blob: 5ec44a440d65b092dc3c26bc8946c73654cff72d [file] [log] [blame]
Doug Thompson2bc65412009-05-04 20:11:14 +02001#include "amd64_edac.h"
2
3static struct edac_pci_ctl_info *amd64_ctl_pci;
4
5static int report_gart_errors;
6module_param(report_gart_errors, int, 0644);
7
8/*
9 * Set by command line parameter. If BIOS has enabled the ECC, this override is
10 * cleared to prevent re-enabling the hardware by this driver.
11 */
12static int ecc_enable_override;
13module_param(ecc_enable_override, int, 0644);
14
15/* Lookup table for all possible MC control instances */
16struct amd64_pvt;
17static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
18static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
19
20/*
21 * Memory scrubber control interface. For K8, memory scrubbing is handled by
22 * hardware and can involve L2 cache, dcache as well as the main memory. With
23 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
24 * functionality.
25 *
26 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
27 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
28 * bytes/sec for the setting.
29 *
30 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
31 * other archs, we might not have access to the caches directly.
32 */
33
34/*
35 * scan the scrub rate mapping table for a close or matching bandwidth value to
36 * issue. If requested is too big, then use last maximum value found.
37 */
38static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
39 u32 min_scrubrate)
40{
41 u32 scrubval;
42 int i;
43
44 /*
45 * map the configured rate (new_bw) to a value specific to the AMD64
46 * memory controller and apply to register. Search for the first
47 * bandwidth entry that is greater or equal than the setting requested
48 * and program that. If at last entry, turn off DRAM scrubbing.
49 */
50 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
51 /*
52 * skip scrub rates which aren't recommended
53 * (see F10 BKDG, F3x58)
54 */
55 if (scrubrates[i].scrubval < min_scrubrate)
56 continue;
57
58 if (scrubrates[i].bandwidth <= new_bw)
59 break;
60
61 /*
62 * if no suitable bandwidth found, turn off DRAM scrubbing
63 * entirely by falling back to the last element in the
64 * scrubrates array.
65 */
66 }
67
68 scrubval = scrubrates[i].scrubval;
69 if (scrubval)
70 edac_printk(KERN_DEBUG, EDAC_MC,
71 "Setting scrub rate bandwidth: %u\n",
72 scrubrates[i].bandwidth);
73 else
74 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
75
76 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
77
78 return 0;
79}
80
81static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
82{
83 struct amd64_pvt *pvt = mci->pvt_info;
84 u32 min_scrubrate = 0x0;
85
86 switch (boot_cpu_data.x86) {
87 case 0xf:
88 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
89 break;
90 case 0x10:
91 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
92 break;
93 case 0x11:
94 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
95 break;
96
97 default:
98 amd64_printk(KERN_ERR, "Unsupported family!\n");
99 break;
100 }
101 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
102 min_scrubrate);
103}
104
105static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
106{
107 struct amd64_pvt *pvt = mci->pvt_info;
108 u32 scrubval = 0;
109 int status = -1, i, ret = 0;
110
111 ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
112 if (ret)
113 debugf0("Reading K8_SCRCTRL failed\n");
114
115 scrubval = scrubval & 0x001F;
116
117 edac_printk(KERN_DEBUG, EDAC_MC,
118 "pci-read, sdram scrub control value: %d \n", scrubval);
119
120 for (i = 0; ARRAY_SIZE(scrubrates); i++) {
121 if (scrubrates[i].scrubval == scrubval) {
122 *bw = scrubrates[i].bandwidth;
123 status = 0;
124 break;
125 }
126 }
127
128 return status;
129}
130
Doug Thompson67757632009-04-27 15:53:22 +0200131/* Map from a CSROW entry to the mask entry that operates on it */
132static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
133{
134 return csrow >> (pvt->num_dcsm >> 3);
135}
136
137/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
138static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
139{
140 if (dct == 0)
141 return pvt->dcsb0[csrow];
142 else
143 return pvt->dcsb1[csrow];
144}
145
146/*
147 * Return the 'mask' address the i'th CS entry. This function is needed because
148 * there number of DCSM registers on Rev E and prior vs Rev F and later is
149 * different.
