Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * This file implements the perfmon-2 subsystem which is used |
| 3 | * to program the IA-64 Performance Monitoring Unit (PMU). |
| 4 | * |
| 5 | * The initial version of perfmon.c was written by |
| 6 | * Ganesh Venkitachalam, IBM Corp. |
| 7 | * |
| 8 | * Then it was modified for perfmon-1.x by Stephane Eranian and |
| 9 | * David Mosberger, Hewlett Packard Co. |
| 10 | * |
| 11 | * Version Perfmon-2.x is a rewrite of perfmon-1.x |
| 12 | * by Stephane Eranian, Hewlett Packard Co. |
| 13 | * |
Tony Luck | a1ecf7f | 2005-05-18 16:06:00 -0700 | [diff] [blame] | 14 | * Copyright (C) 1999-2005 Hewlett Packard Co |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 15 | * Stephane Eranian <eranian@hpl.hp.com> |
| 16 | * David Mosberger-Tang <davidm@hpl.hp.com> |
| 17 | * |
| 18 | * More information about perfmon available at: |
| 19 | * http://www.hpl.hp.com/research/linux/perfmon |
| 20 | */ |
| 21 | |
| 22 | #include <linux/config.h> |
| 23 | #include <linux/module.h> |
| 24 | #include <linux/kernel.h> |
| 25 | #include <linux/sched.h> |
| 26 | #include <linux/interrupt.h> |
| 27 | #include <linux/smp_lock.h> |
| 28 | #include <linux/proc_fs.h> |
| 29 | #include <linux/seq_file.h> |
| 30 | #include <linux/init.h> |
| 31 | #include <linux/vmalloc.h> |
| 32 | #include <linux/mm.h> |
| 33 | #include <linux/sysctl.h> |
| 34 | #include <linux/list.h> |
| 35 | #include <linux/file.h> |
| 36 | #include <linux/poll.h> |
| 37 | #include <linux/vfs.h> |
| 38 | #include <linux/pagemap.h> |
| 39 | #include <linux/mount.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 40 | #include <linux/bitops.h> |
| 41 | |
| 42 | #include <asm/errno.h> |
| 43 | #include <asm/intrinsics.h> |
| 44 | #include <asm/page.h> |
| 45 | #include <asm/perfmon.h> |
| 46 | #include <asm/processor.h> |
| 47 | #include <asm/signal.h> |
| 48 | #include <asm/system.h> |
| 49 | #include <asm/uaccess.h> |
| 50 | #include <asm/delay.h> |
| 51 | |
| 52 | #ifdef CONFIG_PERFMON |
| 53 | /* |
| 54 | * perfmon context state |
| 55 | */ |
| 56 | #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */ |
| 57 | #define PFM_CTX_LOADED 2 /* context is loaded onto a task */ |
| 58 | #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */ |
| 59 | #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */ |
| 60 | |
| 61 | #define PFM_INVALID_ACTIVATION (~0UL) |
| 62 | |
| 63 | /* |
| 64 | * depth of message queue |
| 65 | */ |
| 66 | #define PFM_MAX_MSGS 32 |
| 67 | #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail) |
| 68 | |
| 69 | /* |
| 70 | * type of a PMU register (bitmask). |
| 71 | * bitmask structure: |
| 72 | * bit0 : register implemented |
| 73 | * bit1 : end marker |
| 74 | * bit2-3 : reserved |
| 75 | * bit4 : pmc has pmc.pm |
| 76 | * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter |
| 77 | * bit6-7 : register type |
| 78 | * bit8-31: reserved |
| 79 | */ |
| 80 | #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */ |
| 81 | #define PFM_REG_IMPL 0x1 /* register implemented */ |
| 82 | #define PFM_REG_END 0x2 /* end marker */ |
| 83 | #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */ |
| 84 | #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */ |
| 85 | #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */ |
| 86 | #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */ |
| 87 | #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */ |
| 88 | |
| 89 | #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END) |
| 90 | #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END) |
| 91 | |
| 92 | #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY) |
| 93 | |
| 94 | /* i assumed unsigned */ |
| 95 | #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL)) |
| 96 | #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL)) |
| 97 | |
| 98 | /* XXX: these assume that register i is implemented */ |
| 99 | #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING) |
