blob: e83f9440bb66b2b8ed7bffaddfaa97d55265c623 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
Andy Whitcroftd41dee32005-06-23 00:07:54 -070061#ifndef CONFIG_NEED_MULTIPLE_NODES
Linus Torvalds1da177e2005-04-16 15:20:36 -070062/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93 pgd_ERROR(*pgd);
94 pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99 pud_ERROR(*pud);
100 pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105 pmd_ERROR(*pmd);
106 pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
Hugh Dickinse0da3822005-04-19 13:29:15 -0700113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114{
Hugh Dickinse0da3822005-04-19 13:29:15 -0700115 struct page *page = pmd_page(*pmd);
116 pmd_clear(pmd);
117 pte_free_tlb(tlb, page);
118 dec_page_state(nr_page_table_pages);
119 tlb->mm->nr_ptes--;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700120}
121
Hugh Dickinse0da3822005-04-19 13:29:15 -0700122static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123 unsigned long addr, unsigned long end,
124 unsigned long floor, unsigned long ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700125{
126 pmd_t *pmd;
127 unsigned long next;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700128 unsigned long start;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700129
Hugh Dickinse0da3822005-04-19 13:29:15 -0700130 start = addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700131 pmd = pmd_offset(pud, addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700132 do {
133 next = pmd_addr_end(addr, end);
134 if (pmd_none_or_clear_bad(pmd))
135 continue;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700136 free_pte_range(tlb, pmd);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700137 } while (pmd++, addr = next, addr != end);
138
Hugh Dickinse0da3822005-04-19 13:29:15 -0700139 start &= PUD_MASK;
140 if (start < floor)
141 return;
142 if (ceiling) {
143 ceiling &= PUD_MASK;
144 if (!ceiling)
145 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700146 }
Hugh Dickinse0da3822005-04-19 13:29:15 -0700147 if (end - 1 > ceiling - 1)
148 return;
149
150 pmd = pmd_offset(pud, start);
151 pud_clear(pud);
152 pmd_free_tlb(tlb, pmd);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700153}
154
Hugh Dickinse0da3822005-04-19 13:29:15 -0700155static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156 unsigned long addr, unsigned long end,
157 unsigned long floor, unsigned long ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700158{
159 pud_t *pud;
160 unsigned long next;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700161 unsigned long start;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162
Hugh Dickinse0da3822005-04-19 13:29:15 -0700163 start = addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700164 pud = pud_offset(pgd, addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700165 do {
166 next = pud_addr_end(addr, end);
167 if (pud_none_or_clear_bad(pud))
168 continue;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700169 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700170 } while (pud++, addr = next, addr != end);
171
Hugh Dickinse0da3822005-04-19 13:29:15 -0700172 start &= PGDIR_MASK;
173 if (start < floor)
174 return;
175 if (ceiling) {
176 ceiling &= PGDIR_MASK;
177 if (!ceiling)
178 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700179 }
Hugh Dickinse0da3822005-04-19 13:29:15 -0700180 if (end - 1 > ceiling - 1)
181 return;
182
183 pud = pud_offset(pgd, start);
184 pgd_clear(pgd);
185 pud_free_tlb(tlb, pud);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186}
187
188/*
Hugh Dickinse0da3822005-04-19 13:29:15 -0700189 * This function frees user-level page tables of a process.
190 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700191 * Must be called with pagetable lock held.
192 */
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700193void free_pgd_range(struct mmu_gather **tlb,
Hugh Dickinse0da3822005-04-19 13:29:15 -0700194 unsigned long addr, unsigned long end,
195 unsigned long floor, unsigned long ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700196{
197 pgd_t *pgd;
198 unsigned long next;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700199 unsigned long start;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700200
Hugh Dickinse0da3822005-04-19 13:29:15 -0700201 /*
202 * The next few lines have given us lots of grief...
203 *
204 * Why are we testing PMD* at this top level? Because often
205 * there will be no work to do at all, and we'd prefer not to
206 * go all the way down to the bottom just to discover that.
207 *
208 * Why all these "- 1"s? Because 0 represents both the bottom
209 * of the address space and the top of it (using -1 for the
210 * top wouldn't help much: the masks would do the wrong thing).
211 * The rule is that addr 0 and floor 0 refer to the bottom of
212 * the address space, but end 0 and ceiling 0 refer to the top
213 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214 * that end 0 case should be mythical).
215 *
216 * Wherever addr is brought up or ceiling brought down, we must
217 * be careful to reject "the opposite 0" before it confuses the
218 * subsequent tests. But what about where end is brought down
219 * by PMD_SIZE below? no, end can't go down to 0 there.
220 *
221 * Whereas we round start (addr) and ceiling down, by different
222 * masks at different levels, in order to test whether a table
223 * now has no other vmas using it, so can be freed, we don't
224 * bother to round floor or end up - the tests don't need that.
225 */
226
227 addr &= PMD_MASK;
228 if (addr < floor) {
229 addr += PMD_SIZE;
230 if (!addr)
231 return;
232 }
233 if (ceiling) {
234 ceiling &= PMD_MASK;
235 if (!ceiling)
236 return;
237 }
238 if (end - 1 > ceiling - 1)
239 end -= PMD_SIZE;
240 if (addr > end - 1)
241 return;
242
243 start = addr;
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700244 pgd = pgd_offset((*tlb)->mm, addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700245 do {
246 next = pgd_addr_end(addr, end);
247 if (pgd_none_or_clear_bad(pgd))
248 continue;
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700249 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700250 } while (pgd++, addr = next, addr != end);
Hugh Dickinse0da3822005-04-19 13:29:15 -0700251
Hugh Dickins4d6ddfa2005-10-29 18:16:02 -0700252 if (!(*tlb)->fullmm)
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700253 flush_tlb_pgtables((*tlb)->mm, start, end);
Hugh Dickinse0da3822005-04-19 13:29:15 -0700254}
255
256void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700257 unsigned long floor, unsigned long ceiling)
Hugh Dickinse0da3822005-04-19 13:29:15 -0700258{
259 while (vma) {
260 struct vm_area_struct *next = vma->vm_next;
261 unsigned long addr = vma->vm_start;
262
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700263 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
Hugh Dickinse0da3822005-04-19 13:29:15 -0700265 floor, next? next->vm_start: ceiling);
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700266 } else {
267 /*
268 * Optimization: gather nearby vmas into one call down
269 */
270 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271 && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272 HPAGE_SIZE)) {
273 vma = next;
274 next = vma->vm_next;
275 }
276 free_pgd_range(tlb, addr, vma->vm_end,
277 floor, next? next->vm_start: ceiling);
278 }
Hugh Dickinse0da3822005-04-19 13:29:15 -0700279 vma = next;
280 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700281}
282
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700283pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
284 unsigned long address)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285{
286 if (!pmd_present(*pmd)) {
287 struct page *new;
288
289 spin_unlock(&mm->page_table_lock);
290 new = pte_alloc_one(mm, address);
291 spin_lock(&mm->page_table_lock);
292 if (!new)
293 return NULL;
294 /*
295 * Because we dropped the lock, we should re-check the
296 * entry, as somebody else could have populated it..
297 */
298 if (pmd_present(*pmd)) {
299 pte_free(new);
300 goto out;
301 }
302 mm->nr_ptes++;
303 inc_page_state(nr_page_table_pages);
304 pmd_populate(mm, pmd, new);
305 }
306out:
307 return pte_offset_map(pmd, address);
308}
309
310pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
311{
312 if (!pmd_present(*pmd)) {
313 pte_t *new;
314
315 spin_unlock(&mm->page_table_lock);
316 new = pte_alloc_one_kernel(mm, address);
317 spin_lock(&mm->page_table_lock);
318 if (!new)
319 return NULL;
320
321 /*
322 * Because we dropped the lock, we should re-check the
323 * entry, as somebody else could have populated it..
324 */
325 if (pmd_present(*pmd)) {
326 pte_free_kernel(new);
327 goto out;
328 }
329 pmd_populate_kernel(mm, pmd, new);
330 }
331out:
332 return pte_offset_kernel(pmd, address);
333}
334
Hugh Dickinsae859762005-10-29 18:16:05 -0700335static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
336{
337 if (file_rss)
338 add_mm_counter(mm, file_rss, file_rss);
339 if (anon_rss)
340 add_mm_counter(mm, anon_rss, anon_rss);
341}
342
343#define NO_RSS 2 /* Increment neither file_rss nor anon_rss */
344
Linus Torvalds1da177e2005-04-16 15:20:36 -0700345/*
Nick Pigginb5810032005-10-29 18:16:12 -0700346 * This function is called to print an error when a pte in a
347 * !VM_RESERVED region is found pointing to an invalid pfn (which
348 * is an error.
349 *
350 * The calling function must still handle the error.
351 */
352void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
353{
354 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
355 "vm_flags = %lx, vaddr = %lx\n",
356 (long long)pte_val(pte),
357 (vma->vm_mm == current->mm ? current->comm : "???"),
358 vma->vm_flags, vaddr);
359 dump_stack();
360}
361
362/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700363 * copy one vm_area from one task to the other. Assumes the page tables
364 * already present in the new task to be cleared in the whole range
365 * covered by this vma.
366 *
367 * dst->page_table_lock is held on entry and exit,
368 * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
369 */
370
Hugh Dickinsae859762005-10-29 18:16:05 -0700371static inline int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700372copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
Nick Pigginb5810032005-10-29 18:16:12 -0700373 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700374 unsigned long addr)
375{
Nick Pigginb5810032005-10-29 18:16:12 -0700376 unsigned long vm_flags = vma->vm_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700377 pte_t pte = *src_pte;
378 struct page *page;
379 unsigned long pfn;
Hugh Dickinsae859762005-10-29 18:16:05 -0700380 int anon = NO_RSS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700381
382 /* pte contains position in swap or file, so copy. */
383 if (unlikely(!pte_present(pte))) {
384 if (!pte_file(pte)) {
385 swap_duplicate(pte_to_swp_entry(pte));
386 /* make sure dst_mm is on swapoff's mmlist. */
387 if (unlikely(list_empty(&dst_mm->mmlist))) {
388 spin_lock(&mmlist_lock);
389 list_add(&dst_mm->mmlist, &src_mm->mmlist);
390 spin_unlock(&mmlist_lock);
391 }
392 }
Hugh Dickinsae859762005-10-29 18:16:05 -0700393 goto out_set_pte;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700394 }
395
Nick Pigginb5810032005-10-29 18:16:12 -0700396 /* If the region is VM_RESERVED, the mapping is not
397 * mapped via rmap - duplicate the pte as is.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700398 */
Nick Pigginb5810032005-10-29 18:16:12 -0700399 if (vm_flags & VM_RESERVED)
Hugh Dickinsae859762005-10-29 18:16:05 -0700400 goto out_set_pte;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700401
Nick Pigginb5810032005-10-29 18:16:12 -0700402 pfn = pte_pfn(pte);
403 /* If the pte points outside of valid memory but
404 * the region is not VM_RESERVED, we have a problem.
