blob: f116e51e3865abf4eebbeb438c82ebcfcf712f5a [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * File Name:
3 * defxx.c
4 *
5 * Copyright Information:
6 * Copyright Digital Equipment Corporation 1996.
7 *
8 * This software may be used and distributed according to the terms of
9 * the GNU General Public License, incorporated herein by reference.
10 *
11 * Abstract:
12 * A Linux device driver supporting the Digital Equipment Corporation
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -080013 * FDDI TURBOchannel, EISA and PCI controller families. Supported
14 * adapters include:
Linus Torvalds1da177e2005-04-16 15:20:36 -070015 *
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -080016 * DEC FDDIcontroller/TURBOchannel (DEFTA)
17 * DEC FDDIcontroller/EISA (DEFEA)
18 * DEC FDDIcontroller/PCI (DEFPA)
Linus Torvalds1da177e2005-04-16 15:20:36 -070019 *
20 * The original author:
21 * LVS Lawrence V. Stefani <lstefani@yahoo.com>
22 *
23 * Maintainers:
24 * macro Maciej W. Rozycki <macro@linux-mips.org>
25 *
26 * Credits:
27 * I'd like to thank Patricia Cross for helping me get started with
28 * Linux, David Davies for a lot of help upgrading and configuring
29 * my development system and for answering many OS and driver
30 * development questions, and Alan Cox for recommendations and
31 * integration help on getting FDDI support into Linux. LVS
32 *
33 * Driver Architecture:
34 * The driver architecture is largely based on previous driver work
35 * for other operating systems. The upper edge interface and
36 * functions were largely taken from existing Linux device drivers
37 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38 * driver.
39 *
40 * Adapter Probe -
41 * The driver scans for supported EISA adapters by reading the
42 * SLOT ID register for each EISA slot and making a match
43 * against the expected value.
44 *
45 * Bus-Specific Initialization -
46 * This driver currently supports both EISA and PCI controller
47 * families. While the custom DMA chip and FDDI logic is similar
48 * or identical, the bus logic is very different. After
49 * initialization, the only bus-specific differences is in how the
50 * driver enables and disables interrupts. Other than that, the
51 * run-time critical code behaves the same on both families.
52 * It's important to note that both adapter families are configured
53 * to I/O map, rather than memory map, the adapter registers.
54 *
55 * Driver Open/Close -
56 * In the driver open routine, the driver ISR (interrupt service
57 * routine) is registered and the adapter is brought to an
58 * operational state. In the driver close routine, the opposite
59 * occurs; the driver ISR is deregistered and the adapter is
60 * brought to a safe, but closed state. Users may use consecutive
61 * commands to bring the adapter up and down as in the following
62 * example:
63 * ifconfig fddi0 up
64 * ifconfig fddi0 down
65 * ifconfig fddi0 up
66 *
67 * Driver Shutdown -
68 * Apparently, there is no shutdown or halt routine support under
69 * Linux. This routine would be called during "reboot" or
70 * "shutdown" to allow the driver to place the adapter in a safe
71 * state before a warm reboot occurs. To be really safe, the user
72 * should close the adapter before shutdown (eg. ifconfig fddi0 down)
73 * to ensure that the adapter DMA engine is taken off-line. However,
74 * the current driver code anticipates this problem and always issues
75 * a soft reset of the adapter at the beginning of driver initialization.
76 * A future driver enhancement in this area may occur in 2.1.X where
77 * Alan indicated that a shutdown handler may be implemented.
78 *
79 * Interrupt Service Routine -
80 * The driver supports shared interrupts, so the ISR is registered for
81 * each board with the appropriate flag and the pointer to that board's
82 * device structure. This provides the context during interrupt
83 * processing to support shared interrupts and multiple boards.
84 *
85 * Interrupt enabling/disabling can occur at many levels. At the host
86 * end, you can disable system interrupts, or disable interrupts at the
87 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
88 * have a bus-logic chip interrupt enable/disable as well as a DMA
89 * controller interrupt enable/disable.
90 *
91 * The driver currently enables and disables adapter interrupts at the
92 * bus-logic chip and assumes that Linux will take care of clearing or
93 * acknowledging any host-based interrupt chips.
94 *
95 * Control Functions -
96 * Control functions are those used to support functions such as adding
97 * or deleting multicast addresses, enabling or disabling packet
98 * reception filters, or other custom/proprietary commands. Presently,
99 * the driver supports the "get statistics", "set multicast list", and
100 * "set mac address" functions defined by Linux. A list of possible
101 * enhancements include:
102 *
103 * - Custom ioctl interface for executing port interface commands
104 * - Custom ioctl interface for adding unicast addresses to
105 * adapter CAM (to support bridge functions).
106 * - Custom ioctl interface for supporting firmware upgrades.
107 *
108 * Hardware (port interface) Support Routines -
109 * The driver function names that start with "dfx_hw_" represent
110 * low-level port interface routines that are called frequently. They
111 * include issuing a DMA or port control command to the adapter,
112 * resetting the adapter, or reading the adapter state. Since the
113 * driver initialization and run-time code must make calls into the
114 * port interface, these routines were written to be as generic and
115 * usable as possible.
116 *
117 * Receive Path -
118 * The adapter DMA engine supports a 256 entry receive descriptor block
119 * of which up to 255 entries can be used at any given time. The
120 * architecture is a standard producer, consumer, completion model in
121 * which the driver "produces" receive buffers to the adapter, the
122 * adapter "consumes" the receive buffers by DMAing incoming packet data,
123 * and the driver "completes" the receive buffers by servicing the
124 * incoming packet, then "produces" a new buffer and starts the cycle
125 * again. Receive buffers can be fragmented in up to 16 fragments
126 * (descriptor entries). For simplicity, this driver posts
127 * single-fragment receive buffers of 4608 bytes, then allocates a
128 * sk_buff, copies the data, then reposts the buffer. To reduce CPU
129 * utilization, a better approach would be to pass up the receive
130 * buffer (no extra copy) then allocate and post a replacement buffer.
131 * This is a performance enhancement that should be looked into at
132 * some point.
133 *
134 * Transmit Path -
135 * Like the receive path, the adapter DMA engine supports a 256 entry
136 * transmit descriptor block of which up to 255 entries can be used at
137 * any given time. Transmit buffers can be fragmented in up to 255
138 * fragments (descriptor entries). This driver always posts one
139 * fragment per transmit packet request.
140 *
141 * The fragment contains the entire packet from FC to end of data.
142 * Before posting the buffer to the adapter, the driver sets a three-byte
143 * packet request header (PRH) which is required by the Motorola MAC chip
144 * used on the adapters. The PRH tells the MAC the type of token to
145 * receive/send, whether or not to generate and append the CRC, whether
146 * synchronous or asynchronous framing is used, etc. Since the PRH
147 * definition is not necessarily consistent across all FDDI chipsets,
148 * the driver, rather than the common FDDI packet handler routines,
149 * sets these bytes.
150 *
151 * To reduce the amount of descriptor fetches needed per transmit request,
152 * the driver takes advantage of the fact that there are at least three
153 * bytes available before the skb->data field on the outgoing transmit
154 * request. This is guaranteed by having fddi_setup() in net_init.c set
155 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
156 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
157 * bytes which we'll use to store the PRH.
158 *
159 * There's a subtle advantage to adding these pad bytes to the
160 * hard_header_len, it ensures that the data portion of the packet for
161 * an 802.2 SNAP frame is longword aligned. Other FDDI driver
162 * implementations may not need the extra padding and can start copying
163 * or DMAing directly from the FC byte which starts at skb->data. Should
164 * another driver implementation need ADDITIONAL padding, the net_init.c
165 * module should be updated and dev->hard_header_len should be increased.
166 * NOTE: To maintain the alignment on the data portion of the packet,
167 * dev->hard_header_len should always be evenly divisible by 4 and at
168 * least 24 bytes in size.
169 *
170 * Modification History:
171 * Date Name Description
172 * 16-Aug-96 LVS Created.
173 * 20-Aug-96 LVS Updated dfx_probe so that version information
174 * string is only displayed if 1 or more cards are
175 * found. Changed dfx_rcv_queue_process to copy
176 * 3 NULL bytes before FC to ensure that data is
177 * longword aligned in receive buffer.
178 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
179 * LLC group promiscuous mode if multicast list
180 * is too large. LLC individual/group promiscuous
181 * mode is now disabled if IFF_PROMISC flag not set.
182 * dfx_xmt_queue_pkt no longer checks for NULL skb
183 * on Alan Cox recommendation. Added node address
184 * override support.
185 * 12-Sep-96 LVS Reset current address to factory address during
186 * device open. Updated transmit path to post a
187 * single fragment which includes PRH->end of data.
188 * Mar 2000 AC Did various cleanups for 2.3.x
189 * Jun 2000 jgarzik PCI and resource alloc cleanups
190 * Jul 2000 tjeerd Much cleanup and some bug fixes
191 * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
192 * Feb 2001 Skb allocation fixes
193 * Feb 2001 davej PCI enable cleanups.
194 * 04 Aug 2003 macro Converted to the DMA API.
195 * 14 Aug 2004 macro Fix device names reported.
Maciej W. Rozyckifeea1db2005-06-20 15:33:03 -0700196 * 14 Jun 2005 macro Use irqreturn_t.
Maciej W. Rozyckib2e68aa2006-10-23 13:53:17 +0100197 * 23 Oct 2006 macro Big-endian host support.
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800198 * 14 Dec 2006 macro TURBOchannel support.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700199 */
200
201/* Include files */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700202#include <linux/bitops.h>
Maciej W. Rozyckifcdff132007-07-20 13:14:07 +0100203#include <linux/compiler.h>
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800204#include <linux/delay.h>
205#include <linux/dma-mapping.h>
206#include <linux/eisa.h>
207#include <linux/errno.h>
208#include <linux/fddidevice.h>
209#include <linux/init.h>
210#include <linux/interrupt.h>
211#include <linux/ioport.h>
212#include <linux/kernel.h>
213#include <linux/module.h>
214#include <linux/netdevice.h>
215#include <linux/pci.h>
216#include <linux/skbuff.h>
217#include <linux/slab.h>
218#include <linux/string.h>
219#include <linux/tc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700220
221#include <asm/byteorder.h>
222#include <asm/io.h>
223
224#include "defxx.h"
225
226/* Version information string should be updated prior to each new release! */
227#define DRV_NAME "defxx"
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800228#define DRV_VERSION "v1.10"
229#define DRV_RELDATE "2006/12/14"
Linus Torvalds1da177e2005-04-16 15:20:36 -0700230
Bill Pembertonc354dfc2012-12-03 09:24:10 -0500231static char version[] =
Linus Torvalds1da177e2005-04-16 15:20:36 -0700232 DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
233 " Lawrence V. Stefani and others\n";
234
235#define DYNAMIC_BUFFERS 1
236
237#define SKBUFF_RX_COPYBREAK 200
238/*
239 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240 * alignment for compatibility with old EISA boards.
241 */
242#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
243
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800244#ifdef CONFIG_PCI
245#define DFX_BUS_PCI(dev) (dev->bus == &pci_bus_type)
246#else
247#define DFX_BUS_PCI(dev) 0
248#endif
249
250#ifdef CONFIG_EISA
251#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
252#else
253#define DFX_BUS_EISA(dev) 0
254#endif
255
256#ifdef CONFIG_TC
257#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
258#else
259#define DFX_BUS_TC(dev) 0
260#endif
261
262#ifdef CONFIG_DEFXX_MMIO
263#define DFX_MMIO 1
264#else
265#define DFX_MMIO 0
266#endif
267
Linus Torvalds1da177e2005-04-16 15:20:36 -0700268/* Define module-wide (static) routines */
269
270static void dfx_bus_init(struct net_device *dev);
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800271static void dfx_bus_uninit(struct net_device *dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700272static void dfx_bus_config_check(DFX_board_t *bp);
273
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800274static int dfx_driver_init(struct net_device *dev,
275 const char *print_name,
276 resource_size_t bar_start);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700277static int dfx_adap_init(DFX_board_t *bp, int get_buffers);
278
279static int dfx_open(struct net_device *dev);
280static int dfx_close(struct net_device *dev);
281
282static void dfx_int_pr_halt_id(DFX_board_t *bp);
283static void dfx_int_type_0_process(DFX_board_t *bp);
284static void dfx_int_common(struct net_device *dev);
David Howells7d12e782006-10-05 14:55:46 +0100285static irqreturn_t dfx_interrupt(int irq, void *dev_id);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700286
287static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
288static void dfx_ctl_set_multicast_list(struct net_device *dev);
289static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
290static int dfx_ctl_update_cam(DFX_board_t *bp);
291static int dfx_ctl_update_filters(DFX_board_t *bp);
292
293static int dfx_hw_dma_cmd_req(DFX_board_t *bp);
294static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
295static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
296static int dfx_hw_adap_state_rd(DFX_board_t *bp);
297static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
298
299static int dfx_rcv_init(DFX_board_t *bp, int get_buffers);
300static void dfx_rcv_queue_process(DFX_board_t *bp);
301static void dfx_rcv_flush(DFX_board_t *bp);
302
Stephen Hemminger613573252009-08-31 19:50:58 +0000303static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
304 struct net_device *dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700305static int dfx_xmt_done(DFX_board_t *bp);
306static void dfx_xmt_flush(DFX_board_t *bp);
307
308/* Define module-wide (static) variables */
309
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800310static struct pci_driver dfx_pci_driver;
311static struct eisa_driver dfx_eisa_driver;
312static struct tc_driver dfx_tc_driver;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700313
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400314
Linus Torvalds1da177e2005-04-16 15:20:36 -0700315/*
316 * =======================
Linus Torvalds1da177e2005-04-16 15:20:36 -0700317 * = dfx_port_write_long =
318 * = dfx_port_read_long =
319 * =======================
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400320 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700321 * Overview:
322 * Routines for reading and writing values from/to adapter
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400323 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700324 * Returns:
325 * None
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400326 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700327 * Arguments:
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800328 * bp - pointer to board information
329 * offset - register offset from base I/O address
330 * data - for dfx_port_write_long, this is a value to write;
331 * for dfx_port_read_long, this is a pointer to store
332 * the read value
Linus Torvalds1da177e2005-04-16 15:20:36 -0700333 *
334 * Functional Description:
335 * These routines perform the correct operation to read or write
336 * the adapter register.
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400337 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700338 * EISA port block base addresses are based on the slot number in which the
339 * controller is installed. For example, if the EISA controller is installed
340 * in slot 4, the port block base address is 0x4000. If the controller is
341 * installed in slot 2, the port block base address is 0x2000, and so on.
342 * This port block can be used to access PDQ, ESIC, and DEFEA on-board
343 * registers using the register offsets defined in DEFXX.H.
344 *
345 * PCI port block base addresses are assigned by the PCI BIOS or system
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800346 * firmware. There is one 128 byte port block which can be accessed. It
Linus Torvalds1da177e2005-04-16 15:20:36 -0700347 * allows for I/O mapping of both PDQ and PFI registers using the register
348 * offsets defined in DEFXX.H.
349 *
350 * Return Codes:
351 * None
352 *
353 * Assumptions:
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800354 * bp->base is a valid base I/O address for this adapter.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700355 * offset is a valid register offset for this adapter.