150 */
151static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
152{
153 if (dct == 0)
154 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
155 else
156 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
157}
158
159
160/*
161 * In *base and *limit, pass back the full 40-bit base and limit physical
162 * addresses for the node given by node_id. This information is obtained from
163 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
164 * base and limit addresses are of type SysAddr, as defined at the start of
165 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
166 * in the address range they represent.
167 */
168static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
169 u64 *base, u64 *limit)
170{
171 *base = pvt->dram_base[node_id];
172 *limit = pvt->dram_limit[node_id];
173}
174
175/*
176 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
177 * with node_id
178 */
179static int amd64_base_limit_match(struct amd64_pvt *pvt,
180 u64 sys_addr, int node_id)
181{
182 u64 base, limit, addr;
183
184 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
185
186 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
187 * all ones if the most significant implemented address bit is 1.
188 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
189 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
190 * Application Programming.
191 */
192 addr = sys_addr & 0x000000ffffffffffull;
193
194 return (addr >= base) && (addr <= limit);
195}
196
197/*
198 * Attempt to map a SysAddr to a node. On success, return a pointer to the
199 * mem_ctl_info structure for the node that the SysAddr maps to.
200 *
201 * On failure, return NULL.
202 */
203static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
204 u64 sys_addr)
205{
206 struct amd64_pvt *pvt;
207 int node_id;
208 u32 intlv_en, bits;
209
210 /*
211 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
212 * 3.4.4.2) registers to map the SysAddr to a node ID.
213 */
214 pvt = mci->pvt_info;
215
216 /*
217 * The value of this field should be the same for all DRAM Base
218 * registers. Therefore we arbitrarily choose to read it from the
219 * register for node 0.
220 */
221 intlv_en = pvt->dram_IntlvEn[0];
222
223 if (intlv_en == 0) {
224 for (node_id = 0; ; ) {
225 if (amd64_base_limit_match(pvt, sys_addr, node_id))
226 break;
227
228 if (++node_id >= DRAM_REG_COUNT)
229 goto err_no_match;
230 }
231 goto found;
232 }
233
234 if (unlikely((intlv_en != (0x01 << 8)) &&
235 (intlv_en != (0x03 << 8)) &&
236 (intlv_en != (0x07 << 8)))) {
237 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
238 "IntlvEn field of DRAM Base Register for node 0: "
239 "This probably indicates a BIOS bug.\n", intlv_en);
240 return NULL;
241 }
242
243 bits = (((u32) sys_addr) >> 12) & intlv_en;
244
245 for (node_id = 0; ; ) {
246 if ((pvt->dram_limit[node_id] & intlv_en) == bits)
247 break; /* intlv_sel field matches */
248
249 if (++node_id >= DRAM_REG_COUNT)
250 goto err_no_match;
251 }
252
253 /* sanity test for sys_addr */
254 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
255 amd64_printk(KERN_WARNING,
256 "%s(): sys_addr 0x%lx falls outside base/limit "
257 "address range for node %d with node interleaving "
258 "enabled.\n", __func__, (unsigned long)sys_addr,
259 node_id);
260 return NULL;
261 }
262
263found:
264 return edac_mc_find(node_id);
265
266err_no_match:
267 debugf2("sys_addr 0x%lx doesn't match any node\n",
268 (unsigned long)sys_addr);
269
270 return NULL;
271}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200272
273/*
274 * Extract the DRAM CS base address from selected csrow register.
275 */
276static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
277{
278 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
279 pvt->dcs_shift;
280}
281
282/*
283 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
284 */
285static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
286{
287 u64 dcsm_bits, other_bits;
288 u64 mask;
289
290 /* Extract bits from DRAM CS Mask. */
291 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
292
293 other_bits = pvt->dcsm_mask;
294 other_bits = ~(other_bits << pvt->dcs_shift);
295
296 /*
297 * The extracted bits from DCSM belong in the spaces represented by
298 * the cleared bits in other_bits.
