blob: ed8de30a040efcf93ac090cb3ce2b7901d591110 [file] [log] [blame]
Peter Zijlstra029632f2011-10-25 10:00:11 +02001
2#include <linux/sched.h>
Clark Williamscf4aebc22013-02-07 09:46:59 -06003#include <linux/sched/sysctl.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +02004#include <linux/mutex.h>
5#include <linux/spinlock.h>
6#include <linux/stop_machine.h>
7
Peter Zijlstra391e43d2011-11-15 17:14:39 +01008#include "cpupri.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +02009
10extern __read_mostly int scheduler_running;
11
12/*
13 * Convert user-nice values [ -20 ... 0 ... 19 ]
14 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
15 * and back.
16 */
17#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
18#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
19#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
20
21/*
22 * 'User priority' is the nice value converted to something we
23 * can work with better when scaling various scheduler parameters,
24 * it's a [ 0 ... 39 ] range.
25 */
26#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
27#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
28#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
29
30/*
31 * Helpers for converting nanosecond timing to jiffy resolution
32 */
33#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
34
35#define NICE_0_LOAD SCHED_LOAD_SCALE
36#define NICE_0_SHIFT SCHED_LOAD_SHIFT
37
38/*
39 * These are the 'tuning knobs' of the scheduler:
Peter Zijlstra029632f2011-10-25 10:00:11 +020040 */
Peter Zijlstra029632f2011-10-25 10:00:11 +020041
42/*
43 * single value that denotes runtime == period, ie unlimited time.
44 */
45#define RUNTIME_INF ((u64)~0ULL)
46
47static inline int rt_policy(int policy)
48{
49 if (policy == SCHED_FIFO || policy == SCHED_RR)
50 return 1;
51 return 0;
52}
53
54static inline int task_has_rt_policy(struct task_struct *p)
55{
56 return rt_policy(p->policy);
57}
58
59/*
60 * This is the priority-queue data structure of the RT scheduling class:
61 */
62struct rt_prio_array {
63 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
64 struct list_head queue[MAX_RT_PRIO];
65};
66
67struct rt_bandwidth {
68 /* nests inside the rq lock: */
69 raw_spinlock_t rt_runtime_lock;
70 ktime_t rt_period;
71 u64 rt_runtime;
72 struct hrtimer rt_period_timer;
73};
74
75extern struct mutex sched_domains_mutex;
76
77#ifdef CONFIG_CGROUP_SCHED
78
79#include <linux/cgroup.h>
80
81struct cfs_rq;
82struct rt_rq;
83
Mike Galbraith35cf4e52012-08-07 05:00:13 +020084extern struct list_head task_groups;
Peter Zijlstra029632f2011-10-25 10:00:11 +020085
86struct cfs_bandwidth {
87#ifdef CONFIG_CFS_BANDWIDTH
88 raw_spinlock_t lock;
89 ktime_t period;
90 u64 quota, runtime;
91 s64 hierarchal_quota;
92 u64 runtime_expires;
93
94 int idle, timer_active;
95 struct hrtimer period_timer, slack_timer;
96 struct list_head throttled_cfs_rq;
97
98 /* statistics */
99 int nr_periods, nr_throttled;
100 u64 throttled_time;
101#endif
102};
103
104/* task group related information */
105struct task_group {
106 struct cgroup_subsys_state css;
107
108#ifdef CONFIG_FAIR_GROUP_SCHED
109 /* schedulable entities of this group on each cpu */
110 struct sched_entity **se;
111 /* runqueue "owned" by this group on each cpu */
112 struct cfs_rq **cfs_rq;
113 unsigned long shares;
114
115 atomic_t load_weight;
Paul Turnerc566e8e2012-10-04 13:18:30 +0200116 atomic64_t load_avg;
Paul Turnerbb17f652012-10-04 13:18:31 +0200117 atomic_t runnable_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200118#endif
119
120#ifdef CONFIG_RT_GROUP_SCHED
121 struct sched_rt_entity **rt_se;
122 struct rt_rq **rt_rq;
123
124 struct rt_bandwidth rt_bandwidth;
125#endif
126
127 struct rcu_head rcu;
128 struct list_head list;
129
130 struct task_group *parent;
131 struct list_head siblings;
132 struct list_head children;
133
134#ifdef CONFIG_SCHED_AUTOGROUP
135 struct autogroup *autogroup;
136#endif
137
138 struct cfs_bandwidth cfs_bandwidth;
139};
140
141#ifdef CONFIG_FAIR_GROUP_SCHED
142#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
143
144/*
145 * A weight of 0 or 1 can cause arithmetics problems.
146 * A weight of a cfs_rq is the sum of weights of which entities
147 * are queued on this cfs_rq, so a weight of a entity should not be
148 * too large, so as the shares value of a task group.
149 * (The default weight is 1024 - so there's no practical
150 * limitation from this.)
151 */
152#define MIN_SHARES (1UL << 1)
153#define MAX_SHARES (1UL << 18)
154#endif
155
156/* Default task group.
157 * Every task in system belong to this group at bootup.
