blob: 2289a8d68314f35f3c6b10f7edf8e53b721b8857 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/module.h>
31#include <linux/timex.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080032#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070033#include <linux/errno.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include <linux/syscalls.h>
35#include <linux/security.h>
36#include <linux/fs.h>
37#include <linux/module.h>
38
39#include <asm/uaccess.h>
40#include <asm/unistd.h>
41
42/*
43 * The timezone where the local system is located. Used as a default by some
44 * programs who obtain this value by using gettimeofday.
45 */
46struct timezone sys_tz;
47
48EXPORT_SYMBOL(sys_tz);
49
50#ifdef __ARCH_WANT_SYS_TIME
51
52/*
53 * sys_time() can be implemented in user-level using
54 * sys_gettimeofday(). Is this for backwards compatibility? If so,
55 * why not move it into the appropriate arch directory (for those
56 * architectures that need it).
57 */
58asmlinkage long sys_time(time_t __user * tloc)
59{
Linus Torvalds20082202007-07-20 13:28:54 -070060 time_t i;
61 struct timespec tv;
Linus Torvalds1da177e2005-04-16 15:20:36 -070062
Linus Torvalds20082202007-07-20 13:28:54 -070063 getnstimeofday(&tv);
64 i = tv.tv_sec;
Linus Torvalds1da177e2005-04-16 15:20:36 -070065
66 if (tloc) {
Linus Torvalds20082202007-07-20 13:28:54 -070067 if (put_user(i,tloc))
Linus Torvalds1da177e2005-04-16 15:20:36 -070068 i = -EFAULT;
69 }
70 return i;
71}
72
73/*
74 * sys_stime() can be implemented in user-level using
75 * sys_settimeofday(). Is this for backwards compatibility? If so,
76 * why not move it into the appropriate arch directory (for those
77 * architectures that need it).
78 */
79
80asmlinkage long sys_stime(time_t __user *tptr)
81{
82 struct timespec tv;
83 int err;
84
85 if (get_user(tv.tv_sec, tptr))
86 return -EFAULT;
87
88 tv.tv_nsec = 0;
89
90 err = security_settime(&tv, NULL);
91 if (err)
92 return err;
93
94 do_settimeofday(&tv);
95 return 0;
96}
97
98#endif /* __ARCH_WANT_SYS_TIME */
99
100asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
101{
102 if (likely(tv != NULL)) {
103 struct timeval ktv;
104 do_gettimeofday(&ktv);
105 if (copy_to_user(tv, &ktv, sizeof(ktv)))
106 return -EFAULT;
107 }
108 if (unlikely(tz != NULL)) {
109 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
110 return -EFAULT;
111 }
112 return 0;
113}
114
115/*
116 * Adjust the time obtained from the CMOS to be UTC time instead of
117 * local time.
118 *
119 * This is ugly, but preferable to the alternatives. Otherwise we
120 * would either need to write a program to do it in /etc/rc (and risk
121 * confusion if the program gets run more than once; it would also be
122 * hard to make the program warp the clock precisely n hours) or
123 * compile in the timezone information into the kernel. Bad, bad....
124 *
125 * - TYT, 1992-01-01
126 *
127 * The best thing to do is to keep the CMOS clock in universal time (UTC)
128 * as real UNIX machines always do it. This avoids all headaches about
129 * daylight saving times and warping kernel clocks.
130 */
Jesper Juhl77933d72005-07-27 11:46:09 -0700131static inline void warp_clock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700132{
133 write_seqlock_irq(&xtime_lock);
134 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
135 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700136 write_sequnlock_irq(&xtime_lock);
137 clock_was_set();
138}
139
140/*
141 * In case for some reason the CMOS clock has not already been running
142 * in UTC, but in some local time: The first time we set the timezone,
143 * we will warp the clock so that it is ticking UTC time instead of
144 * local time. Presumably, if someone is setting the timezone then we
145 * are running in an environment where the programs understand about
146 * timezones. This should be done at boot time in the /etc/rc script,
147 * as soon as possible, so that the clock can be set right. Otherwise,
148 * various programs will get confused when the clock gets warped.