299 */
300 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
301
302 return mask;
303}
304
305/*
306 * @input_addr is an InputAddr associated with the node given by mci. Return the
307 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
308 */
309static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
310{
311 struct amd64_pvt *pvt;
312 int csrow;
313 u64 base, mask;
314
315 pvt = mci->pvt_info;
316
317 /*
318 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
319 * base/mask register pair, test the condition shown near the start of
320 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
321 */
322 for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
323
324 /* This DRAM chip select is disabled on this node */
325 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
326 continue;
327
328 base = base_from_dct_base(pvt, csrow);
329 mask = ~mask_from_dct_mask(pvt, csrow);
330
331 if ((input_addr & mask) == (base & mask)) {
332 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
333 (unsigned long)input_addr, csrow,
334 pvt->mc_node_id);
335
336 return csrow;
337 }
338 }
339
340 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
341 (unsigned long)input_addr, pvt->mc_node_id);
342
343 return -1;
344}
345
346/*
347 * Return the base value defined by the DRAM Base register for the node
348 * represented by mci. This function returns the full 40-bit value despite the
349 * fact that the register only stores bits 39-24 of the value. See section
350 * 3.4.4.1 (BKDG #26094, K8, revA-E)
351 */
352static inline u64 get_dram_base(struct mem_ctl_info *mci)
353{
354 struct amd64_pvt *pvt = mci->pvt_info;
355
356 return pvt->dram_base[pvt->mc_node_id];
357}
358
359/*
360 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
361 * for the node represented by mci. Info is passed back in *hole_base,
362 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
363 * info is invalid. Info may be invalid for either of the following reasons:
364 *
365 * - The revision of the node is not E or greater. In this case, the DRAM Hole
366 * Address Register does not exist.
367 *
368 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
369 * indicating that its contents are not valid.
370 *
371 * The values passed back in *hole_base, *hole_offset, and *hole_size are
372 * complete 32-bit values despite the fact that the bitfields in the DHAR
373 * only represent bits 31-24 of the base and offset values.
374 */
375int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
376 u64 *hole_offset, u64 *hole_size)
377{
378 struct amd64_pvt *pvt = mci->pvt_info;
379 u64 base;
380
381 /* only revE and later have the DRAM Hole Address Register */
382 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
383 debugf1(" revision %d for node %d does not support DHAR\n",
384 pvt->ext_model, pvt->mc_node_id);
385 return 1;
386 }
387
388 /* only valid for Fam10h */
389 if (boot_cpu_data.x86 == 0x10 &&
390 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
391 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
392 return 1;
393 }
394
395 if ((pvt->dhar & DHAR_VALID) == 0) {
396 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
397 pvt->mc_node_id);
398 return 1;
399 }
400
401 /* This node has Memory Hoisting */
402
403 /* +------------------+--------------------+--------------------+-----
404 * | memory | DRAM hole | relocated |
405 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
406 * | | | DRAM hole |
407 * | | | [0x100000000, |
408 * | | | (0x100000000+ |
409 * | | | (0xffffffff-x))] |
410 * +------------------+--------------------+--------------------+-----
411 *
412 * Above is a diagram of physical memory showing the DRAM hole and the
413 * relocated addresses from the DRAM hole. As shown, the DRAM hole
414 * starts at address x (the base address) and extends through address
415 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
416 * addresses in the hole so that they start at 0x100000000.
417 */
418
419 base = dhar_base(pvt->dhar);
420
421 *hole_base = base;
422 *hole_size = (0x1ull << 32) - base;
423
424 if (boot_cpu_data.x86 > 0xf)
425 *hole_offset = f10_dhar_offset(pvt->dhar);
426 else
427 *hole_offset = k8_dhar_offset(pvt->dhar);
428
429 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
430 pvt->mc_node_id, (unsigned long)*hole_base,
431 (unsigned long)*hole_offset, (unsigned long)*hole_size);
432
433 return 0;
434}
435EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
436
Doug Thompson93c2df52009-05-04 20:46:50 +0200437/*
438 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
439 * assumed that sys_addr maps to the node given by mci.