405 */
406 if (unlikely(!pfn_valid(pfn))) {
407 print_bad_pte(vma, pte, addr);
408 goto out_set_pte; /* try to do something sane */
409 }
410
411 page = pfn_to_page(pfn);
412
Linus Torvalds1da177e2005-04-16 15:20:36 -0700413 /*
414 * If it's a COW mapping, write protect it both
415 * in the parent and the child
416 */
417 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
418 ptep_set_wrprotect(src_mm, addr, src_pte);
419 pte = *src_pte;
420 }
421
422 /*
423 * If it's a shared mapping, mark it clean in
424 * the child
425 */
426 if (vm_flags & VM_SHARED)
427 pte = pte_mkclean(pte);
428 pte = pte_mkold(pte);
429 get_page(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700430 page_dup_rmap(page);
Hugh Dickinsae859762005-10-29 18:16:05 -0700431 anon = !!PageAnon(page);
432
433out_set_pte:
434 set_pte_at(dst_mm, addr, dst_pte, pte);
435 return anon;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700436}
437
438static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
439 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
440 unsigned long addr, unsigned long end)
441{
442 pte_t *src_pte, *dst_pte;
Hugh Dickinse040f212005-10-29 18:15:53 -0700443 int progress = 0;
Hugh Dickinsae859762005-10-29 18:16:05 -0700444 int rss[NO_RSS+1], anon;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700445
446again:
Hugh Dickinsae859762005-10-29 18:16:05 -0700447 rss[1] = rss[0] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700448 dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
449 if (!dst_pte)
450 return -ENOMEM;
451 src_pte = pte_offset_map_nested(src_pmd, addr);
452
Linus Torvalds1da177e2005-04-16 15:20:36 -0700453 spin_lock(&src_mm->page_table_lock);
454 do {
455 /*
456 * We are holding two locks at this point - either of them
457 * could generate latencies in another task on another CPU.
458 */
Hugh Dickinse040f212005-10-29 18:15:53 -0700459 if (progress >= 32) {
460 progress = 0;
461 if (need_resched() ||
462 need_lockbreak(&src_mm->page_table_lock) ||
463 need_lockbreak(&dst_mm->page_table_lock))
464 break;
465 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700466 if (pte_none(*src_pte)) {
467 progress++;
468 continue;
469 }
Nick Pigginb5810032005-10-29 18:16:12 -0700470 anon = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma,addr);
Hugh Dickinsae859762005-10-29 18:16:05 -0700471 rss[anon]++;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700472 progress += 8;
473 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
474 spin_unlock(&src_mm->page_table_lock);
475
476 pte_unmap_nested(src_pte - 1);
477 pte_unmap(dst_pte - 1);
Hugh Dickinsae859762005-10-29 18:16:05 -0700478 add_mm_rss(dst_mm, rss[0], rss[1]);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700479 cond_resched_lock(&dst_mm->page_table_lock);
480 if (addr != end)
481 goto again;
482 return 0;
483}
484
485static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
486 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
487 unsigned long addr, unsigned long end)
488{
489 pmd_t *src_pmd, *dst_pmd;
490 unsigned long next;
491
492 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
493 if (!dst_pmd)
494 return -ENOMEM;
495 src_pmd = pmd_offset(src_pud, addr);
496 do {
497 next = pmd_addr_end(addr, end);
498 if (pmd_none_or_clear_bad(src_pmd))
499 continue;
500 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
501 vma, addr, next))
502 return -ENOMEM;
503 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
504 return 0;
505}
506
507static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
508 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
509 unsigned long addr, unsigned long end)
510{
511 pud_t *src_pud, *dst_pud;
512 unsigned long next;
513
514 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
515 if (!dst_pud)
516 return -ENOMEM;
517 src_pud = pud_offset(src_pgd, addr);
518 do {
519 next = pud_addr_end(addr, end);
520 if (pud_none_or_clear_bad(src_pud))
521 continue;
522 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
523 vma, addr, next))
524 return -ENOMEM;
525 } while (dst_pud++, src_pud++, addr = next, addr != end);
526 return 0;
527}
528
529int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
530 struct vm_area_struct *vma)
531{
532 pgd_t *src_pgd, *dst_pgd;
533 unsigned long next;
534 unsigned long addr = vma->vm_start;
535 unsigned long end = vma->vm_end;
536
Nick Piggind9928952005-08-28 16:49:11 +1000537 /*
538 * Don't copy ptes where a page fault will fill them correctly.
539 * Fork becomes much lighter when there are big shared or private
540 * readonly mappings. The tradeoff is that copy_page_range is more
541 * efficient than faulting.
542 */
543 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
544 if (!vma->anon_vma)
545 return 0;
546 }
547
Linus Torvalds1da177e2005-04-16 15:20:36 -0700548 if (is_vm_hugetlb_page(vma))
549 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
550
551 dst_pgd = pgd_offset(dst_mm, addr);
552 src_pgd = pgd_offset(src_mm, addr);
553 do {
554 next = pgd_addr_end(addr, end);
555 if (pgd_none_or_clear_bad(src_pgd))
556 continue;
557 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
558 vma, addr, next))
559 return -ENOMEM;
560 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
561 return 0;
562}
563
Nick Pigginb5810032005-10-29 18:16:12 -0700564static void zap_pte_range(struct mmu_gather *tlb,
565 struct vm_area_struct *vma, pmd_t *pmd,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700566 unsigned long addr, unsigned long end,
567 struct zap_details *details)
568{
Nick Pigginb5810032005-10-29 18:16:12 -0700569 struct mm_struct *mm = tlb->mm;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700570 pte_t *pte;
Hugh Dickinsae859762005-10-29 18:16:05 -0700571 int file_rss = 0;
572 int anon_rss = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700573
574 pte = pte_offset_map(pmd, addr);
575 do {
576 pte_t ptent = *pte;
577 if (pte_none(ptent))
578 continue;
579 if (pte_present(ptent)) {
580 struct page *page = NULL;
Nick Pigginb5810032005-10-29 18:16:12 -0700581 if (!(vma->vm_flags & VM_RESERVED)) {
582 unsigned long pfn = pte_pfn(ptent);
583 if (unlikely(!pfn_valid(pfn)))
584 print_bad_pte(vma, ptent, addr);
585 else
586 page = pfn_to_page(pfn);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700587 }
588 if (unlikely(details) && page) {
589 /*
590 * unmap_shared_mapping_pages() wants to
591 * invalidate cache without truncating:
592 * unmap shared but keep private pages.
593 */
594 if (details->check_mapping &&
595 details->check_mapping != page->mapping)
596 continue;
597 /*
598 * Each page->index must be checked when
599 * invalidating or truncating nonlinear.
600 */
601 if (details->nonlinear_vma &&
602 (page->index < details->first_index ||
603 page->index > details->last_index))
604 continue;
605 }
Nick Pigginb5810032005-10-29 18:16:12 -0700606 ptent = ptep_get_and_clear_full(mm, addr, pte,
Zachary Amsdena6003882005-09-03 15:55:04 -0700607 tlb->fullmm);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700608 tlb_remove_tlb_entry(tlb, pte, addr);
609 if (unlikely(!page))
610 continue;
611 if (unlikely(details) && details->nonlinear_vma
612 && linear_page_index(details->nonlinear_vma,
613 addr) != page->index)
Nick Pigginb5810032005-10-29 18:16:12 -0700614 set_pte_at(mm, addr, pte,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700615 pgoff_to_pte(page->index));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700616 if (PageAnon(page))
Hugh Dickinsae859762005-10-29 18:16:05 -0700617 anon_rss++;
Hugh Dickins6237bcd2005-10-29 18:15:54 -0700618 else {
619 if (pte_dirty(ptent))
620 set_page_dirty(page);
621 if (pte_young(ptent))
622 mark_page_accessed(page);
Hugh Dickinsae859762005-10-29 18:16:05 -0700623 file_rss++;
Hugh Dickins6237bcd2005-10-29 18:15:54 -0700624 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700625 page_remove_rmap(page);
626 tlb_remove_page(tlb, page);
627 continue;
628 }
629 /*
630 * If details->check_mapping, we leave swap entries;
631 * if details->nonlinear_vma, we leave file entries.