149 */
150
151int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
152{
153 static int firsttime = 1;
154 int error = 0;
155
Linus Torvalds951069e2006-01-31 10:16:55 -0800156 if (tv && !timespec_valid(tv))
Thomas Gleixner718bcce2006-01-09 20:52:29 -0800157 return -EINVAL;
158
Linus Torvalds1da177e2005-04-16 15:20:36 -0700159 error = security_settime(tv, tz);
160 if (error)
161 return error;
162
163 if (tz) {
164 /* SMP safe, global irq locking makes it work. */
165 sys_tz = *tz;
166 if (firsttime) {
167 firsttime = 0;
168 if (!tv)
169 warp_clock();
170 }
171 }
172 if (tv)
173 {
174 /* SMP safe, again the code in arch/foo/time.c should
175 * globally block out interrupts when it runs.
176 */
177 return do_settimeofday(tv);
178 }
179 return 0;
180}
181
182asmlinkage long sys_settimeofday(struct timeval __user *tv,
183 struct timezone __user *tz)
184{
185 struct timeval user_tv;
186 struct timespec new_ts;
187 struct timezone new_tz;
188
189 if (tv) {
190 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
191 return -EFAULT;
192 new_ts.tv_sec = user_tv.tv_sec;
193 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
194 }
195 if (tz) {
196 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
197 return -EFAULT;
198 }
199
200 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
201}
202
Linus Torvalds1da177e2005-04-16 15:20:36 -0700203asmlinkage long sys_adjtimex(struct timex __user *txc_p)
204{
205 struct timex txc; /* Local copy of parameter */
206 int ret;
207
208 /* Copy the user data space into the kernel copy
209 * structure. But bear in mind that the structures
210 * may change
211 */
212 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
213 return -EFAULT;
214 ret = do_adjtimex(&txc);
215 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
216}
217
Linus Torvalds1da177e2005-04-16 15:20:36 -0700218/**
219 * current_fs_time - Return FS time
220 * @sb: Superblock.
221 *
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200222 * Return the current time truncated to the time granularity supported by
Linus Torvalds1da177e2005-04-16 15:20:36 -0700223 * the fs.
224 */
225struct timespec current_fs_time(struct super_block *sb)
226{
227 struct timespec now = current_kernel_time();
228 return timespec_trunc(now, sb->s_time_gran);
229}
230EXPORT_SYMBOL(current_fs_time);
231
Eric Dumazet753e9c52007-05-08 00:25:32 -0700232/*
233 * Convert jiffies to milliseconds and back.
234 *
235 * Avoid unnecessary multiplications/divisions in the
236 * two most common HZ cases:
237 */
238unsigned int inline jiffies_to_msecs(const unsigned long j)
239{
240#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
241 return (MSEC_PER_SEC / HZ) * j;
242#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
243 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
244#else
245 return (j * MSEC_PER_SEC) / HZ;
246#endif
247}
248EXPORT_SYMBOL(jiffies_to_msecs);
249
250unsigned int inline jiffies_to_usecs(const unsigned long j)
251{
252#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
253 return (USEC_PER_SEC / HZ) * j;
254#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
255 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
256#else
257 return (j * USEC_PER_SEC) / HZ;
258#endif
259}
260EXPORT_SYMBOL(jiffies_to_usecs);
261
Linus Torvalds1da177e2005-04-16 15:20:36 -0700262/**
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200263 * timespec_trunc - Truncate timespec to a granularity
Linus Torvalds1da177e2005-04-16 15:20:36 -0700264 * @t: Timespec
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200265 * @gran: Granularity in ns.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700266 *
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200267 * Truncate a timespec to a granularity. gran must be smaller than a second.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700268 * Always rounds down.
269 *
270 * This function should be only used for timestamps returned by
271 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
272 * it doesn't handle the better resolution of the later.
273 */
274struct timespec timespec_trunc(struct timespec t, unsigned gran)
275{
276 /*
277 * Division is pretty slow so avoid it for common cases.
278 * Currently current_kernel_time() never returns better than
279 * jiffies resolution. Exploit that.
