Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Twofish for CryptoAPI |
| 3 | * |
| 4 | * Originally Twofish for GPG |
| 5 | * By Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998 |
| 6 | * 256-bit key length added March 20, 1999 |
| 7 | * Some modifications to reduce the text size by Werner Koch, April, 1998 |
| 8 | * Ported to the kerneli patch by Marc Mutz <Marc@Mutz.com> |
| 9 | * Ported to CryptoAPI by Colin Slater <hoho@tacomeat.net> |
| 10 | * |
| 11 | * The original author has disclaimed all copyright interest in this |
| 12 | * code and thus put it in the public domain. The subsequent authors |
| 13 | * have put this under the GNU General Public License. |
| 14 | * |
| 15 | * This program is free software; you can redistribute it and/or modify |
| 16 | * it under the terms of the GNU General Public License as published by |
| 17 | * the Free Software Foundation; either version 2 of the License, or |
| 18 | * (at your option) any later version. |
| 19 | * |
| 20 | * This program is distributed in the hope that it will be useful, |
| 21 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 22 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 23 | * GNU General Public License for more details. |
| 24 | * |
| 25 | * You should have received a copy of the GNU General Public License |
| 26 | * along with this program; if not, write to the Free Software |
| 27 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 |
| 28 | * USA |
| 29 | * |
| 30 | * This code is a "clean room" implementation, written from the paper |
| 31 | * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey, |
| 32 | * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available |
| 33 | * through http://www.counterpane.com/twofish.html |
| 34 | * |
| 35 | * For background information on multiplication in finite fields, used for |
| 36 | * the matrix operations in the key schedule, see the book _Contemporary |
| 37 | * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the |
| 38 | * Third Edition. |
| 39 | */ |
Herbert Xu | 06ace7a | 2005-10-30 21:25:15 +1100 | [diff] [blame] | 40 | |
| 41 | #include <asm/byteorder.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 42 | #include <linux/module.h> |
| 43 | #include <linux/init.h> |
| 44 | #include <linux/types.h> |
| 45 | #include <linux/errno.h> |
| 46 | #include <linux/crypto.h> |
| 47 | |
| 48 | |
| 49 | /* The large precomputed tables for the Twofish cipher (twofish.c) |
| 50 | * Taken from the same source as twofish.c |
| 51 | * Marc Mutz <Marc@Mutz.com> |
| 52 | */ |
| 53 | |
| 54 | /* These two tables are the q0 and q1 permutations, exactly as described in |
| 55 | * the Twofish paper. */ |
| 56 | |
| 57 | static const u8 q0[256] = { |
| 58 | 0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 0x9A, 0x92, 0x80, 0x78, |
| 59 | 0xE4, 0xDD, 0xD1, 0x38, 0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C, |
| 60 | 0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48, 0xF2, 0xD0, 0x8B, 0x30, |
| 61 | 0x84, 0x54, 0xDF, 0x23, 0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82, |
| 62 | 0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 0xA6, 0xEB, 0xA5, 0xBE, |
| 63 | 0x16, 0x0C, 0xE3, 0x61, 0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B, |
| 64 | 0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1, 0xE1, 0xE6, 0xBD, 0x45, |
| 65 | 0xE2, 0xF4, 0xB6, 0x66, 0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7, |
| 66 | 0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 0xEA, 0x77, 0x39, 0xAF, |
| 67 | 0x33, 0xC9, 0x62, 0x71, 0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8, |
| 68 | 0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7, 0xA1, 0x1D, 0xAA, 0xED, |
| 69 | 0x06, 0x70, 0xB2, 0xD2, 0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90, |
| 70 | 0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 0x9E, 0x9C, 0x52, 0x1B, |
| 71 | 0x5F, 0x93, 0x0A, 0xEF, 0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B, |
| 72 | 0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64, 0x2A, 0xCE, 0xCB, 0x2F, |
| 73 | 0xFC, 0x97, 0x05, 0x7A, 0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A, |
| 74 | 0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 0xB8, 0xDA, 0xB0, 0x17, |
| 75 | 0x55, 0x1F, 0x8A, 0x7D, 0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72, |
| 76 | 0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, 0x6E, 0x50, 0xDE, 0x68, |
| 77 | 0x65, 0xBC, 0xDB, 0xF8, 0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4, |
| 78 | 0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 0x6F, 0x9D, 0x36, 0x42, |
| 79 | 0x4A, 0x5E, 0xC1, 0xE0 |
| 80 | }; |
| 81 | |
| 82 | static const u8 q1[256] = { |
| 83 | 0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 0x4A, 0xD3, 0xE6, 0x6B, |
| 84 | 0x45, 0x7D, 0xE8, 0x4B, 0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1, |
| 85 | 0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F, 0x5E, 0xBA, 0xAE, 0x5B, |
| 86 | 0x8A, 0x00, 0xBC, 0x9D, 0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5, |
| 87 | 0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 0xB2, 0x73, 0x4C, 0x54, |
| 88 | 0x92, 0x74, 0x36, 0x51, 0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96, |
| 89 | 0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C, 0x13, 0x95, 0x9C, 0xC7, |
| 90 | 0x24, 0x46, 0x3B, 0x70, 0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8, |
| 91 | 0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 0x03, 0x6F, 0x08, 0xBF, |
| 92 | 0x40, 0xE7, 0x2B, 0xE2, 0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9, |
| 93 | 0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17, 0x66, 0x94, 0xA1, 0x1D, |
| 94 | 0x3D, 0xF0, 0xDE, 0xB3, 0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E, |
| 95 | 0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 0x81, 0x88, 0xEE, 0x21, |
| 96 | 0xC4, 0x1A, 0xEB, 0xD9, 0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01, |
| 97 | 0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48, 0x4F, 0xF2, 0x65, 0x8E, |
| 98 | 0x78, 0x5C, 0x58, 0x19, 0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64, |
| 99 | 0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 0xCE, 0xE9, 0x68, 0x44, |
| 100 | 0xE0, 0x4D, 0x43, 0x69, 0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E, |
| 101 | 0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC, 0x22, 0xC9, 0xC0, 0x9B, |
| 102 | 0x89, 0xD4, 0xED, 0xAB, 0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9, |
| 103 | 0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 0x16, 0x25, 0x86, 0x56, |
| 104 | 0x55, 0x09, 0xBE, 0x91 |
| 105 | }; |
| 106 | |
| 107 | /* These MDS tables are actually tables of MDS composed with q0 and q1, |
| 108 | * because it is only ever used that way and we can save some time by |