158 */
159extern struct task_group root_task_group;
160
161typedef int (*tg_visitor)(struct task_group *, void *);
162
163extern int walk_tg_tree_from(struct task_group *from,
164 tg_visitor down, tg_visitor up, void *data);
165
166/*
167 * Iterate the full tree, calling @down when first entering a node and @up when
168 * leaving it for the final time.
169 *
170 * Caller must hold rcu_lock or sufficient equivalent.
171 */
172static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
173{
174 return walk_tg_tree_from(&root_task_group, down, up, data);
175}
176
177extern int tg_nop(struct task_group *tg, void *data);
178
179extern void free_fair_sched_group(struct task_group *tg);
180extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
181extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
182extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
183 struct sched_entity *se, int cpu,
184 struct sched_entity *parent);
185extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
186extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
187
188extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
189extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
190extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
191
192extern void free_rt_sched_group(struct task_group *tg);
193extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
194extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
195 struct sched_rt_entity *rt_se, int cpu,
196 struct sched_rt_entity *parent);
197
198#else /* CONFIG_CGROUP_SCHED */
199
200struct cfs_bandwidth { };
201
202#endif /* CONFIG_CGROUP_SCHED */
203
204/* CFS-related fields in a runqueue */
205struct cfs_rq {
206 struct load_weight load;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200207 unsigned int nr_running, h_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200208
209 u64 exec_clock;
210 u64 min_vruntime;
211#ifndef CONFIG_64BIT
212 u64 min_vruntime_copy;
213#endif
214
215 struct rb_root tasks_timeline;
216 struct rb_node *rb_leftmost;
217
Peter Zijlstra029632f2011-10-25 10:00:11 +0200218 /*
219 * 'curr' points to currently running entity on this cfs_rq.
220 * It is set to NULL otherwise (i.e when none are currently running).
221 */
222 struct sched_entity *curr, *next, *last, *skip;
223
224#ifdef CONFIG_SCHED_DEBUG
225 unsigned int nr_spread_over;
226#endif
227
Paul Turner2dac7542012-10-04 13:18:30 +0200228#ifdef CONFIG_SMP
Paul Turnerf4e26b12012-10-04 13:18:32 +0200229/*
230 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
231 * removed when useful for applications beyond shares distribution (e.g.
232 * load-balance).
233 */
234#ifdef CONFIG_FAIR_GROUP_SCHED
Paul Turner2dac7542012-10-04 13:18:30 +0200235 /*
236 * CFS Load tracking
237 * Under CFS, load is tracked on a per-entity basis and aggregated up.
238 * This allows for the description of both thread and group usage (in
239 * the FAIR_GROUP_SCHED case).
240 */
Paul Turner9ee474f2012-10-04 13:18:30 +0200241 u64 runnable_load_avg, blocked_load_avg;
Paul Turneraff3e492012-10-04 13:18:30 +0200242 atomic64_t decay_counter, removed_load;
Paul Turner9ee474f2012-10-04 13:18:30 +0200243 u64 last_decay;
Paul Turnerf4e26b12012-10-04 13:18:32 +0200244#endif /* CONFIG_FAIR_GROUP_SCHED */
245/* These always depend on CONFIG_FAIR_GROUP_SCHED */
Paul Turnerc566e8e2012-10-04 13:18:30 +0200246#ifdef CONFIG_FAIR_GROUP_SCHED
Paul Turnerbb17f652012-10-04 13:18:31 +0200247 u32 tg_runnable_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +0200248 u64 tg_load_contrib;
Paul Turner82958362012-10-04 13:18:31 +0200249#endif /* CONFIG_FAIR_GROUP_SCHED */
250
251 /*
252 * h_load = weight * f(tg)
253 *
254 * Where f(tg) is the recursive weight fraction assigned to
255 * this group.
256 */
257 unsigned long h_load;
258#endif /* CONFIG_SMP */
259
Peter Zijlstra029632f2011-10-25 10:00:11 +0200260#ifdef CONFIG_FAIR_GROUP_SCHED
261 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
262
263 /*
264 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
265 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
266 * (like users, containers etc.)
267 *
268 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
269 * list is used during load balance.