632 */
633 if (unlikely(details))
634 continue;
635 if (!pte_file(ptent))
636 free_swap_and_cache(pte_to_swp_entry(ptent));
Nick Pigginb5810032005-10-29 18:16:12 -0700637 pte_clear_full(mm, addr, pte, tlb->fullmm);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700638 } while (pte++, addr += PAGE_SIZE, addr != end);
Hugh Dickinsae859762005-10-29 18:16:05 -0700639
Nick Pigginb5810032005-10-29 18:16:12 -0700640 add_mm_rss(mm, -file_rss, -anon_rss);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700641 pte_unmap(pte - 1);
642}
643
Nick Pigginb5810032005-10-29 18:16:12 -0700644static inline void zap_pmd_range(struct mmu_gather *tlb,
645 struct vm_area_struct *vma, pud_t *pud,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700646 unsigned long addr, unsigned long end,
647 struct zap_details *details)
648{
649 pmd_t *pmd;
650 unsigned long next;
651
652 pmd = pmd_offset(pud, addr);
653 do {
654 next = pmd_addr_end(addr, end);
655 if (pmd_none_or_clear_bad(pmd))
656 continue;
Nick Pigginb5810032005-10-29 18:16:12 -0700657 zap_pte_range(tlb, vma, pmd, addr, next, details);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700658 } while (pmd++, addr = next, addr != end);
659}
660
Nick Pigginb5810032005-10-29 18:16:12 -0700661static inline void zap_pud_range(struct mmu_gather *tlb,
662 struct vm_area_struct *vma, pgd_t *pgd,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700663 unsigned long addr, unsigned long end,
664 struct zap_details *details)
665{
666 pud_t *pud;
667 unsigned long next;
668
669 pud = pud_offset(pgd, addr);
670 do {
671 next = pud_addr_end(addr, end);
672 if (pud_none_or_clear_bad(pud))
673 continue;
Nick Pigginb5810032005-10-29 18:16:12 -0700674 zap_pmd_range(tlb, vma, pud, addr, next, details);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700675 } while (pud++, addr = next, addr != end);
676}
677
678static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
679 unsigned long addr, unsigned long end,
680 struct zap_details *details)
681{
682 pgd_t *pgd;
683 unsigned long next;
684
685 if (details && !details->check_mapping && !details->nonlinear_vma)
686 details = NULL;
687
688 BUG_ON(addr >= end);
689 tlb_start_vma(tlb, vma);
690 pgd = pgd_offset(vma->vm_mm, addr);
691 do {
692 next = pgd_addr_end(addr, end);
693 if (pgd_none_or_clear_bad(pgd))
694 continue;
Nick Pigginb5810032005-10-29 18:16:12 -0700695 zap_pud_range(tlb, vma, pgd, addr, next, details);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700696 } while (pgd++, addr = next, addr != end);
697 tlb_end_vma(tlb, vma);
698}
699
700#ifdef CONFIG_PREEMPT
701# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
702#else
703/* No preempt: go for improved straight-line efficiency */
704# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
705#endif
706
707/**
708 * unmap_vmas - unmap a range of memory covered by a list of vma's
709 * @tlbp: address of the caller's struct mmu_gather
710 * @mm: the controlling mm_struct
711 * @vma: the starting vma
712 * @start_addr: virtual address at which to start unmapping
713 * @end_addr: virtual address at which to end unmapping
714 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
715 * @details: details of nonlinear truncation or shared cache invalidation
716 *
Hugh Dickinsee39b372005-04-19 13:29:15 -0700717 * Returns the end address of the unmapping (restart addr if interrupted).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700718 *
719 * Unmap all pages in the vma list. Called under page_table_lock.
720 *
721 * We aim to not hold page_table_lock for too long (for scheduling latency
722 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
723 * return the ending mmu_gather to the caller.
724 *
725 * Only addresses between `start' and `end' will be unmapped.
726 *
727 * The VMA list must be sorted in ascending virtual address order.
728 *
729 * unmap_vmas() assumes that the caller will flush the whole unmapped address
730 * range after unmap_vmas() returns. So the only responsibility here is to
731 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
732 * drops the lock and schedules.
733 */
Hugh Dickinsee39b372005-04-19 13:29:15 -0700734unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700735 struct vm_area_struct *vma, unsigned long start_addr,
736 unsigned long end_addr, unsigned long *nr_accounted,
737 struct zap_details *details)
738{
739 unsigned long zap_bytes = ZAP_BLOCK_SIZE;
740 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
741 int tlb_start_valid = 0;
Hugh Dickinsee39b372005-04-19 13:29:15 -0700742 unsigned long start = start_addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700743 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
Hugh Dickins4d6ddfa2005-10-29 18:16:02 -0700744 int fullmm = (*tlbp)->fullmm;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700745
746 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700747 unsigned long end;
748
749 start = max(vma->vm_start, start_addr);
750 if (start >= vma->vm_end)
751 continue;
752 end = min(vma->vm_end, end_addr);
753 if (end <= vma->vm_start)
754 continue;
755
756 if (vma->vm_flags & VM_ACCOUNT)
757 *nr_accounted += (end - start) >> PAGE_SHIFT;
758
Linus Torvalds1da177e2005-04-16 15:20:36 -0700759 while (start != end) {
760 unsigned long block;
761
762 if (!tlb_start_valid) {
763 tlb_start = start;
764 tlb_start_valid = 1;
765 }
766
767 if (is_vm_hugetlb_page(vma)) {
768 block = end - start;
769 unmap_hugepage_range(vma, start, end);
770 } else {
771 block = min(zap_bytes, end - start);
772 unmap_page_range(*tlbp, vma, start,
773 start + block, details);
774 }
775
776 start += block;
777 zap_bytes -= block;
778 if ((long)zap_bytes > 0)
779 continue;
780
781 tlb_finish_mmu(*tlbp, tlb_start, start);
782
783 if (need_resched() ||
784 need_lockbreak(&mm->page_table_lock) ||
785 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
786 if (i_mmap_lock) {
787 /* must reset count of rss freed */
788 *tlbp = tlb_gather_mmu(mm, fullmm);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700789 goto out;
790 }
791 spin_unlock(&mm->page_table_lock);
792 cond_resched();
793 spin_lock(&mm->page_table_lock);
794 }
795
796 *tlbp = tlb_gather_mmu(mm, fullmm);
797 tlb_start_valid = 0;
798 zap_bytes = ZAP_BLOCK_SIZE;
799 }
800 }
801out:
Hugh Dickinsee39b372005-04-19 13:29:15 -0700802 return start; /* which is now the end (or restart) address */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700803}
804
805/**
806 * zap_page_range - remove user pages in a given range
807 * @vma: vm_area_struct holding the applicable pages
808 * @address: starting address of pages to zap
809 * @size: number of bytes to zap
810 * @details: details of nonlinear truncation or shared cache invalidation
811 */
Hugh Dickinsee39b372005-04-19 13:29:15 -0700812unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700813 unsigned long size, struct zap_details *details)
814{
815 struct mm_struct *mm = vma->vm_mm;
816 struct mmu_gather *tlb;
817 unsigned long end = address + size;
818 unsigned long nr_accounted = 0;
819
820 if (is_vm_hugetlb_page(vma)) {
821 zap_hugepage_range(vma, address, size);
Hugh Dickinsee39b372005-04-19 13:29:15 -0700822 return end;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700823 }
824
825 lru_add_drain();
826 spin_lock(&mm->page_table_lock);
827 tlb = tlb_gather_mmu(mm, 0);
Hugh Dickinsee39b372005-04-19 13:29:15 -0700828 end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700829 tlb_finish_mmu(tlb, address, end);
830 spin_unlock(&mm->page_table_lock);
Hugh Dickinsee39b372005-04-19 13:29:15 -0700831 return end;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700832}
833
834/*
835 * Do a quick page-table lookup for a single page.
836 * mm->page_table_lock must be held.
837 */
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700838static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
839 int read, int write, int accessed)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700840{
841 pgd_t *pgd;
842 pud_t *pud;
843 pmd_t *pmd;
844 pte_t *ptep, pte;
845 unsigned long pfn;
846 struct page *page;
847
848 page = follow_huge_addr(mm, address, write);
849 if (! IS_ERR(page))
850 return page;
851
852 pgd = pgd_offset(mm, address);
853 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
854 goto out;
855
856 pud = pud_offset(pgd, address);
857 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
858 goto out;
859
860 pmd = pmd_offset(pud, address);
861 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
862 goto out;
863 if (pmd_huge(*pmd))
864 return follow_huge_pmd(mm, address, pmd, write);
865
866 ptep = pte_offset_map(pmd, address);
867 if (!ptep)
868 goto out;
869
870 pte = *ptep;
871 pte_unmap(ptep);
872 if (pte_present(pte)) {
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000873 if (write && !pte_write(pte))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700874 goto out;
875 if (read && !pte_read(pte))
876 goto out;
877 pfn = pte_pfn(pte);
878 if (pfn_valid(pfn)) {
879 page = pfn_to_page(pfn);
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000880 if (accessed) {
881 if (write && !pte_dirty(pte) &&!PageDirty(page))
882 set_page_dirty(page);
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700883 mark_page_accessed(page);
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000884 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700885 return page;
886 }
887 }
888
889out:
890 return NULL;
891}
892
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700893inline struct page *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700894follow_page(struct mm_struct *mm, unsigned long address, int write)
895{
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700896 return __follow_page(mm, address, 0, write, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700897}
898
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700899/*
900 * check_user_page_readable() can be called frm niterrupt context by oprofile,
901 * so we need to avoid taking any non-irq-safe locks
902 */
903int check_user_page_readable(struct mm_struct *mm, unsigned long address)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700904{
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700905 return __follow_page(mm, address, 1, 0, 0) != NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700906}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700907EXPORT_SYMBOL(check_user_page_readable);
908
Linus Torvalds1da177e2005-04-16 15:20:36 -0700909static inline int
910untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
911 unsigned long address)
912{
913 pgd_t *pgd;
914 pud_t *pud;
915 pmd_t *pmd;
916
917 /* Check if the vma is for an anonymous mapping. */
918 if (vma->vm_ops && vma->vm_ops->nopage)
919 return 0;
920
921 /* Check if page directory entry exists. */
922 pgd = pgd_offset(mm, address);
923 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
924 return 1;
925
926 pud = pud_offset(pgd, address);
927 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
928 return 1;
929
930 /* Check if page middle directory entry exists. */
931 pmd = pmd_offset(pud, address);
932 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
933 return 1;
934
935 /* There is a pte slot for 'address' in 'mm'. */
936 return 0;
937}
938
Linus Torvalds1da177e2005-04-16 15:20:36 -0700939int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
940 unsigned long start, int len, int write, int force,
941 struct page **pages, struct vm_area_struct **vmas)
942{
943 int i;
944 unsigned int flags;
945
946 /*
947 * Require read or write permissions.
948 * If 'force' is set, we only require the "MAY" flags.