| 109 | * precomputing. Of course the main saving comes from precomputing the |
| 110 | * GF(2^8) multiplication involved in the MDS matrix multiply; by looking |
| 111 | * things up in these tables we reduce the matrix multiply to four lookups |
| 112 | * and three XORs. Semi-formally, the definition of these tables is: |
| 113 | * mds[0][i] = MDS (q1[i] 0 0 0)^T mds[1][i] = MDS (0 q0[i] 0 0)^T |
| 114 | * mds[2][i] = MDS (0 0 q1[i] 0)^T mds[3][i] = MDS (0 0 0 q0[i])^T |
| 115 | * where ^T means "transpose", the matrix multiply is performed in GF(2^8) |
| 116 | * represented as GF(2)[x]/v(x) where v(x)=x^8+x^6+x^5+x^3+1 as described |
| 117 | * by Schneier et al, and I'm casually glossing over the byte/word |
| 118 | * conversion issues. */ |
| 119 | |
| 120 | static const u32 mds[4][256] = { |
| 121 | {0xBCBC3275, 0xECEC21F3, 0x202043C6, 0xB3B3C9F4, 0xDADA03DB, 0x02028B7B, |
| 122 | 0xE2E22BFB, 0x9E9EFAC8, 0xC9C9EC4A, 0xD4D409D3, 0x18186BE6, 0x1E1E9F6B, |
| 123 | 0x98980E45, 0xB2B2387D, 0xA6A6D2E8, 0x2626B74B, 0x3C3C57D6, 0x93938A32, |
| 124 | 0x8282EED8, 0x525298FD, 0x7B7BD437, 0xBBBB3771, 0x5B5B97F1, 0x474783E1, |
| 125 | 0x24243C30, 0x5151E20F, 0xBABAC6F8, 0x4A4AF31B, 0xBFBF4887, 0x0D0D70FA, |
| 126 | 0xB0B0B306, 0x7575DE3F, 0xD2D2FD5E, 0x7D7D20BA, 0x666631AE, 0x3A3AA35B, |
| 127 | 0x59591C8A, 0x00000000, 0xCDCD93BC, 0x1A1AE09D, 0xAEAE2C6D, 0x7F7FABC1, |
| 128 | 0x2B2BC7B1, 0xBEBEB90E, 0xE0E0A080, 0x8A8A105D, 0x3B3B52D2, 0x6464BAD5, |
| 129 | 0xD8D888A0, 0xE7E7A584, 0x5F5FE807, 0x1B1B1114, 0x2C2CC2B5, 0xFCFCB490, |
| 130 | 0x3131272C, 0x808065A3, 0x73732AB2, 0x0C0C8173, 0x79795F4C, 0x6B6B4154, |
| 131 | 0x4B4B0292, 0x53536974, 0x94948F36, 0x83831F51, 0x2A2A3638, 0xC4C49CB0, |
| 132 | 0x2222C8BD, 0xD5D5F85A, 0xBDBDC3FC, 0x48487860, 0xFFFFCE62, 0x4C4C0796, |
| 133 | 0x4141776C, 0xC7C7E642, 0xEBEB24F7, 0x1C1C1410, 0x5D5D637C, 0x36362228, |
| 134 | 0x6767C027, 0xE9E9AF8C, 0x4444F913, 0x1414EA95, 0xF5F5BB9C, 0xCFCF18C7, |
| 135 | 0x3F3F2D24, 0xC0C0E346, 0x7272DB3B, 0x54546C70, 0x29294CCA, 0xF0F035E3, |
| 136 | 0x0808FE85, 0xC6C617CB, 0xF3F34F11, 0x8C8CE4D0, 0xA4A45993, 0xCACA96B8, |
| 137 | 0x68683BA6, 0xB8B84D83, 0x38382820, 0xE5E52EFF, 0xADAD569F, 0x0B0B8477, |
| 138 | 0xC8C81DC3, 0x9999FFCC, 0x5858ED03, 0x19199A6F, 0x0E0E0A08, 0x95957EBF, |
| 139 | 0x70705040, 0xF7F730E7, 0x6E6ECF2B, 0x1F1F6EE2, 0xB5B53D79, 0x09090F0C, |
| 140 | 0x616134AA, 0x57571682, 0x9F9F0B41, 0x9D9D803A, 0x111164EA, 0x2525CDB9, |
| 141 | 0xAFAFDDE4, 0x4545089A, 0xDFDF8DA4, 0xA3A35C97, 0xEAEAD57E, 0x353558DA, |
| 142 | 0xEDEDD07A, 0x4343FC17, 0xF8F8CB66, 0xFBFBB194, 0x3737D3A1, 0xFAFA401D, |
| 143 | 0xC2C2683D, 0xB4B4CCF0, 0x32325DDE, 0x9C9C71B3, 0x5656E70B, 0xE3E3DA72, |
| 144 | 0x878760A7, 0x15151B1C, 0xF9F93AEF, 0x6363BFD1, 0x3434A953, 0x9A9A853E, |
| 145 | 0xB1B1428F, 0x7C7CD133, 0x88889B26, 0x3D3DA65F, 0xA1A1D7EC, 0xE4E4DF76, |
| 146 | 0x8181942A, 0x91910149, 0x0F0FFB81, 0xEEEEAA88, 0x161661EE, 0xD7D77321, |
| 147 | 0x9797F5C4, 0xA5A5A81A, 0xFEFE3FEB, 0x6D6DB5D9, 0x7878AEC5, 0xC5C56D39, |
| 148 | 0x1D1DE599, 0x7676A4CD, 0x3E3EDCAD, 0xCBCB6731, 0xB6B6478B, 0xEFEF5B01, |
| 149 | 0x12121E18, 0x6060C523, 0x6A6AB0DD, 0x4D4DF61F, 0xCECEE94E, 0xDEDE7C2D, |
| 150 | 0x55559DF9, 0x7E7E5A48, 0x2121B24F, 0x03037AF2, 0xA0A02665, 0x5E5E198E, |
| 151 | 0x5A5A6678, 0x65654B5C, 0x62624E58, 0xFDFD4519, 0x0606F48D, 0x404086E5, |
| 152 | 0xF2F2BE98, 0x3333AC57, 0x17179067, 0x05058E7F, 0xE8E85E05, 0x4F4F7D64, |
| 153 | 0x89896AAF, 0x10109563, 0x74742FB6, 0x0A0A75FE, 0x5C5C92F5, 0x9B9B74B7, |
| 154 | 0x2D2D333C, 0x3030D6A5, 0x2E2E49CE, 0x494989E9, 0x46467268, 0x77775544, |
| 155 | 0xA8A8D8E0, 0x9696044D, 0x2828BD43, 0xA9A92969, 0xD9D97929, 0x8686912E, |
| 156 | 0xD1D187AC, 0xF4F44A15, 0x8D8D1559, 0xD6D682A8, 0xB9B9BC0A, 0x42420D9E, |
| 157 | 0xF6F6C16E, 0x2F2FB847, 0xDDDD06DF, 0x23233934, 0xCCCC6235, 0xF1F1C46A, |
| 158 | 0xC1C112CF, 0x8585EBDC, 0x8F8F9E22, 0x7171A1C9, 0x9090F0C0, 0xAAAA539B, |
| 159 | 0x0101F189, 0x8B8BE1D4, 0x4E4E8CED, 0x8E8E6FAB, 0xABABA212, 0x6F6F3EA2, |
| 160 | 0xE6E6540D, 0xDBDBF252, 0x92927BBB, 0xB7B7B602, 0x6969CA2F, 0x3939D9A9, |
| 161 | 0xD3D30CD7, 0xA7A72361, 0xA2A2AD1E, 0xC3C399B4, 0x6C6C4450, 0x07070504, |
| 162 | 0x04047FF6, 0x272746C2, 0xACACA716, 0xD0D07625, 0x50501386, 0xDCDCF756, |
| 163 | 0x84841A55, 0xE1E15109, 0x7A7A25BE, 0x1313EF91}, |
| 164 | |
| 165 | {0xA9D93939, 0x67901717, 0xB3719C9C, 0xE8D2A6A6, 0x04050707, 0xFD985252, |
| 166 | 0xA3658080, 0x76DFE4E4, 0x9A084545, 0x92024B4B, 0x80A0E0E0, 0x78665A5A, |
| 167 | 0xE4DDAFAF, 0xDDB06A6A, 0xD1BF6363, 0x38362A2A, 0x0D54E6E6, 0xC6432020, |
| 168 | 0x3562CCCC, 0x98BEF2F2, 0x181E1212, 0xF724EBEB, 0xECD7A1A1, 0x6C774141, |
| 169 | 0x43BD2828, 0x7532BCBC, 0x37D47B7B, 0x269B8888, 0xFA700D0D, 0x13F94444, |
| 170 | 0x94B1FBFB, 0x485A7E7E, 0xF27A0303, 0xD0E48C8C, 0x8B47B6B6, 0x303C2424, |
| 171 | 0x84A5E7E7, 0x54416B6B, 0xDF06DDDD, 0x23C56060, 0x1945FDFD, 0x5BA33A3A, |
| 172 | 0x3D68C2C2, 0x59158D8D, 0xF321ECEC, 0xAE316666, 0xA23E6F6F, 0x82165757, |
| 173 | 0x63951010, 0x015BEFEF, 0x834DB8B8, 0x2E918686, 0xD9B56D6D, 0x511F8383, |
| 174 | 0x9B53AAAA, 0x7C635D5D, 0xA63B6868, 0xEB3FFEFE, 0xA5D63030, 0xBE257A7A, |
| 175 | 0x16A7ACAC, 0x0C0F0909, 0xE335F0F0, 0x6123A7A7, 0xC0F09090, 0x8CAFE9E9, |
| 176 | 0x3A809D9D, 0xF5925C5C, 0x73810C0C, 0x2C273131, 0x2576D0D0, 0x0BE75656, |
| 177 | 0xBB7B9292, 0x4EE9CECE, 0x89F10101, 0x6B9F1E1E, 0x53A93434, 0x6AC4F1F1, |
| 178 | 0xB499C3C3, 0xF1975B5B, 0xE1834747, 0xE66B1818, 0xBDC82222, 0x450E9898, |
| 179 | 0xE26E1F1F, 0xF4C9B3B3, 0xB62F7474, 0x66CBF8F8, 0xCCFF9999, 0x95EA1414, |
| 180 | 0x03ED5858, 0x56F7DCDC, 0xD4E18B8B, 0x1C1B1515, 0x1EADA2A2, 0xD70CD3D3, |
| 181 | 0xFB2BE2E2, 0xC31DC8C8, 0x8E195E5E, 0xB5C22C2C, 0xE9894949, 0xCF12C1C1, |
| 182 | 0xBF7E9595, 0xBA207D7D, 0xEA641111, 0x77840B0B, 0x396DC5C5, 0xAF6A8989, |
| 183 | 0x33D17C7C, 0xC9A17171, 0x62CEFFFF, 0x7137BBBB, 0x81FB0F0F, 0x793DB5B5, |
| 184 | 0x0951E1E1, 0xADDC3E3E, 0x242D3F3F, 0xCDA47676, 0xF99D5555, 0xD8EE8282, |
| 185 | 0xE5864040, 0xC5AE7878, 0xB9CD2525, 0x4D049696, 0x44557777, 0x080A0E0E, |
| 186 | 0x86135050, 0xE730F7F7, 0xA1D33737, 0x1D40FAFA, 0xAA346161, 0xED8C4E4E, |
| 187 | 0x06B3B0B0, 0x706C5454, 0xB22A7373, 0xD2523B3B, 0x410B9F9F, 0x7B8B0202, |
| 188 | 0xA088D8D8, 0x114FF3F3, 0x3167CBCB, 0xC2462727, 0x27C06767, 0x90B4FCFC, |
| 189 | 0x20283838, 0xF67F0404, 0x60784848, 0xFF2EE5E5, 0x96074C4C, 0x5C4B6565, |
| 190 | 0xB1C72B2B, 0xAB6F8E8E, 0x9E0D4242, 0x9CBBF5F5, 0x52F2DBDB, 0x1BF34A4A, |
| 191 | 0x5FA63D3D, 0x9359A4A4, 0x0ABCB9B9, 0xEF3AF9F9, 0x91EF1313, 0x85FE0808, |
| 192 | 0x49019191, 0xEE611616, 0x2D7CDEDE, 0x4FB22121, 0x8F42B1B1, 0x3BDB7272, |
| 193 | 0x47B82F2F, 0x8748BFBF, 0x6D2CAEAE, 0x46E3C0C0, 0xD6573C3C, 0x3E859A9A, |
| 194 | 0x6929A9A9, 0x647D4F4F, 0x2A948181, 0xCE492E2E, 0xCB17C6C6, 0x2FCA6969, |