356 *
357 * Side Effects:
358 * Rather than produce macros for these functions, these routines
359 * are defined using "inline" to ensure that the compiler will
360 * generate inline code and not waste a procedure call and return.
361 * This provides all the benefits of macros, but with the
362 * advantage of strict data type checking.
363 */
364
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800365static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
366{
367 writel(data, bp->base.mem + offset);
368 mb();
369}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700370
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800371static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
372{
373 outl(data, bp->base.port + offset);
374}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700375
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800376static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
377{
Maciej W. Rozyckifcdff132007-07-20 13:14:07 +0100378 struct device __maybe_unused *bdev = bp->bus_dev;
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800379 int dfx_bus_tc = DFX_BUS_TC(bdev);
380 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700381
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800382 if (dfx_use_mmio)
383 dfx_writel(bp, offset, data);
384 else
385 dfx_outl(bp, offset, data);
386}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700387
Linus Torvalds1da177e2005-04-16 15:20:36 -0700388
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800389static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
390{
391 mb();
392 *data = readl(bp->base.mem + offset);
393}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700394
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800395static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
396{
397 *data = inl(bp->base.port + offset);
398}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700399
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800400static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
401{
Maciej W. Rozyckifcdff132007-07-20 13:14:07 +0100402 struct device __maybe_unused *bdev = bp->bus_dev;
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800403 int dfx_bus_tc = DFX_BUS_TC(bdev);
404 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700405
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800406 if (dfx_use_mmio)
407 dfx_readl(bp, offset, data);
408 else
409 dfx_inl(bp, offset, data);
410}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400412
Linus Torvalds1da177e2005-04-16 15:20:36 -0700413/*
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800414 * ================
415 * = dfx_get_bars =
416 * ================
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400417 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700418 * Overview:
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800419 * Retrieves the address range used to access control and status
420 * registers.
421 *
422 * Returns:
423 * None
424 *
425 * Arguments:
426 * bdev - pointer to device information
427 * bar_start - pointer to store the start address
428 * bar_len - pointer to store the length of the area
429 *
430 * Assumptions:
431 * I am sure there are some.
432 *
433 * Side Effects:
434 * None
435 */
436static void dfx_get_bars(struct device *bdev,
437 resource_size_t *bar_start, resource_size_t *bar_len)
438{
439 int dfx_bus_pci = DFX_BUS_PCI(bdev);
440 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
441 int dfx_bus_tc = DFX_BUS_TC(bdev);
442 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
443
444 if (dfx_bus_pci) {
445 int num = dfx_use_mmio ? 0 : 1;
446
447 *bar_start = pci_resource_start(to_pci_dev(bdev), num);
448 *bar_len = pci_resource_len(to_pci_dev(bdev), num);
449 }
450 if (dfx_bus_eisa) {
451 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
452 resource_size_t bar;
453
454 if (dfx_use_mmio) {
455 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
456 bar <<= 8;
457 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
458 bar <<= 8;
459 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
460 bar <<= 16;
461 *bar_start = bar;
462 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
463 bar <<= 8;
464 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
465 bar <<= 8;
466 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
467 bar <<= 16;
468 *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
469 } else {
470 *bar_start = base_addr;
471 *bar_len = PI_ESIC_K_CSR_IO_LEN;
472 }
473 }
474 if (dfx_bus_tc) {
475 *bar_start = to_tc_dev(bdev)->resource.start +
476 PI_TC_K_CSR_OFFSET;
477 *bar_len = PI_TC_K_CSR_LEN;
478 }
479}
480
Stephen Hemmingerfd8f4992008-11-20 20:31:40 -0800481static const struct net_device_ops dfx_netdev_ops = {
482 .ndo_open = dfx_open,
483 .ndo_stop = dfx_close,
484 .ndo_start_xmit = dfx_xmt_queue_pkt,
485 .ndo_get_stats = dfx_ctl_get_stats,
Jiri Pirkoafc4b132011-08-16 06:29:01 +0000486 .ndo_set_rx_mode = dfx_ctl_set_multicast_list,
Stephen Hemmingerfd8f4992008-11-20 20:31:40 -0800487 .ndo_set_mac_address = dfx_ctl_set_mac_address,
488};
489
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800490/*
491 * ================
492 * = dfx_register =
493 * ================
494 *
495 * Overview:
496 * Initializes a supported FDDI controller
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400497 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700498 * Returns:
499 * Condition code
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400500 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700501 * Arguments:
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800502 * bdev - pointer to device information
Linus Torvalds1da177e2005-04-16 15:20:36 -0700503 *
504 * Functional Description:
505 *
506 * Return Codes:
507 * 0 - This device (fddi0, fddi1, etc) configured successfully
508 * -EBUSY - Failed to get resources, or dfx_driver_init failed.
509 *
510 * Assumptions:
511 * It compiles so it should work :-( (PCI cards do :-)
512 *
513 * Side Effects:
514 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
515 * initialized and the board resources are read and stored in
516 * the device structure.
517 */
Bill Pembertonc354dfc2012-12-03 09:24:10 -0500518static int dfx_register(struct device *bdev)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519{
520 static int version_disp;
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800521 int dfx_bus_pci = DFX_BUS_PCI(bdev);
522 int dfx_bus_tc = DFX_BUS_TC(bdev);
523 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
Kay Sieversfb28ad32008-11-10 13:55:14 -0800524 const char *print_name = dev_name(bdev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700525 struct net_device *dev;
526 DFX_board_t *bp; /* board pointer */
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800527 resource_size_t bar_start = 0; /* pointer to port */
528 resource_size_t bar_len = 0; /* resource length */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529 int alloc_size; /* total buffer size used */
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800530 struct resource *region;
531 int err = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700532
533 if (!version_disp) { /* display version info if adapter is found */
534 version_disp = 1; /* set display flag to TRUE so that */
535 printk(version); /* we only display this string ONCE */
536 }
537
Linus Torvalds1da177e2005-04-16 15:20:36 -0700538 dev = alloc_fddidev(sizeof(*bp));
539 if (!dev) {
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800540 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700541 print_name);
542 return -ENOMEM;
543 }
544
545 /* Enable PCI device. */
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800546 if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
547 printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
548 print_name);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700549 goto err_out;
550 }
551
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800552 SET_NETDEV_DEV(dev, bdev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800554 bp = netdev_priv(dev);
555 bp->bus_dev = bdev;
556 dev_set_drvdata(bdev, dev);
557
558 dfx_get_bars(bdev, &bar_start, &bar_len);
559
560 if (dfx_use_mmio)
561 region = request_mem_region(bar_start, bar_len, print_name);
562 else
563 region = request_region(bar_start, bar_len, print_name);
564 if (!region) {
565 printk(KERN_ERR "%s: Cannot reserve I/O resource "
566 "0x%lx @ 0x%lx, aborting\n",
567 print_name, (long)bar_len, (long)bar_start);
568 err = -EBUSY;
569 goto err_out_disable;
570 }
571
572 /* Set up I/O base address. */
573 if (dfx_use_mmio) {
574 bp->base.mem = ioremap_nocache(bar_start, bar_len);
575 if (!bp->base.mem) {
576 printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
Maciej W. Rozycki8a323522007-05-29 16:12:22 +0100577 err = -ENOMEM;
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800578 goto err_out_region;
579 }
580 } else {
581 bp->base.port = bar_start;
582 dev->base_addr = bar_start;
583 }
584
585 /* Initialize new device structure */
Stephen Hemmingerfd8f4992008-11-20 20:31:40 -0800586 dev->netdev_ops = &dfx_netdev_ops;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700587
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800588 if (dfx_bus_pci)
589 pci_set_master(to_pci_dev(bdev));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700590
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800591 if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700592 err = -ENODEV;
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800593 goto err_out_unmap;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700594 }
595
596 err = register_netdev(dev);
597 if (err)
598 goto err_out_kfree;
599
600 printk("%s: registered as %s\n", print_name, dev->name);
601 return 0;
602
603err_out_kfree:
604 alloc_size = sizeof(PI_DESCR_BLOCK) +
605 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
606#ifndef DYNAMIC_BUFFERS
607 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
608#endif
609 sizeof(PI_CONSUMER_BLOCK) +
610 (PI_ALIGN_K_DESC_BLK - 1);
611 if (bp->kmalloced)
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800612 dma_free_coherent(bdev, alloc_size,
613 bp->kmalloced, bp->kmalloced_dma);
614
615err_out_unmap:
616 if (dfx_use_mmio)
617 iounmap(bp->base.mem);
618
Linus Torvalds1da177e2005-04-16 15:20:36 -0700619err_out_region:
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800620 if (dfx_use_mmio)
621 release_mem_region(bar_start, bar_len);
622 else
623 release_region(bar_start, bar_len);
624
625err_out_disable:
626 if (dfx_bus_pci)
627 pci_disable_device(to_pci_dev(bdev));
628
Linus Torvalds1da177e2005-04-16 15:20:36 -0700629err_out:
630 free_netdev(dev);
631 return err;
632}
633
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400634
Linus Torvalds1da177e2005-04-16 15:20:36 -0700635/*
636 * ================
637 * = dfx_bus_init =
638 * ================
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400639 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700640 * Overview:
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800641 * Initializes the bus-specific controller logic.
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400642 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700643 * Returns:
644 * None
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400645 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700646 * Arguments:
647 * dev - pointer to device information
648 *
649 * Functional Description:
650 * Determine and save adapter IRQ in device table,
651 * then perform bus-specific logic initialization.
652 *
653 * Return Codes:
654 * None
655 *
656 * Assumptions:
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800657 * bp->base has already been set with the proper
Linus Torvalds1da177e2005-04-16 15:20:36 -0700658 * base I/O address for this device.
659 *
660 * Side Effects:
661 * Interrupts are enabled at the adapter bus-specific logic.
662 * Note: Interrupts at the DMA engine (PDQ chip) are not
663 * enabled yet.
664 */
665
Bill Pembertonc354dfc2012-12-03 09:24:10 -0500666static void dfx_bus_init(struct net_device *dev)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700667{
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800668 DFX_board_t *bp = netdev_priv(dev);
669 struct device *bdev = bp->bus_dev;
670 int dfx_bus_pci = DFX_BUS_PCI(bdev);
671 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
672 int dfx_bus_tc = DFX_BUS_TC(bdev);
673 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
674 u8 val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700675
676 DBG_printk("In dfx_bus_init...\n");
677
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800678 /* Initialize a pointer back to the net_device struct */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700679 bp->dev = dev;
680
681 /* Initialize adapter based on bus type */
682
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800683 if (dfx_bus_tc)
684 dev->irq = to_tc_dev(bdev)->interrupt;
685 if (dfx_bus_eisa) {
686 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700687
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800688 /* Get the interrupt level from the ESIC chip. */
689 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
690 val &= PI_CONFIG_STAT_0_M_IRQ;
691 val >>= PI_CONFIG_STAT_0_V_IRQ;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700692
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800693 switch (val) {
694 case PI_CONFIG_STAT_0_IRQ_K_9:
695 dev->irq = 9;
696 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700697
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800698 case PI_CONFIG_STAT_0_IRQ_K_10:
699 dev->irq = 10;
700 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700701
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800702 case PI_CONFIG_STAT_0_IRQ_K_11:
703 dev->irq = 11;
704 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700705
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800706 case PI_CONFIG_STAT_0_IRQ_K_15:
707 dev->irq = 15;
708 break;
709 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700710
711 /*
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800712 * Enable memory decoding (MEMCS0) and/or port decoding
713 * (IOCS1/IOCS0) as appropriate in Function Control
714 * Register. One of the port chip selects seems to be
715 * used for the Burst Holdoff register, but this bit of
716 * documentation is missing and as yet it has not been
717 * determined which of the two. This is also the reason
718 * the size of the decoded port range is twice as large
719 * as one required by the PDQ.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700720 */
721
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800722 /* Set the decode range of the board. */
723 val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT);
724 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val);
725 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0);
726 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val);
727 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0);
728 val = PI_ESIC_K_CSR_IO_LEN - 1;
729 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff);
730 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff);
731 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff);
732 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff);
733
734 /* Enable the decoders. */
735 val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
736 if (dfx_use_mmio)
737 val |= PI_FUNCTION_CNTRL_M_MEMCS0;
738 outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val);
739
740 /*
741 * Enable access to the rest of the module
742 * (including PDQ and packet memory).
743 */
744 val = PI_SLOT_CNTRL_M_ENB;
745 outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val);
746
747 /*
748 * Map PDQ registers into memory or port space. This is
749 * done with a bit in the Burst Holdoff register.
750 */
751 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
752 if (dfx_use_mmio)
753 val |= PI_BURST_HOLDOFF_V_MEM_MAP;
754 else
755 val &= ~PI_BURST_HOLDOFF_V_MEM_MAP;
756 outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700757
758 /* Enable interrupts at EISA bus interface chip (ESIC) */
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800759 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
760 val |= PI_CONFIG_STAT_0_M_INT_ENB;
761 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
762 }
763 if (dfx_bus_pci) {
764 struct pci_dev *pdev = to_pci_dev(bdev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700765
766 /* Get the interrupt level from the PCI Configuration Table */
767
768 dev->irq = pdev->irq;
769
770 /* Check Latency Timer and set if less than minimal */
771
772 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800773 if (val < PFI_K_LAT_TIMER_MIN) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700774 val = PFI_K_LAT_TIMER_DEF;
775 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800776 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700777
778 /* Enable interrupts at PCI bus interface chip (PFI) */
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800779 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
780 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700781 }
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800782}
783
784/*
785 * ==================
786 * = dfx_bus_uninit =
787 * ==================
788 *
789 * Overview:
790 * Uninitializes the bus-specific controller logic.
791 *
792 * Returns:
793 * None
794 *
795 * Arguments:
796 * dev - pointer to device information
797 *
798 * Functional Description:
799 * Perform bus-specific logic uninitialization.
800 *
801 * Return Codes:
802 * None
803 *
804 * Assumptions:
805 * bp->base has already been set with the proper
806 * base I/O address for this device.
807 *
808 * Side Effects:
809 * Interrupts are disabled at the adapter bus-specific logic.
810 */
811
Bill Pembertonc354dfc2012-12-03 09:24:10 -0500812static void dfx_bus_uninit(struct net_device *dev)
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800813{
814 DFX_board_t *bp = netdev_priv(dev);
815 struct device *bdev = bp->bus_dev;
816 int dfx_bus_pci = DFX_BUS_PCI(bdev);
817 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
818 u8 val;
819
820 DBG_printk("In dfx_bus_uninit...\n");
821
822 /* Uninitialize adapter based on bus type */
823
824 if (dfx_bus_eisa) {
825 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
826
827 /* Disable interrupts at EISA bus interface chip (ESIC) */
828 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
829 val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
830 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
831 }
832 if (dfx_bus_pci) {
833 /* Disable interrupts at PCI bus interface chip (PFI) */
834 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
835 }
836}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700837
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400838
Linus Torvalds1da177e2005-04-16 15:20:36 -0700839/*
840 * ========================
841 * = dfx_bus_config_check =
842 * ========================
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400843 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700844 * Overview:
845 * Checks the configuration (burst size, full-duplex, etc.) If any parameters
846 * are illegal, then this routine will set new defaults.