270 */
271 int on_list;
272 struct list_head leaf_cfs_rq_list;
273 struct task_group *tg; /* group that "owns" this runqueue */
274
Peter Zijlstra029632f2011-10-25 10:00:11 +0200275#ifdef CONFIG_CFS_BANDWIDTH
276 int runtime_enabled;
277 u64 runtime_expires;
278 s64 runtime_remaining;
279
Paul Turnerf1b17282012-10-04 13:18:31 +0200280 u64 throttled_clock, throttled_clock_task;
281 u64 throttled_clock_task_time;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200282 int throttled, throttle_count;
283 struct list_head throttled_list;
284#endif /* CONFIG_CFS_BANDWIDTH */
285#endif /* CONFIG_FAIR_GROUP_SCHED */
286};
287
288static inline int rt_bandwidth_enabled(void)
289{
290 return sysctl_sched_rt_runtime >= 0;
291}
292
293/* Real-Time classes' related field in a runqueue: */
294struct rt_rq {
295 struct rt_prio_array active;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200296 unsigned int rt_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200297#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
298 struct {
299 int curr; /* highest queued rt task prio */
300#ifdef CONFIG_SMP
301 int next; /* next highest */
302#endif
303 } highest_prio;
304#endif
305#ifdef CONFIG_SMP
306 unsigned long rt_nr_migratory;
307 unsigned long rt_nr_total;
308 int overloaded;
309 struct plist_head pushable_tasks;
310#endif
311 int rt_throttled;
312 u64 rt_time;
313 u64 rt_runtime;
314 /* Nests inside the rq lock: */
315 raw_spinlock_t rt_runtime_lock;
316
317#ifdef CONFIG_RT_GROUP_SCHED
318 unsigned long rt_nr_boosted;
319
320 struct rq *rq;
321 struct list_head leaf_rt_rq_list;
322 struct task_group *tg;
323#endif
324};
325
326#ifdef CONFIG_SMP
327
328/*
329 * We add the notion of a root-domain which will be used to define per-domain
330 * variables. Each exclusive cpuset essentially defines an island domain by
331 * fully partitioning the member cpus from any other cpuset. Whenever a new
332 * exclusive cpuset is created, we also create and attach a new root-domain
333 * object.
334 *
335 */
336struct root_domain {
337 atomic_t refcount;
338 atomic_t rto_count;
339 struct rcu_head rcu;
340 cpumask_var_t span;
341 cpumask_var_t online;
342
343 /*
344 * The "RT overload" flag: it gets set if a CPU has more than
345 * one runnable RT task.
346 */
347 cpumask_var_t rto_mask;
348 struct cpupri cpupri;
349};
350
351extern struct root_domain def_root_domain;
352
353#endif /* CONFIG_SMP */
354
355/*
356 * This is the main, per-CPU runqueue data structure.
357 *
358 * Locking rule: those places that want to lock multiple runqueues
359 * (such as the load balancing or the thread migration code), lock
360 * acquire operations must be ordered by ascending &runqueue.
361 */
362struct rq {
363 /* runqueue lock: */
364 raw_spinlock_t lock;
365
366 /*
367 * nr_running and cpu_load should be in the same cacheline because
368 * remote CPUs use both these fields when doing load calculation.
369 */
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200370 unsigned int nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200371 #define CPU_LOAD_IDX_MAX 5
372 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
373 unsigned long last_load_update_tick;
374#ifdef CONFIG_NO_HZ
375 u64 nohz_stamp;
Suresh Siddha1c792db2011-12-01 17:07:32 -0800376 unsigned long nohz_flags;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200377#endif
378 int skip_clock_update;
379
380 /* capture load from *all* tasks on this cpu: */
381 struct load_weight load;
382 unsigned long nr_load_updates;
383 u64 nr_switches;
384
385 struct cfs_rq cfs;
386 struct rt_rq rt;
387
388#ifdef CONFIG_FAIR_GROUP_SCHED
389 /* list of leaf cfs_rq on this cpu: */
390 struct list_head leaf_cfs_rq_list;
Peter Zijlstraa35b6462012-08-08 21:46:40 +0200391#ifdef CONFIG_SMP
392 unsigned long h_load_throttle;
393#endif /* CONFIG_SMP */
394#endif /* CONFIG_FAIR_GROUP_SCHED */
395
Peter Zijlstra029632f2011-10-25 10:00:11 +0200396#ifdef CONFIG_RT_GROUP_SCHED
397 struct list_head leaf_rt_rq_list;
398#endif
399
400 /*
401 * This is part of a global counter where only the total sum
402 * over all CPUs matters. A task can increase this counter on
403 * one CPU and if it got migrated afterwards it may decrease
404 * it on another CPU. Always updated under the runqueue lock:
405 */
406 unsigned long nr_uninterruptible;
407
408 struct task_struct *curr, *idle, *stop;
409 unsigned long next_balance;
410 struct mm_struct *prev_mm;
411
412 u64 clock;
413 u64 clock_task;
414
415 atomic_t nr_iowait;
416
417#ifdef CONFIG_SMP
418 struct root_domain *rd;
419 struct sched_domain *sd;
420
421 unsigned long cpu_power;
422
423 unsigned char idle_balance;
424 /* For active balancing */
425 int post_schedule;
426 int active_balance;
427 int push_cpu;
428 struct cpu_stop_work active_balance_work;
429 /* cpu of this runqueue: */
430 int cpu;
431 int online;
432
Peter Zijlstra367456c2012-02-20 21:49:09 +0100433 struct list_head cfs_tasks;
434
Peter Zijlstra029632f2011-10-25 10:00:11 +0200435 u64 rt_avg;
436 u64 age_stamp;
437 u64 idle_stamp;
438 u64 avg_idle;
439#endif
440
441#ifdef CONFIG_IRQ_TIME_ACCOUNTING
442 u64 prev_irq_time;
443#endif
444#ifdef CONFIG_PARAVIRT
445 u64 prev_steal_time;
446#endif
447#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
448 u64 prev_steal_time_rq;
449#endif