| 195 | 0xFCC3BDBD, 0x975CA3A3, 0x055EE8E8, 0x7AD0EDED, 0xAC87D1D1, 0x7F8E0505, |
| 196 | 0xD5BA6464, 0x1AA8A5A5, 0x4BB72626, 0x0EB9BEBE, 0xA7608787, 0x5AF8D5D5, |
| 197 | 0x28223636, 0x14111B1B, 0x3FDE7575, 0x2979D9D9, 0x88AAEEEE, 0x3C332D2D, |
| 198 | 0x4C5F7979, 0x02B6B7B7, 0xB896CACA, 0xDA583535, 0xB09CC4C4, 0x17FC4343, |
| 199 | 0x551A8484, 0x1FF64D4D, 0x8A1C5959, 0x7D38B2B2, 0x57AC3333, 0xC718CFCF, |
| 200 | 0x8DF40606, 0x74695353, 0xB7749B9B, 0xC4F59797, 0x9F56ADAD, 0x72DAE3E3, |
| 201 | 0x7ED5EAEA, 0x154AF4F4, 0x229E8F8F, 0x12A2ABAB, 0x584E6262, 0x07E85F5F, |
| 202 | 0x99E51D1D, 0x34392323, 0x6EC1F6F6, 0x50446C6C, 0xDE5D3232, 0x68724646, |
| 203 | 0x6526A0A0, 0xBC93CDCD, 0xDB03DADA, 0xF8C6BABA, 0xC8FA9E9E, 0xA882D6D6, |
| 204 | 0x2BCF6E6E, 0x40507070, 0xDCEB8585, 0xFE750A0A, 0x328A9393, 0xA48DDFDF, |
| 205 | 0xCA4C2929, 0x10141C1C, 0x2173D7D7, 0xF0CCB4B4, 0xD309D4D4, 0x5D108A8A, |
| 206 | 0x0FE25151, 0x00000000, 0x6F9A1919, 0x9DE01A1A, 0x368F9494, 0x42E6C7C7, |
| 207 | 0x4AECC9C9, 0x5EFDD2D2, 0xC1AB7F7F, 0xE0D8A8A8}, |
| 208 | |
| 209 | {0xBC75BC32, 0xECF3EC21, 0x20C62043, 0xB3F4B3C9, 0xDADBDA03, 0x027B028B, |
| 210 | 0xE2FBE22B, 0x9EC89EFA, 0xC94AC9EC, 0xD4D3D409, 0x18E6186B, 0x1E6B1E9F, |
| 211 | 0x9845980E, 0xB27DB238, 0xA6E8A6D2, 0x264B26B7, 0x3CD63C57, 0x9332938A, |
| 212 | 0x82D882EE, 0x52FD5298, 0x7B377BD4, 0xBB71BB37, 0x5BF15B97, 0x47E14783, |
| 213 | 0x2430243C, 0x510F51E2, 0xBAF8BAC6, 0x4A1B4AF3, 0xBF87BF48, 0x0DFA0D70, |
| 214 | 0xB006B0B3, 0x753F75DE, 0xD25ED2FD, 0x7DBA7D20, 0x66AE6631, 0x3A5B3AA3, |
| 215 | 0x598A591C, 0x00000000, 0xCDBCCD93, 0x1A9D1AE0, 0xAE6DAE2C, 0x7FC17FAB, |
| 216 | 0x2BB12BC7, 0xBE0EBEB9, 0xE080E0A0, 0x8A5D8A10, 0x3BD23B52, 0x64D564BA, |
| 217 | 0xD8A0D888, 0xE784E7A5, 0x5F075FE8, 0x1B141B11, 0x2CB52CC2, 0xFC90FCB4, |
| 218 | 0x312C3127, 0x80A38065, 0x73B2732A, 0x0C730C81, 0x794C795F, 0x6B546B41, |
| 219 | 0x4B924B02, 0x53745369, 0x9436948F, 0x8351831F, 0x2A382A36, 0xC4B0C49C, |
| 220 | 0x22BD22C8, 0xD55AD5F8, 0xBDFCBDC3, 0x48604878, 0xFF62FFCE, 0x4C964C07, |
| 221 | 0x416C4177, 0xC742C7E6, 0xEBF7EB24, 0x1C101C14, 0x5D7C5D63, 0x36283622, |
| 222 | 0x672767C0, 0xE98CE9AF, 0x441344F9, 0x149514EA, 0xF59CF5BB, 0xCFC7CF18, |
| 223 | 0x3F243F2D, 0xC046C0E3, 0x723B72DB, 0x5470546C, 0x29CA294C, 0xF0E3F035, |
| 224 | 0x088508FE, 0xC6CBC617, 0xF311F34F, 0x8CD08CE4, 0xA493A459, 0xCAB8CA96, |
| 225 | 0x68A6683B, 0xB883B84D, 0x38203828, 0xE5FFE52E, 0xAD9FAD56, 0x0B770B84, |
| 226 | 0xC8C3C81D, 0x99CC99FF, 0x580358ED, 0x196F199A, 0x0E080E0A, 0x95BF957E, |
| 227 | 0x70407050, 0xF7E7F730, 0x6E2B6ECF, 0x1FE21F6E, 0xB579B53D, 0x090C090F, |
| 228 | 0x61AA6134, 0x57825716, 0x9F419F0B, 0x9D3A9D80, 0x11EA1164, 0x25B925CD, |
| 229 | 0xAFE4AFDD, 0x459A4508, 0xDFA4DF8D, 0xA397A35C, 0xEA7EEAD5, 0x35DA3558, |
| 230 | 0xED7AEDD0, 0x431743FC, 0xF866F8CB, 0xFB94FBB1, 0x37A137D3, 0xFA1DFA40, |
| 231 | 0xC23DC268, 0xB4F0B4CC, 0x32DE325D, 0x9CB39C71, 0x560B56E7, 0xE372E3DA, |
| 232 | 0x87A78760, 0x151C151B, 0xF9EFF93A, 0x63D163BF, 0x345334A9, 0x9A3E9A85, |
| 233 | 0xB18FB142, 0x7C337CD1, 0x8826889B, 0x3D5F3DA6, 0xA1ECA1D7, 0xE476E4DF, |
| 234 | 0x812A8194, 0x91499101, 0x0F810FFB, 0xEE88EEAA, 0x16EE1661, 0xD721D773, |
| 235 | 0x97C497F5, 0xA51AA5A8, 0xFEEBFE3F, 0x6DD96DB5, 0x78C578AE, 0xC539C56D, |
| 236 | 0x1D991DE5, 0x76CD76A4, 0x3EAD3EDC, 0xCB31CB67, 0xB68BB647, 0xEF01EF5B, |
| 237 | 0x1218121E, 0x602360C5, 0x6ADD6AB0, 0x4D1F4DF6, 0xCE4ECEE9, 0xDE2DDE7C, |
| 238 | 0x55F9559D, 0x7E487E5A, 0x214F21B2, 0x03F2037A, 0xA065A026, 0x5E8E5E19, |
| 239 | 0x5A785A66, 0x655C654B, 0x6258624E, 0xFD19FD45, 0x068D06F4, 0x40E54086, |
| 240 | 0xF298F2BE, 0x335733AC, 0x17671790, 0x057F058E, 0xE805E85E, 0x4F644F7D, |
| 241 | 0x89AF896A, 0x10631095, 0x74B6742F, 0x0AFE0A75, 0x5CF55C92, 0x9BB79B74, |
| 242 | 0x2D3C2D33, 0x30A530D6, 0x2ECE2E49, 0x49E94989, 0x46684672, 0x77447755, |
| 243 | 0xA8E0A8D8, 0x964D9604, 0x284328BD, 0xA969A929, 0xD929D979, 0x862E8691, |
| 244 | 0xD1ACD187, 0xF415F44A, 0x8D598D15, 0xD6A8D682, 0xB90AB9BC, 0x429E420D, |
| 245 | 0xF66EF6C1, 0x2F472FB8, 0xDDDFDD06, 0x23342339, 0xCC35CC62, 0xF16AF1C4, |
| 246 | 0xC1CFC112, 0x85DC85EB, 0x8F228F9E, 0x71C971A1, 0x90C090F0, 0xAA9BAA53, |
| 247 | 0x018901F1, 0x8BD48BE1, 0x4EED4E8C, 0x8EAB8E6F, 0xAB12ABA2, 0x6FA26F3E, |
| 248 | 0xE60DE654, 0xDB52DBF2, 0x92BB927B, 0xB702B7B6, 0x692F69CA, 0x39A939D9, |
| 249 | 0xD3D7D30C, 0xA761A723, 0xA21EA2AD, 0xC3B4C399, 0x6C506C44, 0x07040705, |
| 250 | 0x04F6047F, 0x27C22746, 0xAC16ACA7, 0xD025D076, 0x50865013, 0xDC56DCF7, |
| 251 | 0x8455841A, 0xE109E151, 0x7ABE7A25, 0x139113EF}, |
| 252 | |
| 253 | {0xD939A9D9, 0x90176790, 0x719CB371, 0xD2A6E8D2, 0x05070405, 0x9852FD98, |
| 254 | 0x6580A365, 0xDFE476DF, 0x08459A08, 0x024B9202, 0xA0E080A0, 0x665A7866, |
| 255 | 0xDDAFE4DD, 0xB06ADDB0, 0xBF63D1BF, 0x362A3836, 0x54E60D54, 0x4320C643, |
| 256 | 0x62CC3562, 0xBEF298BE, 0x1E12181E, 0x24EBF724, 0xD7A1ECD7, 0x77416C77, |
| 257 | 0xBD2843BD, 0x32BC7532, 0xD47B37D4, 0x9B88269B, 0x700DFA70, 0xF94413F9, |
| 258 | 0xB1FB94B1, 0x5A7E485A, 0x7A03F27A, 0xE48CD0E4, 0x47B68B47, 0x3C24303C, |
| 259 | 0xA5E784A5, 0x416B5441, 0x06DDDF06, 0xC56023C5, 0x45FD1945, 0xA33A5BA3, |
| 260 | 0x68C23D68, 0x158D5915, 0x21ECF321, 0x3166AE31, 0x3E6FA23E, 0x16578216, |
| 261 | 0x95106395, 0x5BEF015B, 0x4DB8834D, 0x91862E91, 0xB56DD9B5, 0x1F83511F, |
| 262 | 0x53AA9B53, 0x635D7C63, 0x3B68A63B, 0x3FFEEB3F, 0xD630A5D6, 0x257ABE25, |
| 263 | 0xA7AC16A7, 0x0F090C0F, 0x35F0E335, 0x23A76123, 0xF090C0F0, 0xAFE98CAF, |
| 264 | 0x809D3A80, 0x925CF592, 0x810C7381, 0x27312C27, 0x76D02576, 0xE7560BE7, |
| 265 | 0x7B92BB7B, 0xE9CE4EE9, 0xF10189F1, 0x9F1E6B9F, 0xA93453A9, 0xC4F16AC4, |
| 266 | 0x99C3B499, 0x975BF197, 0x8347E183, 0x6B18E66B, 0xC822BDC8, 0x0E98450E, |
| 267 | 0x6E1FE26E, 0xC9B3F4C9, 0x2F74B62F, 0xCBF866CB, 0xFF99CCFF, 0xEA1495EA, |
| 268 | 0xED5803ED, 0xF7DC56F7, 0xE18BD4E1, 0x1B151C1B, 0xADA21EAD, 0x0CD3D70C, |
| 269 | 0x2BE2FB2B, 0x1DC8C31D, 0x195E8E19, 0xC22CB5C2, 0x8949E989, 0x12C1CF12, |
| 270 | 0x7E95BF7E, 0x207DBA20, 0x6411EA64, 0x840B7784, 0x6DC5396D, 0x6A89AF6A, |
| 271 | 0xD17C33D1, 0xA171C9A1, 0xCEFF62CE, 0x37BB7137, 0xFB0F81FB, 0x3DB5793D, |
| 272 | 0x51E10951, 0xDC3EADDC, 0x2D3F242D, 0xA476CDA4, 0x9D55F99D, 0xEE82D8EE, |
| 273 | 0x8640E586, 0xAE78C5AE, 0xCD25B9CD, 0x04964D04, 0x55774455, 0x0A0E080A, |
| 274 | 0x13508613, 0x30F7E730, 0xD337A1D3, 0x40FA1D40, 0x3461AA34, 0x8C4EED8C, |
| 275 | 0xB3B006B3, 0x6C54706C, 0x2A73B22A, 0x523BD252, 0x0B9F410B, 0x8B027B8B, |
| 276 | 0x88D8A088, 0x4FF3114F, 0x67CB3167, 0x4627C246, 0xC06727C0, 0xB4FC90B4, |
| 277 | 0x28382028, 0x7F04F67F, 0x78486078, 0x2EE5FF2E, 0x074C9607, 0x4B655C4B, |
| 278 | 0xC72BB1C7, 0x6F8EAB6F, 0x0D429E0D, 0xBBF59CBB, 0xF2DB52F2, 0xF34A1BF3, |
| 279 | 0xA63D5FA6, 0x59A49359, 0xBCB90ABC, 0x3AF9EF3A, 0xEF1391EF, 0xFE0885FE, |