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400847 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700848 * Returns:
849 * None
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400850 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700851 * Arguments:
852 * bp - pointer to board information
853 *
854 * Functional Description:
855 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
856 * PDQ, and all FDDI PCI controllers, all values are legal.
857 *
858 * Return Codes:
859 * None
860 *
861 * Assumptions:
862 * dfx_adap_init has NOT been called yet so burst size and other items have
863 * not been set.
864 *
865 * Side Effects:
866 * None
867 */
868
Bill Pembertonc354dfc2012-12-03 09:24:10 -0500869static void dfx_bus_config_check(DFX_board_t *bp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700870{
Maciej W. Rozyckifcdff132007-07-20 13:14:07 +0100871 struct device __maybe_unused *bdev = bp->bus_dev;
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800872 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700873 int status; /* return code from adapter port control call */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700874 u32 host_data; /* LW data returned from port control call */
875
876 DBG_printk("In dfx_bus_config_check...\n");
877
878 /* Configuration check only valid for EISA adapter */
879
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800880 if (dfx_bus_eisa) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700881 /*
882 * First check if revision 2 EISA controller. Rev. 1 cards used
883 * PDQ revision B, so no workaround needed in this case. Rev. 3
884 * cards used PDQ revision E, so no workaround needed in this
885 * case, either. Only Rev. 2 cards used either Rev. D or E
886 * chips, so we must verify the chip revision on Rev. 2 cards.
887 */
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800888 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700889 /*
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800890 * Revision 2 FDDI EISA controller found,
891 * so let's check PDQ revision of adapter.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700892 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700893 status = dfx_hw_port_ctrl_req(bp,
894 PI_PCTRL_M_SUB_CMD,
895 PI_SUB_CMD_K_PDQ_REV_GET,
896 0,
897 &host_data);
898 if ((status != DFX_K_SUCCESS) || (host_data == 2))
899 {
900 /*
901 * Either we couldn't determine the PDQ revision, or
902 * we determined that it is at revision D. In either case,
903 * we need to implement the workaround.
904 */
905
906 /* Ensure that the burst size is set to 8 longwords or less */
907
908 switch (bp->burst_size)
909 {
910 case PI_PDATA_B_DMA_BURST_SIZE_32:
911 case PI_PDATA_B_DMA_BURST_SIZE_16:
912 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
913 break;
914
915 default:
916 break;
917 }
918
919 /* Ensure that full-duplex mode is not enabled */
920
921 bp->full_duplex_enb = PI_SNMP_K_FALSE;
922 }
923 }
924 }
925 }
926
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400927
Linus Torvalds1da177e2005-04-16 15:20:36 -0700928/*
929 * ===================
930 * = dfx_driver_init =
931 * ===================
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400932 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700933 * Overview:
934 * Initializes remaining adapter board structure information
935 * and makes sure adapter is in a safe state prior to dfx_open().
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400936 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700937 * Returns:
938 * Condition code
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400939 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700940 * Arguments:
941 * dev - pointer to device information
942 * print_name - printable device name
943 *
944 * Functional Description:
945 * This function allocates additional resources such as the host memory
946 * blocks needed by the adapter (eg. descriptor and consumer blocks).
947 * Remaining bus initialization steps are also completed. The adapter
948 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
949 * must call dfx_open() to open the adapter and bring it on-line.
950 *
951 * Return Codes:
952 * DFX_K_SUCCESS - initialization succeeded
953 * DFX_K_FAILURE - initialization failed - could not allocate memory
954 * or read adapter MAC address
955 *
956 * Assumptions:
957 * Memory allocated from pci_alloc_consistent() call is physically
958 * contiguous, locked memory.
959 *
960 * Side Effects:
961 * Adapter is reset and should be in DMA_UNAVAILABLE state before
962 * returning from this routine.
963 */
964
Greg Kroah-Hartman1dd06ae2012-12-06 14:30:56 +0000965static int dfx_driver_init(struct net_device *dev, const char *print_name,
966 resource_size_t bar_start)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700967{
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800968 DFX_board_t *bp = netdev_priv(dev);
969 struct device *bdev = bp->bus_dev;
970 int dfx_bus_pci = DFX_BUS_PCI(bdev);
971 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
972 int dfx_bus_tc = DFX_BUS_TC(bdev);
973 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
974 int alloc_size; /* total buffer size needed */
975 char *top_v, *curr_v; /* virtual addrs into memory block */
976 dma_addr_t top_p, curr_p; /* physical addrs into memory block */
Al Viroeca1ad82008-03-16 22:21:54 +0000977 u32 data; /* host data register value */
978 __le32 le32;
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -0800979 char *board_name = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700980
981 DBG_printk("In dfx_driver_init...\n");
982
983 /* Initialize bus-specific hardware registers */
984
985 dfx_bus_init(dev);
986
987 /*
988 * Initialize default values for configurable parameters
989 *
990 * Note: All of these parameters are ones that a user may
991 * want to customize. It'd be nice to break these
992 * out into Space.c or someplace else that's more
993 * accessible/understandable than this file.
994 */
995
996 bp->full_duplex_enb = PI_SNMP_K_FALSE;
997 bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */
998 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF;
999 bp->rcv_bufs_to_post = RCV_BUFS_DEF;
1000
1001 /*
1002 * Ensure that HW configuration is OK
1003 *
1004 * Note: Depending on the hardware revision, we may need to modify
1005 * some of the configurable parameters to workaround hardware
1006 * limitations. We'll perform this configuration check AFTER
1007 * setting the parameters to their default values.
1008 */
1009
1010 dfx_bus_config_check(bp);
1011
1012 /* Disable PDQ interrupts first */
1013
1014 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1015
1016 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1017
1018 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1019
1020 /* Read the factory MAC address from the adapter then save it */
1021
1022 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1023 &data) != DFX_K_SUCCESS) {
1024 printk("%s: Could not read adapter factory MAC address!\n",
1025 print_name);
Eric Dumazet807540b2010-09-23 05:40:09 +00001026 return DFX_K_FAILURE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001027 }
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08001028 le32 = cpu_to_le32(data);
1029 memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001030
1031 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1032 &data) != DFX_K_SUCCESS) {
1033 printk("%s: Could not read adapter factory MAC address!\n",
1034 print_name);
Eric Dumazet807540b2010-09-23 05:40:09 +00001035 return DFX_K_FAILURE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001036 }
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08001037 le32 = cpu_to_le32(data);
1038 memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001039
1040 /*
1041 * Set current address to factory address
1042 *
1043 * Note: Node address override support is handled through
1044 * dfx_ctl_set_mac_address.
1045 */
1046
1047 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08001048 if (dfx_bus_tc)
1049 board_name = "DEFTA";
1050 if (dfx_bus_eisa)
1051 board_name = "DEFEA";
1052 if (dfx_bus_pci)
1053 board_name = "DEFPA";
hartleys69d279e2010-01-07 13:24:19 +00001054 pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08001055 print_name, board_name, dfx_use_mmio ? "" : "I/O ",
hartleys69d279e2010-01-07 13:24:19 +00001056 (long long)bar_start, dev->irq, dev->dev_addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001057
1058 /*
1059 * Get memory for descriptor block, consumer block, and other buffers
1060 * that need to be DMA read or written to by the adapter.
1061 */
1062
1063 alloc_size = sizeof(PI_DESCR_BLOCK) +
1064 PI_CMD_REQ_K_SIZE_MAX +
1065 PI_CMD_RSP_K_SIZE_MAX +
1066#ifndef DYNAMIC_BUFFERS
1067 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1068#endif
1069 sizeof(PI_CONSUMER_BLOCK) +
1070 (PI_ALIGN_K_DESC_BLK - 1);
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08001071 bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
1072 &bp->kmalloced_dma,
1073 GFP_ATOMIC);
Joe Perchesd0320f72013-03-14 13:07:21 +00001074 if (top_v == NULL)
Eric Dumazet807540b2010-09-23 05:40:09 +00001075 return DFX_K_FAILURE;
Joe Perchesd0320f72013-03-14 13:07:21 +00001076
Linus Torvalds1da177e2005-04-16 15:20:36 -07001077 memset(top_v, 0, alloc_size); /* zero out memory before continuing */
1078 top_p = bp->kmalloced_dma; /* get physical address of buffer */
1079
1080 /*
1081 * To guarantee the 8K alignment required for the descriptor block, 8K - 1
1082 * plus the amount of memory needed was allocated. The physical address
1083 * is now 8K aligned. By carving up the memory in a specific order,
1084 * we'll guarantee the alignment requirements for all other structures.
1085 *
1086 * Note: If the assumptions change regarding the non-paged, non-cached,
1087 * physically contiguous nature of the memory block or the address
1088 * alignments, then we'll need to implement a different algorithm
1089 * for allocating the needed memory.
1090 */
1091
1092 curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1093 curr_v = top_v + (curr_p - top_p);
1094
1095 /* Reserve space for descriptor block */
1096
1097 bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1098 bp->descr_block_phys = curr_p;
1099 curr_v += sizeof(PI_DESCR_BLOCK);
1100 curr_p += sizeof(PI_DESCR_BLOCK);
1101
1102 /* Reserve space for command request buffer */
1103
1104 bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1105 bp->cmd_req_phys = curr_p;
1106 curr_v += PI_CMD_REQ_K_SIZE_MAX;
1107 curr_p += PI_CMD_REQ_K_SIZE_MAX;
1108
1109 /* Reserve space for command response buffer */
1110
1111 bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1112 bp->cmd_rsp_phys = curr_p;
1113 curr_v += PI_CMD_RSP_K_SIZE_MAX;
1114 curr_p += PI_CMD_RSP_K_SIZE_MAX;
1115
1116 /* Reserve space for the LLC host receive queue buffers */
1117
1118 bp->rcv_block_virt = curr_v;
1119 bp->rcv_block_phys = curr_p;
1120
1121#ifndef DYNAMIC_BUFFERS
1122 curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1123 curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1124#endif
1125
1126 /* Reserve space for the consumer block */
1127
1128 bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1129 bp->cons_block_phys = curr_p;
1130
1131 /* Display virtual and physical addresses if debug driver */
1132
1133 DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
1134 print_name,
1135 (long)bp->descr_block_virt, bp->descr_block_phys);
1136 DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
1137 print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
1138 DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
1139 print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
1140 DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
1141 print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
1142 DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
1143 print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
1144
Eric Dumazet807540b2010-09-23 05:40:09 +00001145 return DFX_K_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001146}
1147
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001148
Linus Torvalds1da177e2005-04-16 15:20:36 -07001149/*
1150 * =================
1151 * = dfx_adap_init =
1152 * =================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001153 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001154 * Overview:
1155 * Brings the adapter to the link avail/link unavailable state.
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001156 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001157 * Returns:
1158 * Condition code
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001159 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001160 * Arguments:
1161 * bp - pointer to board information
1162 * get_buffers - non-zero if buffers to be allocated
1163 *
1164 * Functional Description:
1165 * Issues the low-level firmware/hardware calls necessary to bring
1166 * the adapter up, or to properly reset and restore adapter during
1167 * run-time.
1168 *
1169 * Return Codes:
1170 * DFX_K_SUCCESS - Adapter brought up successfully
1171 * DFX_K_FAILURE - Adapter initialization failed
1172 *
1173 * Assumptions:
1174 * bp->reset_type should be set to a valid reset type value before
1175 * calling this routine.
1176 *
1177 * Side Effects:
1178 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1179 * upon a successful return of this routine.
1180 */
1181
1182static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1183 {
1184 DBG_printk("In dfx_adap_init...\n");
1185
1186 /* Disable PDQ interrupts first */
1187
1188 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1189
1190 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1191
1192 if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1193 {
1194 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
Eric Dumazet807540b2010-09-23 05:40:09 +00001195 return DFX_K_FAILURE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001196 }
1197
1198 /*
1199 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1200 * so we'll acknowledge all Type 0 interrupts now before continuing.
1201 */
1202
1203 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1204
1205 /*
1206 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1207 *
1208 * Note: We only need to clear host copies of these registers. The PDQ reset
1209 * takes care of the on-board register values.
1210 */
1211
1212 bp->cmd_req_reg.lword = 0;
1213 bp->cmd_rsp_reg.lword = 0;
1214 bp->rcv_xmt_reg.lword = 0;
1215
1216 /* Clear consumer block before going to DMA_AVAILABLE state */
1217
1218 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1219
1220 /* Initialize the DMA Burst Size */
1221
1222 if (dfx_hw_port_ctrl_req(bp,
1223 PI_PCTRL_M_SUB_CMD,
1224 PI_SUB_CMD_K_BURST_SIZE_SET,
1225 bp->burst_size,
1226 NULL) != DFX_K_SUCCESS)
1227 {
1228 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
Eric Dumazet807540b2010-09-23 05:40:09 +00001229 return DFX_K_FAILURE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001230 }
1231
1232 /*
1233 * Set base address of Consumer Block
1234 *
1235 * Assumption: 32-bit physical address of consumer block is 64 byte
1236 * aligned. That is, bits 0-5 of the address must be zero.
1237 */
1238
1239 if (dfx_hw_port_ctrl_req(bp,
1240 PI_PCTRL_M_CONS_BLOCK,
1241 bp->cons_block_phys,
1242 0,
1243 NULL) != DFX_K_SUCCESS)
1244 {
1245 printk("%s: Could not set consumer block address!\n", bp->dev->name);
Eric Dumazet807540b2010-09-23 05:40:09 +00001246 return DFX_K_FAILURE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001247 }
1248
1249 /*
Maciej W. Rozyckib2e68aa2006-10-23 13:53:17 +01001250 * Set the base address of Descriptor Block and bring adapter
1251 * to DMA_AVAILABLE state.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001252 *
Maciej W. Rozyckib2e68aa2006-10-23 13:53:17 +01001253 * Note: We also set the literal and data swapping requirements
1254 * in this command.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001255 *
Maciej W. Rozyckib2e68aa2006-10-23 13:53:17 +01001256 * Assumption: 32-bit physical address of descriptor block
1257 * is 8Kbyte aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001258 */
Maciej W. Rozyckib2e68aa2006-10-23 13:53:17 +01001259 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1260 (u32)(bp->descr_block_phys |
1261 PI_PDATA_A_INIT_M_BSWAP_INIT),
1262 0, NULL) != DFX_K_SUCCESS) {
1263 printk("%s: Could not set descriptor block address!\n",
1264 bp->dev->name);
1265 return DFX_K_FAILURE;
1266 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001267
1268 /* Set transmit flush timeout value */
1269
1270 bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1271 bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME;
1272 bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */
1273 bp->cmd_req_virt->char_set.item[0].item_index = 0;
1274 bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL;
1275 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1276 {
1277 printk("%s: DMA command request failed!\n", bp->dev->name);
Eric Dumazet807540b2010-09-23 05:40:09 +00001278 return DFX_K_FAILURE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001279 }
1280
1281 /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1282
1283 bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1284 bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS;
1285 bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb;
1286 bp->cmd_req_virt->snmp_set.item[0].item_index = 0;
1287 bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ;
1288 bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt;
1289 bp->cmd_req_virt->snmp_set.item[1].item_index = 0;
1290 bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL;
1291 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1292 {
1293 printk("%s: DMA command request failed!\n", bp->dev->name);
Eric Dumazet807540b2010-09-23 05:40:09 +00001294 return DFX_K_FAILURE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001295 }
1296
1297 /* Initialize adapter CAM */
1298
1299 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1300 {
1301 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
Eric Dumazet807540b2010-09-23 05:40:09 +00001302 return DFX_K_FAILURE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001303 }
1304
1305 /* Initialize adapter filters */
1306
1307 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1308 {
1309 printk("%s: Adapter filters update failed!\n", bp->dev->name);
Eric Dumazet807540b2010-09-23 05:40:09 +00001310 return DFX_K_FAILURE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001311 }
1312
1313 /*
1314 * Remove any existing dynamic buffers (i.e. if the adapter is being
1315 * reinitialized)
1316 */
1317
1318 if (get_buffers)
1319 dfx_rcv_flush(bp);
1320
1321 /* Initialize receive descriptor block and produce buffers */
1322
1323 if (dfx_rcv_init(bp, get_buffers))
1324 {
1325 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1326 if (get_buffers)
1327 dfx_rcv_flush(bp);
Eric Dumazet807540b2010-09-23 05:40:09 +00001328 return DFX_K_FAILURE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001329 }
1330
1331 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1332
1333 bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1334 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1335 {
1336 printk("%s: Start command failed\n", bp->dev->name);
1337 if (get_buffers)
1338 dfx_rcv_flush(bp);
Eric Dumazet807540b2010-09-23 05:40:09 +00001339 return DFX_K_FAILURE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001340 }
1341
1342 /* Initialization succeeded, reenable PDQ interrupts */
1343
1344 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
Eric Dumazet807540b2010-09-23 05:40:09 +00001345 return DFX_K_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001346 }
1347
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001348
Linus Torvalds1da177e2005-04-16 15:20:36 -07001349/*
1350 * ============
1351 * = dfx_open =
1352 * ============
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001353 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001354 * Overview:
1355 * Opens the adapter
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001356 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001357 * Returns:
1358 * Condition code
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001359 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001360 * Arguments:
1361 * dev - pointer to device information
1362 *
1363 * Functional Description:
1364 * This function brings the adapter to an operational state.