450
451 /* calc_load related fields */
452 unsigned long calc_load_update;
453 long calc_load_active;
454
455#ifdef CONFIG_SCHED_HRTICK
456#ifdef CONFIG_SMP
457 int hrtick_csd_pending;
458 struct call_single_data hrtick_csd;
459#endif
460 struct hrtimer hrtick_timer;
461#endif
462
463#ifdef CONFIG_SCHEDSTATS
464 /* latency stats */
465 struct sched_info rq_sched_info;
466 unsigned long long rq_cpu_time;
467 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
468
469 /* sys_sched_yield() stats */
470 unsigned int yld_count;
471
472 /* schedule() stats */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200473 unsigned int sched_count;
474 unsigned int sched_goidle;
475
476 /* try_to_wake_up() stats */
477 unsigned int ttwu_count;
478 unsigned int ttwu_local;
479#endif
480
481#ifdef CONFIG_SMP
482 struct llist_head wake_list;
483#endif
Ben Segall18bf2802012-10-04 12:51:20 +0200484
485 struct sched_avg avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200486};
487
488static inline int cpu_of(struct rq *rq)
489{
490#ifdef CONFIG_SMP
491 return rq->cpu;
492#else
493 return 0;
494#endif
495}
496
497DECLARE_PER_CPU(struct rq, runqueues);
498
Peter Zijlstra518cd622011-12-07 15:07:31 +0100499#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
500#define this_rq() (&__get_cpu_var(runqueues))
501#define task_rq(p) cpu_rq(task_cpu(p))
502#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
503#define raw_rq() (&__raw_get_cpu_var(runqueues))
504
505#ifdef CONFIG_SMP
506
Peter Zijlstra029632f2011-10-25 10:00:11 +0200507#define rcu_dereference_check_sched_domain(p) \
508 rcu_dereference_check((p), \
509 lockdep_is_held(&sched_domains_mutex))
510
511/*
512 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
513 * See detach_destroy_domains: synchronize_sched for details.
514 *
515 * The domain tree of any CPU may only be accessed from within
516 * preempt-disabled sections.
517 */
518#define for_each_domain(cpu, __sd) \
Peter Zijlstra518cd622011-12-07 15:07:31 +0100519 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
520 __sd; __sd = __sd->parent)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200521
Suresh Siddha77e81362011-11-17 11:08:23 -0800522#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
523
Peter Zijlstra518cd622011-12-07 15:07:31 +0100524/**
525 * highest_flag_domain - Return highest sched_domain containing flag.
526 * @cpu: The cpu whose highest level of sched domain is to
527 * be returned.
528 * @flag: The flag to check for the highest sched_domain
529 * for the given cpu.
530 *
531 * Returns the highest sched_domain of a cpu which contains the given flag.
532 */
533static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
534{
535 struct sched_domain *sd, *hsd = NULL;
536
537 for_each_domain(cpu, sd) {
538 if (!(sd->flags & flag))
539 break;
540 hsd = sd;
541 }
542
543 return hsd;
544}
545
546DECLARE_PER_CPU(struct sched_domain *, sd_llc);
547DECLARE_PER_CPU(int, sd_llc_id);
548
Peter Zijlstrac1174872012-05-31 14:47:33 +0200549extern int group_balance_cpu(struct sched_group *sg);
550
Peter Zijlstra518cd622011-12-07 15:07:31 +0100551#endif /* CONFIG_SMP */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200552
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100553#include "stats.h"
554#include "auto_group.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +0200555
556#ifdef CONFIG_CGROUP_SCHED
557
558/*
559 * Return the group to which this tasks belongs.
560 *
Peter Zijlstra8323f262012-06-22 13:36:05 +0200561 * We cannot use task_subsys_state() and friends because the cgroup
562 * subsystem changes that value before the cgroup_subsys::attach() method
563 * is called, therefore we cannot pin it and might observe the wrong value.
564 *
565 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
566 * core changes this before calling sched_move_task().
567 *
568 * Instead we use a 'copy' which is updated from sched_move_task() while
569 * holding both task_struct::pi_lock and rq::lock.
Peter Zijlstra029632f2011-10-25 10:00:11 +0200570 */
571static inline struct task_group *task_group(struct task_struct *p)
572{
Peter Zijlstra8323f262012-06-22 13:36:05 +0200573 return p->sched_task_group;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574}
575
576/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
577static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
578{
579#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
580 struct task_group *tg = task_group(p);
581#endif
582
583#ifdef CONFIG_FAIR_GROUP_SCHED
584 p->se.cfs_rq = tg->cfs_rq[cpu];
585 p->se.parent = tg->se[cpu];
586#endif
587
588#ifdef CONFIG_RT_GROUP_SCHED
589 p->rt.rt_rq = tg->rt_rq[cpu];
590 p->rt.parent = tg->rt_se[cpu];
591#endif
592}
593
594#else /* CONFIG_CGROUP_SCHED */
595
596static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
597static inline struct task_group *task_group(struct task_struct *p)
598{
599 return NULL;
600}
601
602#endif /* CONFIG_CGROUP_SCHED */
603
604static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
605{
606 set_task_rq(p, cpu);
607#ifdef CONFIG_SMP
608 /*
609 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
610 * successfuly executed on another CPU. We must ensure that updates of
611 * per-task data have been completed by this moment.