| 100 | #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING) |
| 101 | #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR) |
| 102 | #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL) |
| 103 | |
| 104 | #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value |
| 105 | #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask |
| 106 | #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0] |
| 107 | #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0] |
| 108 | |
| 109 | #define PFM_NUM_IBRS IA64_NUM_DBG_REGS |
| 110 | #define PFM_NUM_DBRS IA64_NUM_DBG_REGS |
| 111 | |
| 112 | #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0) |
| 113 | #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling) |
| 114 | #define PFM_CTX_TASK(h) (h)->ctx_task |
| 115 | |
| 116 | #define PMU_PMC_OI 5 /* position of pmc.oi bit */ |
| 117 | |
| 118 | /* XXX: does not support more than 64 PMDs */ |
| 119 | #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask) |
| 120 | #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL) |
| 121 | |
| 122 | #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask) |
| 123 | |
| 124 | #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64) |
| 125 | #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64) |
| 126 | #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1) |
| 127 | #define PFM_CODE_RR 0 /* requesting code range restriction */ |
| 128 | #define PFM_DATA_RR 1 /* requestion data range restriction */ |
| 129 | |
| 130 | #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v) |
| 131 | #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v) |
| 132 | #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info) |
| 133 | |
| 134 | #define RDEP(x) (1UL<<(x)) |
| 135 | |
| 136 | /* |
| 137 | * context protection macros |
| 138 | * in SMP: |
| 139 | * - we need to protect against CPU concurrency (spin_lock) |
| 140 | * - we need to protect against PMU overflow interrupts (local_irq_disable) |
| 141 | * in UP: |
| 142 | * - we need to protect against PMU overflow interrupts (local_irq_disable) |
| 143 | * |
| 144 | * spin_lock_irqsave()/spin_lock_irqrestore(): |
| 145 | * in SMP: local_irq_disable + spin_lock |
| 146 | * in UP : local_irq_disable |
| 147 | * |
| 148 | * spin_lock()/spin_lock(): |
| 149 | * in UP : removed automatically |
| 150 | * in SMP: protect against context accesses from other CPU. interrupts |
| 151 | * are not masked. This is useful for the PMU interrupt handler |
| 152 | * because we know we will not get PMU concurrency in that code. |
| 153 | */ |
| 154 | #define PROTECT_CTX(c, f) \ |
| 155 | do { \ |
| 156 | DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \ |
| 157 | spin_lock_irqsave(&(c)->ctx_lock, f); \ |
| 158 | DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \ |
| 159 | } while(0) |
| 160 | |
| 161 | #define UNPROTECT_CTX(c, f) \ |
| 162 | do { \ |
| 163 | DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \ |
| 164 | spin_unlock_irqrestore(&(c)->ctx_lock, f); \ |
| 165 | } while(0) |
| 166 | |
| 167 | #define PROTECT_CTX_NOPRINT(c, f) \ |
| 168 | do { \ |
| 169 | spin_lock_irqsave(&(c)->ctx_lock, f); \ |
| 170 | } while(0) |
| 171 | |
| 172 | |
| 173 | #define UNPROTECT_CTX_NOPRINT(c, f) \ |
| 174 | do { \ |
| 175 | spin_unlock_irqrestore(&(c)->ctx_lock, f); \ |
| 176 | } while(0) |
| 177 | |
| 178 | |
| 179 | #define PROTECT_CTX_NOIRQ(c) \ |
| 180 | do { \ |
| 181 | spin_lock(&(c)->ctx_lock); \ |
| 182 | } while(0) |
| 183 | |
| 184 | #define UNPROTECT_CTX_NOIRQ(c) \ |
| 185 | do { \ |
| 186 | spin_unlock(&(c)->ctx_lock); \ |
| 187 | } while(0) |
| 188 | |
| 189 | |
| 190 | #ifdef CONFIG_SMP |
| 191 | |
| 192 | #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number) |
| 193 | #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++ |
| 194 | #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION() |
| 195 | |
| 196 | #else /* !CONFIG_SMP */ |
| 197 | #define SET_ACTIVATION(t) do {} while(0) |
| 198 | #define GET_ACTIVATION(t) do {} while(0) |