1365 *
1366 * Return Codes:
1367 * 0 - Adapter was successfully opened
1368 * -EAGAIN - Could not register IRQ or adapter initialization failed
1369 *
1370 * Assumptions:
1371 * This routine should only be called for a device that was
1372 * initialized successfully.
1373 *
1374 * Side Effects:
1375 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1376 * if the open is successful.
1377 */
1378
1379static int dfx_open(struct net_device *dev)
1380{
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08001381 DFX_board_t *bp = netdev_priv(dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001382 int ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001383
1384 DBG_printk("In dfx_open...\n");
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001385
Linus Torvalds1da177e2005-04-16 15:20:36 -07001386 /* Register IRQ - support shared interrupts by passing device ptr */
1387
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08001388 ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1389 dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001390 if (ret) {
1391 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1392 return ret;
1393 }
1394
1395 /*
1396 * Set current address to factory MAC address
1397 *
1398 * Note: We've already done this step in dfx_driver_init.
1399 * However, it's possible that a user has set a node
1400 * address override, then closed and reopened the
1401 * adapter. Unless we reset the device address field
1402 * now, we'll continue to use the existing modified
1403 * address.
1404 */
1405
1406 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1407
1408 /* Clear local unicast/multicast address tables and counts */
1409
1410 memset(bp->uc_table, 0, sizeof(bp->uc_table));
1411 memset(bp->mc_table, 0, sizeof(bp->mc_table));
1412 bp->uc_count = 0;
1413 bp->mc_count = 0;
1414
1415 /* Disable promiscuous filter settings */
1416
1417 bp->ind_group_prom = PI_FSTATE_K_BLOCK;
1418 bp->group_prom = PI_FSTATE_K_BLOCK;
1419
1420 spin_lock_init(&bp->lock);
1421
1422 /* Reset and initialize adapter */
1423
1424 bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */
1425 if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1426 {
1427 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1428 free_irq(dev->irq, dev);
1429 return -EAGAIN;
1430 }
1431
1432 /* Set device structure info */
1433 netif_start_queue(dev);
Eric Dumazet807540b2010-09-23 05:40:09 +00001434 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001435}
1436
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001437
Linus Torvalds1da177e2005-04-16 15:20:36 -07001438/*
1439 * =============
1440 * = dfx_close =
1441 * =============
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001442 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001443 * Overview:
1444 * Closes the device/module.
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001445 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001446 * Returns:
1447 * Condition code
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001448 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001449 * Arguments:
1450 * dev - pointer to device information
1451 *
1452 * Functional Description:
1453 * This routine closes the adapter and brings it to a safe state.
1454 * The interrupt service routine is deregistered with the OS.
1455 * The adapter can be opened again with another call to dfx_open().
1456 *
1457 * Return Codes:
1458 * Always return 0.
1459 *
1460 * Assumptions:
1461 * No further requests for this adapter are made after this routine is
1462 * called. dfx_open() can be called to reset and reinitialize the
1463 * adapter.
1464 *
1465 * Side Effects:
1466 * Adapter should be in DMA_UNAVAILABLE state upon completion of this
1467 * routine.
1468 */
1469
1470static int dfx_close(struct net_device *dev)
1471{
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08001472 DFX_board_t *bp = netdev_priv(dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001473
1474 DBG_printk("In dfx_close...\n");
1475
1476 /* Disable PDQ interrupts first */
1477
1478 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1479
1480 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1481
1482 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1483
1484 /*
1485 * Flush any pending transmit buffers
1486 *
1487 * Note: It's important that we flush the transmit buffers
1488 * BEFORE we clear our copy of the Type 2 register.
1489 * Otherwise, we'll have no idea how many buffers
1490 * we need to free.
1491 */
1492
1493 dfx_xmt_flush(bp);
1494
1495 /*
1496 * Clear Type 1 and Type 2 registers after adapter reset
1497 *
1498 * Note: Even though we're closing the adapter, it's
1499 * possible that an interrupt will occur after
1500 * dfx_close is called. Without some assurance to
1501 * the contrary we want to make sure that we don't
1502 * process receive and transmit LLC frames and update
1503 * the Type 2 register with bad information.
1504 */
1505
1506 bp->cmd_req_reg.lword = 0;
1507 bp->cmd_rsp_reg.lword = 0;
1508 bp->rcv_xmt_reg.lword = 0;
1509
1510 /* Clear consumer block for the same reason given above */
1511
1512 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1513
1514 /* Release all dynamically allocate skb in the receive ring. */
1515
1516 dfx_rcv_flush(bp);
1517
1518 /* Clear device structure flags */
1519
1520 netif_stop_queue(dev);
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001521
Linus Torvalds1da177e2005-04-16 15:20:36 -07001522 /* Deregister (free) IRQ */
1523
1524 free_irq(dev->irq, dev);
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001525
Eric Dumazet807540b2010-09-23 05:40:09 +00001526 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001527}
1528
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001529
Linus Torvalds1da177e2005-04-16 15:20:36 -07001530/*
1531 * ======================
1532 * = dfx_int_pr_halt_id =
1533 * ======================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001534 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001535 * Overview:
1536 * Displays halt id's in string form.
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001537 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001538 * Returns:
1539 * None
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001540 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001541 * Arguments:
1542 * bp - pointer to board information
1543 *
1544 * Functional Description:
1545 * Determine current halt id and display appropriate string.
1546 *
1547 * Return Codes:
1548 * None
1549 *
1550 * Assumptions:
1551 * None
1552 *
1553 * Side Effects:
1554 * None
1555 */
1556
1557static void dfx_int_pr_halt_id(DFX_board_t *bp)
1558 {
1559 PI_UINT32 port_status; /* PDQ port status register value */
1560 PI_UINT32 halt_id; /* PDQ port status halt ID */
1561
1562 /* Read the latest port status */
1563
1564 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1565
1566 /* Display halt state transition information */
1567
1568 halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1569 switch (halt_id)
1570 {
1571 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1572 printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1573 break;
1574
1575 case PI_HALT_ID_K_PARITY_ERROR:
1576 printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1577 break;
1578
1579 case PI_HALT_ID_K_HOST_DIR_HALT:
1580 printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1581 break;
1582
1583 case PI_HALT_ID_K_SW_FAULT:
1584 printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1585 break;
1586
1587 case PI_HALT_ID_K_HW_FAULT:
1588 printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1589 break;
1590
1591 case PI_HALT_ID_K_PC_TRACE:
1592 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1593 break;
1594
1595 case PI_HALT_ID_K_DMA_ERROR:
1596 printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1597 break;
1598
1599 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1600 printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1601 break;
1602
1603 case PI_HALT_ID_K_BUS_EXCEPTION:
1604 printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1605 break;
1606
1607 default:
1608 printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1609 break;
1610 }
1611 }
1612
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001613
Linus Torvalds1da177e2005-04-16 15:20:36 -07001614/*
1615 * ==========================
1616 * = dfx_int_type_0_process =
1617 * ==========================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001618 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001619 * Overview:
1620 * Processes Type 0 interrupts.
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001621 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001622 * Returns:
1623 * None
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001624 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001625 * Arguments:
1626 * bp - pointer to board information
1627 *
1628 * Functional Description:
1629 * Processes all enabled Type 0 interrupts. If the reason for the interrupt
1630 * is a serious fault on the adapter, then an error message is displayed
1631 * and the adapter is reset.
1632 *
1633 * One tricky potential timing window is the rapid succession of "link avail"
1634 * "link unavail" state change interrupts. The acknowledgement of the Type 0
1635 * interrupt must be done before reading the state from the Port Status
1636 * register. This is true because a state change could occur after reading
1637 * the data, but before acknowledging the interrupt. If this state change
1638 * does happen, it would be lost because the driver is using the old state,
1639 * and it will never know about the new state because it subsequently
1640 * acknowledges the state change interrupt.
1641 *
1642 * INCORRECT CORRECT
1643 * read type 0 int reasons read type 0 int reasons
1644 * read adapter state ack type 0 interrupts
1645 * ack type 0 interrupts read adapter state
1646 * ... process interrupt ... ... process interrupt ...
1647 *
1648 * Return Codes:
1649 * None
1650 *
1651 * Assumptions:
1652 * None
1653 *
1654 * Side Effects:
1655 * An adapter reset may occur if the adapter has any Type 0 error interrupts
1656 * or if the port status indicates that the adapter is halted. The driver
1657 * is responsible for reinitializing the adapter with the current CAM
1658 * contents and adapter filter settings.
1659 */
1660
1661static void dfx_int_type_0_process(DFX_board_t *bp)
1662
1663 {
1664 PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */
1665 PI_UINT32 state; /* current adap state (from port status) */
1666
1667 /*
1668 * Read host interrupt Type 0 register to determine which Type 0
1669 * interrupts are pending. Immediately write it back out to clear
1670 * those interrupts.
1671 */
1672
1673 dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1674 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1675
1676 /* Check for Type 0 error interrupts */
1677
1678 if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1679 PI_TYPE_0_STAT_M_PM_PAR_ERR |
1680 PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1681 {
1682 /* Check for Non-Existent Memory error */
1683
1684 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1685 printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1686
1687 /* Check for Packet Memory Parity error */
1688
1689 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1690 printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1691
1692 /* Check for Host Bus Parity error */
1693
1694 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1695 printk("%s: Host Bus Parity Error\n", bp->dev->name);
1696
1697 /* Reset adapter and bring it back on-line */
1698
1699 bp->link_available = PI_K_FALSE; /* link is no longer available */
1700 bp->reset_type = 0; /* rerun on-board diagnostics */
1701 printk("%s: Resetting adapter...\n", bp->dev->name);
1702 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1703 {
1704 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1705 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1706 return;
1707 }
1708 printk("%s: Adapter reset successful!\n", bp->dev->name);
1709 return;
1710 }
1711
1712 /* Check for transmit flush interrupt */
1713
1714 if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1715 {
1716 /* Flush any pending xmt's and acknowledge the flush interrupt */
1717
1718 bp->link_available = PI_K_FALSE; /* link is no longer available */
1719 dfx_xmt_flush(bp); /* flush any outstanding packets */
1720 (void) dfx_hw_port_ctrl_req(bp,
1721 PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1722 0,
1723 0,
1724 NULL);
1725 }
1726
1727 /* Check for adapter state change */
1728
1729 if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001730 {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001731 /* Get latest adapter state */
1732
1733 state = dfx_hw_adap_state_rd(bp); /* get adapter state */
1734 if (state == PI_STATE_K_HALTED)
1735 {
1736 /*
1737 * Adapter has transitioned to HALTED state, try to reset
1738 * adapter to bring it back on-line. If reset fails,
1739 * leave the adapter in the broken state.
1740 */
1741
1742 printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1743 dfx_int_pr_halt_id(bp); /* display halt id as string */
1744
1745 /* Reset adapter and bring it back on-line */
1746
1747 bp->link_available = PI_K_FALSE; /* link is no longer available */
1748 bp->reset_type = 0; /* rerun on-board diagnostics */
1749 printk("%s: Resetting adapter...\n", bp->dev->name);
1750 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1751 {
1752 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1753 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1754 return;
1755 }
1756 printk("%s: Adapter reset successful!\n", bp->dev->name);
1757 }
1758 else if (state == PI_STATE_K_LINK_AVAIL)
1759 {
1760 bp->link_available = PI_K_TRUE; /* set link available flag */
1761 }
1762 }
1763 }
1764
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001765
Linus Torvalds1da177e2005-04-16 15:20:36 -07001766/*
1767 * ==================
1768 * = dfx_int_common =
1769 * ==================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001770 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001771 * Overview:
1772 * Interrupt service routine (ISR)
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001773 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001774 * Returns:
1775 * None
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001776 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001777 * Arguments:
1778 * bp - pointer to board information
1779 *
1780 * Functional Description:
1781 * This is the ISR which processes incoming adapter interrupts.
1782 *
1783 * Return Codes:
1784 * None
1785 *
1786 * Assumptions:
1787 * This routine assumes PDQ interrupts have not been disabled.
1788 * When interrupts are disabled at the PDQ, the Port Status register
1789 * is automatically cleared. This routine uses the Port Status
1790 * register value to determine whether a Type 0 interrupt occurred,
1791 * so it's important that adapter interrupts are not normally
1792 * enabled/disabled at the PDQ.
1793 *
1794 * It's vital that this routine is NOT reentered for the
1795 * same board and that the OS is not in another section of
1796 * code (eg. dfx_xmt_queue_pkt) for the same board on a
1797 * different thread.
1798 *
1799 * Side Effects:
1800 * Pending interrupts are serviced. Depending on the type of
1801 * interrupt, acknowledging and clearing the interrupt at the
1802 * PDQ involves writing a register to clear the interrupt bit
1803 * or updating completion indices.