612 */
613 smp_wmb();
614 task_thread_info(p)->cpu = cpu;
615#endif
616}
617
618/*
619 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
620 */
621#ifdef CONFIG_SCHED_DEBUG
Ingo Molnarc5905af2012-02-24 08:31:31 +0100622# include <linux/static_key.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +0200623# define const_debug __read_mostly
624#else
625# define const_debug const
626#endif
627
628extern const_debug unsigned int sysctl_sched_features;
629
630#define SCHED_FEAT(name, enabled) \
631 __SCHED_FEAT_##name ,
632
633enum {
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100634#include "features.h"
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200635 __SCHED_FEAT_NR,
Peter Zijlstra029632f2011-10-25 10:00:11 +0200636};
637
638#undef SCHED_FEAT
639
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200640#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
Ingo Molnarc5905af2012-02-24 08:31:31 +0100641static __always_inline bool static_branch__true(struct static_key *key)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200642{
Ingo Molnarc5905af2012-02-24 08:31:31 +0100643 return static_key_true(key); /* Not out of line branch. */
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200644}
645
Ingo Molnarc5905af2012-02-24 08:31:31 +0100646static __always_inline bool static_branch__false(struct static_key *key)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200647{
Ingo Molnarc5905af2012-02-24 08:31:31 +0100648 return static_key_false(key); /* Out of line branch. */
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200649}
650
651#define SCHED_FEAT(name, enabled) \
Ingo Molnarc5905af2012-02-24 08:31:31 +0100652static __always_inline bool static_branch_##name(struct static_key *key) \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200653{ \
654 return static_branch__##enabled(key); \
655}
656
657#include "features.h"
658
659#undef SCHED_FEAT
660
Ingo Molnarc5905af2012-02-24 08:31:31 +0100661extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200662#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
663#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200664#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200665#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200666
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200667#ifdef CONFIG_NUMA_BALANCING
668#define sched_feat_numa(x) sched_feat(x)
Mel Gorman3105b862012-11-23 11:23:49 +0000669#ifdef CONFIG_SCHED_DEBUG
670#define numabalancing_enabled sched_feat_numa(NUMA)
671#else
672extern bool numabalancing_enabled;
673#endif /* CONFIG_SCHED_DEBUG */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200674#else
675#define sched_feat_numa(x) (0)
Mel Gorman3105b862012-11-23 11:23:49 +0000676#define numabalancing_enabled (0)
677#endif /* CONFIG_NUMA_BALANCING */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200678
Peter Zijlstra029632f2011-10-25 10:00:11 +0200679static inline u64 global_rt_period(void)
680{
681 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
682}
683
684static inline u64 global_rt_runtime(void)
685{
686 if (sysctl_sched_rt_runtime < 0)
687 return RUNTIME_INF;
688
689 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
690}
691
692
693
694static inline int task_current(struct rq *rq, struct task_struct *p)
695{
696 return rq->curr == p;
697}
698
699static inline int task_running(struct rq *rq, struct task_struct *p)
700{
701#ifdef CONFIG_SMP
702 return p->on_cpu;
703#else
704 return task_current(rq, p);
705#endif
706}
707
708
709#ifndef prepare_arch_switch
710# define prepare_arch_switch(next) do { } while (0)
711#endif
712#ifndef finish_arch_switch
713# define finish_arch_switch(prev) do { } while (0)
714#endif
Catalin Marinas01f23e12011-11-27 21:43:10 +0000715#ifndef finish_arch_post_lock_switch
716# define finish_arch_post_lock_switch() do { } while (0)
717#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200718
719#ifndef __ARCH_WANT_UNLOCKED_CTXSW
720static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
721{
722#ifdef CONFIG_SMP
723 /*
724 * We can optimise this out completely for !SMP, because the
725 * SMP rebalancing from interrupt is the only thing that cares
726 * here.
727 */
728 next->on_cpu = 1;
729#endif
730}
731
732static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
733{
734#ifdef CONFIG_SMP
735 /*
736 * After ->on_cpu is cleared, the task can be moved to a different CPU.
737 * We must ensure this doesn't happen until the switch is completely
738 * finished.
739 */
740 smp_wmb();
741 prev->on_cpu = 0;
742#endif
743#ifdef CONFIG_DEBUG_SPINLOCK
744 /* this is a valid case when another task releases the spinlock */
745 rq->lock.owner = current;
746#endif
747 /*
748 * If we are tracking spinlock dependencies then we have to
749 * fix up the runqueue lock - which gets 'carried over' from
750 * prev into current:
751 */
752 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
753
754 raw_spin_unlock_irq(&rq->lock);
755}
756
757#else /* __ARCH_WANT_UNLOCKED_CTXSW */
758static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
759{
760#ifdef CONFIG_SMP
761 /*
762 * We can optimise this out completely for !SMP, because the
763 * SMP rebalancing from interrupt is the only thing that cares
764 * here.