| 280 | 0x01914901, 0x6116EE61, 0x7CDE2D7C, 0xB2214FB2, 0x42B18F42, 0xDB723BDB, |
| 281 | 0xB82F47B8, 0x48BF8748, 0x2CAE6D2C, 0xE3C046E3, 0x573CD657, 0x859A3E85, |
| 282 | 0x29A96929, 0x7D4F647D, 0x94812A94, 0x492ECE49, 0x17C6CB17, 0xCA692FCA, |
| 283 | 0xC3BDFCC3, 0x5CA3975C, 0x5EE8055E, 0xD0ED7AD0, 0x87D1AC87, 0x8E057F8E, |
| 284 | 0xBA64D5BA, 0xA8A51AA8, 0xB7264BB7, 0xB9BE0EB9, 0x6087A760, 0xF8D55AF8, |
| 285 | 0x22362822, 0x111B1411, 0xDE753FDE, 0x79D92979, 0xAAEE88AA, 0x332D3C33, |
| 286 | 0x5F794C5F, 0xB6B702B6, 0x96CAB896, 0x5835DA58, 0x9CC4B09C, 0xFC4317FC, |
| 287 | 0x1A84551A, 0xF64D1FF6, 0x1C598A1C, 0x38B27D38, 0xAC3357AC, 0x18CFC718, |
| 288 | 0xF4068DF4, 0x69537469, 0x749BB774, 0xF597C4F5, 0x56AD9F56, 0xDAE372DA, |
| 289 | 0xD5EA7ED5, 0x4AF4154A, 0x9E8F229E, 0xA2AB12A2, 0x4E62584E, 0xE85F07E8, |
| 290 | 0xE51D99E5, 0x39233439, 0xC1F66EC1, 0x446C5044, 0x5D32DE5D, 0x72466872, |
| 291 | 0x26A06526, 0x93CDBC93, 0x03DADB03, 0xC6BAF8C6, 0xFA9EC8FA, 0x82D6A882, |
| 292 | 0xCF6E2BCF, 0x50704050, 0xEB85DCEB, 0x750AFE75, 0x8A93328A, 0x8DDFA48D, |
| 293 | 0x4C29CA4C, 0x141C1014, 0x73D72173, 0xCCB4F0CC, 0x09D4D309, 0x108A5D10, |
| 294 | 0xE2510FE2, 0x00000000, 0x9A196F9A, 0xE01A9DE0, 0x8F94368F, 0xE6C742E6, |
| 295 | 0xECC94AEC, 0xFDD25EFD, 0xAB7FC1AB, 0xD8A8E0D8} |
| 296 | }; |
| 297 | |
| 298 | /* The exp_to_poly and poly_to_exp tables are used to perform efficient |
| 299 | * operations in GF(2^8) represented as GF(2)[x]/w(x) where |
| 300 | * w(x)=x^8+x^6+x^3+x^2+1. We care about doing that because it's part of the |
| 301 | * definition of the RS matrix in the key schedule. Elements of that field |
| 302 | * are polynomials of degree not greater than 7 and all coefficients 0 or 1, |
| 303 | * which can be represented naturally by bytes (just substitute x=2). In that |
| 304 | * form, GF(2^8) addition is the same as bitwise XOR, but GF(2^8) |
| 305 | * multiplication is inefficient without hardware support. To multiply |
| 306 | * faster, I make use of the fact x is a generator for the nonzero elements, |
| 307 | * so that every element p of GF(2)[x]/w(x) is either 0 or equal to (x)^n for |
| 308 | * some n in 0..254. Note that that caret is exponentiation in GF(2^8), |
| 309 | * *not* polynomial notation. So if I want to compute pq where p and q are |
| 310 | * in GF(2^8), I can just say: |
| 311 | * 1. if p=0 or q=0 then pq=0 |
| 312 | * 2. otherwise, find m and n such that p=x^m and q=x^n |
| 313 | * 3. pq=(x^m)(x^n)=x^(m+n), so add m and n and find pq |
| 314 | * The translations in steps 2 and 3 are looked up in the tables |
| 315 | * poly_to_exp (for step 2) and exp_to_poly (for step 3). To see this |
| 316 | * in action, look at the CALC_S macro. As additional wrinkles, note that |
| 317 | * one of my operands is always a constant, so the poly_to_exp lookup on it |
| 318 | * is done in advance; I included the original values in the comments so |
| 319 | * readers can have some chance of recognizing that this *is* the RS matrix |
| 320 | * from the Twofish paper. I've only included the table entries I actually |
| 321 | * need; I never do a lookup on a variable input of zero and the biggest |
| 322 | * exponents I'll ever see are 254 (variable) and 237 (constant), so they'll |
| 323 | * never sum to more than 491. I'm repeating part of the exp_to_poly table |
| 324 | * so that I don't have to do mod-255 reduction in the exponent arithmetic. |
| 325 | * Since I know my constant operands are never zero, I only have to worry |
| 326 | * about zero values in the variable operand, and I do it with a simple |
| 327 | * conditional branch. I know conditionals are expensive, but I couldn't |
| 328 | * see a non-horrible way of avoiding them, and I did manage to group the |
| 329 | * statements so that each if covers four group multiplications. */ |
| 330 | |
| 331 | static const u8 poly_to_exp[255] = { |
| 332 | 0x00, 0x01, 0x17, 0x02, 0x2E, 0x18, 0x53, 0x03, 0x6A, 0x2F, 0x93, 0x19, |
| 333 | 0x34, 0x54, 0x45, 0x04, 0x5C, 0x6B, 0xB6, 0x30, 0xA6, 0x94, 0x4B, 0x1A, |
| 334 | 0x8C, 0x35, 0x81, 0x55, 0xAA, 0x46, 0x0D, 0x05, 0x24, 0x5D, 0x87, 0x6C, |
| 335 | 0x9B, 0xB7, 0xC1, 0x31, 0x2B, 0xA7, 0xA3, 0x95, 0x98, 0x4C, 0xCA, 0x1B, |
| 336 | 0xE6, 0x8D, 0x73, 0x36, 0xCD, 0x82, 0x12, 0x56, 0x62, 0xAB, 0xF0, 0x47, |
| 337 | 0x4F, 0x0E, 0xBD, 0x06, 0xD4, 0x25, 0xD2, 0x5E, 0x27, 0x88, 0x66, 0x6D, |
| 338 | 0xD6, 0x9C, 0x79, 0xB8, 0x08, 0xC2, 0xDF, 0x32, 0x68, 0x2C, 0xFD, 0xA8, |
| 339 | 0x8A, 0xA4, 0x5A, 0x96, 0x29, 0x99, 0x22, 0x4D, 0x60, 0xCB, 0xE4, 0x1C, |
| 340 | 0x7B, 0xE7, 0x3B, 0x8E, 0x9E, 0x74, 0xF4, 0x37, 0xD8, 0xCE, 0xF9, 0x83, |
| 341 | 0x6F, 0x13, 0xB2, 0x57, 0xE1, 0x63, 0xDC, 0xAC, 0xC4, 0xF1, 0xAF, 0x48, |
| 342 | 0x0A, 0x50, 0x42, 0x0F, 0xBA, 0xBE, 0xC7, 0x07, 0xDE, 0xD5, 0x78, 0x26, |
| 343 | 0x65, 0xD3, 0xD1, 0x5F, 0xE3, 0x28, 0x21, 0x89, 0x59, 0x67, 0xFC, 0x6E, |
| 344 | 0xB1, 0xD7, 0xF8, 0x9D, 0xF3, 0x7A, 0x3A, 0xB9, 0xC6, 0x09, 0x41, 0xC3, |
| 345 | 0xAE, 0xE0, 0xDB, 0x33, 0x44, 0x69, 0x92, 0x2D, 0x52, 0xFE, 0x16, 0xA9, |
| 346 | 0x0C, 0x8B, 0x80, 0xA5, 0x4A, 0x5B, 0xB5, 0x97, 0xC9, 0x2A, 0xA2, 0x9A, |
| 347 | 0xC0, 0x23, 0x86, 0x4E, 0xBC, 0x61, 0xEF, 0xCC, 0x11, 0xE5, 0x72, 0x1D, |
| 348 | 0x3D, 0x7C, 0xEB, 0xE8, 0xE9, 0x3C, 0xEA, 0x8F, 0x7D, 0x9F, 0xEC, 0x75, |
| 349 | 0x1E, 0xF5, 0x3E, 0x38, 0xF6, 0xD9, 0x3F, 0xCF, 0x76, 0xFA, 0x1F, 0x84, |
| 350 | 0xA0, 0x70, 0xED, 0x14, 0x90, 0xB3, 0x7E, 0x58, 0xFB, 0xE2, 0x20, 0x64, |
| 351 | 0xD0, 0xDD, 0x77, 0xAD, 0xDA, 0xC5, 0x40, 0xF2, 0x39, 0xB0, 0xF7, 0x49, |
| 352 | 0xB4, 0x0B, 0x7F, 0x51, 0x15, 0x43, 0x91, 0x10, 0x71, 0xBB, 0xEE, 0xBF, |
| 353 | 0x85, 0xC8, 0xA1 |
| 354 | }; |
| 355 | |
| 356 | static const u8 exp_to_poly[492] = { |
| 357 | 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D, 0x9A, 0x79, 0xF2, |
| 358 | 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC, 0xF5, 0xA7, 0x03, |
| 359 | 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3, 0x8B, 0x5B, 0xB6, |
| 360 | 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52, 0xA4, 0x05, 0x0A, |
| 361 | 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0, 0xED, 0x97, 0x63, |
| 362 | 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1, 0x0F, 0x1E, 0x3C, |
| 363 | 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A, 0xF4, 0xA5, 0x07, |
| 364 | 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11, 0x22, 0x44, 0x88, |
| 365 | 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51, 0xA2, 0x09, 0x12, |
| 366 | 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66, 0xCC, 0xD5, 0xE7, |
| 367 | 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB, 0x1B, 0x36, 0x6C, |
| 368 | 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19, 0x32, 0x64, 0xC8, |