1804 */
1805
1806static void dfx_int_common(struct net_device *dev)
1807{
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08001808 DFX_board_t *bp = netdev_priv(dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001809 PI_UINT32 port_status; /* Port Status register */
1810
1811 /* Process xmt interrupts - frequent case, so always call this routine */
1812
1813 if(dfx_xmt_done(bp)) /* free consumed xmt packets */
1814 netif_wake_queue(dev);
1815
1816 /* Process rcv interrupts - frequent case, so always call this routine */
1817
1818 dfx_rcv_queue_process(bp); /* service received LLC frames */
1819
1820 /*
1821 * Transmit and receive producer and completion indices are updated on the
1822 * adapter by writing to the Type 2 Producer register. Since the frequent
1823 * case is that we'll be processing either LLC transmit or receive buffers,
1824 * we'll optimize I/O writes by doing a single register write here.
1825 */
1826
1827 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1828
1829 /* Read PDQ Port Status register to find out which interrupts need processing */
1830
1831 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1832
1833 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1834
1835 if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1836 dfx_int_type_0_process(bp); /* process Type 0 interrupts */
1837 }
1838
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001839
Linus Torvalds1da177e2005-04-16 15:20:36 -07001840/*
1841 * =================
1842 * = dfx_interrupt =
1843 * =================
Maciej W. Rozyckifeea1db2005-06-20 15:33:03 -07001844 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001845 * Overview:
1846 * Interrupt processing routine
Maciej W. Rozyckifeea1db2005-06-20 15:33:03 -07001847 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001848 * Returns:
Maciej W. Rozyckifeea1db2005-06-20 15:33:03 -07001849 * Whether a valid interrupt was seen.
1850 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001851 * Arguments:
1852 * irq - interrupt vector
1853 * dev_id - pointer to device information
Linus Torvalds1da177e2005-04-16 15:20:36 -07001854 *
1855 * Functional Description:
1856 * This routine calls the interrupt processing routine for this adapter. It
1857 * disables and reenables adapter interrupts, as appropriate. We can support
1858 * shared interrupts since the incoming dev_id pointer provides our device
1859 * structure context.
1860 *
1861 * Return Codes:
Maciej W. Rozyckifeea1db2005-06-20 15:33:03 -07001862 * IRQ_HANDLED - an IRQ was handled.
1863 * IRQ_NONE - no IRQ was handled.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001864 *
1865 * Assumptions:
1866 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1867 * on Intel-based systems) is done by the operating system outside this
1868 * routine.
1869 *
1870 * System interrupts are enabled through this call.
1871 *
1872 * Side Effects:
1873 * Interrupts are disabled, then reenabled at the adapter.
1874 */
1875
David Howells7d12e782006-10-05 14:55:46 +01001876static irqreturn_t dfx_interrupt(int irq, void *dev_id)
Maciej W. Rozyckifeea1db2005-06-20 15:33:03 -07001877{
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08001878 struct net_device *dev = dev_id;
1879 DFX_board_t *bp = netdev_priv(dev);
1880 struct device *bdev = bp->bus_dev;
1881 int dfx_bus_pci = DFX_BUS_PCI(bdev);
1882 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1883 int dfx_bus_tc = DFX_BUS_TC(bdev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001884
1885 /* Service adapter interrupts */
1886
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08001887 if (dfx_bus_pci) {
Maciej W. Rozyckifeea1db2005-06-20 15:33:03 -07001888 u32 status;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001889
Maciej W. Rozyckifeea1db2005-06-20 15:33:03 -07001890 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1891 if (!(status & PFI_STATUS_M_PDQ_INT))
1892 return IRQ_NONE;
1893
1894 spin_lock(&bp->lock);
1895
1896 /* Disable PDQ-PFI interrupts at PFI */
1897 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1898 PFI_MODE_M_DMA_ENB);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001899
1900 /* Call interrupt service routine for this adapter */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001901 dfx_int_common(dev);
1902
1903 /* Clear PDQ interrupt status bit and reenable interrupts */
Maciej W. Rozyckifeea1db2005-06-20 15:33:03 -07001904 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1905 PFI_STATUS_M_PDQ_INT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001906 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
Maciej W. Rozyckifeea1db2005-06-20 15:33:03 -07001907 (PFI_MODE_M_PDQ_INT_ENB |
1908 PFI_MODE_M_DMA_ENB));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001909
Maciej W. Rozyckifeea1db2005-06-20 15:33:03 -07001910 spin_unlock(&bp->lock);
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08001911 }
1912 if (dfx_bus_eisa) {
1913 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
Maciej W. Rozyckifeea1db2005-06-20 15:33:03 -07001914 u8 status;
1915
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08001916 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
Maciej W. Rozyckifeea1db2005-06-20 15:33:03 -07001917 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1918 return IRQ_NONE;
1919
1920 spin_lock(&bp->lock);
1921
1922 /* Disable interrupts at the ESIC */
1923 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08001924 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001925
1926 /* Call interrupt service routine for this adapter */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001927 dfx_int_common(dev);
1928
1929 /* Reenable interrupts at the ESIC */
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08001930 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
Maciej W. Rozyckifeea1db2005-06-20 15:33:03 -07001931 status |= PI_CONFIG_STAT_0_M_INT_ENB;
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08001932 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1933
1934 spin_unlock(&bp->lock);
1935 }
1936 if (dfx_bus_tc) {
1937 u32 status;
1938
1939 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1940 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1941 PI_PSTATUS_M_XMT_DATA_PENDING |
1942 PI_PSTATUS_M_SMT_HOST_PENDING |
1943 PI_PSTATUS_M_UNSOL_PENDING |
1944 PI_PSTATUS_M_CMD_RSP_PENDING |
1945 PI_PSTATUS_M_CMD_REQ_PENDING |
1946 PI_PSTATUS_M_TYPE_0_PENDING)))
1947 return IRQ_NONE;
1948
1949 spin_lock(&bp->lock);
1950
1951 /* Call interrupt service routine for this adapter */
1952 dfx_int_common(dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001953
Maciej W. Rozyckifeea1db2005-06-20 15:33:03 -07001954 spin_unlock(&bp->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001955 }
1956
Maciej W. Rozyckifeea1db2005-06-20 15:33:03 -07001957 return IRQ_HANDLED;
1958}
1959
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001960
Linus Torvalds1da177e2005-04-16 15:20:36 -07001961/*
1962 * =====================
1963 * = dfx_ctl_get_stats =
1964 * =====================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001965 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001966 * Overview:
1967 * Get statistics for FDDI adapter
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001968 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001969 * Returns:
1970 * Pointer to FDDI statistics structure
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001971 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001972 * Arguments:
1973 * dev - pointer to device information
1974 *
1975 * Functional Description:
1976 * Gets current MIB objects from adapter, then
1977 * returns FDDI statistics structure as defined
1978 * in if_fddi.h.
1979 *
1980 * Note: Since the FDDI statistics structure is
1981 * still new and the device structure doesn't
1982 * have an FDDI-specific get statistics handler,
1983 * we'll return the FDDI statistics structure as
1984 * a pointer to an Ethernet statistics structure.
1985 * That way, at least the first part of the statistics
1986 * structure can be decoded properly, and it allows
1987 * "smart" applications to perform a second cast to
1988 * decode the FDDI-specific statistics.
1989 *
1990 * We'll have to pay attention to this routine as the
1991 * device structure becomes more mature and LAN media
1992 * independent.
1993 *
1994 * Return Codes:
1995 * None
1996 *
1997 * Assumptions:
1998 * None
1999 *
2000 * Side Effects:
2001 * None
2002 */
2003
2004static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2005 {
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08002006 DFX_board_t *bp = netdev_priv(dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002007
2008 /* Fill the bp->stats structure with driver-maintained counters */
2009
2010 bp->stats.gen.rx_packets = bp->rcv_total_frames;
2011 bp->stats.gen.tx_packets = bp->xmt_total_frames;
2012 bp->stats.gen.rx_bytes = bp->rcv_total_bytes;
2013 bp->stats.gen.tx_bytes = bp->xmt_total_bytes;
2014 bp->stats.gen.rx_errors = bp->rcv_crc_errors +
2015 bp->rcv_frame_status_errors +
2016 bp->rcv_length_errors;
2017 bp->stats.gen.tx_errors = bp->xmt_length_errors;
2018 bp->stats.gen.rx_dropped = bp->rcv_discards;
2019 bp->stats.gen.tx_dropped = bp->xmt_discards;
2020 bp->stats.gen.multicast = bp->rcv_multicast_frames;
2021 bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */
2022
2023 /* Get FDDI SMT MIB objects */
2024
2025 bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2026 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
Eric Dumazet807540b2010-09-23 05:40:09 +00002027 return (struct net_device_stats *)&bp->stats;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002028
2029 /* Fill the bp->stats structure with the SMT MIB object values */
2030
2031 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2032 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2033 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2034 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2035 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2036 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2037 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2038 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2039 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2040 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2041 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2042 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2043 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2044 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2045 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2046 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2047 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2048 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2049 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2050 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2051 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2052 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2053 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2054 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2055 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2056 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2057 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2058 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2059 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2060 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2061 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2062 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2063 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2064 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2065 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2066 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2067 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2068 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2069 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2070 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2071 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2072 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2073 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2074 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2075 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2076 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2077 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2078 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2079 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2080 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2081 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2082 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2083 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2084 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2085 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2086 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2087 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2088 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2089 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2090 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2091 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2092 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2093 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2094 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2095 memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2096 memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2097 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2098 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2099 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2100 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2101 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2102 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2103 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2104 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2105 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2106 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2107 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2108 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2109 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2110 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2111 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2112 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2113 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2114 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2115 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2116 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2117 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2118 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2119 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2120 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2121 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2122 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2123
2124 /* Get FDDI counters */
2125
2126 bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2127 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
Eric Dumazet807540b2010-09-23 05:40:09 +00002128 return (struct net_device_stats *)&bp->stats;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002129
2130 /* Fill the bp->stats structure with the FDDI counter values */
2131
2132 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2133 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2134 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2135 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2136 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2137 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2138 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2139 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2140 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2141 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2142 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2143
Eric Dumazet807540b2010-09-23 05:40:09 +00002144 return (struct net_device_stats *)&bp->stats;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002145 }
2146
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002147
Linus Torvalds1da177e2005-04-16 15:20:36 -07002148/*
2149 * ==============================
2150 * = dfx_ctl_set_multicast_list =
2151 * ==============================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002152 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002153 * Overview:
2154 * Enable/Disable LLC frame promiscuous mode reception
2155 * on the adapter and/or update multicast address table.
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002156 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002157 * Returns:
2158 * None
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002159 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002160 * Arguments:
2161 * dev - pointer to device information
2162 *
2163 * Functional Description:
2164 * This routine follows a fairly simple algorithm for setting the
2165 * adapter filters and CAM:
2166 *
2167 * if IFF_PROMISC flag is set
2168 * enable LLC individual/group promiscuous mode
2169 * else
2170 * disable LLC individual/group promiscuous mode
2171 * if number of incoming multicast addresses >
2172 * (CAM max size - number of unicast addresses in CAM)
2173 * enable LLC group promiscuous mode
2174 * set driver-maintained multicast address count to zero
2175 * else
2176 * disable LLC group promiscuous mode
2177 * set driver-maintained multicast address count to incoming count
2178 * update adapter CAM
2179 * update adapter filters
2180 *
2181 * Return Codes:
2182 * None
2183 *
2184 * Assumptions:
2185 * Multicast addresses are presented in canonical (LSB) format.
2186 *
2187 * Side Effects:
2188 * On-board adapter CAM and filters are updated.
2189 */
2190
2191static void dfx_ctl_set_multicast_list(struct net_device *dev)
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08002192{
2193 DFX_board_t *bp = netdev_priv(dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002194 int i; /* used as index in for loop */
Jiri Pirko22bedad2010-04-01 21:22:57 +00002195 struct netdev_hw_addr *ha;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002196
2197 /* Enable LLC frame promiscuous mode, if necessary */
2198
2199 if (dev->flags & IFF_PROMISC)
2200 bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */
2201
2202 /* Else, update multicast address table */
2203
2204 else
2205 {
2206 bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */
2207 /*
2208 * Check whether incoming multicast address count exceeds table size
2209 *
2210 * Note: The adapters utilize an on-board 64 entry CAM for
2211 * supporting perfect filtering of multicast packets
2212 * and bridge functions when adding unicast addresses.
2213 * There is no hash function available. To support
2214 * additional multicast addresses, the all multicast
2215 * filter (LLC group promiscuous mode) must be enabled.
2216 *
2217 * The firmware reserves two CAM entries for SMT-related
2218 * multicast addresses, which leaves 62 entries available.
2219 * The following code ensures that we're not being asked
2220 * to add more than 62 addresses to the CAM. If we are,
2221 * the driver will enable the all multicast filter.
2222 * Should the number of multicast addresses drop below
2223 * the high water mark, the filter will be disabled and
2224 * perfect filtering will be used.
2225 */
2226
Jiri Pirko4cd24ea2010-02-08 04:30:35 +00002227 if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002228 {
2229 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2230 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2231 }
2232 else
2233 {
2234 bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */
Jiri Pirko4cd24ea2010-02-08 04:30:35 +00002235 bp->mc_count = netdev_mc_count(dev); /* Add mc addrs to CAM */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002236 }
2237
2238 /* Copy addresses to multicast address table, then update adapter CAM */
2239
Jiri Pirkoe1d44472010-02-17 11:09:31 +00002240 i = 0;
Jiri Pirko22bedad2010-04-01 21:22:57 +00002241 netdev_for_each_mc_addr(ha, dev)
Jiri Pirkoe1d44472010-02-17 11:09:31 +00002242 memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
Jiri Pirko22bedad2010-04-01 21:22:57 +00002243 ha->addr, FDDI_K_ALEN);
Jiri Pirkoe1d44472010-02-17 11:09:31 +00002244
Linus Torvalds1da177e2005-04-16 15:20:36 -07002245 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2246 {
2247 DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2248 }
2249 else
2250 {
2251 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count);
2252 }
2253 }
2254
2255 /* Update adapter filters */
2256
2257 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2258 {
2259 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2260 }
2261 else
2262 {
2263 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2264 }
2265 }
2266
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002267
Linus Torvalds1da177e2005-04-16 15:20:36 -07002268/*
2269 * ===========================
2270 * = dfx_ctl_set_mac_address =
2271 * ===========================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002272 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002273 * Overview:
2274 * Add node address override (unicast address) to adapter
2275 * CAM and update dev_addr field in device table.
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002276 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002277 * Returns:
2278 * None
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002279 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002280 * Arguments:
2281 * dev - pointer to device information
2282 * addr - pointer to sockaddr structure containing unicast address to add
2283 *
2284 * Functional Description:
2285 * The adapter supports node address overrides by adding one or more
2286 * unicast addresses to the adapter CAM. This is similar to adding
2287 * multicast addresses. In this routine we'll update the driver and
2288 * device structures with the new address, then update the adapter CAM
2289 * to ensure that the adapter will copy and strip frames destined and
2290 * sourced by that address.
2291 *
2292 * Return Codes:
2293 * Always returns zero.
2294 *
2295 * Assumptions:
2296 * The address pointed to by addr->sa_data is a valid unicast
2297 * address and is presented in canonical (LSB) format.
2298 *
2299 * Side Effects:
2300 * On-board adapter CAM is updated. On-board adapter filters
2301 * may be updated.