949 */
950 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
951 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
952 i = 0;
953
954 do {
955 struct vm_area_struct * vma;
956
957 vma = find_extend_vma(mm, start);
958 if (!vma && in_gate_area(tsk, start)) {
959 unsigned long pg = start & PAGE_MASK;
960 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
961 pgd_t *pgd;
962 pud_t *pud;
963 pmd_t *pmd;
964 pte_t *pte;
965 if (write) /* user gate pages are read-only */
966 return i ? : -EFAULT;
967 if (pg > TASK_SIZE)
968 pgd = pgd_offset_k(pg);
969 else
970 pgd = pgd_offset_gate(mm, pg);
971 BUG_ON(pgd_none(*pgd));
972 pud = pud_offset(pgd, pg);
973 BUG_ON(pud_none(*pud));
974 pmd = pmd_offset(pud, pg);
Hugh Dickins690dbe12005-08-01 21:11:42 -0700975 if (pmd_none(*pmd))
976 return i ? : -EFAULT;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700977 pte = pte_offset_map(pmd, pg);
Hugh Dickins690dbe12005-08-01 21:11:42 -0700978 if (pte_none(*pte)) {
979 pte_unmap(pte);
980 return i ? : -EFAULT;
981 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700982 if (pages) {
983 pages[i] = pte_page(*pte);
984 get_page(pages[i]);
985 }
986 pte_unmap(pte);
987 if (vmas)
988 vmas[i] = gate_vma;
989 i++;
990 start += PAGE_SIZE;
991 len--;
992 continue;
993 }
994
Nick Pigginb5810032005-10-29 18:16:12 -0700995 if (!vma || (vma->vm_flags & (VM_IO | VM_RESERVED))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700996 || !(flags & vma->vm_flags))
997 return i ? : -EFAULT;
998
999 if (is_vm_hugetlb_page(vma)) {
1000 i = follow_hugetlb_page(mm, vma, pages, vmas,
1001 &start, &len, i);
1002 continue;
1003 }
1004 spin_lock(&mm->page_table_lock);
1005 do {
Nick Pigginf33ea7f2005-08-03 20:24:01 +10001006 int write_access = write;
Hugh Dickins08ef4722005-06-21 17:15:10 -07001007 struct page *page;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001008
1009 cond_resched_lock(&mm->page_table_lock);
Nick Pigginf33ea7f2005-08-03 20:24:01 +10001010 while (!(page = follow_page(mm, start, write_access))) {
Linus Torvaldsa68d2eb2005-08-03 10:07:09 -07001011 int ret;
1012
Linus Torvalds1da177e2005-04-16 15:20:36 -07001013 /*
1014 * Shortcut for anonymous pages. We don't want
1015 * to force the creation of pages tables for
Hugh Dickins08ef4722005-06-21 17:15:10 -07001016 * insanely big anonymously mapped areas that
Linus Torvalds1da177e2005-04-16 15:20:36 -07001017 * nobody touched so far. This is important
1018 * for doing a core dump for these mappings.
1019 */
Linus Torvalds4ceb5db2005-08-01 11:14:49 -07001020 if (!write && untouched_anonymous_page(mm,vma,start)) {
Hugh Dickins08ef4722005-06-21 17:15:10 -07001021 page = ZERO_PAGE(start);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001022 break;
1023 }
1024 spin_unlock(&mm->page_table_lock);
Linus Torvaldsa68d2eb2005-08-03 10:07:09 -07001025 ret = __handle_mm_fault(mm, vma, start, write_access);
1026
1027 /*
1028 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1029 * broken COW when necessary, even if maybe_mkwrite
1030 * decided not to set pte_write. We can thus safely do
1031 * subsequent page lookups as if they were reads.
1032 */
1033 if (ret & VM_FAULT_WRITE)
Nick Pigginf33ea7f2005-08-03 20:24:01 +10001034 write_access = 0;
Linus Torvaldsa68d2eb2005-08-03 10:07:09 -07001035
1036 switch (ret & ~VM_FAULT_WRITE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001037 case VM_FAULT_MINOR:
1038 tsk->min_flt++;
1039 break;
1040 case VM_FAULT_MAJOR:
1041 tsk->maj_flt++;
1042 break;
1043 case VM_FAULT_SIGBUS:
1044 return i ? i : -EFAULT;
1045 case VM_FAULT_OOM:
1046 return i ? i : -ENOMEM;
1047 default:
1048 BUG();
1049 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001050 spin_lock(&mm->page_table_lock);
1051 }
1052 if (pages) {
Hugh Dickins08ef4722005-06-21 17:15:10 -07001053 pages[i] = page;
1054 flush_dcache_page(page);
Nick Pigginb5810032005-10-29 18:16:12 -07001055 page_cache_get(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001056 }
1057 if (vmas)
1058 vmas[i] = vma;
1059 i++;
1060 start += PAGE_SIZE;
1061 len--;
Hugh Dickins08ef4722005-06-21 17:15:10 -07001062 } while (len && start < vma->vm_end);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001063 spin_unlock(&mm->page_table_lock);
Hugh Dickins08ef4722005-06-21 17:15:10 -07001064 } while (len);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001065 return i;
1066}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001067EXPORT_SYMBOL(get_user_pages);
1068
1069static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1070 unsigned long addr, unsigned long end, pgprot_t prot)
1071{
1072 pte_t *pte;
1073
1074 pte = pte_alloc_map(mm, pmd, addr);
1075 if (!pte)
1076 return -ENOMEM;
1077 do {
Nick Pigginb5810032005-10-29 18:16:12 -07001078 struct page *page = ZERO_PAGE(addr);
1079 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1080 page_cache_get(page);
1081 page_add_file_rmap(page);
1082 inc_mm_counter(mm, file_rss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001083 BUG_ON(!pte_none(*pte));
1084 set_pte_at(mm, addr, pte, zero_pte);
1085 } while (pte++, addr += PAGE_SIZE, addr != end);
1086 pte_unmap(pte - 1);
1087 return 0;
1088}
1089
1090static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1091 unsigned long addr, unsigned long end, pgprot_t prot)
1092{
1093 pmd_t *pmd;
1094 unsigned long next;
1095
1096 pmd = pmd_alloc(mm, pud, addr);
1097 if (!pmd)
1098 return -ENOMEM;
1099 do {
1100 next = pmd_addr_end(addr, end);
1101 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1102 return -ENOMEM;
1103 } while (pmd++, addr = next, addr != end);
1104 return 0;
1105}
1106
1107static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1108 unsigned long addr, unsigned long end, pgprot_t prot)
1109{
1110 pud_t *pud;
1111 unsigned long next;
1112
1113 pud = pud_alloc(mm, pgd, addr);
1114 if (!pud)
1115 return -ENOMEM;
1116 do {
1117 next = pud_addr_end(addr, end);
1118 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1119 return -ENOMEM;
1120 } while (pud++, addr = next, addr != end);
1121 return 0;
1122}
1123
1124int zeromap_page_range(struct vm_area_struct *vma,
1125 unsigned long addr, unsigned long size, pgprot_t prot)
1126{
1127 pgd_t *pgd;
1128 unsigned long next;
1129 unsigned long end = addr + size;
1130 struct mm_struct *mm = vma->vm_mm;
1131 int err;
1132
1133 BUG_ON(addr >= end);
1134 pgd = pgd_offset(mm, addr);
1135 flush_cache_range(vma, addr, end);
1136 spin_lock(&mm->page_table_lock);
1137 do {
1138 next = pgd_addr_end(addr, end);
1139 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1140 if (err)
1141 break;
1142 } while (pgd++, addr = next, addr != end);
1143 spin_unlock(&mm->page_table_lock);
1144 return err;
1145}
1146
1147/*
1148 * maps a range of physical memory into the requested pages. the old
1149 * mappings are removed. any references to nonexistent pages results
1150 * in null mappings (currently treated as "copy-on-access")
1151 */
1152static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1153 unsigned long addr, unsigned long end,
1154 unsigned long pfn, pgprot_t prot)
1155{
1156 pte_t *pte;
1157
1158 pte = pte_alloc_map(mm, pmd, addr);
1159 if (!pte)
1160 return -ENOMEM;
1161 do {
1162 BUG_ON(!pte_none(*pte));
Nick Pigginb5810032005-10-29 18:16:12 -07001163 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001164 pfn++;
1165 } while (pte++, addr += PAGE_SIZE, addr != end);
1166 pte_unmap(pte - 1);
1167 return 0;
1168}
1169
1170static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1171 unsigned long addr, unsigned long end,
1172 unsigned long pfn, pgprot_t prot)
1173{
1174 pmd_t *pmd;
1175 unsigned long next;
1176
1177 pfn -= addr >> PAGE_SHIFT;
1178 pmd = pmd_alloc(mm, pud, addr);
1179 if (!pmd)
1180 return -ENOMEM;
1181 do {
1182 next = pmd_addr_end(addr, end);
1183 if (remap_pte_range(mm, pmd, addr, next,
1184 pfn + (addr >> PAGE_SHIFT), prot))
1185 return -ENOMEM;
1186 } while (pmd++, addr = next, addr != end);
1187 return 0;
1188}
1189
1190static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1191 unsigned long addr, unsigned long end,
1192 unsigned long pfn, pgprot_t prot)
1193{
1194 pud_t *pud;
1195 unsigned long next;
1196
1197 pfn -= addr >> PAGE_SHIFT;
1198 pud = pud_alloc(mm, pgd, addr);
1199 if (!pud)
1200 return -ENOMEM;
1201 do {
1202 next = pud_addr_end(addr, end);
1203 if (remap_pmd_range(mm, pud, addr, next,
1204 pfn + (addr >> PAGE_SHIFT), prot))
1205 return -ENOMEM;
1206 } while (pud++, addr = next, addr != end);
1207 return 0;
1208}
1209
1210/* Note: this is only safe if the mm semaphore is held when called. */
1211int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1212 unsigned long pfn, unsigned long size, pgprot_t prot)
1213{
1214 pgd_t *pgd;
1215 unsigned long next;
Hugh Dickins2d15cab2005-06-25 14:54:33 -07001216 unsigned long end = addr + PAGE_ALIGN(size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001217 struct mm_struct *mm = vma->vm_mm;
1218 int err;
1219
1220 /*
1221 * Physically remapped pages are special. Tell the
1222 * rest of the world about it:
1223 * VM_IO tells people not to look at these pages
1224 * (accesses can have side effects).
Nick Pigginb5810032005-10-29 18:16:12 -07001225 * VM_RESERVED tells the core MM not to "manage" these pages
1226 * (e.g. refcount, mapcount, try to swap them out).