440 *
441 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
442 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
443 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
444 * then it is also involved in translating a SysAddr to a DramAddr. Sections
445 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
446 * These parts of the documentation are unclear. I interpret them as follows:
447 *
448 * When node n receives a SysAddr, it processes the SysAddr as follows:
449 *
450 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
451 * Limit registers for node n. If the SysAddr is not within the range
452 * specified by the base and limit values, then node n ignores the Sysaddr
453 * (since it does not map to node n). Otherwise continue to step 2 below.
454 *
455 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
456 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
457 * the range of relocated addresses (starting at 0x100000000) from the DRAM
458 * hole. If not, skip to step 3 below. Else get the value of the
459 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
460 * offset defined by this value from the SysAddr.
461 *
462 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
463 * Base register for node n. To obtain the DramAddr, subtract the base
464 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
465 */
466static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
467{
468 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
469 int ret = 0;
470
471 dram_base = get_dram_base(mci);
472
473 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
474 &hole_size);
475 if (!ret) {
476 if ((sys_addr >= (1ull << 32)) &&
477 (sys_addr < ((1ull << 32) + hole_size))) {
478 /* use DHAR to translate SysAddr to DramAddr */
479 dram_addr = sys_addr - hole_offset;
480
481 debugf2("using DHAR to translate SysAddr 0x%lx to "
482 "DramAddr 0x%lx\n",
483 (unsigned long)sys_addr,
484 (unsigned long)dram_addr);
485
486 return dram_addr;
487 }
488 }
489
490 /*
491 * Translate the SysAddr to a DramAddr as shown near the start of
492 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
493 * only deals with 40-bit values. Therefore we discard bits 63-40 of
494 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
495 * discard are all 1s. Otherwise the bits we discard are all 0s. See
496 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
497 * Programmer's Manual Volume 1 Application Programming.
498 */
499 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
500
501 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
502 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
503 (unsigned long)dram_addr);
504 return dram_addr;
505}
506
507/*
508 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
509 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
510 * for node interleaving.
511 */
512static int num_node_interleave_bits(unsigned intlv_en)
513{
514 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
515 int n;
516
517 BUG_ON(intlv_en > 7);
518 n = intlv_shift_table[intlv_en];
519 return n;
520}
521
522/* Translate the DramAddr given by @dram_addr to an InputAddr. */
523static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
524{
525 struct amd64_pvt *pvt;
526 int intlv_shift;
527 u64 input_addr;
528
529 pvt = mci->pvt_info;
530
531 /*
532 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
533 * concerning translating a DramAddr to an InputAddr.
534 */
535 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
536 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
537 (dram_addr & 0xfff);
538
539 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
540 intlv_shift, (unsigned long)dram_addr,
541 (unsigned long)input_addr);
542
543 return input_addr;
544}
545
546/*
547 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
548 * assumed that @sys_addr maps to the node given by mci.
549 */
550static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
551{
552 u64 input_addr;
553
554 input_addr =
555 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
556
557 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
558 (unsigned long)sys_addr, (unsigned long)input_addr);
559
560 return input_addr;
561}
562
563
564/*
565 * @input_addr is an InputAddr associated with the node represented by mci.
566 * Translate @input_addr to a DramAddr and return the result.
567 */
568static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
569{
570 struct amd64_pvt *pvt;
571 int node_id, intlv_shift;
572 u64 bits, dram_addr;
573 u32 intlv_sel;
574
575 /*
576 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
577 * shows how to translate a DramAddr to an InputAddr. Here we reverse
578 * this procedure. When translating from a DramAddr to an InputAddr, the
579 * bits used for node interleaving are discarded. Here we recover these
580 * bits from the IntlvSel field of the DRAM Limit register (section
581 * 3.4.4.2) for the node that input_addr is associated with.