2302 */
2303
2304static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2305 {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002306 struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08002307 DFX_board_t *bp = netdev_priv(dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002308
2309 /* Copy unicast address to driver-maintained structs and update count */
2310
2311 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */
2312 memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */
2313 bp->uc_count = 1;
2314
2315 /*
2316 * Verify we're not exceeding the CAM size by adding unicast address
2317 *
2318 * Note: It's possible that before entering this routine we've
2319 * already filled the CAM with 62 multicast addresses.
2320 * Since we need to place the node address override into
2321 * the CAM, we have to check to see that we're not
2322 * exceeding the CAM size. If we are, we have to enable
2323 * the LLC group (multicast) promiscuous mode filter as
2324 * in dfx_ctl_set_multicast_list.
2325 */
2326
2327 if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2328 {
2329 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2330 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2331
2332 /* Update adapter filters */
2333
2334 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2335 {
2336 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2337 }
2338 else
2339 {
2340 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2341 }
2342 }
2343
2344 /* Update adapter CAM with new unicast address */
2345
2346 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2347 {
2348 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2349 }
2350 else
2351 {
2352 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2353 }
Eric Dumazet807540b2010-09-23 05:40:09 +00002354 return 0; /* always return zero */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002355 }
2356
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002357
Linus Torvalds1da177e2005-04-16 15:20:36 -07002358/*
2359 * ======================
2360 * = dfx_ctl_update_cam =
2361 * ======================
2362 *
2363 * Overview:
2364 * Procedure to update adapter CAM (Content Addressable Memory)
2365 * with desired unicast and multicast address entries.
2366 *
2367 * Returns:
2368 * Condition code
2369 *
2370 * Arguments:
2371 * bp - pointer to board information
2372 *
2373 * Functional Description:
2374 * Updates adapter CAM with current contents of board structure
2375 * unicast and multicast address tables. Since there are only 62
2376 * free entries in CAM, this routine ensures that the command
2377 * request buffer is not overrun.
2378 *
2379 * Return Codes:
2380 * DFX_K_SUCCESS - Request succeeded
2381 * DFX_K_FAILURE - Request failed
2382 *
2383 * Assumptions:
2384 * All addresses being added (unicast and multicast) are in canonical
2385 * order.
2386 *
2387 * Side Effects:
2388 * On-board adapter CAM is updated.
2389 */
2390
2391static int dfx_ctl_update_cam(DFX_board_t *bp)
2392 {
2393 int i; /* used as index */
2394 PI_LAN_ADDR *p_addr; /* pointer to CAM entry */
2395
2396 /*
2397 * Fill in command request information
2398 *
2399 * Note: Even though both the unicast and multicast address
2400 * table entries are stored as contiguous 6 byte entries,
2401 * the firmware address filter set command expects each
2402 * entry to be two longwords (8 bytes total). We must be
2403 * careful to only copy the six bytes of each unicast and
2404 * multicast table entry into each command entry. This
2405 * is also why we must first clear the entire command
2406 * request buffer.
2407 */
2408
2409 memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */
2410 bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2411 p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2412
2413 /* Now add unicast addresses to command request buffer, if any */
2414
2415 for (i=0; i < (int)bp->uc_count; i++)
2416 {
2417 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2418 {
2419 memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2420 p_addr++; /* point to next command entry */
2421 }
2422 }
2423
2424 /* Now add multicast addresses to command request buffer, if any */
2425
2426 for (i=0; i < (int)bp->mc_count; i++)
2427 {
2428 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2429 {
2430 memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2431 p_addr++; /* point to next command entry */
2432 }
2433 }
2434
2435 /* Issue command to update adapter CAM, then return */
2436
2437 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
Eric Dumazet807540b2010-09-23 05:40:09 +00002438 return DFX_K_FAILURE;
2439 return DFX_K_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002440 }
2441
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002442
Linus Torvalds1da177e2005-04-16 15:20:36 -07002443/*
2444 * ==========================
2445 * = dfx_ctl_update_filters =
2446 * ==========================
2447 *
2448 * Overview:
2449 * Procedure to update adapter filters with desired
2450 * filter settings.
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002451 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002452 * Returns:
2453 * Condition code
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002454 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002455 * Arguments:
2456 * bp - pointer to board information
2457 *
2458 * Functional Description:
2459 * Enables or disables filter using current filter settings.
2460 *
2461 * Return Codes:
2462 * DFX_K_SUCCESS - Request succeeded.
2463 * DFX_K_FAILURE - Request failed.
2464 *
2465 * Assumptions:
2466 * We must always pass up packets destined to the broadcast
2467 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2468 * broadcast filter enabled.
2469 *
2470 * Side Effects:
2471 * On-board adapter filters are updated.
2472 */
2473
2474static int dfx_ctl_update_filters(DFX_board_t *bp)
2475 {
2476 int i = 0; /* used as index */
2477
2478 /* Fill in command request information */
2479
2480 bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2481
2482 /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2483
2484 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST;
2485 bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS;
2486
2487 /* Initialize LLC Individual/Group Promiscuous filter */
2488
2489 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM;
2490 bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom;
2491
2492 /* Initialize LLC Group Promiscuous filter */
2493
2494 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM;
2495 bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom;
2496
2497 /* Terminate the item code list */
2498
2499 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL;
2500
2501 /* Issue command to update adapter filters, then return */
2502
2503 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
Eric Dumazet807540b2010-09-23 05:40:09 +00002504 return DFX_K_FAILURE;
2505 return DFX_K_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002506 }
2507
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002508
Linus Torvalds1da177e2005-04-16 15:20:36 -07002509/*
2510 * ======================
2511 * = dfx_hw_dma_cmd_req =
2512 * ======================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002513 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002514 * Overview:
2515 * Sends PDQ DMA command to adapter firmware
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002516 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002517 * Returns:
2518 * Condition code
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002519 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002520 * Arguments:
2521 * bp - pointer to board information
2522 *
2523 * Functional Description:
2524 * The command request and response buffers are posted to the adapter in the manner
2525 * described in the PDQ Port Specification:
2526 *
2527 * 1. Command Response Buffer is posted to adapter.
2528 * 2. Command Request Buffer is posted to adapter.
2529 * 3. Command Request consumer index is polled until it indicates that request
2530 * buffer has been DMA'd to adapter.
2531 * 4. Command Response consumer index is polled until it indicates that response
2532 * buffer has been DMA'd from adapter.
2533 *
2534 * This ordering ensures that a response buffer is already available for the firmware
2535 * to use once it's done processing the request buffer.
2536 *
2537 * Return Codes:
2538 * DFX_K_SUCCESS - DMA command succeeded
2539 * DFX_K_OUTSTATE - Adapter is NOT in proper state
2540 * DFX_K_HW_TIMEOUT - DMA command timed out
2541 *
2542 * Assumptions:
2543 * Command request buffer has already been filled with desired DMA command.
2544 *
2545 * Side Effects:
2546 * None
2547 */
2548
2549static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2550 {
2551 int status; /* adapter status */
2552 int timeout_cnt; /* used in for loops */
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002553
Linus Torvalds1da177e2005-04-16 15:20:36 -07002554 /* Make sure the adapter is in a state that we can issue the DMA command in */
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002555
Linus Torvalds1da177e2005-04-16 15:20:36 -07002556 status = dfx_hw_adap_state_rd(bp);
2557 if ((status == PI_STATE_K_RESET) ||
2558 (status == PI_STATE_K_HALTED) ||
2559 (status == PI_STATE_K_DMA_UNAVAIL) ||
2560 (status == PI_STATE_K_UPGRADE))
Eric Dumazet807540b2010-09-23 05:40:09 +00002561 return DFX_K_OUTSTATE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002562
2563 /* Put response buffer on the command response queue */
2564
2565 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2566 ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2567 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2568
2569 /* Bump (and wrap) the producer index and write out to register */
2570
2571 bp->cmd_rsp_reg.index.prod += 1;
2572 bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2573 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2574
2575 /* Put request buffer on the command request queue */
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002576
Linus Torvalds1da177e2005-04-16 15:20:36 -07002577 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2578 PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2579 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2580
2581 /* Bump (and wrap) the producer index and write out to register */
2582
2583 bp->cmd_req_reg.index.prod += 1;
2584 bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2585 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2586
2587 /*
2588 * Here we wait for the command request consumer index to be equal
2589 * to the producer, indicating that the adapter has DMAed the request.
2590 */
2591
2592 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2593 {
2594 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2595 break;
2596 udelay(100); /* wait for 100 microseconds */
2597 }
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002598 if (timeout_cnt == 0)
Eric Dumazet807540b2010-09-23 05:40:09 +00002599 return DFX_K_HW_TIMEOUT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002600
2601 /* Bump (and wrap) the completion index and write out to register */
2602
2603 bp->cmd_req_reg.index.comp += 1;
2604 bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2605 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2606
2607 /*
2608 * Here we wait for the command response consumer index to be equal
2609 * to the producer, indicating that the adapter has DMAed the response.
2610 */
2611
2612 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2613 {
2614 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2615 break;
2616 udelay(100); /* wait for 100 microseconds */
2617 }
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002618 if (timeout_cnt == 0)
Eric Dumazet807540b2010-09-23 05:40:09 +00002619 return DFX_K_HW_TIMEOUT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002620
2621 /* Bump (and wrap) the completion index and write out to register */
2622
2623 bp->cmd_rsp_reg.index.comp += 1;
2624 bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2625 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
Eric Dumazet807540b2010-09-23 05:40:09 +00002626 return DFX_K_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002627 }
2628
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002629
Linus Torvalds1da177e2005-04-16 15:20:36 -07002630/*
2631 * ========================
2632 * = dfx_hw_port_ctrl_req =
2633 * ========================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002634 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002635 * Overview:
2636 * Sends PDQ port control command to adapter firmware
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002637 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002638 * Returns:
2639 * Host data register value in host_data if ptr is not NULL
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002640 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002641 * Arguments:
2642 * bp - pointer to board information
2643 * command - port control command
2644 * data_a - port data A register value
2645 * data_b - port data B register value
2646 * host_data - ptr to host data register value
2647 *
2648 * Functional Description:
2649 * Send generic port control command to adapter by writing
2650 * to various PDQ port registers, then polling for completion.
2651 *
2652 * Return Codes:
2653 * DFX_K_SUCCESS - port control command succeeded
2654 * DFX_K_HW_TIMEOUT - port control command timed out
2655 *
2656 * Assumptions:
2657 * None
2658 *
2659 * Side Effects:
2660 * None
2661 */
2662
2663static int dfx_hw_port_ctrl_req(
2664 DFX_board_t *bp,
2665 PI_UINT32 command,
2666 PI_UINT32 data_a,
2667 PI_UINT32 data_b,
2668 PI_UINT32 *host_data
2669 )
2670
2671 {
2672 PI_UINT32 port_cmd; /* Port Control command register value */
2673 int timeout_cnt; /* used in for loops */
2674
2675 /* Set Command Error bit in command longword */
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002676
Linus Torvalds1da177e2005-04-16 15:20:36 -07002677 port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2678
2679 /* Issue port command to the adapter */
2680
2681 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2682 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2683 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2684
2685 /* Now wait for command to complete */
2686
2687 if (command == PI_PCTRL_M_BLAST_FLASH)
2688 timeout_cnt = 600000; /* set command timeout count to 60 seconds */
2689 else
2690 timeout_cnt = 20000; /* set command timeout count to 2 seconds */
2691
2692 for (; timeout_cnt > 0; timeout_cnt--)
2693 {
2694 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2695 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2696 break;
2697 udelay(100); /* wait for 100 microseconds */
2698 }
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002699 if (timeout_cnt == 0)
Eric Dumazet807540b2010-09-23 05:40:09 +00002700 return DFX_K_HW_TIMEOUT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002701
2702 /*
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002703 * If the address of host_data is non-zero, assume caller has supplied a
2704 * non NULL pointer, and return the contents of the HOST_DATA register in
Linus Torvalds1da177e2005-04-16 15:20:36 -07002705 * it.
2706 */
2707
2708 if (host_data != NULL)
2709 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
Eric Dumazet807540b2010-09-23 05:40:09 +00002710 return DFX_K_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002711 }
2712
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002713
Linus Torvalds1da177e2005-04-16 15:20:36 -07002714/*
2715 * =====================
2716 * = dfx_hw_adap_reset =
2717 * =====================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002718 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002719 * Overview:
2720 * Resets adapter
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002721 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002722 * Returns:
2723 * None
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002724 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002725 * Arguments:
2726 * bp - pointer to board information
2727 * type - type of reset to perform
2728 *
2729 * Functional Description:
2730 * Issue soft reset to adapter by writing to PDQ Port Reset
2731 * register. Use incoming reset type to tell adapter what
2732 * kind of reset operation to perform.
2733 *
2734 * Return Codes:
2735 * None
2736 *
2737 * Assumptions:
2738 * This routine merely issues a soft reset to the adapter.
2739 * It is expected that after this routine returns, the caller
2740 * will appropriately poll the Port Status register for the
2741 * adapter to enter the proper state.
2742 *
2743 * Side Effects:
2744 * Internal adapter registers are cleared.
2745 */
2746
2747static void dfx_hw_adap_reset(
2748 DFX_board_t *bp,
2749 PI_UINT32 type
2750 )
2751
2752 {
2753 /* Set Reset type and assert reset */
2754
2755 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */
2756 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2757
2758 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2759
2760 udelay(20);
2761
2762 /* Deassert reset */
2763
2764 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2765 }
2766
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002767
Linus Torvalds1da177e2005-04-16 15:20:36 -07002768/*
2769 * ========================
2770 * = dfx_hw_adap_state_rd =
2771 * ========================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002772 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002773 * Overview:
2774 * Returns current adapter state
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002775 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002776 * Returns:
2777 * Adapter state per PDQ Port Specification
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002778 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002779 * Arguments:
2780 * bp - pointer to board information
2781 *
2782 * Functional Description:
2783 * Reads PDQ Port Status register and returns adapter state.
2784 *
2785 * Return Codes:
2786 * None
2787 *
2788 * Assumptions:
2789 * None
2790 *
2791 * Side Effects:
2792 * None
2793 */
2794
2795static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2796 {
2797 PI_UINT32 port_status; /* Port Status register value */
2798
2799 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
Eric Dumazet807540b2010-09-23 05:40:09 +00002800 return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002801 }
2802
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002803
Linus Torvalds1da177e2005-04-16 15:20:36 -07002804/*
2805 * =====================
2806 * = dfx_hw_dma_uninit =
2807 * =====================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002808 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002809 * Overview:
2810 * Brings adapter to DMA_UNAVAILABLE state
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002811 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002812 * Returns:
2813 * Condition code
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002814 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002815 * Arguments:
2816 * bp - pointer to board information
2817 * type - type of reset to perform
2818 *
2819 * Functional Description:
2820 * Bring adapter to DMA_UNAVAILABLE state by performing the following:
2821 * 1. Set reset type bit in Port Data A Register then reset adapter.
2822 * 2. Check that adapter is in DMA_UNAVAILABLE state.
2823 *
2824 * Return Codes:
2825 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
2826 * DFX_K_HW_TIMEOUT - adapter did not reset properly
2827 *
2828 * Assumptions:
2829 * None
2830 *
2831 * Side Effects:
2832 * Internal adapter registers are cleared.