Linus Torvalds1da177e2005-04-16 15:20:36 -07001227 */
1228 vma->vm_flags |= VM_IO | VM_RESERVED;
1229
1230 BUG_ON(addr >= end);
1231 pfn -= addr >> PAGE_SHIFT;
1232 pgd = pgd_offset(mm, addr);
1233 flush_cache_range(vma, addr, end);
1234 spin_lock(&mm->page_table_lock);
1235 do {
1236 next = pgd_addr_end(addr, end);
1237 err = remap_pud_range(mm, pgd, addr, next,
1238 pfn + (addr >> PAGE_SHIFT), prot);
1239 if (err)
1240 break;
1241 } while (pgd++, addr = next, addr != end);
1242 spin_unlock(&mm->page_table_lock);
1243 return err;
1244}
1245EXPORT_SYMBOL(remap_pfn_range);
1246
1247/*
1248 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1249 * servicing faults for write access. In the normal case, do always want
1250 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1251 * that do not have writing enabled, when used by access_process_vm.
1252 */
1253static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1254{
1255 if (likely(vma->vm_flags & VM_WRITE))
1256 pte = pte_mkwrite(pte);
1257 return pte;
1258}
1259
1260/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001261 * This routine handles present pages, when users try to write
1262 * to a shared page. It is done by copying the page to a new address
1263 * and decrementing the shared-page counter for the old page.
1264 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001265 * Note that this routine assumes that the protection checks have been
1266 * done by the caller (the low-level page fault routine in most cases).
1267 * Thus we can safely just mark it writable once we've done any necessary
1268 * COW.
1269 *
1270 * We also mark the page dirty at this point even though the page will
1271 * change only once the write actually happens. This avoids a few races,
1272 * and potentially makes it more efficient.
1273 *
1274 * We hold the mm semaphore and the page_table_lock on entry and exit
1275 * with the page_table_lock released.
1276 */
Hugh Dickins65500d22005-10-29 18:15:59 -07001277static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1278 unsigned long address, pte_t *page_table, pmd_t *pmd,
1279 pte_t orig_pte)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001280{
1281 struct page *old_page, *new_page;
Hugh Dickins65500d22005-10-29 18:15:59 -07001282 unsigned long pfn = pte_pfn(orig_pte);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001283 pte_t entry;
Hugh Dickins65500d22005-10-29 18:15:59 -07001284 int ret = VM_FAULT_MINOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001285
Nick Pigginb5810032005-10-29 18:16:12 -07001286 BUG_ON(vma->vm_flags & VM_RESERVED);
1287
Linus Torvalds1da177e2005-04-16 15:20:36 -07001288 if (unlikely(!pfn_valid(pfn))) {
1289 /*
Hugh Dickins65500d22005-10-29 18:15:59 -07001290 * Page table corrupted: show pte and kill process.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001291 */
Nick Pigginb5810032005-10-29 18:16:12 -07001292 print_bad_pte(vma, orig_pte, address);
Hugh Dickins65500d22005-10-29 18:15:59 -07001293 ret = VM_FAULT_OOM;
1294 goto unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001295 }
1296 old_page = pfn_to_page(pfn);
1297
Hugh Dickinsd296e9c2005-06-21 17:15:11 -07001298 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001299 int reuse = can_share_swap_page(old_page);
1300 unlock_page(old_page);
1301 if (reuse) {
1302 flush_cache_page(vma, address, pfn);
Hugh Dickins65500d22005-10-29 18:15:59 -07001303 entry = pte_mkyoung(orig_pte);
1304 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001305 ptep_set_access_flags(vma, address, page_table, entry, 1);
1306 update_mmu_cache(vma, address, entry);
1307 lazy_mmu_prot_update(entry);
Hugh Dickins65500d22005-10-29 18:15:59 -07001308 ret |= VM_FAULT_WRITE;
1309 goto unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001310 }
1311 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001312
1313 /*
1314 * Ok, we need to copy. Oh, well..
1315 */
Nick Pigginb5810032005-10-29 18:16:12 -07001316 page_cache_get(old_page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001317 pte_unmap(page_table);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001318 spin_unlock(&mm->page_table_lock);
1319
1320 if (unlikely(anon_vma_prepare(vma)))
Hugh Dickins65500d22005-10-29 18:15:59 -07001321 goto oom;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001322 if (old_page == ZERO_PAGE(address)) {
1323 new_page = alloc_zeroed_user_highpage(vma, address);
1324 if (!new_page)
Hugh Dickins65500d22005-10-29 18:15:59 -07001325 goto oom;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001326 } else {
1327 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1328 if (!new_page)
Hugh Dickins65500d22005-10-29 18:15:59 -07001329 goto oom;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001330 copy_user_highpage(new_page, old_page, address);
1331 }
Hugh Dickins65500d22005-10-29 18:15:59 -07001332
Linus Torvalds1da177e2005-04-16 15:20:36 -07001333 /*
1334 * Re-check the pte - we dropped the lock
1335 */
1336 spin_lock(&mm->page_table_lock);
1337 page_table = pte_offset_map(pmd, address);
Hugh Dickins65500d22005-10-29 18:15:59 -07001338 if (likely(pte_same(*page_table, orig_pte))) {
Nick Pigginb5810032005-10-29 18:16:12 -07001339 page_remove_rmap(old_page);
1340 if (!PageAnon(old_page)) {
Hugh Dickins42946212005-10-29 18:16:05 -07001341 inc_mm_counter(mm, anon_rss);
Nick Pigginb5810032005-10-29 18:16:12 -07001342 dec_mm_counter(mm, file_rss);
Hugh Dickins42946212005-10-29 18:16:05 -07001343 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001344 flush_cache_page(vma, address, pfn);
Hugh Dickins65500d22005-10-29 18:15:59 -07001345 entry = mk_pte(new_page, vma->vm_page_prot);
1346 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1347 ptep_establish(vma, address, page_table, entry);
1348 update_mmu_cache(vma, address, entry);
1349 lazy_mmu_prot_update(entry);
1350
Linus Torvalds1da177e2005-04-16 15:20:36 -07001351 lru_cache_add_active(new_page);
1352 page_add_anon_rmap(new_page, vma, address);
1353
1354 /* Free the old page.. */
1355 new_page = old_page;
Nick Pigginf33ea7f2005-08-03 20:24:01 +10001356 ret |= VM_FAULT_WRITE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001357 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001358 page_cache_release(new_page);
1359 page_cache_release(old_page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001360unlock:
1361 pte_unmap(page_table);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001362 spin_unlock(&mm->page_table_lock);
Nick Pigginf33ea7f2005-08-03 20:24:01 +10001363 return ret;
Hugh Dickins65500d22005-10-29 18:15:59 -07001364oom:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001365 page_cache_release(old_page);
1366 return VM_FAULT_OOM;
1367}
1368
1369/*
1370 * Helper functions for unmap_mapping_range().
1371 *
1372 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1373 *
1374 * We have to restart searching the prio_tree whenever we drop the lock,
1375 * since the iterator is only valid while the lock is held, and anyway
1376 * a later vma might be split and reinserted earlier while lock dropped.
1377 *
1378 * The list of nonlinear vmas could be handled more efficiently, using
1379 * a placeholder, but handle it in the same way until a need is shown.
1380 * It is important to search the prio_tree before nonlinear list: a vma
1381 * may become nonlinear and be shifted from prio_tree to nonlinear list
1382 * while the lock is dropped; but never shifted from list to prio_tree.
1383 *
1384 * In order to make forward progress despite restarting the search,
1385 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1386 * quickly skip it next time around. Since the prio_tree search only
1387 * shows us those vmas affected by unmapping the range in question, we
1388 * can't efficiently keep all vmas in step with mapping->truncate_count:
1389 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1390 * mapping->truncate_count and vma->vm_truncate_count are protected by
1391 * i_mmap_lock.
1392 *
1393 * In order to make forward progress despite repeatedly restarting some
Hugh Dickinsee39b372005-04-19 13:29:15 -07001394 * large vma, note the restart_addr from unmap_vmas when it breaks out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001395 * and restart from that address when we reach that vma again. It might
1396 * have been split or merged, shrunk or extended, but never shifted: so
1397 * restart_addr remains valid so long as it remains in the vma's range.
1398 * unmap_mapping_range forces truncate_count to leap over page-aligned
1399 * values so we can save vma's restart_addr in its truncate_count field.
1400 */
1401#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1402
1403static void reset_vma_truncate_counts(struct address_space *mapping)
1404{
1405 struct vm_area_struct *vma;
1406 struct prio_tree_iter iter;
1407
1408 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1409 vma->vm_truncate_count = 0;
1410 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1411 vma->vm_truncate_count = 0;
1412}
1413
1414static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1415 unsigned long start_addr, unsigned long end_addr,
1416 struct zap_details *details)
1417{
1418 unsigned long restart_addr;
1419 int need_break;
1420
1421again:
1422 restart_addr = vma->vm_truncate_count;
1423 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1424 start_addr = restart_addr;
1425 if (start_addr >= end_addr) {
1426 /* Top of vma has been split off since last time */
1427 vma->vm_truncate_count = details->truncate_count;
1428 return 0;
1429 }
1430 }
1431
Hugh Dickinsee39b372005-04-19 13:29:15 -07001432 restart_addr = zap_page_range(vma, start_addr,
1433 end_addr - start_addr, details);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001434
1435 /*
1436 * We cannot rely on the break test in unmap_vmas:
1437 * on the one hand, we don't want to restart our loop
1438 * just because that broke out for the page_table_lock;
1439 * on the other hand, it does no test when vma is small.