| 369 | 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D, 0x5A, 0xB4, 0x25, |
| 370 | 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56, 0xAC, 0x15, 0x2A, |
| 371 | 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE, 0x91, 0x6F, 0xDE, |
| 372 | 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9, 0x3F, 0x7E, 0xFC, |
| 373 | 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE, 0xB1, 0x2F, 0x5E, |
| 374 | 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41, 0x82, 0x49, 0x92, |
| 375 | 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E, 0x71, 0xE2, 0x89, |
| 376 | 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB, 0xDB, 0xFB, 0xBB, |
| 377 | 0x3B, 0x76, 0xEC, 0x95, 0x67, 0xCE, 0xD1, 0xEF, 0x93, 0x6B, 0xD6, 0xE1, |
| 378 | 0x8F, 0x53, 0xA6, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D, |
| 379 | 0x9A, 0x79, 0xF2, 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC, |
| 380 | 0xF5, 0xA7, 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3, |
| 381 | 0x8B, 0x5B, 0xB6, 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52, |
| 382 | 0xA4, 0x05, 0x0A, 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0, |
| 383 | 0xED, 0x97, 0x63, 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1, |
| 384 | 0x0F, 0x1E, 0x3C, 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A, |
| 385 | 0xF4, 0xA5, 0x07, 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11, |
| 386 | 0x22, 0x44, 0x88, 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51, |
| 387 | 0xA2, 0x09, 0x12, 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66, |
| 388 | 0xCC, 0xD5, 0xE7, 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB, |
| 389 | 0x1B, 0x36, 0x6C, 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19, |
| 390 | 0x32, 0x64, 0xC8, 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D, |
| 391 | 0x5A, 0xB4, 0x25, 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56, |
| 392 | 0xAC, 0x15, 0x2A, 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE, |
| 393 | 0x91, 0x6F, 0xDE, 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9, |
| 394 | 0x3F, 0x7E, 0xFC, 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE, |
| 395 | 0xB1, 0x2F, 0x5E, 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41, |
| 396 | 0x82, 0x49, 0x92, 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E, |
| 397 | 0x71, 0xE2, 0x89, 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB |
| 398 | }; |
| 399 | |
| 400 | |
| 401 | /* The table constants are indices of |
| 402 | * S-box entries, preprocessed through q0 and q1. */ |
| 403 | static const u8 calc_sb_tbl[512] = { |
| 404 | 0xA9, 0x75, 0x67, 0xF3, 0xB3, 0xC6, 0xE8, 0xF4, |
| 405 | 0x04, 0xDB, 0xFD, 0x7B, 0xA3, 0xFB, 0x76, 0xC8, |
| 406 | 0x9A, 0x4A, 0x92, 0xD3, 0x80, 0xE6, 0x78, 0x6B, |
| 407 | 0xE4, 0x45, 0xDD, 0x7D, 0xD1, 0xE8, 0x38, 0x4B, |
| 408 | 0x0D, 0xD6, 0xC6, 0x32, 0x35, 0xD8, 0x98, 0xFD, |
| 409 | 0x18, 0x37, 0xF7, 0x71, 0xEC, 0xF1, 0x6C, 0xE1, |
| 410 | 0x43, 0x30, 0x75, 0x0F, 0x37, 0xF8, 0x26, 0x1B, |
| 411 | 0xFA, 0x87, 0x13, 0xFA, 0x94, 0x06, 0x48, 0x3F, |
| 412 | 0xF2, 0x5E, 0xD0, 0xBA, 0x8B, 0xAE, 0x30, 0x5B, |
| 413 | 0x84, 0x8A, 0x54, 0x00, 0xDF, 0xBC, 0x23, 0x9D, |
| 414 | 0x19, 0x6D, 0x5B, 0xC1, 0x3D, 0xB1, 0x59, 0x0E, |
| 415 | 0xF3, 0x80, 0xAE, 0x5D, 0xA2, 0xD2, 0x82, 0xD5, |
| 416 | 0x63, 0xA0, 0x01, 0x84, 0x83, 0x07, 0x2E, 0x14, |
| 417 | 0xD9, 0xB5, 0x51, 0x90, 0x9B, 0x2C, 0x7C, 0xA3, |
| 418 | 0xA6, 0xB2, 0xEB, 0x73, 0xA5, 0x4C, 0xBE, 0x54, |
| 419 | 0x16, 0x92, 0x0C, 0x74, 0xE3, 0x36, 0x61, 0x51, |
| 420 | 0xC0, 0x38, 0x8C, 0xB0, 0x3A, 0xBD, 0xF5, 0x5A, |
| 421 | 0x73, 0xFC, 0x2C, 0x60, 0x25, 0x62, 0x0B, 0x96, |
| 422 | 0xBB, 0x6C, 0x4E, 0x42, 0x89, 0xF7, 0x6B, 0x10, |
| 423 | 0x53, 0x7C, 0x6A, 0x28, 0xB4, 0x27, 0xF1, 0x8C, |
| 424 | 0xE1, 0x13, 0xE6, 0x95, 0xBD, 0x9C, 0x45, 0xC7, |
| 425 | 0xE2, 0x24, 0xF4, 0x46, 0xB6, 0x3B, 0x66, 0x70, |
| 426 | 0xCC, 0xCA, 0x95, 0xE3, 0x03, 0x85, 0x56, 0xCB, |
| 427 | 0xD4, 0x11, 0x1C, 0xD0, 0x1E, 0x93, 0xD7, 0xB8, |
| 428 | 0xFB, 0xA6, 0xC3, 0x83, 0x8E, 0x20, 0xB5, 0xFF, |
| 429 | 0xE9, 0x9F, 0xCF, 0x77, 0xBF, 0xC3, 0xBA, 0xCC, |
| 430 | 0xEA, 0x03, 0x77, 0x6F, 0x39, 0x08, 0xAF, 0xBF, |
| 431 | 0x33, 0x40, 0xC9, 0xE7, 0x62, 0x2B, 0x71, 0xE2, |
| 432 | 0x81, 0x79, 0x79, 0x0C, 0x09, 0xAA, 0xAD, 0x82, |
| 433 | 0x24, 0x41, 0xCD, 0x3A, 0xF9, 0xEA, 0xD8, 0xB9, |
| 434 | 0xE5, 0xE4, 0xC5, 0x9A, 0xB9, 0xA4, 0x4D, 0x97, |
| 435 | 0x44, 0x7E, 0x08, 0xDA, 0x86, 0x7A, 0xE7, 0x17, |
| 436 | 0xA1, 0x66, 0x1D, 0x94, 0xAA, 0xA1, 0xED, 0x1D, |
| 437 | 0x06, 0x3D, 0x70, 0xF0, 0xB2, 0xDE, 0xD2, 0xB3, |
| 438 | 0x41, 0x0B, 0x7B, 0x72, 0xA0, 0xA7, 0x11, 0x1C, |
| 439 | 0x31, 0xEF, 0xC2, 0xD1, 0x27, 0x53, 0x90, 0x3E, |
| 440 | 0x20, 0x8F, 0xF6, 0x33, 0x60, 0x26, 0xFF, 0x5F, |
| 441 | 0x96, 0xEC, 0x5C, 0x76, 0xB1, 0x2A, 0xAB, 0x49, |
| 442 | 0x9E, 0x81, 0x9C, 0x88, 0x52, 0xEE, 0x1B, 0x21, |
| 443 | 0x5F, 0xC4, 0x93, 0x1A, 0x0A, 0xEB, 0xEF, 0xD9, |
| 444 | 0x91, 0xC5, 0x85, 0x39, 0x49, 0x99, 0xEE, 0xCD, |
| 445 | 0x2D, 0xAD, 0x4F, 0x31, 0x8F, 0x8B, 0x3B, 0x01, |
| 446 | 0x47, 0x18, 0x87, 0x23, 0x6D, 0xDD, 0x46, 0x1F, |
| 447 | 0xD6, 0x4E, 0x3E, 0x2D, 0x69, 0xF9, 0x64, 0x48, |
| 448 | 0x2A, 0x4F, 0xCE, 0xF2, 0xCB, 0x65, 0x2F, 0x8E, |
| 449 | 0xFC, 0x78, 0x97, 0x5C, 0x05, 0x58, 0x7A, 0x19, |
| 450 | 0xAC, 0x8D, 0x7F, 0xE5, 0xD5, 0x98, 0x1A, 0x57, |
| 451 | 0x4B, 0x67, 0x0E, 0x7F, 0xA7, 0x05, 0x5A, 0x64, |
| 452 | 0x28, 0xAF, 0x14, 0x63, 0x3F, 0xB6, 0x29, 0xFE, |
| 453 | 0x88, 0xF5, 0x3C, 0xB7, 0x4C, 0x3C, 0x02, 0xA5, |
| 454 | 0xB8, 0xCE, 0xDA, 0xE9, 0xB0, 0x68, 0x17, 0x44, |
| 455 | 0x55, 0xE0, 0x1F, 0x4D, 0x8A, 0x43, 0x7D, 0x69, |
| 456 | 0x57, 0x29, 0xC7, 0x2E, 0x8D, 0xAC, 0x74, 0x15, |
| 457 | 0xB7, 0x59, 0xC4, 0xA8, 0x9F, 0x0A, 0x72, 0x9E, |
| 458 | 0x7E, 0x6E, 0x15, 0x47, 0x22, 0xDF, 0x12, 0x34, |
| 459 | 0x58, 0x35, 0x07, 0x6A, 0x99, 0xCF, 0x34, 0xDC, |
| 460 | 0x6E, 0x22, 0x50, 0xC9, 0xDE, 0xC0, 0x68, 0x9B, |
| 461 | 0x65, 0x89, 0xBC, 0xD4, 0xDB, 0xED, 0xF8, 0xAB, |
| 462 | 0xC8, 0x12, 0xA8, 0xA2, 0x2B, 0x0D, 0x40, 0x52, |
| 463 | 0xDC, 0xBB, 0xFE, 0x02, 0x32, 0x2F, 0xA4, 0xA9, |
| 464 | 0xCA, 0xD7, 0x10, 0x61, 0x21, 0x1E, 0xF0, 0xB4, |
| 465 | 0xD3, 0x50, 0x5D, 0x04, 0x0F, 0xF6, 0x00, 0xC2, |
| 466 | 0x6F, 0x16, 0x9D, 0x25, 0x36, 0x86, 0x42, 0x56, |
| 467 | 0x4A, 0x55, 0x5E, 0x09, 0xC1, 0xBE, 0xE0, 0x91 |
| 468 | }; |
| 469 | |
| 470 | /* Macro to perform one column of the RS matrix multiplication. The |
| 471 | * parameters a, b, c, and d are the four bytes of output; i is the index |
| 472 | * of the key bytes, and w, x, y, and z, are the column of constants from |
| 473 | * the RS matrix, preprocessed through the poly_to_exp table. */ |
| 474 | |
| 475 | #define CALC_S(a, b, c, d, i, w, x, y, z) \ |
| 476 | if (key[i]) { \ |
| 477 | tmp = poly_to_exp[key[i] - 1]; \ |