765 */
766 next->on_cpu = 1;
767#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200768 raw_spin_unlock(&rq->lock);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200769}
770
771static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
772{
773#ifdef CONFIG_SMP
774 /*
775 * After ->on_cpu is cleared, the task can be moved to a different CPU.
776 * We must ensure this doesn't happen until the switch is completely
777 * finished.
778 */
779 smp_wmb();
780 prev->on_cpu = 0;
781#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200782 local_irq_enable();
Peter Zijlstra029632f2011-10-25 10:00:11 +0200783}
784#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
785
786
787static inline void update_load_add(struct load_weight *lw, unsigned long inc)
788{
789 lw->weight += inc;
790 lw->inv_weight = 0;
791}
792
793static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
794{
795 lw->weight -= dec;
796 lw->inv_weight = 0;
797}
798
799static inline void update_load_set(struct load_weight *lw, unsigned long w)
800{
801 lw->weight = w;
802 lw->inv_weight = 0;
803}
804
805/*
806 * To aid in avoiding the subversion of "niceness" due to uneven distribution
807 * of tasks with abnormal "nice" values across CPUs the contribution that
808 * each task makes to its run queue's load is weighted according to its
809 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
810 * scaled version of the new time slice allocation that they receive on time
811 * slice expiry etc.
812 */
813
814#define WEIGHT_IDLEPRIO 3
815#define WMULT_IDLEPRIO 1431655765
816
817/*
818 * Nice levels are multiplicative, with a gentle 10% change for every
819 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
820 * nice 1, it will get ~10% less CPU time than another CPU-bound task
821 * that remained on nice 0.
822 *
823 * The "10% effect" is relative and cumulative: from _any_ nice level,
824 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
825 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
826 * If a task goes up by ~10% and another task goes down by ~10% then
827 * the relative distance between them is ~25%.)
828 */
829static const int prio_to_weight[40] = {
830 /* -20 */ 88761, 71755, 56483, 46273, 36291,
831 /* -15 */ 29154, 23254, 18705, 14949, 11916,
832 /* -10 */ 9548, 7620, 6100, 4904, 3906,
833 /* -5 */ 3121, 2501, 1991, 1586, 1277,
834 /* 0 */ 1024, 820, 655, 526, 423,
835 /* 5 */ 335, 272, 215, 172, 137,
836 /* 10 */ 110, 87, 70, 56, 45,
837 /* 15 */ 36, 29, 23, 18, 15,
838};
839
840/*
841 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
842 *
843 * In cases where the weight does not change often, we can use the
844 * precalculated inverse to speed up arithmetics by turning divisions
845 * into multiplications:
846 */
847static const u32 prio_to_wmult[40] = {
848 /* -20 */ 48388, 59856, 76040, 92818, 118348,
849 /* -15 */ 147320, 184698, 229616, 287308, 360437,
850 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
851 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
852 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
853 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
854 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
855 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
856};
857
858/* Time spent by the tasks of the cpu accounting group executing in ... */
859enum cpuacct_stat_index {
860 CPUACCT_STAT_USER, /* ... user mode */
861 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
862
863 CPUACCT_STAT_NSTATS,
864};
865
866
867#define sched_class_highest (&stop_sched_class)
868#define for_each_class(class) \
869 for (class = sched_class_highest; class; class = class->next)
870
871extern const struct sched_class stop_sched_class;
872extern const struct sched_class rt_sched_class;
873extern const struct sched_class fair_sched_class;
874extern const struct sched_class idle_sched_class;
875
876
877#ifdef CONFIG_SMP
878
879extern void trigger_load_balance(struct rq *rq, int cpu);
880extern void idle_balance(int this_cpu, struct rq *this_rq);
881
882#else /* CONFIG_SMP */
883
884static inline void idle_balance(int cpu, struct rq *rq)
885{
886}
887
888#endif
889
890extern void sysrq_sched_debug_show(void);
891extern void sched_init_granularity(void);
892extern void update_max_interval(void);
893extern void update_group_power(struct sched_domain *sd, int cpu);
894extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
895extern void init_sched_rt_class(void);
896extern void init_sched_fair_class(void);
897
898extern void resched_task(struct task_struct *p);
899extern void resched_cpu(int cpu);
900
901extern struct rt_bandwidth def_rt_bandwidth;
902extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
903
Peter Zijlstra556061b2012-05-11 17:31:26 +0200904extern void update_idle_cpu_load(struct rq *this_rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200905