1440 */
1441 need_break = need_resched() ||
1442 need_lockbreak(details->i_mmap_lock);
1443
Hugh Dickinsee39b372005-04-19 13:29:15 -07001444 if (restart_addr >= end_addr) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001445 /* We have now completed this vma: mark it so */
1446 vma->vm_truncate_count = details->truncate_count;
1447 if (!need_break)
1448 return 0;
1449 } else {
1450 /* Note restart_addr in vma's truncate_count field */
Hugh Dickinsee39b372005-04-19 13:29:15 -07001451 vma->vm_truncate_count = restart_addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001452 if (!need_break)
1453 goto again;
1454 }
1455
1456 spin_unlock(details->i_mmap_lock);
1457 cond_resched();
1458 spin_lock(details->i_mmap_lock);
1459 return -EINTR;
1460}
1461
1462static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1463 struct zap_details *details)
1464{
1465 struct vm_area_struct *vma;
1466 struct prio_tree_iter iter;
1467 pgoff_t vba, vea, zba, zea;
1468
1469restart:
1470 vma_prio_tree_foreach(vma, &iter, root,
1471 details->first_index, details->last_index) {
1472 /* Skip quickly over those we have already dealt with */
1473 if (vma->vm_truncate_count == details->truncate_count)
1474 continue;
1475
1476 vba = vma->vm_pgoff;
1477 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1478 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1479 zba = details->first_index;
1480 if (zba < vba)
1481 zba = vba;
1482 zea = details->last_index;
1483 if (zea > vea)
1484 zea = vea;
1485
1486 if (unmap_mapping_range_vma(vma,
1487 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1488 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1489 details) < 0)
1490 goto restart;
1491 }
1492}
1493
1494static inline void unmap_mapping_range_list(struct list_head *head,
1495 struct zap_details *details)
1496{
1497 struct vm_area_struct *vma;
1498
1499 /*
1500 * In nonlinear VMAs there is no correspondence between virtual address
1501 * offset and file offset. So we must perform an exhaustive search
1502 * across *all* the pages in each nonlinear VMA, not just the pages
1503 * whose virtual address lies outside the file truncation point.
1504 */
1505restart:
1506 list_for_each_entry(vma, head, shared.vm_set.list) {
1507 /* Skip quickly over those we have already dealt with */
1508 if (vma->vm_truncate_count == details->truncate_count)
1509 continue;
1510 details->nonlinear_vma = vma;
1511 if (unmap_mapping_range_vma(vma, vma->vm_start,
1512 vma->vm_end, details) < 0)
1513 goto restart;
1514 }
1515}
1516
1517/**
1518 * unmap_mapping_range - unmap the portion of all mmaps
1519 * in the specified address_space corresponding to the specified
1520 * page range in the underlying file.
Martin Waitz3d410882005-06-23 22:05:21 -07001521 * @mapping: the address space containing mmaps to be unmapped.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001522 * @holebegin: byte in first page to unmap, relative to the start of
1523 * the underlying file. This will be rounded down to a PAGE_SIZE
1524 * boundary. Note that this is different from vmtruncate(), which
1525 * must keep the partial page. In contrast, we must get rid of
1526 * partial pages.
1527 * @holelen: size of prospective hole in bytes. This will be rounded
1528 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1529 * end of the file.
1530 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1531 * but 0 when invalidating pagecache, don't throw away private data.
1532 */
1533void unmap_mapping_range(struct address_space *mapping,
1534 loff_t const holebegin, loff_t const holelen, int even_cows)
1535{
1536 struct zap_details details;
1537 pgoff_t hba = holebegin >> PAGE_SHIFT;
1538 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1539
1540 /* Check for overflow. */
1541 if (sizeof(holelen) > sizeof(hlen)) {
1542 long long holeend =
1543 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1544 if (holeend & ~(long long)ULONG_MAX)
1545 hlen = ULONG_MAX - hba + 1;
1546 }
1547
1548 details.check_mapping = even_cows? NULL: mapping;
1549 details.nonlinear_vma = NULL;
1550 details.first_index = hba;
1551 details.last_index = hba + hlen - 1;
1552 if (details.last_index < details.first_index)
1553 details.last_index = ULONG_MAX;
1554 details.i_mmap_lock = &mapping->i_mmap_lock;
1555
1556 spin_lock(&mapping->i_mmap_lock);
1557
1558 /* serialize i_size write against truncate_count write */
1559 smp_wmb();
1560 /* Protect against page faults, and endless unmapping loops */
1561 mapping->truncate_count++;
1562 /*
1563 * For archs where spin_lock has inclusive semantics like ia64
1564 * this smp_mb() will prevent to read pagetable contents
1565 * before the truncate_count increment is visible to
1566 * other cpus.
1567 */
1568 smp_mb();
1569 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1570 if (mapping->truncate_count == 0)
1571 reset_vma_truncate_counts(mapping);
1572 mapping->truncate_count++;
1573 }
1574 details.truncate_count = mapping->truncate_count;
1575
1576 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1577 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1578 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1579 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1580 spin_unlock(&mapping->i_mmap_lock);
1581}
1582EXPORT_SYMBOL(unmap_mapping_range);
1583
1584/*
1585 * Handle all mappings that got truncated by a "truncate()"
1586 * system call.
1587 *
1588 * NOTE! We have to be ready to update the memory sharing
1589 * between the file and the memory map for a potential last
1590 * incomplete page. Ugly, but necessary.
1591 */
1592int vmtruncate(struct inode * inode, loff_t offset)
1593{
1594 struct address_space *mapping = inode->i_mapping;
1595 unsigned long limit;
1596
1597 if (inode->i_size < offset)
1598 goto do_expand;
1599 /*
1600 * truncation of in-use swapfiles is disallowed - it would cause
1601 * subsequent swapout to scribble on the now-freed blocks.
1602 */
1603 if (IS_SWAPFILE(inode))
1604 goto out_busy;
1605 i_size_write(inode, offset);
1606 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1607 truncate_inode_pages(mapping, offset);
1608 goto out_truncate;
1609
1610do_expand:
1611 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1612 if (limit != RLIM_INFINITY && offset > limit)
1613 goto out_sig;
1614 if (offset > inode->i_sb->s_maxbytes)
1615 goto out_big;
1616 i_size_write(inode, offset);
1617
1618out_truncate:
1619 if (inode->i_op && inode->i_op->truncate)
1620 inode->i_op->truncate(inode);
1621 return 0;
1622out_sig:
1623 send_sig(SIGXFSZ, current, 0);
1624out_big:
1625 return -EFBIG;
1626out_busy:
1627 return -ETXTBSY;
1628}
1629
1630EXPORT_SYMBOL(vmtruncate);
1631
1632/*
1633 * Primitive swap readahead code. We simply read an aligned block of
1634 * (1 << page_cluster) entries in the swap area. This method is chosen
1635 * because it doesn't cost us any seek time. We also make sure to queue
1636 * the 'original' request together with the readahead ones...
1637 *
1638 * This has been extended to use the NUMA policies from the mm triggering
1639 * the readahead.
1640 *
1641 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1642 */
1643void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1644{
1645#ifdef CONFIG_NUMA
1646 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1647#endif
1648 int i, num;
1649 struct page *new_page;
1650 unsigned long offset;
1651
1652 /*
1653 * Get the number of handles we should do readahead io to.
1654 */
1655 num = valid_swaphandles(entry, &offset);
1656 for (i = 0; i < num; offset++, i++) {
1657 /* Ok, do the async read-ahead now */
1658 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1659 offset), vma, addr);
1660 if (!new_page)
1661 break;
1662 page_cache_release(new_page);
1663#ifdef CONFIG_NUMA
1664 /*
1665 * Find the next applicable VMA for the NUMA policy.
1666 */
1667 addr += PAGE_SIZE;
1668 if (addr == 0)
1669 vma = NULL;
1670 if (vma) {
1671 if (addr >= vma->vm_end) {
1672 vma = next_vma;
1673 next_vma = vma ? vma->vm_next : NULL;
1674 }
1675 if (vma && addr < vma->vm_start)
1676 vma = NULL;
1677 } else {
1678 if (next_vma && addr >= next_vma->vm_start) {
1679 vma = next_vma;
1680 next_vma = vma->vm_next;
1681 }
1682 }
1683#endif
1684 }
1685 lru_add_drain(); /* Push any new pages onto the LRU now */
1686}
1687
1688/*
1689 * We hold the mm semaphore and the page_table_lock on entry and
1690 * should release the pagetable lock on exit..
1691 */
Hugh Dickins65500d22005-10-29 18:15:59 -07001692static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1693 unsigned long address, pte_t *page_table, pmd_t *pmd,
1694 int write_access, pte_t orig_pte)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001695{
1696 struct page *page;
Hugh Dickins65500d22005-10-29 18:15:59 -07001697 swp_entry_t entry;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001698 pte_t pte;
1699 int ret = VM_FAULT_MINOR;
1700
1701 pte_unmap(page_table);
1702 spin_unlock(&mm->page_table_lock);
Hugh Dickins65500d22005-10-29 18:15:59 -07001703
1704 entry = pte_to_swp_entry(orig_pte);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001705 page = lookup_swap_cache(entry);
1706 if (!page) {
1707 swapin_readahead(entry, address, vma);
1708 page = read_swap_cache_async(entry, vma, address);
1709 if (!page) {
1710 /*
1711 * Back out if somebody else faulted in this pte while
1712 * we released the page table lock.
1713 */
1714 spin_lock(&mm->page_table_lock);
1715 page_table = pte_offset_map(pmd, address);
1716 if (likely(pte_same(*page_table, orig_pte)))
1717 ret = VM_FAULT_OOM;
Hugh Dickins65500d22005-10-29 18:15:59 -07001718 goto unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001719 }
1720
1721 /* Had to read the page from swap area: Major fault */
1722 ret = VM_FAULT_MAJOR;
1723 inc_page_state(pgmajfault);
1724 grab_swap_token();
1725 }
1726
1727 mark_page_accessed(page);
1728 lock_page(page);
1729
1730 /*
1731 * Back out if somebody else faulted in this pte while we
1732 * released the page table lock.