280 */
281 if (gran <= jiffies_to_usecs(1) * 1000) {
282 /* nothing */
283 } else if (gran == 1000000000) {
284 t.tv_nsec = 0;
285 } else {
286 t.tv_nsec -= t.tv_nsec % gran;
287 }
288 return t;
289}
290EXPORT_SYMBOL(timespec_trunc);
291
john stultzcf3c7692006-06-26 00:25:08 -0700292#ifndef CONFIG_GENERIC_TIME
Linus Torvalds1da177e2005-04-16 15:20:36 -0700293/*
294 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
295 * and therefore only yields usec accuracy
296 */
297void getnstimeofday(struct timespec *tv)
298{
299 struct timeval x;
300
301 do_gettimeofday(&x);
302 tv->tv_sec = x.tv_sec;
303 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
304}
Takashi Iwaic6ecf7e2005-10-14 15:59:03 -0700305EXPORT_SYMBOL_GPL(getnstimeofday);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700306#endif
307
Thomas Gleixner753be622006-01-09 20:52:22 -0800308/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
309 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
310 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
311 *
312 * [For the Julian calendar (which was used in Russia before 1917,
313 * Britain & colonies before 1752, anywhere else before 1582,
314 * and is still in use by some communities) leave out the
315 * -year/100+year/400 terms, and add 10.]
316 *
317 * This algorithm was first published by Gauss (I think).
318 *
319 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
320 * machines were long is 32-bit! (However, as time_t is signed, we
321 * will already get problems at other places on 2038-01-19 03:14:08)
322 */
323unsigned long
Ingo Molnarf4818902006-01-09 20:52:23 -0800324mktime(const unsigned int year0, const unsigned int mon0,
325 const unsigned int day, const unsigned int hour,
326 const unsigned int min, const unsigned int sec)
Thomas Gleixner753be622006-01-09 20:52:22 -0800327{
Ingo Molnarf4818902006-01-09 20:52:23 -0800328 unsigned int mon = mon0, year = year0;
329
330 /* 1..12 -> 11,12,1..10 */
331 if (0 >= (int) (mon -= 2)) {
332 mon += 12; /* Puts Feb last since it has leap day */
Thomas Gleixner753be622006-01-09 20:52:22 -0800333 year -= 1;
334 }
335
336 return ((((unsigned long)
337 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
338 year*365 - 719499
339 )*24 + hour /* now have hours */
340 )*60 + min /* now have minutes */
341 )*60 + sec; /* finally seconds */
342}
343
Andrew Morton199e7052006-01-09 20:52:24 -0800344EXPORT_SYMBOL(mktime);
345
Thomas Gleixner753be622006-01-09 20:52:22 -0800346/**
347 * set_normalized_timespec - set timespec sec and nsec parts and normalize
348 *
349 * @ts: pointer to timespec variable to be set
350 * @sec: seconds to set
351 * @nsec: nanoseconds to set
352 *
353 * Set seconds and nanoseconds field of a timespec variable and
354 * normalize to the timespec storage format
355 *
356 * Note: The tv_nsec part is always in the range of
357 * 0 <= tv_nsec < NSEC_PER_SEC
358 * For negative values only the tv_sec field is negative !
359 */
Ingo Molnarf4818902006-01-09 20:52:23 -0800360void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
Thomas Gleixner753be622006-01-09 20:52:22 -0800361{
362 while (nsec >= NSEC_PER_SEC) {
363 nsec -= NSEC_PER_SEC;
364 ++sec;
365 }
366 while (nsec < 0) {
367 nsec += NSEC_PER_SEC;
368 --sec;
369 }
370 ts->tv_sec = sec;
371 ts->tv_nsec = nsec;
372}
373
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800374/**
375 * ns_to_timespec - Convert nanoseconds to timespec
376 * @nsec: the nanoseconds value to be converted
377 *
378 * Returns the timespec representation of the nsec parameter.
379 */
Roman Zippeldf869b62006-03-26 01:38:11 -0800380struct timespec ns_to_timespec(const s64 nsec)
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800381{
382 struct timespec ts;
383
George Anzinger88fc3892006-02-03 03:04:20 -0800384 if (!nsec)
385 return (struct timespec) {0, 0};
386
387 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
388 if (unlikely(nsec < 0))
389 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800390
391 return ts;
392}
Stephen Hemminger85795d62007-03-24 21:35:33 -0700393EXPORT_SYMBOL(ns_to_timespec);
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800394
395/**
396 * ns_to_timeval - Convert nanoseconds to timeval
397 * @nsec: the nanoseconds value to be converted
398 *
399 * Returns the timeval representation of the nsec parameter.