| 478 | (a) ^= exp_to_poly[tmp + (w)]; \ |
| 479 | (b) ^= exp_to_poly[tmp + (x)]; \ |
| 480 | (c) ^= exp_to_poly[tmp + (y)]; \ |
| 481 | (d) ^= exp_to_poly[tmp + (z)]; \ |
| 482 | } |
| 483 | |
| 484 | /* Macros to calculate the key-dependent S-boxes for a 128-bit key using |
| 485 | * the S vector from CALC_S. CALC_SB_2 computes a single entry in all |
| 486 | * four S-boxes, where i is the index of the entry to compute, and a and b |
| 487 | * are the index numbers preprocessed through the q0 and q1 tables |
| 488 | * respectively. */ |
| 489 | |
| 490 | #define CALC_SB_2(i, a, b) \ |
| 491 | ctx->s[0][i] = mds[0][q0[(a) ^ sa] ^ se]; \ |
| 492 | ctx->s[1][i] = mds[1][q0[(b) ^ sb] ^ sf]; \ |
| 493 | ctx->s[2][i] = mds[2][q1[(a) ^ sc] ^ sg]; \ |
| 494 | ctx->s[3][i] = mds[3][q1[(b) ^ sd] ^ sh] |
| 495 | |
| 496 | /* Macro exactly like CALC_SB_2, but for 192-bit keys. */ |
| 497 | |
| 498 | #define CALC_SB192_2(i, a, b) \ |
| 499 | ctx->s[0][i] = mds[0][q0[q0[(b) ^ sa] ^ se] ^ si]; \ |
| 500 | ctx->s[1][i] = mds[1][q0[q1[(b) ^ sb] ^ sf] ^ sj]; \ |
| 501 | ctx->s[2][i] = mds[2][q1[q0[(a) ^ sc] ^ sg] ^ sk]; \ |
| 502 | ctx->s[3][i] = mds[3][q1[q1[(a) ^ sd] ^ sh] ^ sl]; |
| 503 | |
| 504 | /* Macro exactly like CALC_SB_2, but for 256-bit keys. */ |
| 505 | |
| 506 | #define CALC_SB256_2(i, a, b) \ |
| 507 | ctx->s[0][i] = mds[0][q0[q0[q1[(b) ^ sa] ^ se] ^ si] ^ sm]; \ |
| 508 | ctx->s[1][i] = mds[1][q0[q1[q1[(a) ^ sb] ^ sf] ^ sj] ^ sn]; \ |
| 509 | ctx->s[2][i] = mds[2][q1[q0[q0[(a) ^ sc] ^ sg] ^ sk] ^ so]; \ |
| 510 | ctx->s[3][i] = mds[3][q1[q1[q0[(b) ^ sd] ^ sh] ^ sl] ^ sp]; |
| 511 | |
| 512 | /* Macros to calculate the whitening and round subkeys. CALC_K_2 computes the |
| 513 | * last two stages of the h() function for a given index (either 2i or 2i+1). |
| 514 | * a, b, c, and d are the four bytes going into the last two stages. For |
| 515 | * 128-bit keys, this is the entire h() function and a and c are the index |
| 516 | * preprocessed through q0 and q1 respectively; for longer keys they are the |
| 517 | * output of previous stages. j is the index of the first key byte to use. |
| 518 | * CALC_K computes a pair of subkeys for 128-bit Twofish, by calling CALC_K_2 |
| 519 | * twice, doing the Pseudo-Hadamard Transform, and doing the necessary |
| 520 | * rotations. Its parameters are: a, the array to write the results into, |
| 521 | * j, the index of the first output entry, k and l, the preprocessed indices |
| 522 | * for index 2i, and m and n, the preprocessed indices for index 2i+1. |
| 523 | * CALC_K192_2 expands CALC_K_2 to handle 192-bit keys, by doing an |
| 524 | * additional lookup-and-XOR stage. The parameters a, b, c and d are the |
| 525 | * four bytes going into the last three stages. For 192-bit keys, c = d |
| 526 | * are the index preprocessed through q0, and a = b are the index |
| 527 | * preprocessed through q1; j is the index of the first key byte to use. |
| 528 | * CALC_K192 is identical to CALC_K but for using the CALC_K192_2 macro |
| 529 | * instead of CALC_K_2. |
| 530 | * CALC_K256_2 expands CALC_K192_2 to handle 256-bit keys, by doing an |
| 531 | * additional lookup-and-XOR stage. The parameters a and b are the index |
| 532 | * preprocessed through q0 and q1 respectively; j is the index of the first |
| 533 | * key byte to use. CALC_K256 is identical to CALC_K but for using the |
| 534 | * CALC_K256_2 macro instead of CALC_K_2. */ |
| 535 | |
| 536 | #define CALC_K_2(a, b, c, d, j) \ |
| 537 | mds[0][q0[a ^ key[(j) + 8]] ^ key[j]] \ |
| 538 | ^ mds[1][q0[b ^ key[(j) + 9]] ^ key[(j) + 1]] \ |
| 539 | ^ mds[2][q1[c ^ key[(j) + 10]] ^ key[(j) + 2]] \ |
| 540 | ^ mds[3][q1[d ^ key[(j) + 11]] ^ key[(j) + 3]] |
| 541 | |
| 542 | #define CALC_K(a, j, k, l, m, n) \ |
| 543 | x = CALC_K_2 (k, l, k, l, 0); \ |
| 544 | y = CALC_K_2 (m, n, m, n, 4); \ |
| 545 | y = (y << 8) + (y >> 24); \ |
| 546 | x += y; y += x; ctx->a[j] = x; \ |
| 547 | ctx->a[(j) + 1] = (y << 9) + (y >> 23) |
| 548 | |
| 549 | #define CALC_K192_2(a, b, c, d, j) \ |
| 550 | CALC_K_2 (q0[a ^ key[(j) + 16]], \ |
| 551 | q1[b ^ key[(j) + 17]], \ |
| 552 | q0[c ^ key[(j) + 18]], \ |
| 553 | q1[d ^ key[(j) + 19]], j) |
| 554 | |
| 555 | #define CALC_K192(a, j, k, l, m, n) \ |
| 556 | x = CALC_K192_2 (l, l, k, k, 0); \ |
| 557 | y = CALC_K192_2 (n, n, m, m, 4); \ |
| 558 | y = (y << 8) + (y >> 24); \ |
| 559 | x += y; y += x; ctx->a[j] = x; \ |
| 560 | ctx->a[(j) + 1] = (y << 9) + (y >> 23) |
| 561 | |
| 562 | #define CALC_K256_2(a, b, j) \ |
| 563 | CALC_K192_2 (q1[b ^ key[(j) + 24]], \ |
| 564 | q1[a ^ key[(j) + 25]], \ |
| 565 | q0[a ^ key[(j) + 26]], \ |
| 566 | q0[b ^ key[(j) + 27]], j) |
| 567 | |
| 568 | #define CALC_K256(a, j, k, l, m, n) \ |
| 569 | x = CALC_K256_2 (k, l, 0); \ |
| 570 | y = CALC_K256_2 (m, n, 4); \ |
| 571 | y = (y << 8) + (y >> 24); \ |
| 572 | x += y; y += x; ctx->a[j] = x; \ |
| 573 | ctx->a[(j) + 1] = (y << 9) + (y >> 23) |
| 574 | |
| 575 | |
| 576 | /* Macros to compute the g() function in the encryption and decryption |
| 577 | * rounds. G1 is the straight g() function; G2 includes the 8-bit |
| 578 | * rotation for the high 32-bit word. */ |
| 579 | |
| 580 | #define G1(a) \ |
| 581 | (ctx->s[0][(a) & 0xFF]) ^ (ctx->s[1][((a) >> 8) & 0xFF]) \ |
| 582 | ^ (ctx->s[2][((a) >> 16) & 0xFF]) ^ (ctx->s[3][(a) >> 24]) |
| 583 | |
| 584 | #define G2(b) \ |
| 585 | (ctx->s[1][(b) & 0xFF]) ^ (ctx->s[2][((b) >> 8) & 0xFF]) \ |
| 586 | ^ (ctx->s[3][((b) >> 16) & 0xFF]) ^ (ctx->s[0][(b) >> 24]) |
| 587 | |
| 588 | /* Encryption and decryption Feistel rounds. Each one calls the two g() |
| 589 | * macros, does the PHT, and performs the XOR and the appropriate bit |
| 590 | * rotations. The parameters are the round number (used to select subkeys), |
| 591 | * and the four 32-bit chunks of the text. */ |
| 592 | |
| 593 | #define ENCROUND(n, a, b, c, d) \ |
| 594 | x = G1 (a); y = G2 (b); \ |
| 595 | x += y; y += x + ctx->k[2 * (n) + 1]; \ |
| 596 | (c) ^= x + ctx->k[2 * (n)]; \ |
| 597 | (c) = ((c) >> 1) + ((c) << 31); \ |
| 598 | (d) = (((d) << 1)+((d) >> 31)) ^ y |
| 599 | |
| 600 | #define DECROUND(n, a, b, c, d) \ |
| 601 | x = G1 (a); y = G2 (b); \ |
| 602 | x += y; y += x; \ |
| 603 | (d) ^= y + ctx->k[2 * (n) + 1]; \ |
| 604 | (d) = ((d) >> 1) + ((d) << 31); \ |
| 605 | (c) = (((c) << 1)+((c) >> 31)); \ |
| 606 | (c) ^= (x + ctx->k[2 * (n)]) |
| 607 | |
| 608 | /* Encryption and decryption cycles; each one is simply two Feistel rounds |
| 609 | * with the 32-bit chunks re-ordered to simulate the "swap" */ |
| 610 | |
| 611 | #define ENCCYCLE(n) \ |
| 612 | ENCROUND (2 * (n), a, b, c, d); \ |
| 613 | ENCROUND (2 * (n) + 1, c, d, a, b) |
| 614 | |
| 615 | #define DECCYCLE(n) \ |
| 616 | DECROUND (2 * (n) + 1, c, d, a, b); \ |
| 617 | DECROUND (2 * (n), a, b, c, d) |