1733 */
1734 spin_lock(&mm->page_table_lock);
1735 page_table = pte_offset_map(pmd, address);
1736 if (unlikely(!pte_same(*page_table, orig_pte))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001737 ret = VM_FAULT_MINOR;
Kirill Korotaevb8107482005-05-16 21:53:50 -07001738 goto out_nomap;
1739 }
1740
1741 if (unlikely(!PageUptodate(page))) {
1742 ret = VM_FAULT_SIGBUS;
1743 goto out_nomap;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001744 }
1745
1746 /* The page isn't present yet, go ahead with the fault. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001747
Hugh Dickins42946212005-10-29 18:16:05 -07001748 inc_mm_counter(mm, anon_rss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001749 pte = mk_pte(page, vma->vm_page_prot);
1750 if (write_access && can_share_swap_page(page)) {
1751 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1752 write_access = 0;
1753 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001754
1755 flush_icache_page(vma, page);
1756 set_pte_at(mm, address, page_table, pte);
1757 page_add_anon_rmap(page, vma, address);
1758
Hugh Dickinsc475a8a2005-06-21 17:15:12 -07001759 swap_free(entry);
1760 if (vm_swap_full())
1761 remove_exclusive_swap_page(page);
1762 unlock_page(page);
1763
Linus Torvalds1da177e2005-04-16 15:20:36 -07001764 if (write_access) {
1765 if (do_wp_page(mm, vma, address,
1766 page_table, pmd, pte) == VM_FAULT_OOM)
1767 ret = VM_FAULT_OOM;
1768 goto out;
1769 }
1770
1771 /* No need to invalidate - it was non-present before */
1772 update_mmu_cache(vma, address, pte);
1773 lazy_mmu_prot_update(pte);
Hugh Dickins65500d22005-10-29 18:15:59 -07001774unlock:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001775 pte_unmap(page_table);
1776 spin_unlock(&mm->page_table_lock);
1777out:
1778 return ret;
Kirill Korotaevb8107482005-05-16 21:53:50 -07001779out_nomap:
1780 pte_unmap(page_table);
1781 spin_unlock(&mm->page_table_lock);
1782 unlock_page(page);
1783 page_cache_release(page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001784 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001785}
1786
1787/*
1788 * We are called with the MM semaphore and page_table_lock
1789 * spinlock held to protect against concurrent faults in
1790 * multithreaded programs.
1791 */
Hugh Dickins65500d22005-10-29 18:15:59 -07001792static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1793 unsigned long address, pte_t *page_table, pmd_t *pmd,
1794 int write_access)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001795{
Nick Pigginb5810032005-10-29 18:16:12 -07001796 struct page *page = ZERO_PAGE(addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001797 pte_t entry;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001798
Hugh Dickins72866f62005-10-29 18:15:55 -07001799 /* Mapping of ZERO_PAGE - vm_page_prot is readonly */
Nick Pigginb5810032005-10-29 18:16:12 -07001800 entry = mk_pte(page, vma->vm_page_prot);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001801
Linus Torvalds1da177e2005-04-16 15:20:36 -07001802 if (write_access) {
1803 /* Allocate our own private page. */
1804 pte_unmap(page_table);
1805 spin_unlock(&mm->page_table_lock);
1806
1807 if (unlikely(anon_vma_prepare(vma)))
Hugh Dickins65500d22005-10-29 18:15:59 -07001808 goto oom;
1809 page = alloc_zeroed_user_highpage(vma, address);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001810 if (!page)
Hugh Dickins65500d22005-10-29 18:15:59 -07001811 goto oom;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001812
1813 spin_lock(&mm->page_table_lock);
Hugh Dickins65500d22005-10-29 18:15:59 -07001814 page_table = pte_offset_map(pmd, address);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001815
1816 if (!pte_none(*page_table)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001817 page_cache_release(page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001818 goto unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001819 }
Hugh Dickins42946212005-10-29 18:16:05 -07001820 inc_mm_counter(mm, anon_rss);
Hugh Dickins65500d22005-10-29 18:15:59 -07001821 entry = mk_pte(page, vma->vm_page_prot);
1822 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001823 lru_cache_add_active(page);
1824 SetPageReferenced(page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001825 page_add_anon_rmap(page, vma, address);
Nick Pigginb5810032005-10-29 18:16:12 -07001826 } else {
1827 inc_mm_counter(mm, file_rss);
1828 page_add_file_rmap(page);
1829 page_cache_get(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001830 }
1831
Hugh Dickins65500d22005-10-29 18:15:59 -07001832 set_pte_at(mm, address, page_table, entry);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001833
1834 /* No need to invalidate - it was non-present before */
Hugh Dickins65500d22005-10-29 18:15:59 -07001835 update_mmu_cache(vma, address, entry);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001836 lazy_mmu_prot_update(entry);
Hugh Dickins65500d22005-10-29 18:15:59 -07001837unlock:
1838 pte_unmap(page_table);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001839 spin_unlock(&mm->page_table_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001840 return VM_FAULT_MINOR;
Hugh Dickins65500d22005-10-29 18:15:59 -07001841oom:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001842 return VM_FAULT_OOM;
1843}
1844
1845/*
1846 * do_no_page() tries to create a new page mapping. It aggressively
1847 * tries to share with existing pages, but makes a separate copy if
1848 * the "write_access" parameter is true in order to avoid the next
1849 * page fault.
1850 *
1851 * As this is called only for pages that do not currently exist, we
1852 * do not need to flush old virtual caches or the TLB.
1853 *
1854 * This is called with the MM semaphore held and the page table
1855 * spinlock held. Exit with the spinlock released.
1856 */
Hugh Dickins65500d22005-10-29 18:15:59 -07001857static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1858 unsigned long address, pte_t *page_table, pmd_t *pmd,
1859 int write_access)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001860{
Hugh Dickins65500d22005-10-29 18:15:59 -07001861 struct page *new_page;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001862 struct address_space *mapping = NULL;
1863 pte_t entry;
1864 unsigned int sequence = 0;
1865 int ret = VM_FAULT_MINOR;
1866 int anon = 0;
1867
Linus Torvalds1da177e2005-04-16 15:20:36 -07001868 pte_unmap(page_table);
1869 spin_unlock(&mm->page_table_lock);
1870
1871 if (vma->vm_file) {
1872 mapping = vma->vm_file->f_mapping;
1873 sequence = mapping->truncate_count;
1874 smp_rmb(); /* serializes i_size against truncate_count */
1875 }
1876retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001877 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1878 /*
1879 * No smp_rmb is needed here as long as there's a full
1880 * spin_lock/unlock sequence inside the ->nopage callback
1881 * (for the pagecache lookup) that acts as an implicit
1882 * smp_mb() and prevents the i_size read to happen
1883 * after the next truncate_count read.
1884 */
1885
1886 /* no page was available -- either SIGBUS or OOM */
1887 if (new_page == NOPAGE_SIGBUS)
1888 return VM_FAULT_SIGBUS;
1889 if (new_page == NOPAGE_OOM)
1890 return VM_FAULT_OOM;
1891
1892 /*
1893 * Should we do an early C-O-W break?
1894 */
1895 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1896 struct page *page;
1897
1898 if (unlikely(anon_vma_prepare(vma)))
1899 goto oom;
1900 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1901 if (!page)
1902 goto oom;
1903 copy_user_highpage(page, new_page, address);
1904 page_cache_release(new_page);
1905 new_page = page;
1906 anon = 1;
1907 }
1908
1909 spin_lock(&mm->page_table_lock);
1910 /*
1911 * For a file-backed vma, someone could have truncated or otherwise
1912 * invalidated this page. If unmap_mapping_range got called,
1913 * retry getting the page.
1914 */
1915 if (mapping && unlikely(sequence != mapping->truncate_count)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001916 spin_unlock(&mm->page_table_lock);
1917 page_cache_release(new_page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001918 cond_resched();
1919 sequence = mapping->truncate_count;
1920 smp_rmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001921 goto retry;
1922 }
1923 page_table = pte_offset_map(pmd, address);
1924
1925 /*
1926 * This silly early PAGE_DIRTY setting removes a race
1927 * due to the bad i386 page protection. But it's valid
1928 * for other architectures too.
1929 *
1930 * Note that if write_access is true, we either now have
1931 * an exclusive copy of the page, or this is a shared mapping,
1932 * so we can make it writable and dirty to avoid having to
1933 * handle that later.
1934 */
1935 /* Only go through if we didn't race with anybody else... */
1936 if (pte_none(*page_table)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001937 flush_icache_page(vma, new_page);
1938 entry = mk_pte(new_page, vma->vm_page_prot);
1939 if (write_access)
1940 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1941 set_pte_at(mm, address, page_table, entry);
1942 if (anon) {
Hugh Dickins42946212005-10-29 18:16:05 -07001943 inc_mm_counter(mm, anon_rss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001944 lru_cache_add_active(new_page);
1945 page_add_anon_rmap(new_page, vma, address);
Nick Pigginb5810032005-10-29 18:16:12 -07001946 } else if (!(vma->vm_flags & VM_RESERVED)) {
Hugh Dickins42946212005-10-29 18:16:05 -07001947 inc_mm_counter(mm, file_rss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001948 page_add_file_rmap(new_page);
Hugh Dickins42946212005-10-29 18:16:05 -07001949 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001950 } else {
1951 /* One of our sibling threads was faster, back out. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001952 page_cache_release(new_page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001953 goto unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001954 }
1955
1956 /* no need to invalidate: a not-present page shouldn't be cached */
1957 update_mmu_cache(vma, address, entry);
1958 lazy_mmu_prot_update(entry);
Hugh Dickins65500d22005-10-29 18:15:59 -07001959unlock:
1960 pte_unmap(page_table);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001961 spin_unlock(&mm->page_table_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001962 return ret;
1963oom:
1964 page_cache_release(new_page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001965 return VM_FAULT_OOM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001966}
1967
1968/*
1969 * Fault of a previously existing named mapping. Repopulate the pte
1970 * from the encoded file_pte if possible. This enables swappable
1971 * nonlinear vmas.
1972 */
Hugh Dickins65500d22005-10-29 18:15:59 -07001973static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1974 unsigned long address, pte_t *page_table, pmd_t *pmd,
1975 int write_access, pte_t orig_pte)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001976{
Hugh Dickins65500d22005-10-29 18:15:59 -07001977 pgoff_t pgoff;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001978 int err;
1979
Hugh Dickins65500d22005-10-29 18:15:59 -07001980 pte_unmap(page_table);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001981 spin_unlock(&mm->page_table_lock);
1982
Hugh Dickins65500d22005-10-29 18:15:59 -07001983 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1984 /*
1985 * Page table corrupted: show pte and kill process.