582 */
583 pvt = mci->pvt_info;
584 node_id = pvt->mc_node_id;
585 BUG_ON((node_id < 0) || (node_id > 7));
586
587 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
588
589 if (intlv_shift == 0) {
590 debugf1(" InputAddr 0x%lx translates to DramAddr of "
591 "same value\n", (unsigned long)input_addr);
592
593 return input_addr;
594 }
595
596 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
597 (input_addr & 0xfff);
598
599 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
600 dram_addr = bits + (intlv_sel << 12);
601
602 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
603 "(%d node interleave bits)\n", (unsigned long)input_addr,
604 (unsigned long)dram_addr, intlv_shift);
605
606 return dram_addr;
607}
608
609/*
610 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
611 * @dram_addr to a SysAddr.
612 */
613static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
614{
615 struct amd64_pvt *pvt = mci->pvt_info;
616 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
617 int ret = 0;
618
619 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
620 &hole_size);
621 if (!ret) {
622 if ((dram_addr >= hole_base) &&
623 (dram_addr < (hole_base + hole_size))) {
624 sys_addr = dram_addr + hole_offset;
625
626 debugf1("using DHAR to translate DramAddr 0x%lx to "
627 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
628 (unsigned long)sys_addr);
629
630 return sys_addr;
631 }
632 }
633
634 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
635 sys_addr = dram_addr + base;
636
637 /*
638 * The sys_addr we have computed up to this point is a 40-bit value
639 * because the k8 deals with 40-bit values. However, the value we are
640 * supposed to return is a full 64-bit physical address. The AMD
641 * x86-64 architecture specifies that the most significant implemented
642 * address bit through bit 63 of a physical address must be either all
643 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
644 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
645 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
646 * Programming.
647 */
648 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
649
650 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
651 pvt->mc_node_id, (unsigned long)dram_addr,
652 (unsigned long)sys_addr);
653
654 return sys_addr;
655}
656
657/*
658 * @input_addr is an InputAddr associated with the node given by mci. Translate
659 * @input_addr to a SysAddr.
660 */
661static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
662 u64 input_addr)
663{
664 return dram_addr_to_sys_addr(mci,
665 input_addr_to_dram_addr(mci, input_addr));
666}
667
668/*
669 * Find the minimum and maximum InputAddr values that map to the given @csrow.
670 * Pass back these values in *input_addr_min and *input_addr_max.
671 */
672static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
673 u64 *input_addr_min, u64 *input_addr_max)
674{
675 struct amd64_pvt *pvt;
676 u64 base, mask;
677
678 pvt = mci->pvt_info;
679 BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
680
681 base = base_from_dct_base(pvt, csrow);
682 mask = mask_from_dct_mask(pvt, csrow);
683
684 *input_addr_min = base & ~mask;
685 *input_addr_max = base | mask | pvt->dcs_mask_notused;
686}
687
688/*
689 * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
690 * Address High (section 3.6.4.6) register values and return the result. Address
691 * is located in the info structure (nbeah and nbeal), the encoding is device
692 * specific.
693 */
694static u64 extract_error_address(struct mem_ctl_info *mci,
695 struct amd64_error_info_regs *info)
696{
697 struct amd64_pvt *pvt = mci->pvt_info;
698
699 return pvt->ops->get_error_address(mci, info);
700}
701
702
703/* Map the Error address to a PAGE and PAGE OFFSET. */
704static inline void error_address_to_page_and_offset(u64 error_address,
705 u32 *page, u32 *offset)
706{
707 *page = (u32) (error_address >> PAGE_SHIFT);
708 *offset = ((u32) error_address) & ~PAGE_MASK;
709}
710
711/*
712 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
713 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
714 * of a node that detected an ECC memory error. mci represents the node that
715 * the error address maps to (possibly different from the node that detected
716 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
717 * error.