| 199 | #define INC_ACTIVATION(t) do {} while(0) |
| 200 | #endif /* CONFIG_SMP */ |
| 201 | |
| 202 | #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0) |
| 203 | #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner) |
| 204 | #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx) |
| 205 | |
| 206 | #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g) |
| 207 | #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g) |
| 208 | |
| 209 | #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0) |
| 210 | |
| 211 | /* |
| 212 | * cmp0 must be the value of pmc0 |
| 213 | */ |
| 214 | #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL) |
| 215 | |
| 216 | #define PFMFS_MAGIC 0xa0b4d889 |
| 217 | |
| 218 | /* |
| 219 | * debugging |
| 220 | */ |
| 221 | #define PFM_DEBUGGING 1 |
| 222 | #ifdef PFM_DEBUGGING |
| 223 | #define DPRINT(a) \ |
| 224 | do { \ |
| 225 | if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \ |
| 226 | } while (0) |
| 227 | |
| 228 | #define DPRINT_ovfl(a) \ |
| 229 | do { \ |
| 230 | if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \ |
| 231 | } while (0) |
| 232 | #endif |
| 233 | |
| 234 | /* |
| 235 | * 64-bit software counter structure |
| 236 | * |
| 237 | * the next_reset_type is applied to the next call to pfm_reset_regs() |
| 238 | */ |
| 239 | typedef struct { |
| 240 | unsigned long val; /* virtual 64bit counter value */ |
| 241 | unsigned long lval; /* last reset value */ |
| 242 | unsigned long long_reset; /* reset value on sampling overflow */ |
| 243 | unsigned long short_reset; /* reset value on overflow */ |
| 244 | unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */ |
| 245 | unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */ |
| 246 | unsigned long seed; /* seed for random-number generator */ |
| 247 | unsigned long mask; /* mask for random-number generator */ |
| 248 | unsigned int flags; /* notify/do not notify */ |
| 249 | unsigned long eventid; /* overflow event identifier */ |
| 250 | } pfm_counter_t; |
| 251 | |
| 252 | /* |
| 253 | * context flags |
| 254 | */ |
| 255 | typedef struct { |
| 256 | unsigned int block:1; /* when 1, task will blocked on user notifications */ |
| 257 | unsigned int system:1; /* do system wide monitoring */ |
| 258 | unsigned int using_dbreg:1; /* using range restrictions (debug registers) */ |
| 259 | unsigned int is_sampling:1; /* true if using a custom format */ |
| 260 | unsigned int excl_idle:1; /* exclude idle task in system wide session */ |
| 261 | unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */ |
| 262 | unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */ |
| 263 | unsigned int no_msg:1; /* no message sent on overflow */ |
| 264 | unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */ |
| 265 | unsigned int reserved:22; |
| 266 | } pfm_context_flags_t; |
| 267 | |
| 268 | #define PFM_TRAP_REASON_NONE 0x0 /* default value */ |
| 269 | #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */ |
| 270 | #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */ |
| 271 | |
| 272 | |
| 273 | /* |
| 274 | * perfmon context: encapsulates all the state of a monitoring session |
| 275 | */ |
| 276 | |
| 277 | typedef struct pfm_context { |
| 278 | spinlock_t ctx_lock; /* context protection */ |
| 279 | |
| 280 | pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */ |
| 281 | unsigned int ctx_state; /* state: active/inactive (no bitfield) */ |
| 282 | |
| 283 | struct task_struct *ctx_task; /* task to which context is attached */ |
| 284 | |
| 285 | unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */ |
| 286 | |
| 287 | struct semaphore ctx_restart_sem; /* use for blocking notification mode */ |
| 288 | |
| 289 | unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */ |
| 290 | unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */ |
| 291 | unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */ |
| 292 | |
| 293 | unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */ |
| 294 | unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */ |
| 295 | unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */ |
| 296 | |
| 297 | unsigned long ctx_pmcs[IA64_NUM_PMC_REGS]; /* saved copies of PMC values */ |
| 298 | |
| 299 | unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */ |
| 300 | unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */ |
| 301 | unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */ |
| 302 | unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */ |
| 303 | |
| 304 | pfm_counter_t ctx_pmds[IA64_NUM_PMD_REGS]; /* software state for PMDS */ |
| 305 | |
| 306 | u64 ctx_saved_psr_up; /* only contains psr.up value */ |
| 307 | |
| 308 | unsigned long ctx_last_activation; /* context last activation number for last_cpu */ |
| 309 | unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */ |
| 310 | unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */ |
| 311 | |
| 312 | int ctx_fd; /* file descriptor used my this context */ |
| 313 | pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */ |
| 314 | |
| 315 | pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */ |
| 316 | void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */ |
| 317 | unsigned long ctx_smpl_size; /* size of sampling buffer */ |
| 318 | void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */ |
| 319 | |
| 320 | wait_queue_head_t ctx_msgq_wait; |
| 321 | pfm_msg_t ctx_msgq[PFM_MAX_MSGS]; |
| 322 | int ctx_msgq_head; |
| 323 | int ctx_msgq_tail; |
| 324 | struct fasync_struct *ctx_async_queue; |
| 325 | |
| 326 | wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */ |
| 327 | } pfm_context_t; |
| 328 | |
| 329 | /* |
| 330 | * magic number used to verify that structure is really |
| 331 | * a perfmon context |
| 332 | */ |
| 333 | #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops) |
| 334 | |
| 335 | #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context) |
| 336 | |
| 337 | #ifdef CONFIG_SMP |
| 338 | #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v) |
| 339 | #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu |
| 340 | #else |
| 341 | #define SET_LAST_CPU(ctx, v) do {} while(0) |
| 342 | #define GET_LAST_CPU(ctx) do {} while(0) |
| 343 | #endif |
| 344 | |
| 345 | |
| 346 | #define ctx_fl_block ctx_flags.block |
| 347 | #define ctx_fl_system ctx_flags.system |
| 348 | #define ctx_fl_using_dbreg ctx_flags.using_dbreg |
| 349 | #define ctx_fl_is_sampling ctx_flags.is_sampling |
| 350 | #define ctx_fl_excl_idle ctx_flags.excl_idle |
| 351 | #define ctx_fl_going_zombie ctx_flags.going_zombie |
| 352 | #define ctx_fl_trap_reason ctx_flags.trap_reason |
| 353 | #define ctx_fl_no_msg ctx_flags.no_msg |
| 354 | #define ctx_fl_can_restart ctx_flags.can_restart |
| 355 | |
| 356 | #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0); |
| 357 | #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking |
| 358 | |
| 359 | /* |
| 360 | * global information about all sessions |
| 361 | * mostly used to synchronize between system wide and per-process |
| 362 | */ |
| 363 | typedef struct { |
| 364 | spinlock_t pfs_lock; /* lock the structure */ |
| 365 | |
| 366 | unsigned int pfs_task_sessions; /* number of per task sessions */ |
| 367 | unsigned int pfs_sys_sessions; /* number of per system wide sessions */ |
| 368 | unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */ |
| 369 | unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */ |
| 370 | struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */ |
| 371 | } pfm_session_t; |
| 372 | |
| 373 | /* |
| 374 | * information about a PMC or PMD. |
| 375 | * dep_pmd[]: a bitmask of dependent PMD registers |
| 376 | * dep_pmc[]: a bitmask of dependent PMC registers |
| 377 | */ |
| 378 | typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs); |
| 379 | typedef struct { |
| 380 | unsigned int type; |
| 381 | int pm_pos; |
| 382 | unsigned long default_value; /* power-on default value */ |
| 383 | unsigned long reserved_mask; /* bitmask of reserved bits */ |