| 618 | |
| 619 | /* Macros to convert the input and output bytes into 32-bit words, |
| 620 | * and simultaneously perform the whitening step. INPACK packs word |
| 621 | * number n into the variable named by x, using whitening subkey number m. |
| 622 | * OUTUNPACK unpacks word number n from the variable named by x, using |
| 623 | * whitening subkey number m. */ |
| 624 | |
| 625 | #define INPACK(n, x, m) \ |
Herbert Xu | 06ace7a | 2005-10-30 21:25:15 +1100 | [diff] [blame] | 626 | x = le32_to_cpu(src[n]) ^ ctx->w[m] |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 627 | |
| 628 | #define OUTUNPACK(n, x, m) \ |
| 629 | x ^= ctx->w[m]; \ |
Herbert Xu | 06ace7a | 2005-10-30 21:25:15 +1100 | [diff] [blame] | 630 | dst[n] = cpu_to_le32(x) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 631 | |
| 632 | #define TF_MIN_KEY_SIZE 16 |
| 633 | #define TF_MAX_KEY_SIZE 32 |
| 634 | #define TF_BLOCK_SIZE 16 |
| 635 | |
| 636 | /* Structure for an expanded Twofish key. s contains the key-dependent |
| 637 | * S-boxes composed with the MDS matrix; w contains the eight "whitening" |
| 638 | * subkeys, K[0] through K[7]. k holds the remaining, "round" subkeys. Note |
| 639 | * that k[i] corresponds to what the Twofish paper calls K[i+8]. */ |
| 640 | struct twofish_ctx { |
| 641 | u32 s[4][256], w[8], k[32]; |
| 642 | }; |
| 643 | |
| 644 | /* Perform the key setup. */ |
| 645 | static int twofish_setkey(void *cx, const u8 *key, |
| 646 | unsigned int key_len, u32 *flags) |
| 647 | { |
| 648 | |
| 649 | struct twofish_ctx *ctx = cx; |
| 650 | |
| 651 | int i, j, k; |
| 652 | |
| 653 | /* Temporaries for CALC_K. */ |
| 654 | u32 x, y; |
| 655 | |
| 656 | /* The S vector used to key the S-boxes, split up into individual bytes. |
| 657 | * 128-bit keys use only sa through sh; 256-bit use all of them. */ |
| 658 | u8 sa = 0, sb = 0, sc = 0, sd = 0, se = 0, sf = 0, sg = 0, sh = 0; |
| 659 | u8 si = 0, sj = 0, sk = 0, sl = 0, sm = 0, sn = 0, so = 0, sp = 0; |
| 660 | |
| 661 | /* Temporary for CALC_S. */ |
| 662 | u8 tmp; |
| 663 | |
| 664 | /* Check key length. */ |
| 665 | if (key_len != 16 && key_len != 24 && key_len != 32) |
| 666 | { |
| 667 | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; |
| 668 | return -EINVAL; /* unsupported key length */ |
| 669 | } |
| 670 | |
| 671 | /* Compute the first two words of the S vector. The magic numbers are |
| 672 | * the entries of the RS matrix, preprocessed through poly_to_exp. The |
| 673 | * numbers in the comments are the original (polynomial form) matrix |
| 674 | * entries. */ |
| 675 | CALC_S (sa, sb, sc, sd, 0, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */ |
| 676 | CALC_S (sa, sb, sc, sd, 1, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */ |
| 677 | CALC_S (sa, sb, sc, sd, 2, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */ |
| 678 | CALC_S (sa, sb, sc, sd, 3, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */ |
| 679 | CALC_S (sa, sb, sc, sd, 4, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */ |
| 680 | CALC_S (sa, sb, sc, sd, 5, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */ |
| 681 | CALC_S (sa, sb, sc, sd, 6, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */ |
| 682 | CALC_S (sa, sb, sc, sd, 7, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */ |
| 683 | CALC_S (se, sf, sg, sh, 8, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */ |
| 684 | CALC_S (se, sf, sg, sh, 9, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */ |
| 685 | CALC_S (se, sf, sg, sh, 10, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */ |
| 686 | CALC_S (se, sf, sg, sh, 11, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */ |
| 687 | CALC_S (se, sf, sg, sh, 12, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */ |
| 688 | CALC_S (se, sf, sg, sh, 13, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */ |
| 689 | CALC_S (se, sf, sg, sh, 14, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */ |
| 690 | CALC_S (se, sf, sg, sh, 15, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */ |
| 691 | |
| 692 | if (key_len == 24 || key_len == 32) { /* 192- or 256-bit key */ |
| 693 | /* Calculate the third word of the S vector */ |
| 694 | CALC_S (si, sj, sk, sl, 16, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */ |
| 695 | CALC_S (si, sj, sk, sl, 17, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */ |
| 696 | CALC_S (si, sj, sk, sl, 18, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */ |
| 697 | CALC_S (si, sj, sk, sl, 19, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */ |
| 698 | CALC_S (si, sj, sk, sl, 20, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */ |
| 699 | CALC_S (si, sj, sk, sl, 21, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */ |
| 700 | CALC_S (si, sj, sk, sl, 22, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */ |
| 701 | CALC_S (si, sj, sk, sl, 23, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */ |
| 702 | } |
| 703 | |
| 704 | if (key_len == 32) { /* 256-bit key */ |
| 705 | /* Calculate the fourth word of the S vector */ |
| 706 | CALC_S (sm, sn, so, sp, 24, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */ |
| 707 | CALC_S (sm, sn, so, sp, 25, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */ |
| 708 | CALC_S (sm, sn, so, sp, 26, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */ |
| 709 | CALC_S (sm, sn, so, sp, 27, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */ |
| 710 | CALC_S (sm, sn, so, sp, 28, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */ |
| 711 | CALC_S (sm, sn, so, sp, 29, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */ |
| 712 | CALC_S (sm, sn, so, sp, 30, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */ |
| 713 | CALC_S (sm, sn, so, sp, 31, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */ |
| 714 | |
| 715 | /* Compute the S-boxes. */ |
| 716 | for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) { |
| 717 | CALC_SB256_2( i, calc_sb_tbl[j], calc_sb_tbl[k] ); |
| 718 | } |
| 719 | |
| 720 | /* Calculate whitening and round subkeys. The constants are |
| 721 | * indices of subkeys, preprocessed through q0 and q1. */ |
| 722 | CALC_K256 (w, 0, 0xA9, 0x75, 0x67, 0xF3); |
| 723 | CALC_K256 (w, 2, 0xB3, 0xC6, 0xE8, 0xF4); |
| 724 | CALC_K256 (w, 4, 0x04, 0xDB, 0xFD, 0x7B); |
| 725 | CALC_K256 (w, 6, 0xA3, 0xFB, 0x76, 0xC8); |
| 726 | CALC_K256 (k, 0, 0x9A, 0x4A, 0x92, 0xD3); |
| 727 | CALC_K256 (k, 2, 0x80, 0xE6, 0x78, 0x6B); |
| 728 | CALC_K256 (k, 4, 0xE4, 0x45, 0xDD, 0x7D); |
| 729 | CALC_K256 (k, 6, 0xD1, 0xE8, 0x38, 0x4B); |
| 730 | CALC_K256 (k, 8, 0x0D, 0xD6, 0xC6, 0x32); |
| 731 | CALC_K256 (k, 10, 0x35, 0xD8, 0x98, 0xFD); |
| 732 | CALC_K256 (k, 12, 0x18, 0x37, 0xF7, 0x71); |
| 733 | CALC_K256 (k, 14, 0xEC, 0xF1, 0x6C, 0xE1); |