906#ifdef CONFIG_CGROUP_CPUACCT
Glauber Costa54c707e2011-11-28 14:45:19 -0200907#include <linux/cgroup.h>
908/* track cpu usage of a group of tasks and its child groups */
909struct cpuacct {
910 struct cgroup_subsys_state css;
911 /* cpuusage holds pointer to a u64-type object on every cpu */
912 u64 __percpu *cpuusage;
913 struct kernel_cpustat __percpu *cpustat;
914};
915
Frederic Weisbecker73fbec62012-06-16 15:57:37 +0200916extern struct cgroup_subsys cpuacct_subsys;
917extern struct cpuacct root_cpuacct;
918
Glauber Costa54c707e2011-11-28 14:45:19 -0200919/* return cpu accounting group corresponding to this container */
920static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
921{
922 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
923 struct cpuacct, css);
924}
925
926/* return cpu accounting group to which this task belongs */
927static inline struct cpuacct *task_ca(struct task_struct *tsk)
928{
929 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
930 struct cpuacct, css);
931}
932
933static inline struct cpuacct *parent_ca(struct cpuacct *ca)
934{
935 if (!ca || !ca->css.cgroup->parent)
936 return NULL;
937 return cgroup_ca(ca->css.cgroup->parent);
938}
939
Peter Zijlstra029632f2011-10-25 10:00:11 +0200940extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200941#else
942static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +0200943#endif
944
Frederic Weisbecker73fbec62012-06-16 15:57:37 +0200945#ifdef CONFIG_PARAVIRT
946static inline u64 steal_ticks(u64 steal)
947{
948 if (unlikely(steal > NSEC_PER_SEC))
949 return div_u64(steal, TICK_NSEC);
950
951 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
952}
953#endif
954
Peter Zijlstra029632f2011-10-25 10:00:11 +0200955static inline void inc_nr_running(struct rq *rq)
956{
957 rq->nr_running++;
958}
959
960static inline void dec_nr_running(struct rq *rq)
961{
962 rq->nr_running--;
963}
964
965extern void update_rq_clock(struct rq *rq);
966
967extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
968extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
969
970extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
971
972extern const_debug unsigned int sysctl_sched_time_avg;
973extern const_debug unsigned int sysctl_sched_nr_migrate;
974extern const_debug unsigned int sysctl_sched_migration_cost;
975
976static inline u64 sched_avg_period(void)
977{
978 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
979}
980
Peter Zijlstra029632f2011-10-25 10:00:11 +0200981#ifdef CONFIG_SCHED_HRTICK
982
983/*
984 * Use hrtick when:
985 * - enabled by features
986 * - hrtimer is actually high res
987 */
988static inline int hrtick_enabled(struct rq *rq)
989{
990 if (!sched_feat(HRTICK))
991 return 0;
992 if (!cpu_active(cpu_of(rq)))
993 return 0;
994 return hrtimer_is_hres_active(&rq->hrtick_timer);
995}
996
997void hrtick_start(struct rq *rq, u64 delay);
998
Mike Galbraithb39e66e2011-11-22 15:20:07 +0100999#else
1000
1001static inline int hrtick_enabled(struct rq *rq)
1002{
1003 return 0;
1004}
1005
Peter Zijlstra029632f2011-10-25 10:00:11 +02001006#endif /* CONFIG_SCHED_HRTICK */
1007
1008#ifdef CONFIG_SMP
1009extern void sched_avg_update(struct rq *rq);
1010static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1011{
1012 rq->rt_avg += rt_delta;
1013 sched_avg_update(rq);
1014}
1015#else
1016static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1017static inline void sched_avg_update(struct rq *rq) { }
1018#endif
1019
1020extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1021
1022#ifdef CONFIG_SMP
1023#ifdef CONFIG_PREEMPT
1024
1025static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1026
1027/*
1028 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1029 * way at the expense of forcing extra atomic operations in all
1030 * invocations. This assures that the double_lock is acquired using the
1031 * same underlying policy as the spinlock_t on this architecture, which
1032 * reduces latency compared to the unfair variant below. However, it
1033 * also adds more overhead and therefore may reduce throughput.
1034 */
1035static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1036 __releases(this_rq->lock)
1037 __acquires(busiest->lock)
1038 __acquires(this_rq->lock)
1039{
1040 raw_spin_unlock(&this_rq->lock);
1041 double_rq_lock(this_rq, busiest);
1042
1043 return 1;
1044}
1045
1046#else
1047/*
1048 * Unfair double_lock_balance: Optimizes throughput at the expense of
1049 * latency by eliminating extra atomic operations when the locks are
1050 * already in proper order on entry. This favors lower cpu-ids and will
1051 * grant the double lock to lower cpus over higher ids under contention,
1052 * regardless of entry order into the function.
