == DMA_FROM_DEVICE)
623 mark_clean(dma_addr, size);
624}
625
626void
John W. Linville8270f3f2005-09-29 14:43:32 -0700627swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
628 size_t size, int dir)
629{
John W. Linvillede69e0f2005-09-29 14:44:57 -0700630 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
John W. Linville8270f3f2005-09-29 14:43:32 -0700631}
632
633void
Linus Torvalds1da177e2005-04-16 15:20:36 -0700634swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
635 size_t size, int dir)
636{
John W. Linvillede69e0f2005-09-29 14:44:57 -0700637 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700638}
639
640/*
John W. Linville878a97c2005-09-29 14:44:23 -0700641 * Same as above, but for a sub-range of the mapping.
642 */
643static inline void
644swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
John W. Linvillede69e0f2005-09-29 14:44:57 -0700645 unsigned long offset, size_t size,
646 int dir, int target)
John W. Linville878a97c2005-09-29 14:44:23 -0700647{
648 char *dma_addr = phys_to_virt(dev_addr) + offset;
649
650 if (dir == DMA_NONE)
651 BUG();
652 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
John W. Linvillede69e0f2005-09-29 14:44:57 -0700653 sync_single(hwdev, dma_addr, size, dir, target);
John W. Linville878a97c2005-09-29 14:44:23 -0700654 else if (dir == DMA_FROM_DEVICE)
655 mark_clean(dma_addr, size);
656}
657
658void
659swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
660 unsigned long offset, size_t size, int dir)
661{
John W. Linvillede69e0f2005-09-29 14:44:57 -0700662 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
663 SYNC_FOR_CPU);
John W. Linville878a97c2005-09-29 14:44:23 -0700664}
665
666void
667swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
668 unsigned long offset, size_t size, int dir)
669{
John W. Linvillede69e0f2005-09-29 14:44:57 -0700670 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
671 SYNC_FOR_DEVICE);
John W. Linville878a97c2005-09-29 14:44:23 -0700672}
673
674/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700675 * Map a set of buffers described by scatterlist in streaming mode for DMA.
676 * This is the scatter-gather version of the above swiotlb_map_single
677 * interface. Here the scatter gather list elements are each tagged with the
678 * appropriate dma address and length. They are obtained via
679 * sg_dma_{address,length}(SG).
680 *
681 * NOTE: An implementation may be able to use a smaller number of
682 * DMA address/length pairs than there are SG table elements.
683 * (for example via virtual mapping capabilities)
684 * The routine returns the number of addr/length pairs actually
685 * used, at most nents.
686 *
687 * Device ownership issues as mentioned above for swiotlb_map_single are the
688 * same here.
689 */
690int
691swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
692 int dir)
693{
694 void *addr;
695 unsigned long dev_addr;
696 int i;
697
698 if (dir == DMA_NONE)
699 BUG();
700
701 for (i = 0; i < nelems; i++, sg++) {
702 addr = SG_ENT_VIRT_ADDRESS(sg);
703 dev_addr = virt_to_phys(addr);
704 if (swiotlb_force || address_needs_mapping(hwdev, dev_addr)) {
705 sg->dma_address = (dma_addr_t) virt_to_phys(map_single(hwdev, addr, sg->length, dir));
706 if (!sg->dma_address) {
707 /* Don't panic here, we expect map_sg users
708 to do proper error handling. */
709 swiotlb_full(hwdev, sg->length, dir, 0);
710 swiotlb_unmap_sg(hwdev, sg - i, i, dir);
711 sg[0].dma_length = 0;
712 return 0;
713 }
714 } else
715 sg->dma_address = dev_addr;
716 sg->dma_length = sg->length;
717 }
718 return nelems;
719}
720
721/*
722 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
723 * concerning calls here are the same as for swiotlb_unmap_single() above.
724 */
725void
726swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
727 int dir)
728{
729 int i;
730
731 if (dir == DMA_NONE)
732 BUG();
733
734 for (i = 0; i < nelems; i++, sg++)
735 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
736 unmap_single(hwdev, (void *) phys_to_virt(sg->dma_address), sg->dma_length, dir);
737 else if (dir == DMA_FROM_DEVICE)
738 mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
739}
740
741/*
742 * Make physical memory consistent for a set of streaming mode DMA translations
743 * after a transfer.
744 *
745 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
746 * and usage.
747 */
John W. Linville8270f3f2005-09-29 14:43:32 -0700748static inline void
749swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sg,
John W. Linvillede69e0f2005-09-29 14:44:57 -0700750 int nelems, int dir, int target)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700751{
752 int i;
753
754 if (dir == DMA_NONE)
755 BUG();
756
757 for (i = 0; i < nelems; i++, sg++)
758 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
759 sync_single(hwdev, (void *) sg->dma_address,
John W. Linvillede69e0f2005-09-29 14:44:57 -0700760 sg->dma_length, dir, target);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700761}
762
763void
John W. Linville8270f3f2005-09-29 14:43:32 -0700764swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
765 int nelems, int dir)
766{
John W. Linvillede69e0f2005-09-29 14:44:57 -0700767 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
John W. Linville8270f3f2005-09-29 14:43:32 -0700768}
769
770void
Linus Torvalds1da177e2005-04-16 15:20:36 -0700771swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
772 int nelems, int dir)
773{
John W. Linvillede69e0f2005-09-29 14:44:57 -0700774 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700775}
776
777int
778swiotlb_dma_mapping_error(dma_addr_t dma_addr)
779{
780 return (dma_addr == virt_to_phys(io_tlb_overflow_buffer));
781}
782
783/*
784 * Return whether the given PCI device DMA address mask can be supported
785 * properly. For example, if your device can only drive the low 24-bits
786 * during PCI bus mastering, then you would pass 0x00ffffff as the mask to
787 * this function.
788 */
789int
790swiotlb_dma_supported (struct device *hwdev, u64 mask)
791{
792 return (virt_to_phys (io_tlb_end) - 1) <= mask;
793}
794
795EXPORT_SYMBOL(swiotlb_init);
796EXPORT_SYMBOL(swiotlb_map_single);
797EXPORT_SYMBOL(swiotlb_unmap_single);
798EXPORT_SYMBOL(swiotlb_map_sg);
799EXPORT_SYMBOL(swiotlb_unmap_sg);
800EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
801EXPORT_SYMBOL(swiotlb_sync_single_for_device);
John W. Linville878a97c2005-09-29 14:44:23 -0700802EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
803EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700804EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
805EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
806EXPORT_SYMBOL(swiotlb_dma_mapping_error);
807EXPORT_SYMBOL(swiotlb_alloc_coherent);
808EXPORT_SYMBOL(swiotlb_free_coherent);
809EXPORT_SYMBOL(swiotlb_dma_supported);