2833 */
2834
2835static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2836 {
2837 int timeout_cnt; /* used in for loops */
2838
2839 /* Set reset type bit and reset adapter */
2840
2841 dfx_hw_adap_reset(bp, type);
2842
2843 /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2844
2845 for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2846 {
2847 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2848 break;
2849 udelay(100); /* wait for 100 microseconds */
2850 }
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002851 if (timeout_cnt == 0)
Eric Dumazet807540b2010-09-23 05:40:09 +00002852 return DFX_K_HW_TIMEOUT;
2853 return DFX_K_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002854 }
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002855
Linus Torvalds1da177e2005-04-16 15:20:36 -07002856/*
2857 * Align an sk_buff to a boundary power of 2
2858 *
2859 */
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002860
Linus Torvalds1da177e2005-04-16 15:20:36 -07002861static void my_skb_align(struct sk_buff *skb, int n)
2862{
2863 unsigned long x = (unsigned long)skb->data;
2864 unsigned long v;
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002865
Linus Torvalds1da177e2005-04-16 15:20:36 -07002866 v = ALIGN(x, n); /* Where we want to be */
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002867
Linus Torvalds1da177e2005-04-16 15:20:36 -07002868 skb_reserve(skb, v - x);
2869}
2870
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002871
Linus Torvalds1da177e2005-04-16 15:20:36 -07002872/*
2873 * ================
2874 * = dfx_rcv_init =
2875 * ================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002876 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002877 * Overview:
2878 * Produces buffers to adapter LLC Host receive descriptor block
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002879 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002880 * Returns:
2881 * None
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002882 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002883 * Arguments:
2884 * bp - pointer to board information
2885 * get_buffers - non-zero if buffers to be allocated
2886 *
2887 * Functional Description:
2888 * This routine can be called during dfx_adap_init() or during an adapter
2889 * reset. It initializes the descriptor block and produces all allocated
2890 * LLC Host queue receive buffers.
2891 *
2892 * Return Codes:
2893 * Return 0 on success or -ENOMEM if buffer allocation failed (when using
2894 * dynamic buffer allocation). If the buffer allocation failed, the
2895 * already allocated buffers will not be released and the caller should do
2896 * this.
2897 *
2898 * Assumptions:
2899 * The PDQ has been reset and the adapter and driver maintained Type 2
2900 * register indices are cleared.
2901 *
2902 * Side Effects:
2903 * Receive buffers are posted to the adapter LLC queue and the adapter
2904 * is notified.
2905 */
2906
2907static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2908 {
2909 int i, j; /* used in for loop */
2910
2911 /*
2912 * Since each receive buffer is a single fragment of same length, initialize
2913 * first longword in each receive descriptor for entire LLC Host descriptor
2914 * block. Also initialize second longword in each receive descriptor with
2915 * physical address of receive buffer. We'll always allocate receive
2916 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2917 * block and produce new receive buffers by simply updating the receive
2918 * producer index.
2919 *
2920 * Assumptions:
2921 * To support all shipping versions of PDQ, the receive buffer size
2922 * must be mod 128 in length and the physical address must be 128 byte
2923 * aligned. In other words, bits 0-6 of the length and address must
2924 * be zero for the following descriptor field entries to be correct on
2925 * all PDQ-based boards. We guaranteed both requirements during
2926 * driver initialization when we allocated memory for the receive buffers.
2927 */
2928
2929 if (get_buffers) {
2930#ifdef DYNAMIC_BUFFERS
2931 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2932 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2933 {
David S. Miller9034f772009-02-10 01:56:45 -08002934 struct sk_buff *newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, GFP_NOIO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002935 if (!newskb)
2936 return -ENOMEM;
2937 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2938 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2939 /*
2940 * align to 128 bytes for compatibility with
2941 * the old EISA boards.
2942 */
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002943
Linus Torvalds1da177e2005-04-16 15:20:36 -07002944 my_skb_align(newskb, 128);
2945 bp->descr_block_virt->rcv_data[i + j].long_1 =
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08002946 (u32)dma_map_single(bp->bus_dev, newskb->data,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002947 NEW_SKB_SIZE,
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08002948 DMA_FROM_DEVICE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002949 /*
2950 * p_rcv_buff_va is only used inside the
2951 * kernel so we put the skb pointer here.
2952 */
2953 bp->p_rcv_buff_va[i+j] = (char *) newskb;
2954 }
2955#else
2956 for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2957 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2958 {
2959 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2960 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2961 bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
Joe Perchesc2fd03a2012-06-04 12:44:18 +00002962 bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002963 }
2964#endif
2965 }
2966
2967 /* Update receive producer and Type 2 register */
2968
2969 bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2970 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2971 return 0;
2972 }
2973
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002974
Linus Torvalds1da177e2005-04-16 15:20:36 -07002975/*
2976 * =========================
2977 * = dfx_rcv_queue_process =
2978 * =========================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002979 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002980 * Overview:
2981 * Process received LLC frames.
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002982 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002983 * Returns:
2984 * None
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002985 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002986 * Arguments:
2987 * bp - pointer to board information
2988 *
2989 * Functional Description:
2990 * Received LLC frames are processed until there are no more consumed frames.
2991 * Once all frames are processed, the receive buffers are returned to the
2992 * adapter. Note that this algorithm fixes the length of time that can be spent
2993 * in this routine, because there are a fixed number of receive buffers to
2994 * process and buffers are not produced until this routine exits and returns
2995 * to the ISR.
2996 *
2997 * Return Codes:
2998 * None
2999 *
3000 * Assumptions:
3001 * None
3002 *
3003 * Side Effects:
3004 * None
3005 */
3006
3007static void dfx_rcv_queue_process(
3008 DFX_board_t *bp
3009 )
3010
3011 {
3012 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3013 char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */
3014 u32 descr, pkt_len; /* FMC descriptor field and packet length */
3015 struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */
3016
3017 /* Service all consumed LLC receive frames */
3018
3019 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3020 while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3021 {
3022 /* Process any errors */
3023
3024 int entry;
3025
3026 entry = bp->rcv_xmt_reg.index.rcv_comp;
3027#ifdef DYNAMIC_BUFFERS
3028 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3029#else
Joe Perchesc2fd03a2012-06-04 12:44:18 +00003030 p_buff = bp->p_rcv_buff_va[entry];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003031#endif
3032 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3033
3034 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3035 {
3036 if (descr & PI_FMC_DESCR_M_RCC_CRC)
3037 bp->rcv_crc_errors++;
3038 else
3039 bp->rcv_frame_status_errors++;
3040 }
3041 else
3042 {
3043 int rx_in_place = 0;
3044
3045 /* The frame was received without errors - verify packet length */
3046
3047 pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3048 pkt_len -= 4; /* subtract 4 byte CRC */
3049 if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3050 bp->rcv_length_errors++;
3051 else{
3052#ifdef DYNAMIC_BUFFERS
3053 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3054 struct sk_buff *newskb;
3055
3056 newskb = dev_alloc_skb(NEW_SKB_SIZE);
3057 if (newskb){
3058 rx_in_place = 1;
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003059
Linus Torvalds1da177e2005-04-16 15:20:36 -07003060 my_skb_align(newskb, 128);
3061 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003062 dma_unmap_single(bp->bus_dev,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003063 bp->descr_block_virt->rcv_data[entry].long_1,
3064 NEW_SKB_SIZE,
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003065 DMA_FROM_DEVICE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003066 skb_reserve(skb, RCV_BUFF_K_PADDING);
3067 bp->p_rcv_buff_va[entry] = (char *)newskb;
3068 bp->descr_block_virt->rcv_data[entry].long_1 =
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003069 (u32)dma_map_single(bp->bus_dev,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003070 newskb->data,
3071 NEW_SKB_SIZE,
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003072 DMA_FROM_DEVICE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003073 } else
3074 skb = NULL;
3075 } else
3076#endif
3077 skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
3078 if (skb == NULL)
3079 {
3080 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name);
3081 bp->rcv_discards++;
3082 break;
3083 }
3084 else {
3085#ifndef DYNAMIC_BUFFERS
3086 if (! rx_in_place)
3087#endif
3088 {
3089 /* Receive buffer allocated, pass receive packet up */
3090
Arnaldo Carvalho de Melo27d7ff42007-03-31 11:55:19 -03003091 skb_copy_to_linear_data(skb,
3092 p_buff + RCV_BUFF_K_PADDING,
3093 pkt_len + 3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003094 }
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003095
Linus Torvalds1da177e2005-04-16 15:20:36 -07003096 skb_reserve(skb,3); /* adjust data field so that it points to FC byte */
3097 skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003098 skb->protocol = fddi_type_trans(skb, bp->dev);
3099 bp->rcv_total_bytes += skb->len;
3100 netif_rx(skb);
3101
3102 /* Update the rcv counters */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003103 bp->rcv_total_frames++;
3104 if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3105 bp->rcv_multicast_frames++;
3106 }
3107 }
3108 }
3109
3110 /*
3111 * Advance the producer (for recycling) and advance the completion
3112 * (for servicing received frames). Note that it is okay to
3113 * advance the producer without checking that it passes the
3114 * completion index because they are both advanced at the same
3115 * rate.
3116 */
3117
3118 bp->rcv_xmt_reg.index.rcv_prod += 1;
3119 bp->rcv_xmt_reg.index.rcv_comp += 1;
3120 }
3121 }
3122
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003123
Linus Torvalds1da177e2005-04-16 15:20:36 -07003124/*
3125 * =====================
3126 * = dfx_xmt_queue_pkt =
3127 * =====================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003128 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003129 * Overview:
3130 * Queues packets for transmission
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003131 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003132 * Returns:
3133 * Condition code
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003134 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003135 * Arguments:
3136 * skb - pointer to sk_buff to queue for transmission
3137 * dev - pointer to device information
3138 *
3139 * Functional Description:
3140 * Here we assume that an incoming skb transmit request
3141 * is contained in a single physically contiguous buffer
3142 * in which the virtual address of the start of packet
3143 * (skb->data) can be converted to a physical address
3144 * by using pci_map_single().
3145 *
3146 * Since the adapter architecture requires a three byte
3147 * packet request header to prepend the start of packet,
3148 * we'll write the three byte field immediately prior to
3149 * the FC byte. This assumption is valid because we've
3150 * ensured that dev->hard_header_len includes three pad
3151 * bytes. By posting a single fragment to the adapter,
3152 * we'll reduce the number of descriptor fetches and
3153 * bus traffic needed to send the request.
3154 *
3155 * Also, we can't free the skb until after it's been DMA'd
3156 * out by the adapter, so we'll queue it in the driver and
3157 * return it in dfx_xmt_done.
3158 *
3159 * Return Codes:
3160 * 0 - driver queued packet, link is unavailable, or skbuff was bad
3161 * 1 - caller should requeue the sk_buff for later transmission
3162 *
3163 * Assumptions:
3164 * First and foremost, we assume the incoming skb pointer
3165 * is NOT NULL and is pointing to a valid sk_buff structure.
3166 *
3167 * The outgoing packet is complete, starting with the
3168 * frame control byte including the last byte of data,
3169 * but NOT including the 4 byte CRC. We'll let the
3170 * adapter hardware generate and append the CRC.
3171 *
3172 * The entire packet is stored in one physically
3173 * contiguous buffer which is not cached and whose
3174 * 32-bit physical address can be determined.
3175 *
3176 * It's vital that this routine is NOT reentered for the
3177 * same board and that the OS is not in another section of
3178 * code (eg. dfx_int_common) for the same board on a
3179 * different thread.
3180 *
3181 * Side Effects:
3182 * None
3183 */
3184
Stephen Hemminger613573252009-08-31 19:50:58 +00003185static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3186 struct net_device *dev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003187 {
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003188 DFX_board_t *bp = netdev_priv(dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003189 u8 prod; /* local transmit producer index */
3190 PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */
3191 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3192 unsigned long flags;
3193
3194 netif_stop_queue(dev);
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003195
Linus Torvalds1da177e2005-04-16 15:20:36 -07003196 /*
3197 * Verify that incoming transmit request is OK
3198 *
3199 * Note: The packet size check is consistent with other
3200 * Linux device drivers, although the correct packet
3201 * size should be verified before calling the
3202 * transmit routine.
3203 */
3204
3205 if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3206 {
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003207 printk("%s: Invalid packet length - %u bytes\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -07003208 dev->name, skb->len);
3209 bp->xmt_length_errors++; /* bump error counter */
3210 netif_wake_queue(dev);
3211 dev_kfree_skb(skb);
Patrick McHardyec634fe2009-07-05 19:23:38 -07003212 return NETDEV_TX_OK; /* return "success" */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003213 }
3214 /*
3215 * See if adapter link is available, if not, free buffer
3216 *
3217 * Note: If the link isn't available, free buffer and return 0
3218 * rather than tell the upper layer to requeue the packet.
3219 * The methodology here is that by the time the link
3220 * becomes available, the packet to be sent will be
3221 * fairly stale. By simply dropping the packet, the
3222 * higher layer protocols will eventually time out
3223 * waiting for response packets which it won't receive.
3224 */
3225
3226 if (bp->link_available == PI_K_FALSE)
3227 {
3228 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */
3229 bp->link_available = PI_K_TRUE; /* if so, set flag and continue */
3230 else
3231 {
3232 bp->xmt_discards++; /* bump error counter */
3233 dev_kfree_skb(skb); /* free sk_buff now */
3234 netif_wake_queue(dev);
Patrick McHardyec634fe2009-07-05 19:23:38 -07003235 return NETDEV_TX_OK; /* return "success" */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003236 }
3237 }
3238
3239 spin_lock_irqsave(&bp->lock, flags);
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003240
Linus Torvalds1da177e2005-04-16 15:20:36 -07003241 /* Get the current producer and the next free xmt data descriptor */
3242
3243 prod = bp->rcv_xmt_reg.index.xmt_prod;
3244 p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3245
3246 /*
3247 * Get pointer to auxiliary queue entry to contain information
3248 * for this packet.
3249 *
3250 * Note: The current xmt producer index will become the
3251 * current xmt completion index when we complete this
3252 * packet later on. So, we'll get the pointer to the
3253 * next auxiliary queue entry now before we bump the
3254 * producer index.
3255 */
3256
3257 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */
3258
3259 /* Write the three PRH bytes immediately before the FC byte */
3260
3261 skb_push(skb,3);
3262 skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */
3263 skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */
3264 skb->data[2] = DFX_PRH2_BYTE; /* specification */
3265
3266 /*
3267 * Write the descriptor with buffer info and bump producer
3268 *
3269 * Note: Since we need to start DMA from the packet request
3270 * header, we'll add 3 bytes to the DMA buffer length,
3271 * and we'll determine the physical address of the
3272 * buffer from the PRH, not skb->data.
3273 *
3274 * Assumptions:
3275 * 1. Packet starts with the frame control (FC) byte
3276 * at skb->data.
3277 * 2. The 4-byte CRC is not appended to the buffer or
3278 * included in the length.
3279 * 3. Packet length (skb->len) is from FC to end of
3280 * data, inclusive.
3281 * 4. The packet length does not exceed the maximum
3282 * FDDI LLC frame length of 4491 bytes.
3283 * 5. The entire packet is contained in a physically
3284 * contiguous, non-cached, locked memory space
3285 * comprised of a single buffer pointed to by
3286 * skb->data.