| 384 | pfm_reg_check_t read_check; |
| 385 | pfm_reg_check_t write_check; |
| 386 | unsigned long dep_pmd[4]; |
| 387 | unsigned long dep_pmc[4]; |
| 388 | } pfm_reg_desc_t; |
| 389 | |
| 390 | /* assume cnum is a valid monitor */ |
| 391 | #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1) |
| 392 | |
| 393 | /* |
| 394 | * This structure is initialized at boot time and contains |
| 395 | * a description of the PMU main characteristics. |
| 396 | * |
| 397 | * If the probe function is defined, detection is based |
| 398 | * on its return value: |
| 399 | * - 0 means recognized PMU |
| 400 | * - anything else means not supported |
| 401 | * When the probe function is not defined, then the pmu_family field |
| 402 | * is used and it must match the host CPU family such that: |
| 403 | * - cpu->family & config->pmu_family != 0 |
| 404 | */ |
| 405 | typedef struct { |
| 406 | unsigned long ovfl_val; /* overflow value for counters */ |
| 407 | |
| 408 | pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */ |
| 409 | pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */ |
| 410 | |
| 411 | unsigned int num_pmcs; /* number of PMCS: computed at init time */ |
| 412 | unsigned int num_pmds; /* number of PMDS: computed at init time */ |
| 413 | unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */ |
| 414 | unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */ |
| 415 | |
| 416 | char *pmu_name; /* PMU family name */ |
| 417 | unsigned int pmu_family; /* cpuid family pattern used to identify pmu */ |
| 418 | unsigned int flags; /* pmu specific flags */ |
| 419 | unsigned int num_ibrs; /* number of IBRS: computed at init time */ |
| 420 | unsigned int num_dbrs; /* number of DBRS: computed at init time */ |
| 421 | unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */ |
| 422 | int (*probe)(void); /* customized probe routine */ |
| 423 | unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */ |
| 424 | } pmu_config_t; |
| 425 | /* |
| 426 | * PMU specific flags |
| 427 | */ |
| 428 | #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */ |
| 429 | |
| 430 | /* |
| 431 | * debug register related type definitions |
| 432 | */ |
| 433 | typedef struct { |
| 434 | unsigned long ibr_mask:56; |
| 435 | unsigned long ibr_plm:4; |
| 436 | unsigned long ibr_ig:3; |
| 437 | unsigned long ibr_x:1; |
| 438 | } ibr_mask_reg_t; |
| 439 | |
| 440 | typedef struct { |
| 441 | unsigned long dbr_mask:56; |
| 442 | unsigned long dbr_plm:4; |
| 443 | unsigned long dbr_ig:2; |
| 444 | unsigned long dbr_w:1; |
| 445 | unsigned long dbr_r:1; |
| 446 | } dbr_mask_reg_t; |
| 447 | |
| 448 | typedef union { |
| 449 | unsigned long val; |
| 450 | ibr_mask_reg_t ibr; |
| 451 | dbr_mask_reg_t dbr; |
| 452 | } dbreg_t; |
| 453 | |
| 454 | |
| 455 | /* |
| 456 | * perfmon command descriptions |
| 457 | */ |
| 458 | typedef struct { |
| 459 | int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); |
| 460 | char *cmd_name; |
| 461 | int cmd_flags; |
| 462 | unsigned int cmd_narg; |
| 463 | size_t cmd_argsize; |
| 464 | int (*cmd_getsize)(void *arg, size_t *sz); |
| 465 | } pfm_cmd_desc_t; |
| 466 | |
| 467 | #define PFM_CMD_FD 0x01 /* command requires a file descriptor */ |
| 468 | #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */ |
| 469 | #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */ |
| 470 | #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */ |
| 471 | |
| 472 | |
| 473 | #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name |
| 474 | #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ) |
| 475 | #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW) |
| 476 | #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD) |
| 477 | #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP) |
| 478 | |
| 479 | #define PFM_CMD_ARG_MANY -1 /* cannot be zero */ |
| 480 | |
| 481 | typedef struct { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 482 | unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */ |
| 483 | unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */ |
| 484 | unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */ |
| 485 | unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */ |
| 486 | unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */ |
| 487 | unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */ |
| 488 | unsigned long pfm_smpl_handler_calls; |
| 489 | unsigned long pfm_smpl_handler_cycles; |
| 490 | char pad[SMP_CACHE_BYTES] ____cacheline_aligned; |
| 491 | } pfm_stats_t; |
| 492 | |
| 493 | /* |
| 494 | * perfmon internal variables |
| 495 | */ |
| 496 | static pfm_stats_t pfm_stats[NR_CPUS]; |
| 497 | static pfm_session_t pfm_sessions; /* global sessions information */ |
| 498 | |
Tony Luck | fe12e25 | 2005-05-18 17:09:06 -0700 | [diff] [blame] | 499 | static spinlock_t pfm_alt_install_check = SPIN_LOCK_UNLOCKED; |
Tony Luck | a1ecf7f | 2005-05-18 16:06:00 -0700 | [diff] [blame] | 500 | static pfm_intr_handler_desc_t *pfm_alt_intr_handler; |
| 501 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 502 | static struct proc_dir_entry *perfmon_dir; |
| 503 | static pfm_uuid_t pfm_null_uuid = {0,}; |
| 504 | |
| 505 | static spinlock_t pfm_buffer_fmt_lock; |
| 506 | static LIST_HEAD(pfm_buffer_fmt_list); |
| 507 | |
| 508 | static pmu_config_t *pmu_conf; |
| 509 | |
| 510 | /* sysctl() controls */ |
Stephane Eranian | 4944930 | 2005-04-25 13:08:30 -0700 | [diff] [blame] | 511 | pfm_sysctl_t pfm_sysctl; |
| 512 | EXPORT_SYMBOL(pfm_sysctl); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 513 | |
| 514 | static ctl_table pfm_ctl_table[]={ |
| 515 | {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,}, |
| 516 | {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,}, |
| 517 | {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,}, |
| 518 | {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,}, |
| 519 | { 0, }, |
| 520 | }; |
| 521 | static ctl_table pfm_sysctl_dir[] = { |
| 522 | {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, }, |
| 523 | {0,}, |
| 524 | }; |
| 525 | static ctl_table pfm_sysctl_root[] = { |
| 526 | {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, }, |
| 527 | {0,}, |
| 528 | }; |
| 529 | static struct ctl_table_header *pfm_sysctl_header; |
| 530 | |
| 531 | static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); |
| 532 | static int pfm_flush(struct file *filp); |
| 533 | |
| 534 | #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v) |
| 535 | #define pfm_get_cpu_data(a,b) per_cpu(a, b) |
| 536 | |
| 537 | static inline void |
| 538 | pfm_put_task(struct task_struct *task) |
| 539 | { |
| 540 | if (task != current) put_task_struct(task); |
| 541 | } |
| 542 | |
| 543 | static inline void |
| 544 | pfm_set_task_notify(struct task_struct *task) |
| 545 | { |
| 546 | struct thread_info *info; |
| 547 | |
| 548 | info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE); |
| 549 | set_bit(TIF_NOTIFY_RESUME, &info->flags); |
| 550 | } |
| 551 | |
| 552 | static inline void |
| 553 | pfm_clear_task_notify(void) |
| 554 | { |
| 555 | clear_thread_flag(TIF_NOTIFY_RESUME); |
| 556 | } |
| 557 | |
| 558 | static inline void |
| 559 | pfm_reserve_page(unsigned long a) |
| 560 | { |
| 561 | SetPageReserved(vmalloc_to_page((void *)a)); |
| 562 | } |
| 563 | static inline void |
| 564 | pfm_unreserve_page(unsigned long a) |
| 565 | { |
| 566 | ClearPageReserved(vmalloc_to_page((void*)a)); |
| 567 | } |
| 568 | |
| 569 | static inline unsigned long |
| 570 | pfm_protect_ctx_ctxsw(pfm_context_t *x) |
| 571 | { |
| 572 | spin_lock(&(x)->ctx_lock); |
| 573 | return 0UL; |
| 574 | } |
| 575 | |
| 576 | static inline unsigned long |
| 577 | pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f) |
| 578 | { |
| 579 | spin_unlock(&(x)->ctx_lock); |
| 580 | } |
| 581 | |
| 582 | static inline unsigned int |
| 583 | pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct) |
| 584 | { |
| 585 | return do_munmap(mm, addr, len); |
| 586 | } |
| 587 | |