400 */
Roman Zippeldf869b62006-03-26 01:38:11 -0800401struct timeval ns_to_timeval(const s64 nsec)
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800402{
403 struct timespec ts = ns_to_timespec(nsec);
404 struct timeval tv;
405
406 tv.tv_sec = ts.tv_sec;
407 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
408
409 return tv;
410}
Eric Dumazetb7aa0bf2007-04-19 16:16:32 -0700411EXPORT_SYMBOL(ns_to_timeval);
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800412
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800413/*
Ingo Molnar41cf5442007-02-16 01:27:28 -0800414 * When we convert to jiffies then we interpret incoming values
415 * the following way:
416 *
417 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
418 *
419 * - 'too large' values [that would result in larger than
420 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
421 *
422 * - all other values are converted to jiffies by either multiplying
423 * the input value by a factor or dividing it with a factor
424 *
425 * We must also be careful about 32-bit overflows.
426 */
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800427unsigned long msecs_to_jiffies(const unsigned int m)
428{
Ingo Molnar41cf5442007-02-16 01:27:28 -0800429 /*
430 * Negative value, means infinite timeout:
431 */
432 if ((int)m < 0)
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800433 return MAX_JIFFY_OFFSET;
Ingo Molnar41cf5442007-02-16 01:27:28 -0800434
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800435#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
Ingo Molnar41cf5442007-02-16 01:27:28 -0800436 /*
437 * HZ is equal to or smaller than 1000, and 1000 is a nice
438 * round multiple of HZ, divide with the factor between them,
439 * but round upwards:
440 */
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800441 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
442#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
Ingo Molnar41cf5442007-02-16 01:27:28 -0800443 /*
444 * HZ is larger than 1000, and HZ is a nice round multiple of
445 * 1000 - simply multiply with the factor between them.
446 *
447 * But first make sure the multiplication result cannot
448 * overflow:
449 */
450 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
451 return MAX_JIFFY_OFFSET;
452
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800453 return m * (HZ / MSEC_PER_SEC);
454#else
Ingo Molnar41cf5442007-02-16 01:27:28 -0800455 /*
456 * Generic case - multiply, round and divide. But first
457 * check that if we are doing a net multiplication, that
458 * we wouldnt overflow:
459 */
460 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
461 return MAX_JIFFY_OFFSET;
462
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800463 return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
464#endif
465}
466EXPORT_SYMBOL(msecs_to_jiffies);
467
468unsigned long usecs_to_jiffies(const unsigned int u)
469{
470 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
471 return MAX_JIFFY_OFFSET;
472#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
473 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
474#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
475 return u * (HZ / USEC_PER_SEC);
476#else
477 return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
478#endif
479}
480EXPORT_SYMBOL(usecs_to_jiffies);
481
482/*
483 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
484 * that a remainder subtract here would not do the right thing as the
485 * resolution values don't fall on second boundries. I.e. the line:
486 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
487 *
488 * Rather, we just shift the bits off the right.
489 *
490 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
491 * value to a scaled second value.
492 */
493unsigned long
494timespec_to_jiffies(const struct timespec *value)
495{
496 unsigned long sec = value->tv_sec;
497 long nsec = value->tv_nsec + TICK_NSEC - 1;
498
499 if (sec >= MAX_SEC_IN_JIFFIES){
500 sec = MAX_SEC_IN_JIFFIES;
501 nsec = 0;
502 }
503 return (((u64)sec * SEC_CONVERSION) +
504 (((u64)nsec * NSEC_CONVERSION) >>
505 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
506
507}
508EXPORT_SYMBOL(timespec_to_jiffies);
509
510void
511jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
512{
513 /*
514 * Convert jiffies to nanoseconds and separate with
515 * one divide.
516 */
517 u64 nsec = (u64)jiffies * TICK_NSEC;
518 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
519}
520EXPORT_SYMBOL(jiffies_to_timespec);
521
522/* Same for "timeval"
523 *
524 * Well, almost. The problem here is that the real system resolution is
525 * in nanoseconds and the value being converted is in micro seconds.