3287 * 6. The physical address of the start of packet
3288 * can be determined from the virtual address
3289 * by using pci_map_single() and is only 32-bits
3290 * wide.
3291 */
3292
3293 p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003294 p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data,
3295 skb->len, DMA_TO_DEVICE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003296
3297 /*
3298 * Verify that descriptor is actually available
3299 *
3300 * Note: If descriptor isn't available, return 1 which tells
3301 * the upper layer to requeue the packet for later
3302 * transmission.
3303 *
3304 * We need to ensure that the producer never reaches the
3305 * completion, except to indicate that the queue is empty.
3306 */
3307
3308 if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3309 {
3310 skb_pull(skb,3);
3311 spin_unlock_irqrestore(&bp->lock, flags);
Patrick McHardy5b548142009-06-12 06:22:29 +00003312 return NETDEV_TX_BUSY; /* requeue packet for later */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003313 }
3314
3315 /*
3316 * Save info for this packet for xmt done indication routine
3317 *
3318 * Normally, we'd save the producer index in the p_xmt_drv_descr
3319 * structure so that we'd have it handy when we complete this
3320 * packet later (in dfx_xmt_done). However, since the current
3321 * transmit architecture guarantees a single fragment for the
3322 * entire packet, we can simply bump the completion index by
3323 * one (1) for each completed packet.
3324 *
3325 * Note: If this assumption changes and we're presented with
3326 * an inconsistent number of transmit fragments for packet
3327 * data, we'll need to modify this code to save the current
3328 * transmit producer index.
3329 */
3330
3331 p_xmt_drv_descr->p_skb = skb;
3332
3333 /* Update Type 2 register */
3334
3335 bp->rcv_xmt_reg.index.xmt_prod = prod;
3336 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3337 spin_unlock_irqrestore(&bp->lock, flags);
3338 netif_wake_queue(dev);
Patrick McHardyec634fe2009-07-05 19:23:38 -07003339 return NETDEV_TX_OK; /* packet queued to adapter */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003340 }
3341
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003342
Linus Torvalds1da177e2005-04-16 15:20:36 -07003343/*
3344 * ================
3345 * = dfx_xmt_done =
3346 * ================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003347 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003348 * Overview:
3349 * Processes all frames that have been transmitted.
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003350 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003351 * Returns:
3352 * None
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003353 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003354 * Arguments:
3355 * bp - pointer to board information
3356 *
3357 * Functional Description:
3358 * For all consumed transmit descriptors that have not
3359 * yet been completed, we'll free the skb we were holding
3360 * onto using dev_kfree_skb and bump the appropriate
3361 * counters.
3362 *
3363 * Return Codes:
3364 * None
3365 *
3366 * Assumptions:
3367 * The Type 2 register is not updated in this routine. It is
3368 * assumed that it will be updated in the ISR when dfx_xmt_done
3369 * returns.
3370 *
3371 * Side Effects:
3372 * None
3373 */
3374
3375static int dfx_xmt_done(DFX_board_t *bp)
3376 {
3377 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3378 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3379 u8 comp; /* local transmit completion index */
3380 int freed = 0; /* buffers freed */
3381
3382 /* Service all consumed transmit frames */
3383
3384 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3385 while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3386 {
3387 /* Get pointer to the transmit driver descriptor block information */
3388
3389 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3390
3391 /* Increment transmit counters */
3392
3393 bp->xmt_total_frames++;
3394 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3395
3396 /* Return skb to operating system */
3397 comp = bp->rcv_xmt_reg.index.xmt_comp;
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003398 dma_unmap_single(bp->bus_dev,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003399 bp->descr_block_virt->xmt_data[comp].long_1,
3400 p_xmt_drv_descr->p_skb->len,
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003401 DMA_TO_DEVICE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003402 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3403
3404 /*
3405 * Move to start of next packet by updating completion index
3406 *
3407 * Here we assume that a transmit packet request is always
3408 * serviced by posting one fragment. We can therefore
3409 * simplify the completion code by incrementing the
3410 * completion index by one. This code will need to be
3411 * modified if this assumption changes. See comments
3412 * in dfx_xmt_queue_pkt for more details.
3413 */
3414
3415 bp->rcv_xmt_reg.index.xmt_comp += 1;
3416 freed++;
3417 }
3418 return freed;
3419 }
3420
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003421
Linus Torvalds1da177e2005-04-16 15:20:36 -07003422/*
3423 * =================
3424 * = dfx_rcv_flush =
3425 * =================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003426 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003427 * Overview:
3428 * Remove all skb's in the receive ring.
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003429 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003430 * Returns:
3431 * None
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003432 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003433 * Arguments:
3434 * bp - pointer to board information
3435 *
3436 * Functional Description:
3437 * Free's all the dynamically allocated skb's that are
3438 * currently attached to the device receive ring. This
3439 * function is typically only used when the device is
3440 * initialized or reinitialized.
3441 *
3442 * Return Codes:
3443 * None
3444 *
3445 * Side Effects:
3446 * None
3447 */
3448#ifdef DYNAMIC_BUFFERS
3449static void dfx_rcv_flush( DFX_board_t *bp )
3450 {
3451 int i, j;
3452
3453 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3454 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3455 {
3456 struct sk_buff *skb;
3457 skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3458 if (skb)
3459 dev_kfree_skb(skb);
3460 bp->p_rcv_buff_va[i+j] = NULL;
3461 }
3462
3463 }
3464#else
3465static inline void dfx_rcv_flush( DFX_board_t *bp )
3466{
3467}
3468#endif /* DYNAMIC_BUFFERS */
3469
3470/*
3471 * =================
3472 * = dfx_xmt_flush =
3473 * =================
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003474 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003475 * Overview:
3476 * Processes all frames whether they've been transmitted
3477 * or not.
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003478 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003479 * Returns:
3480 * None
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003481 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003482 * Arguments:
3483 * bp - pointer to board information
3484 *
3485 * Functional Description:
3486 * For all produced transmit descriptors that have not
3487 * yet been completed, we'll free the skb we were holding
3488 * onto using dev_kfree_skb and bump the appropriate
3489 * counters. Of course, it's possible that some of
3490 * these transmit requests actually did go out, but we
3491 * won't make that distinction here. Finally, we'll
3492 * update the consumer index to match the producer.
3493 *
3494 * Return Codes:
3495 * None
3496 *
3497 * Assumptions:
3498 * This routine does NOT update the Type 2 register. It
3499 * is assumed that this routine is being called during a
3500 * transmit flush interrupt, or a shutdown or close routine.
3501 *
3502 * Side Effects:
3503 * None
3504 */
3505
3506static void dfx_xmt_flush( DFX_board_t *bp )
3507 {
3508 u32 prod_cons; /* rcv/xmt consumer block longword */
3509 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3510 u8 comp; /* local transmit completion index */
3511
3512 /* Flush all outstanding transmit frames */
3513
3514 while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3515 {
3516 /* Get pointer to the transmit driver descriptor block information */
3517
3518 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3519
3520 /* Return skb to operating system */
3521 comp = bp->rcv_xmt_reg.index.xmt_comp;
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003522 dma_unmap_single(bp->bus_dev,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003523 bp->descr_block_virt->xmt_data[comp].long_1,
3524 p_xmt_drv_descr->p_skb->len,
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003525 DMA_TO_DEVICE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003526 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3527
3528 /* Increment transmit error counter */
3529
3530 bp->xmt_discards++;
3531
3532 /*
3533 * Move to start of next packet by updating completion index
3534 *
3535 * Here we assume that a transmit packet request is always
3536 * serviced by posting one fragment. We can therefore
3537 * simplify the completion code by incrementing the
3538 * completion index by one. This code will need to be
3539 * modified if this assumption changes. See comments
3540 * in dfx_xmt_queue_pkt for more details.
3541 */
3542
3543 bp->rcv_xmt_reg.index.xmt_comp += 1;
3544 }
3545
3546 /* Update the transmit consumer index in the consumer block */
3547
3548 prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3549 prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3550 bp->cons_block_virt->xmt_rcv_data = prod_cons;
3551 }
3552
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003553/*
3554 * ==================
3555 * = dfx_unregister =
3556 * ==================
3557 *
3558 * Overview:
3559 * Shuts down an FDDI controller
3560 *
3561 * Returns:
3562 * Condition code
3563 *
3564 * Arguments:
3565 * bdev - pointer to device information
3566 *
3567 * Functional Description:
3568 *
3569 * Return Codes:
3570 * None
3571 *
3572 * Assumptions:
3573 * It compiles so it should work :-( (PCI cards do :-)
3574 *
3575 * Side Effects:
3576 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
3577 * freed.
3578 */
Bill Pembertonc354dfc2012-12-03 09:24:10 -05003579static void dfx_unregister(struct device *bdev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003580{
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003581 struct net_device *dev = dev_get_drvdata(bdev);
3582 DFX_board_t *bp = netdev_priv(dev);
3583 int dfx_bus_pci = DFX_BUS_PCI(bdev);
3584 int dfx_bus_tc = DFX_BUS_TC(bdev);
3585 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3586 resource_size_t bar_start = 0; /* pointer to port */
3587 resource_size_t bar_len = 0; /* resource length */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003588 int alloc_size; /* total buffer size used */
3589
3590 unregister_netdev(dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003591
3592 alloc_size = sizeof(PI_DESCR_BLOCK) +
3593 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3594#ifndef DYNAMIC_BUFFERS
3595 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3596#endif
3597 sizeof(PI_CONSUMER_BLOCK) +
3598 (PI_ALIGN_K_DESC_BLK - 1);
3599 if (bp->kmalloced)
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003600 dma_free_coherent(bdev, alloc_size,
3601 bp->kmalloced, bp->kmalloced_dma);
3602
3603 dfx_bus_uninit(dev);
3604
3605 dfx_get_bars(bdev, &bar_start, &bar_len);
3606 if (dfx_use_mmio) {
3607 iounmap(bp->base.mem);
3608 release_mem_region(bar_start, bar_len);
3609 } else
3610 release_region(bar_start, bar_len);
3611
3612 if (dfx_bus_pci)
3613 pci_disable_device(to_pci_dev(bdev));
3614
Linus Torvalds1da177e2005-04-16 15:20:36 -07003615 free_netdev(dev);
3616}
3617
Linus Torvalds1da177e2005-04-16 15:20:36 -07003618
Bill Pembertonc354dfc2012-12-03 09:24:10 -05003619static int __maybe_unused dfx_dev_register(struct device *);
3620static int __maybe_unused dfx_dev_unregister(struct device *);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003621
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003622#ifdef CONFIG_PCI
Greg Kroah-Hartman1dd06ae2012-12-06 14:30:56 +00003623static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
Bill Pembertonc354dfc2012-12-03 09:24:10 -05003624static void dfx_pci_unregister(struct pci_dev *);
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003625
Alexey Dobriyana3aa1882010-01-07 11:58:11 +00003626static DEFINE_PCI_DEVICE_TABLE(dfx_pci_table) = {
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003627 { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3628 { }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003629};
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003630MODULE_DEVICE_TABLE(pci, dfx_pci_table);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003631
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003632static struct pci_driver dfx_pci_driver = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003633 .name = "defxx",
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003634 .id_table = dfx_pci_table,
3635 .probe = dfx_pci_register,
Bill Pembertonc354dfc2012-12-03 09:24:10 -05003636 .remove = dfx_pci_unregister,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003637};
3638
Bill Pembertonc354dfc2012-12-03 09:24:10 -05003639static int dfx_pci_register(struct pci_dev *pdev,
Greg Kroah-Hartman1dd06ae2012-12-06 14:30:56 +00003640 const struct pci_device_id *ent)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003641{
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003642 return dfx_register(&pdev->dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003643}
3644
Bill Pembertonc354dfc2012-12-03 09:24:10 -05003645static void dfx_pci_unregister(struct pci_dev *pdev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003646{
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003647 dfx_unregister(&pdev->dev);
3648}
3649#endif /* CONFIG_PCI */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003650
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003651#ifdef CONFIG_EISA
3652static struct eisa_device_id dfx_eisa_table[] = {
3653 { "DEC3001", DEFEA_PROD_ID_1 },
3654 { "DEC3002", DEFEA_PROD_ID_2 },
3655 { "DEC3003", DEFEA_PROD_ID_3 },
3656 { "DEC3004", DEFEA_PROD_ID_4 },
3657 { }
3658};
3659MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003660
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003661static struct eisa_driver dfx_eisa_driver = {
3662 .id_table = dfx_eisa_table,
3663 .driver = {
3664 .name = "defxx",
3665 .bus = &eisa_bus_type,
3666 .probe = dfx_dev_register,
Bill Pembertonc354dfc2012-12-03 09:24:10 -05003667 .remove = dfx_dev_unregister,
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003668 },
3669};
3670#endif /* CONFIG_EISA */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003671
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003672#ifdef CONFIG_TC
3673static struct tc_device_id const dfx_tc_table[] = {
3674 { "DEC ", "PMAF-FA " },
3675 { "DEC ", "PMAF-FD " },
3676 { "DEC ", "PMAF-FS " },
3677 { "DEC ", "PMAF-FU " },
3678 { }
3679};
3680MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3681
3682static struct tc_driver dfx_tc_driver = {
3683 .id_table = dfx_tc_table,
3684 .driver = {
3685 .name = "defxx",
3686 .bus = &tc_bus_type,
3687 .probe = dfx_dev_register,
Bill Pembertonc354dfc2012-12-03 09:24:10 -05003688 .remove = dfx_dev_unregister,
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003689 },
3690};
3691#endif /* CONFIG_TC */
3692
Bill Pembertonc354dfc2012-12-03 09:24:10 -05003693static int __maybe_unused dfx_dev_register(struct device *dev)
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003694{
3695 int status;
3696
3697 status = dfx_register(dev);
3698 if (!status)
3699 get_device(dev);
3700 return status;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003701}
3702
Bill Pembertonc354dfc2012-12-03 09:24:10 -05003703static int __maybe_unused dfx_dev_unregister(struct device *dev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003704{
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003705 put_device(dev);
3706 dfx_unregister(dev);
3707 return 0;
3708}
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003709
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003710
Bill Pembertonc354dfc2012-12-03 09:24:10 -05003711static int dfx_init(void)
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003712{
3713 int status;
3714
3715 status = pci_register_driver(&dfx_pci_driver);
3716 if (!status)
3717 status = eisa_driver_register(&dfx_eisa_driver);
3718 if (!status)
3719 status = tc_register_driver(&dfx_tc_driver);
3720 return status;
3721}
3722
Bill Pembertonc354dfc2012-12-03 09:24:10 -05003723static void dfx_cleanup(void)
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003724{
3725 tc_unregister_driver(&dfx_tc_driver);
3726 eisa_driver_unregister(&dfx_eisa_driver);
3727 pci_unregister_driver(&dfx_pci_driver);
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003728}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003729
3730module_init(dfx_init);
3731module_exit(dfx_cleanup);
3732MODULE_AUTHOR("Lawrence V. Stefani");
Maciej W. Rozyckie89a2cf2007-02-05 16:28:27 -08003733MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
Linus Torvalds1da177e2005-04-16 15:20:36 -07003734 DRV_VERSION " " DRV_RELDATE);
3735MODULE_LICENSE("GPL");