1986 */
Nick Pigginb5810032005-10-29 18:16:12 -07001987 print_bad_pte(vma, orig_pte, address);
Hugh Dickins65500d22005-10-29 18:15:59 -07001988 return VM_FAULT_OOM;
1989 }
1990 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1991
1992 pgoff = pte_to_pgoff(orig_pte);
1993 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1994 vma->vm_page_prot, pgoff, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001995 if (err == -ENOMEM)
1996 return VM_FAULT_OOM;
1997 if (err)
1998 return VM_FAULT_SIGBUS;
1999 return VM_FAULT_MAJOR;
2000}
2001
2002/*
2003 * These routines also need to handle stuff like marking pages dirty
2004 * and/or accessed for architectures that don't do it in hardware (most
2005 * RISC architectures). The early dirtying is also good on the i386.
2006 *
2007 * There is also a hook called "update_mmu_cache()" that architectures
2008 * with external mmu caches can use to update those (ie the Sparc or
2009 * PowerPC hashed page tables that act as extended TLBs).
2010 *
2011 * Note the "page_table_lock". It is to protect against kswapd removing
2012 * pages from under us. Note that kswapd only ever _removes_ pages, never
2013 * adds them. As such, once we have noticed that the page is not present,
2014 * we can drop the lock early.
2015 *
2016 * The adding of pages is protected by the MM semaphore (which we hold),
2017 * so we don't need to worry about a page being suddenly been added into
2018 * our VM.
2019 *
2020 * We enter with the pagetable spinlock held, we are supposed to
2021 * release it when done.
2022 */
2023static inline int handle_pte_fault(struct mm_struct *mm,
Hugh Dickins65500d22005-10-29 18:15:59 -07002024 struct vm_area_struct *vma, unsigned long address,
2025 pte_t *pte, pmd_t *pmd, int write_access)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002026{
2027 pte_t entry;
2028
2029 entry = *pte;
2030 if (!pte_present(entry)) {
Hugh Dickins65500d22005-10-29 18:15:59 -07002031 if (pte_none(entry)) {
2032 if (!vma->vm_ops || !vma->vm_ops->nopage)
2033 return do_anonymous_page(mm, vma, address,
2034 pte, pmd, write_access);
2035 return do_no_page(mm, vma, address,
2036 pte, pmd, write_access);
2037 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002038 if (pte_file(entry))
Hugh Dickins65500d22005-10-29 18:15:59 -07002039 return do_file_page(mm, vma, address,
2040 pte, pmd, write_access, entry);
2041 return do_swap_page(mm, vma, address,
2042 pte, pmd, write_access, entry);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002043 }
2044
2045 if (write_access) {
2046 if (!pte_write(entry))
2047 return do_wp_page(mm, vma, address, pte, pmd, entry);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002048 entry = pte_mkdirty(entry);
2049 }
2050 entry = pte_mkyoung(entry);
2051 ptep_set_access_flags(vma, address, pte, entry, write_access);
2052 update_mmu_cache(vma, address, entry);
2053 lazy_mmu_prot_update(entry);
2054 pte_unmap(pte);
2055 spin_unlock(&mm->page_table_lock);
2056 return VM_FAULT_MINOR;
2057}
2058
2059/*
2060 * By the time we get here, we already hold the mm semaphore
2061 */
Hugh Dickins65500d22005-10-29 18:15:59 -07002062int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002063 unsigned long address, int write_access)
2064{
2065 pgd_t *pgd;
2066 pud_t *pud;
2067 pmd_t *pmd;
2068 pte_t *pte;
2069
2070 __set_current_state(TASK_RUNNING);
2071
2072 inc_page_state(pgfault);
2073
Hugh Dickinsac9b9c62005-10-20 16:24:28 +01002074 if (unlikely(is_vm_hugetlb_page(vma)))
2075 return hugetlb_fault(mm, vma, address, write_access);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002076
2077 /*
2078 * We need the page table lock to synchronize with kswapd
2079 * and the SMP-safe atomic PTE updates.
2080 */
2081 pgd = pgd_offset(mm, address);
2082 spin_lock(&mm->page_table_lock);
2083
2084 pud = pud_alloc(mm, pgd, address);
2085 if (!pud)
2086 goto oom;
2087
2088 pmd = pmd_alloc(mm, pud, address);
2089 if (!pmd)
2090 goto oom;
2091
2092 pte = pte_alloc_map(mm, pmd, address);
2093 if (!pte)
2094 goto oom;
2095
Hugh Dickins65500d22005-10-29 18:15:59 -07002096 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002097
2098 oom:
2099 spin_unlock(&mm->page_table_lock);
2100 return VM_FAULT_OOM;
2101}
2102
2103#ifndef __PAGETABLE_PUD_FOLDED
2104/*
2105 * Allocate page upper directory.
2106 *
2107 * We've already handled the fast-path in-line, and we own the
2108 * page table lock.
2109 */
2110pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2111{
2112 pud_t *new;
2113
2114 spin_unlock(&mm->page_table_lock);
2115 new = pud_alloc_one(mm, address);
2116 spin_lock(&mm->page_table_lock);
2117 if (!new)
2118 return NULL;
2119
2120 /*
2121 * Because we dropped the lock, we should re-check the
2122 * entry, as somebody else could have populated it..
2123 */
2124 if (pgd_present(*pgd)) {
2125 pud_free(new);
2126 goto out;
2127 }
2128 pgd_populate(mm, pgd, new);
2129 out:
2130 return pud_offset(pgd, address);
2131}
2132#endif /* __PAGETABLE_PUD_FOLDED */
2133
2134#ifndef __PAGETABLE_PMD_FOLDED
2135/*
2136 * Allocate page middle directory.
2137 *
2138 * We've already handled the fast-path in-line, and we own the
2139 * page table lock.
2140 */
2141pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2142{
2143 pmd_t *new;
2144
2145 spin_unlock(&mm->page_table_lock);
2146 new = pmd_alloc_one(mm, address);
2147 spin_lock(&mm->page_table_lock);
2148 if (!new)
2149 return NULL;
2150
2151 /*
2152 * Because we dropped the lock, we should re-check the
2153 * entry, as somebody else could have populated it..
2154 */
2155#ifndef __ARCH_HAS_4LEVEL_HACK
2156 if (pud_present(*pud)) {
2157 pmd_free(new);
2158 goto out;
2159 }
2160 pud_populate(mm, pud, new);
2161#else
2162 if (pgd_present(*pud)) {
2163 pmd_free(new);
2164 goto out;
2165 }
2166 pgd_populate(mm, pud, new);
2167#endif /* __ARCH_HAS_4LEVEL_HACK */
2168
2169 out:
2170 return pmd_offset(pud, address);
2171}
2172#endif /* __PAGETABLE_PMD_FOLDED */
2173
2174int make_pages_present(unsigned long addr, unsigned long end)
2175{
2176 int ret, len, write;
2177 struct vm_area_struct * vma;
2178
2179 vma = find_vma(current->mm, addr);
2180 if (!vma)
2181 return -1;
2182 write = (vma->vm_flags & VM_WRITE) != 0;
2183 if (addr >= end)
2184 BUG();
2185 if (end > vma->vm_end)
2186 BUG();
2187 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2188 ret = get_user_pages(current, current->mm, addr,
2189 len, write, 0, NULL, NULL);
2190 if (ret < 0)
2191 return ret;
2192 return ret == len ? 0 : -1;
2193}
2194
2195/*
2196 * Map a vmalloc()-space virtual address to the physical page.
2197 */
2198struct page * vmalloc_to_page(void * vmalloc_addr)
2199{
2200 unsigned long addr = (unsigned long) vmalloc_addr;
2201 struct page *page = NULL;
2202 pgd_t *pgd = pgd_offset_k(addr);
2203 pud_t *pud;
2204 pmd_t *pmd;
2205 pte_t *ptep, pte;
2206
2207 if (!pgd_none(*pgd)) {
2208 pud = pud_offset(pgd, addr);
2209 if (!pud_none(*pud)) {
2210 pmd = pmd_offset(pud, addr);
2211 if (!pmd_none(*pmd)) {
2212 ptep = pte_offset_map(pmd, addr);
2213 pte = *ptep;
2214 if (pte_present(pte))
2215 page = pte_page(pte);
2216 pte_unmap(ptep);
2217 }
2218 }
2219 }
2220 return page;
2221}
2222
2223EXPORT_SYMBOL(vmalloc_to_page);
2224
2225/*
2226 * Map a vmalloc()-space virtual address to the physical page frame number.
2227 */
2228unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2229{
2230 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2231}
2232
2233EXPORT_SYMBOL(vmalloc_to_pfn);
2234
2235/*
2236 * update_mem_hiwater
2237 * - update per process rss and vm high water data
2238 */
2239void update_mem_hiwater(struct task_struct *tsk)
2240{
2241 if (tsk->mm) {
Hugh Dickins42946212005-10-29 18:16:05 -07002242 unsigned long rss = get_mm_rss(tsk->mm);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002243
2244 if (tsk->mm->hiwater_rss < rss)
2245 tsk->mm->hiwater_rss = rss;
2246 if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2247 tsk->mm->hiwater_vm = tsk->mm->total_vm;
2248 }
2249}
2250
2251#if !defined(__HAVE_ARCH_GATE_AREA)
2252
2253#if defined(AT_SYSINFO_EHDR)
Adrian Bunk5ce78522005-09-10 00:26:28 -07002254static struct vm_area_struct gate_vma;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002255
2256static int __init gate_vma_init(void)
2257{
2258 gate_vma.vm_mm = NULL;
2259 gate_vma.vm_start = FIXADDR_USER_START;
2260 gate_vma.vm_end = FIXADDR_USER_END;
2261 gate_vma.vm_page_prot = PAGE_READONLY;
Nick Pigginb5810032005-10-29 18:16:12 -07002262 gate_vma.vm_flags = VM_RESERVED;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002263 return 0;
2264}
2265__initcall(gate_vma_init);
2266#endif
2267
2268struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2269{
2270#ifdef AT_SYSINFO_EHDR
2271 return &gate_vma;
2272#else
2273 return NULL;
2274#endif
2275}
2276
2277int in_gate_area_no_task(unsigned long addr)
2278{
2279#ifdef AT_SYSINFO_EHDR
2280 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2281 return 1;
2282#endif
2283 return 0;
2284}
2285
2286#endif /* __HAVE_ARCH_GATE_AREA */