718 */
719static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
720{
721 int csrow;
722
723 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
724
725 if (csrow == -1)
726 amd64_mc_printk(mci, KERN_ERR,
727 "Failed to translate InputAddr to csrow for "
728 "address 0x%lx\n", (unsigned long)sys_addr);
729 return csrow;
730}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200731
Doug Thompson2da11652009-04-27 16:09:09 +0200732static int get_channel_from_ecc_syndrome(unsigned short syndrome);
733
734static void amd64_cpu_display_info(struct amd64_pvt *pvt)
735{
736 if (boot_cpu_data.x86 == 0x11)
737 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
738 else if (boot_cpu_data.x86 == 0x10)
739 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
740 else if (boot_cpu_data.x86 == 0xf)
741 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
742 (pvt->ext_model >= OPTERON_CPU_REV_F) ?
743 "Rev F or later" : "Rev E or earlier");
744 else
745 /* we'll hardly ever ever get here */
746 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
747}
748
749/*
750 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
751 * are ECC capable.
752 */
753static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
754{
755 int bit;
756 enum dev_type edac_cap = EDAC_NONE;
757
758 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
759 ? 19
760 : 17;
761
762 if (pvt->dclr0 >> BIT(bit))
763 edac_cap = EDAC_FLAG_SECDED;
764
765 return edac_cap;
766}
767
768
769static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
770 int ganged);
771
772/* Display and decode various NB registers for debug purposes. */
773static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
774{
775 int ganged;
776
777 debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
778 pvt->nbcap,
779 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
780 (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
781 (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
782 debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
783 (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
784 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
785 debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
786 pvt->dclr0,
787 (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
788 (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
789 (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
790 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
791 (pvt->dclr0 & BIT(12)) ? "Y" : "N",
792 (pvt->dclr0 & BIT(13)) ? "Y" : "N",
793 (pvt->dclr0 & BIT(14)) ? "Y" : "N",
794 (pvt->dclr0 & BIT(15)) ? "Y" : "N",
795 (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
796
797
798 debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
799
800 if (boot_cpu_data.x86 == 0xf) {
801 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
802 pvt->dhar, dhar_base(pvt->dhar),
803 k8_dhar_offset(pvt->dhar));
804 debugf1(" DramHoleValid=%s\n",
805 (pvt->dhar & DHAR_VALID) ? "True" : "False");
806
807 debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
808
809 /* everything below this point is Fam10h and above */
810 return;
811
812 } else {
813 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
814 pvt->dhar, dhar_base(pvt->dhar),
815 f10_dhar_offset(pvt->dhar));
816 debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
817 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
818 "True" : "False",
819 (pvt->dhar & DHAR_VALID) ?
820 "True" : "False");
821 }
822
823 /* Only if NOT ganged does dcl1 have valid info */
824 if (!dct_ganging_enabled(pvt)) {
825 debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
826 "Width=%s\n", pvt->dclr1,
827 (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
828 (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
829 (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
830 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
831 "DIMM Type=%s\n",
832 (pvt->dclr1 & BIT(12)) ? "Y" : "N",
833 (pvt->dclr1 & BIT(13)) ? "Y" : "N",
834 (pvt->dclr1 & BIT(14)) ? "Y" : "N",
835 (pvt->dclr1 & BIT(15)) ? "Y" : "N",
836 (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
837 }
838
839 /*
840 * Determine if ganged and then dump memory sizes for first controller,
841 * and if NOT ganged dump info for 2nd controller.
842 */
843 ganged = dct_ganging_enabled(pvt);
844
845 f10_debug_display_dimm_sizes(0, pvt, ganged);
846
847 if (!ganged)
848 f10_debug_display_dimm_sizes(1, pvt, ganged);
849}
850
851/* Read in both of DBAM registers */
852static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
853{
854 int err = 0;
855 unsigned int reg;
856
857 reg = DBAM0;
858 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
859 if (err)
860 goto err_reg;
861
862 if (boot_cpu_data.x86 >= 0x10) {
863 reg = DBAM1;
864 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
865
866 if (err)
867 goto err_reg;
868 }
869
870err_reg:
871 debugf0("Error reading F2x%03x.\n", reg);
872}
873
Doug Thompson94be4bf2009-04-27 16:12:00 +0200874/*
875 * NOTE: CPU Revision Dependent code: Rev E and Rev F
876 *
877 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
878 * set the shift factor for the DCSB and DCSM values.