| 734 | CALC_K256 (k, 16, 0x43, 0x30, 0x75, 0x0F); |
| 735 | CALC_K256 (k, 18, 0x37, 0xF8, 0x26, 0x1B); |
| 736 | CALC_K256 (k, 20, 0xFA, 0x87, 0x13, 0xFA); |
| 737 | CALC_K256 (k, 22, 0x94, 0x06, 0x48, 0x3F); |
| 738 | CALC_K256 (k, 24, 0xF2, 0x5E, 0xD0, 0xBA); |
| 739 | CALC_K256 (k, 26, 0x8B, 0xAE, 0x30, 0x5B); |
| 740 | CALC_K256 (k, 28, 0x84, 0x8A, 0x54, 0x00); |
| 741 | CALC_K256 (k, 30, 0xDF, 0xBC, 0x23, 0x9D); |
| 742 | } else if (key_len == 24) { /* 192-bit key */ |
| 743 | /* Compute the S-boxes. */ |
| 744 | for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) { |
| 745 | CALC_SB192_2( i, calc_sb_tbl[j], calc_sb_tbl[k] ); |
| 746 | } |
| 747 | |
| 748 | /* Calculate whitening and round subkeys. The constants are |
| 749 | * indices of subkeys, preprocessed through q0 and q1. */ |
| 750 | CALC_K192 (w, 0, 0xA9, 0x75, 0x67, 0xF3); |
| 751 | CALC_K192 (w, 2, 0xB3, 0xC6, 0xE8, 0xF4); |
| 752 | CALC_K192 (w, 4, 0x04, 0xDB, 0xFD, 0x7B); |
| 753 | CALC_K192 (w, 6, 0xA3, 0xFB, 0x76, 0xC8); |
| 754 | CALC_K192 (k, 0, 0x9A, 0x4A, 0x92, 0xD3); |
| 755 | CALC_K192 (k, 2, 0x80, 0xE6, 0x78, 0x6B); |
| 756 | CALC_K192 (k, 4, 0xE4, 0x45, 0xDD, 0x7D); |
| 757 | CALC_K192 (k, 6, 0xD1, 0xE8, 0x38, 0x4B); |
| 758 | CALC_K192 (k, 8, 0x0D, 0xD6, 0xC6, 0x32); |
| 759 | CALC_K192 (k, 10, 0x35, 0xD8, 0x98, 0xFD); |
| 760 | CALC_K192 (k, 12, 0x18, 0x37, 0xF7, 0x71); |
| 761 | CALC_K192 (k, 14, 0xEC, 0xF1, 0x6C, 0xE1); |
| 762 | CALC_K192 (k, 16, 0x43, 0x30, 0x75, 0x0F); |
| 763 | CALC_K192 (k, 18, 0x37, 0xF8, 0x26, 0x1B); |
| 764 | CALC_K192 (k, 20, 0xFA, 0x87, 0x13, 0xFA); |
| 765 | CALC_K192 (k, 22, 0x94, 0x06, 0x48, 0x3F); |
| 766 | CALC_K192 (k, 24, 0xF2, 0x5E, 0xD0, 0xBA); |
| 767 | CALC_K192 (k, 26, 0x8B, 0xAE, 0x30, 0x5B); |
| 768 | CALC_K192 (k, 28, 0x84, 0x8A, 0x54, 0x00); |
| 769 | CALC_K192 (k, 30, 0xDF, 0xBC, 0x23, 0x9D); |
| 770 | } else { /* 128-bit key */ |
| 771 | /* Compute the S-boxes. */ |
| 772 | for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) { |
| 773 | CALC_SB_2( i, calc_sb_tbl[j], calc_sb_tbl[k] ); |
| 774 | } |
| 775 | |
| 776 | /* Calculate whitening and round subkeys. The constants are |
| 777 | * indices of subkeys, preprocessed through q0 and q1. */ |
| 778 | CALC_K (w, 0, 0xA9, 0x75, 0x67, 0xF3); |
| 779 | CALC_K (w, 2, 0xB3, 0xC6, 0xE8, 0xF4); |
| 780 | CALC_K (w, 4, 0x04, 0xDB, 0xFD, 0x7B); |
| 781 | CALC_K (w, 6, 0xA3, 0xFB, 0x76, 0xC8); |
| 782 | CALC_K (k, 0, 0x9A, 0x4A, 0x92, 0xD3); |
| 783 | CALC_K (k, 2, 0x80, 0xE6, 0x78, 0x6B); |
| 784 | CALC_K (k, 4, 0xE4, 0x45, 0xDD, 0x7D); |
| 785 | CALC_K (k, 6, 0xD1, 0xE8, 0x38, 0x4B); |
| 786 | CALC_K (k, 8, 0x0D, 0xD6, 0xC6, 0x32); |
| 787 | CALC_K (k, 10, 0x35, 0xD8, 0x98, 0xFD); |
| 788 | CALC_K (k, 12, 0x18, 0x37, 0xF7, 0x71); |
| 789 | CALC_K (k, 14, 0xEC, 0xF1, 0x6C, 0xE1); |
| 790 | CALC_K (k, 16, 0x43, 0x30, 0x75, 0x0F); |
| 791 | CALC_K (k, 18, 0x37, 0xF8, 0x26, 0x1B); |
| 792 | CALC_K (k, 20, 0xFA, 0x87, 0x13, 0xFA); |
| 793 | CALC_K (k, 22, 0x94, 0x06, 0x48, 0x3F); |
| 794 | CALC_K (k, 24, 0xF2, 0x5E, 0xD0, 0xBA); |
| 795 | CALC_K (k, 26, 0x8B, 0xAE, 0x30, 0x5B); |
| 796 | CALC_K (k, 28, 0x84, 0x8A, 0x54, 0x00); |
| 797 | CALC_K (k, 30, 0xDF, 0xBC, 0x23, 0x9D); |
| 798 | } |
| 799 | |
| 800 | return 0; |
| 801 | } |
| 802 | |
| 803 | /* Encrypt one block. in and out may be the same. */ |
| 804 | static void twofish_encrypt(void *cx, u8 *out, const u8 *in) |
| 805 | { |
| 806 | struct twofish_ctx *ctx = cx; |
Herbert Xu | 06ace7a | 2005-10-30 21:25:15 +1100 | [diff] [blame] | 807 | const __le32 *src = (const __le32 *)in; |
| 808 | __le32 *dst = (__le32 *)out; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 809 | |
| 810 | /* The four 32-bit chunks of the text. */ |
| 811 | u32 a, b, c, d; |
| 812 | |
| 813 | /* Temporaries used by the round function. */ |
| 814 | u32 x, y; |
| 815 | |
| 816 | /* Input whitening and packing. */ |
| 817 | INPACK (0, a, 0); |
| 818 | INPACK (1, b, 1); |
| 819 | INPACK (2, c, 2); |
| 820 | INPACK (3, d, 3); |
| 821 | |
| 822 | /* Encryption Feistel cycles. */ |
| 823 | ENCCYCLE (0); |
| 824 | ENCCYCLE (1); |
| 825 | ENCCYCLE (2); |
| 826 | ENCCYCLE (3); |
| 827 | ENCCYCLE (4); |
| 828 | ENCCYCLE (5); |
| 829 | ENCCYCLE (6); |
| 830 | ENCCYCLE (7); |
| 831 | |
| 832 | /* Output whitening and unpacking. */ |
| 833 | OUTUNPACK (0, c, 4); |
| 834 | OUTUNPACK (1, d, 5); |
| 835 | OUTUNPACK (2, a, 6); |
| 836 | OUTUNPACK (3, b, 7); |
| 837 | |
| 838 | } |
| 839 | |
| 840 | /* Decrypt one block. in and out may be the same. */ |
| 841 | static void twofish_decrypt(void *cx, u8 *out, const u8 *in) |
| 842 | { |
| 843 | struct twofish_ctx *ctx = cx; |
Herbert Xu | 06ace7a | 2005-10-30 21:25:15 +1100 | [diff] [blame] | 844 | const __le32 *src = (const __le32 *)in; |
| 845 | __le32 *dst = (__le32 *)out; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 846 | |
| 847 | /* The four 32-bit chunks of the text. */ |
| 848 | u32 a, b, c, d; |
| 849 | |
| 850 | /* Temporaries used by the round function. */ |
| 851 | u32 x, y; |
| 852 | |
| 853 | /* Input whitening and packing. */ |
| 854 | INPACK (0, c, 4); |
| 855 | INPACK (1, d, 5); |
| 856 | INPACK (2, a, 6); |
| 857 | INPACK (3, b, 7); |
| 858 | |
| 859 | /* Encryption Feistel cycles. */ |
| 860 | DECCYCLE (7); |
| 861 | DECCYCLE (6); |
| 862 | DECCYCLE (5); |
| 863 | DECCYCLE (4); |
| 864 | DECCYCLE (3); |
| 865 | DECCYCLE (2); |
| 866 | DECCYCLE (1); |
| 867 | DECCYCLE (0); |
| 868 | |
| 869 | /* Output whitening and unpacking. */ |
| 870 | OUTUNPACK (0, a, 0); |
| 871 | OUTUNPACK (1, b, 1); |
| 872 | OUTUNPACK (2, c, 2); |
| 873 | OUTUNPACK (3, d, 3); |
| 874 | |
| 875 | } |
| 876 | |
| 877 | static struct crypto_alg alg = { |
| 878 | .cra_name = "twofish", |
| 879 | .cra_flags = CRYPTO_ALG_TYPE_CIPHER, |
| 880 | .cra_blocksize = TF_BLOCK_SIZE, |
| 881 | .cra_ctxsize = sizeof(struct twofish_ctx), |
Herbert Xu | a429d26 | 2006-01-07 16:38:15 +1100 | [diff] [blame^] | 882 | .cra_alignmask = 3, |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 883 | .cra_module = THIS_MODULE, |
| 884 | .cra_list = LIST_HEAD_INIT(alg.cra_list), |
| 885 | .cra_u = { .cipher = { |
| 886 | .cia_min_keysize = TF_MIN_KEY_SIZE, |
| 887 | .cia_max_keysize = TF_MAX_KEY_SIZE, |
| 888 | .cia_setkey = twofish_setkey, |
| 889 | .cia_encrypt = twofish_encrypt, |
| 890 | .cia_decrypt = twofish_decrypt } } |
| 891 | }; |
| 892 | |
| 893 | static int __init init(void) |
| 894 | { |
| 895 | return crypto_register_alg(&alg); |
| 896 | } |
| 897 | |
| 898 | static void __exit fini(void) |
| 899 | { |
| 900 | crypto_unregister_alg(&alg); |
| 901 | } |
| 902 | |
| 903 | module_init(init); |
| 904 | module_exit(fini); |
| 905 | |
| 906 | MODULE_LICENSE("GPL"); |
| 907 | MODULE_DESCRIPTION ("Twofish Cipher Algorithm"); |