526 * Also for some machines (those that use HZ = 1024, in-particular),
527 * there is a LARGE error in the tick size in microseconds.
528
529 * The solution we use is to do the rounding AFTER we convert the
530 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
531 * Instruction wise, this should cost only an additional add with carry
532 * instruction above the way it was done above.
533 */
534unsigned long
535timeval_to_jiffies(const struct timeval *value)
536{
537 unsigned long sec = value->tv_sec;
538 long usec = value->tv_usec;
539
540 if (sec >= MAX_SEC_IN_JIFFIES){
541 sec = MAX_SEC_IN_JIFFIES;
542 usec = 0;
543 }
544 return (((u64)sec * SEC_CONVERSION) +
545 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
546 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
547}
Thomas Bittermann456a09d2007-04-04 22:20:54 +0200548EXPORT_SYMBOL(timeval_to_jiffies);
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800549
550void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
551{
552 /*
553 * Convert jiffies to nanoseconds and separate with
554 * one divide.
555 */
556 u64 nsec = (u64)jiffies * TICK_NSEC;
557 long tv_usec;
558
559 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
560 tv_usec /= NSEC_PER_USEC;
561 value->tv_usec = tv_usec;
562}
Thomas Bittermann456a09d2007-04-04 22:20:54 +0200563EXPORT_SYMBOL(jiffies_to_timeval);
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800564
565/*
566 * Convert jiffies/jiffies_64 to clock_t and back.
567 */
568clock_t jiffies_to_clock_t(long x)
569{
570#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
571 return x / (HZ / USER_HZ);
572#else
573 u64 tmp = (u64)x * TICK_NSEC;
574 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
575 return (long)tmp;
576#endif
577}
578EXPORT_SYMBOL(jiffies_to_clock_t);
579
580unsigned long clock_t_to_jiffies(unsigned long x)
581{
582#if (HZ % USER_HZ)==0
583 if (x >= ~0UL / (HZ / USER_HZ))
584 return ~0UL;
585 return x * (HZ / USER_HZ);
586#else
587 u64 jif;
588
589 /* Don't worry about loss of precision here .. */
590 if (x >= ~0UL / HZ * USER_HZ)
591 return ~0UL;
592
593 /* .. but do try to contain it here */
594 jif = x * (u64) HZ;
595 do_div(jif, USER_HZ);
596 return jif;
597#endif
598}
599EXPORT_SYMBOL(clock_t_to_jiffies);
600
601u64 jiffies_64_to_clock_t(u64 x)
602{
603#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
604 do_div(x, HZ / USER_HZ);
605#else
606 /*
607 * There are better ways that don't overflow early,
608 * but even this doesn't overflow in hundreds of years
609 * in 64 bits, so..
610 */
611 x *= TICK_NSEC;
612 do_div(x, (NSEC_PER_SEC / USER_HZ));
613#endif
614 return x;
615}
616
617EXPORT_SYMBOL(jiffies_64_to_clock_t);
618
619u64 nsec_to_clock_t(u64 x)
620{
621#if (NSEC_PER_SEC % USER_HZ) == 0
622 do_div(x, (NSEC_PER_SEC / USER_HZ));
623#elif (USER_HZ % 512) == 0
624 x *= USER_HZ/512;
625 do_div(x, (NSEC_PER_SEC / 512));
626#else
627 /*
628 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
629 * overflow after 64.99 years.
630 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
631 */
632 x *= 9;
633 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
634 USER_HZ));
635#endif
636 return x;
637}
638
Linus Torvalds1da177e2005-04-16 15:20:36 -0700639#if (BITS_PER_LONG < 64)
640u64 get_jiffies_64(void)
641{
642 unsigned long seq;
643 u64 ret;
644
645 do {
646 seq = read_seqbegin(&xtime_lock);
647 ret = jiffies_64;
648 } while (read_seqretry(&xtime_lock, seq));
649 return ret;
650}
651
652EXPORT_SYMBOL(get_jiffies_64);
653#endif
654
655EXPORT_SYMBOL(jiffies);