879 *
880 * ->dcs_mask_notused, RevE:
881 *
882 * To find the max InputAddr for the csrow, start with the base address and set
883 * all bits that are "don't care" bits in the test at the start of section
884 * 3.5.4 (p. 84).
885 *
886 * The "don't care" bits are all set bits in the mask and all bits in the gaps
887 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
888 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
889 * gaps.
890 *
891 * ->dcs_mask_notused, RevF and later:
892 *
893 * To find the max InputAddr for the csrow, start with the base address and set
894 * all bits that are "don't care" bits in the test at the start of NPT section
895 * 4.5.4 (p. 87).
896 *
897 * The "don't care" bits are all set bits in the mask and all bits in the gaps
898 * between bit ranges [36:27] and [21:13].
899 *
900 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
901 * which are all bits in the above-mentioned gaps.
902 */
903static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
904{
905 if (pvt->ext_model >= OPTERON_CPU_REV_F) {
906 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
907 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
908 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
909 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
910
911 switch (boot_cpu_data.x86) {
912 case 0xf:
913 pvt->num_dcsm = REV_F_DCSM_COUNT;
914 break;
915
916 case 0x10:
917 pvt->num_dcsm = F10_DCSM_COUNT;
918 break;
919
920 case 0x11:
921 pvt->num_dcsm = F11_DCSM_COUNT;
922 break;
923
924 default:
925 amd64_printk(KERN_ERR, "Unsupported family!\n");
926 break;
927 }
928 } else {
929 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
930 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
931 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
932 pvt->dcs_shift = REV_E_DCS_SHIFT;
933 pvt->num_dcsm = REV_E_DCSM_COUNT;
934 }
935}
936
937/*
938 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
939 */
940static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
941{
942 int cs, reg, err = 0;
943
944 amd64_set_dct_base_and_mask(pvt);
945
946 for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
947 reg = K8_DCSB0 + (cs * 4);
948 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
949 &pvt->dcsb0[cs]);
950 if (unlikely(err))
951 debugf0("Reading K8_DCSB0[%d] failed\n", cs);
952 else
953 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
954 cs, pvt->dcsb0[cs], reg);
955
956 /* If DCT are NOT ganged, then read in DCT1's base */
957 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
958 reg = F10_DCSB1 + (cs * 4);
959 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
960 &pvt->dcsb1[cs]);
961 if (unlikely(err))
962 debugf0("Reading F10_DCSB1[%d] failed\n", cs);
963 else
964 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
965 cs, pvt->dcsb1[cs], reg);
966 } else {
967 pvt->dcsb1[cs] = 0;
968 }
969 }
970
971 for (cs = 0; cs < pvt->num_dcsm; cs++) {
972 reg = K8_DCSB0 + (cs * 4);
973 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
974 &pvt->dcsm0[cs]);
975 if (unlikely(err))
976 debugf0("Reading K8_DCSM0 failed\n");
977 else
978 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
979 cs, pvt->dcsm0[cs], reg);
980
981 /* If DCT are NOT ganged, then read in DCT1's mask */
982 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
983 reg = F10_DCSM1 + (cs * 4);
984 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
985 &pvt->dcsm1[cs]);
986 if (unlikely(err))
987 debugf0("Reading F10_DCSM1[%d] failed\n", cs);
988 else
989 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
990 cs, pvt->dcsm1[cs], reg);
991 } else
992 pvt->dcsm1[cs] = 0;
993 }
994}
995
996static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
997{
998 enum mem_type type;
999
1000 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
1001 /* Rev F and later */
1002 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1003 } else {
1004 /* Rev E and earlier */
1005 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1006 }
1007
1008 debugf1(" Memory type is: %s\n",
1009 (type == MEM_DDR2) ? "MEM_DDR2" :
1010 (type == MEM_RDDR2) ? "MEM_RDDR2" :
1011 (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
1012
1013 return type;
1014}
1015