1053 */
1054static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1055 __releases(this_rq->lock)
1056 __acquires(busiest->lock)
1057 __acquires(this_rq->lock)
1058{
1059 int ret = 0;
1060
1061 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1062 if (busiest < this_rq) {
1063 raw_spin_unlock(&this_rq->lock);
1064 raw_spin_lock(&busiest->lock);
1065 raw_spin_lock_nested(&this_rq->lock,
1066 SINGLE_DEPTH_NESTING);
1067 ret = 1;
1068 } else
1069 raw_spin_lock_nested(&busiest->lock,
1070 SINGLE_DEPTH_NESTING);
1071 }
1072 return ret;
1073}
1074
1075#endif /* CONFIG_PREEMPT */
1076
1077/*
1078 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1079 */
1080static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1081{
1082 if (unlikely(!irqs_disabled())) {
1083 /* printk() doesn't work good under rq->lock */
1084 raw_spin_unlock(&this_rq->lock);
1085 BUG_ON(1);
1086 }
1087
1088 return _double_lock_balance(this_rq, busiest);
1089}
1090
1091static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1092 __releases(busiest->lock)
1093{
1094 raw_spin_unlock(&busiest->lock);
1095 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1096}
1097
1098/*
1099 * double_rq_lock - safely lock two runqueues
1100 *
1101 * Note this does not disable interrupts like task_rq_lock,
1102 * you need to do so manually before calling.
1103 */
1104static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1105 __acquires(rq1->lock)
1106 __acquires(rq2->lock)
1107{
1108 BUG_ON(!irqs_disabled());
1109 if (rq1 == rq2) {
1110 raw_spin_lock(&rq1->lock);
1111 __acquire(rq2->lock); /* Fake it out ;) */
1112 } else {
1113 if (rq1 < rq2) {
1114 raw_spin_lock(&rq1->lock);
1115 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1116 } else {
1117 raw_spin_lock(&rq2->lock);
1118 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1119 }
1120 }
1121}
1122
1123/*
1124 * double_rq_unlock - safely unlock two runqueues
1125 *
1126 * Note this does not restore interrupts like task_rq_unlock,
1127 * you need to do so manually after calling.
1128 */
1129static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1130 __releases(rq1->lock)
1131 __releases(rq2->lock)
1132{
1133 raw_spin_unlock(&rq1->lock);
1134 if (rq1 != rq2)
1135 raw_spin_unlock(&rq2->lock);
1136 else
1137 __release(rq2->lock);
1138}
1139
1140#else /* CONFIG_SMP */
1141
1142/*
1143 * double_rq_lock - safely lock two runqueues
1144 *
1145 * Note this does not disable interrupts like task_rq_lock,
1146 * you need to do so manually before calling.
1147 */
1148static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1149 __acquires(rq1->lock)
1150 __acquires(rq2->lock)
1151{
1152 BUG_ON(!irqs_disabled());
1153 BUG_ON(rq1 != rq2);
1154 raw_spin_lock(&rq1->lock);
1155 __acquire(rq2->lock); /* Fake it out ;) */
1156}
1157
1158/*
1159 * double_rq_unlock - safely unlock two runqueues
1160 *
1161 * Note this does not restore interrupts like task_rq_unlock,
1162 * you need to do so manually after calling.
1163 */
1164static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1165 __releases(rq1->lock)
1166 __releases(rq2->lock)
1167{
1168 BUG_ON(rq1 != rq2);
1169 raw_spin_unlock(&rq1->lock);
1170 __release(rq2->lock);
1171}
1172
1173#endif
1174
1175extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1176extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1177extern void print_cfs_stats(struct seq_file *m, int cpu);
1178extern void print_rt_stats(struct seq_file *m, int cpu);
1179
1180extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1181extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001182
1183extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
Suresh Siddha1c792db2011-12-01 17:07:32 -08001184
1185#ifdef CONFIG_NO_HZ
1186enum rq_nohz_flag_bits {
1187 NOHZ_TICK_STOPPED,
1188 NOHZ_BALANCE_KICK,
Suresh Siddha69e1e812011-12-01 17:07:33 -08001189 NOHZ_IDLE,
Suresh Siddha1c792db2011-12-01 17:07:32 -08001190};
1191
1192#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1193#endif
Frederic Weisbecker73fbec62012-06-16 15:57:37 +02001194
1195#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1196
1197DECLARE_PER_CPU(u64, cpu_hardirq_time);
1198DECLARE_PER_CPU(u64, cpu_softirq_time);
1199
1200#ifndef CONFIG_64BIT
1201DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1202
1203static inline void irq_time_write_begin(void)
1204{
1205 __this_cpu_inc(irq_time_seq.sequence);
1206 smp_wmb();
1207}
1208
1209static inline void irq_time_write_end(void)
1210{
1211 smp_wmb();
1212 __this_cpu_inc(irq_time_seq.sequence);
1213}
1214
1215static inline u64 irq_time_read(int cpu)
1216{
1217 u64 irq_time;
1218 unsigned seq;
1219
1220 do {
1221 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1222 irq_time = per_cpu(cpu_softirq_time, cpu) +
1223 per_cpu(cpu_hardirq_time, cpu);
1224 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1225
1226 return irq_time;
1227}
1228#else /* CONFIG_64BIT */
1229static inline void irq_time_write_begin(void)
1230{
1231}
1232
1233static inline void irq_time_write_end(void)
1234{
1235}
1236
1237static inline u64 irq_time_read(int cpu)
1238{
1239 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1240}
1241#endif /* CONFIG_64BIT */
1242#endif /* CONFIG_IRQ_TIME_ACCOUNTING */