| 588 | static inline unsigned long |
| 589 | pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec) |
| 590 | { |
| 591 | return get_unmapped_area(file, addr, len, pgoff, flags); |
| 592 | } |
| 593 | |
| 594 | |
| 595 | static struct super_block * |
| 596 | pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) |
| 597 | { |
| 598 | return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC); |
| 599 | } |
| 600 | |
| 601 | static struct file_system_type pfm_fs_type = { |
| 602 | .name = "pfmfs", |
| 603 | .get_sb = pfmfs_get_sb, |
| 604 | .kill_sb = kill_anon_super, |
| 605 | }; |
| 606 | |
| 607 | DEFINE_PER_CPU(unsigned long, pfm_syst_info); |
| 608 | DEFINE_PER_CPU(struct task_struct *, pmu_owner); |
| 609 | DEFINE_PER_CPU(pfm_context_t *, pmu_ctx); |
| 610 | DEFINE_PER_CPU(unsigned long, pmu_activation_number); |
Tony Luck | fffcc15 | 2005-05-31 10:38:32 -0700 | [diff] [blame] | 611 | EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 612 | |
| 613 | |
| 614 | /* forward declaration */ |
| 615 | static struct file_operations pfm_file_ops; |
| 616 | |
| 617 | /* |
| 618 | * forward declarations |
| 619 | */ |
| 620 | #ifndef CONFIG_SMP |
| 621 | static void pfm_lazy_save_regs (struct task_struct *ta); |
| 622 | #endif |
| 623 | |
| 624 | void dump_pmu_state(const char *); |
| 625 | static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); |
| 626 | |
| 627 | #include "perfmon_itanium.h" |
| 628 | #include "perfmon_mckinley.h" |
| 629 | #include "perfmon_generic.h" |
| 630 | |
| 631 | static pmu_config_t *pmu_confs[]={ |
| 632 | &pmu_conf_mck, |
| 633 | &pmu_conf_ita, |
| 634 | &pmu_conf_gen, /* must be last */ |
| 635 | NULL |
| 636 | }; |
| 637 | |
| 638 | |
| 639 | static int pfm_end_notify_user(pfm_context_t *ctx); |
| 640 | |
| 641 | static inline void |
| 642 | pfm_clear_psr_pp(void) |
| 643 | { |
| 644 | ia64_rsm(IA64_PSR_PP); |
| 645 | ia64_srlz_i(); |
| 646 | } |
| 647 | |
| 648 | static inline void |
| 649 | pfm_set_psr_pp(void) |
| 650 | { |
| 651 | ia64_ssm(IA64_PSR_PP); |
| 652 | ia64_srlz_i(); |
| 653 | } |
| 654 | |
| 655 | static inline void |
| 656 | pfm_clear_psr_up(void) |
| 657 | { |
| 658 | ia64_rsm(IA64_PSR_UP); |
| 659 | ia64_srlz_i(); |
| 660 | } |
| 661 | |
| 662 | static inline void |
| 663 | pfm_set_psr_up(void) |
| 664 | { |
| 665 | ia64_ssm(IA64_PSR_UP); |
| 666 | ia64_srlz_i(); |
| 667 | } |
| 668 | |
| 669 | static inline unsigned long |
| 670 | pfm_get_psr(void) |
| 671 | { |
| 672 | unsigned long tmp; |
| 673 | tmp = ia64_getreg(_IA64_REG_PSR); |
| 674 | ia64_srlz_i(); |
| 675 | return tmp; |
| 676 | } |
| 677 | |
| 678 | static inline void |
| 679 | pfm_set_psr_l(unsigned long val) |
| 680 | { |
| 681 | ia64_setreg(_IA64_REG_PSR_L, val); |
| 682 | ia64_srlz_i(); |
| 683 | } |
| 684 | |
| 685 | static inline void |
| 686 | pfm_freeze_pmu(void) |
| 687 | { |
| 688 | ia64_set_pmc(0,1UL); |
| 689 | ia64_srlz_d(); |
| 690 | } |
| 691 | |
| 692 | static inline void |
| 693 | pfm_unfreeze_pmu(void) |
| 694 | { |
| 695 | ia64_set_pmc(0,0UL); |
| 696 | ia64_srlz_d(); |
| 697 | } |
| 698 | |
| 699 | static inline void |
| 700 | pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs) |
| 701 | { |
| 702 | int i; |
| 703 | |
| 704 | for (i=0; i < nibrs; i++) { |
| 705 | ia64_set_ibr(i, ibrs[i]); |
| 706 | ia64_dv_serialize_instruction(); |
| 707 | } |
| 708 | ia64_srlz_i(); |
| 709 | } |
| 710 | |
| 711 | static inline void |
| 712 | pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs) |
| 713 | { |
| 714 | int i; |
| 715 | |
| 716 | for (i=0; i < ndbrs; i++) { |
| 717 | ia64_set_dbr(i, dbrs[i]); |
| 718 | ia64_dv_serialize_data(); |
| 719 | } |
| 720 | ia64_srlz_d(); |
| 721 | } |
| 722 | |
| 723 | /* |
| 724 | * PMD[i] must be a counter. no check is made |
| 725 | */ |
| 726 | static inline unsigned long |
| 727 | pfm_read_soft_counter(pfm_context_t *ctx, int i) |
| 728 | { |
| 729 | return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val); |
| 730 | } |
| 731 | |
| 732 | /* |
| 733 | * PMD[i] must be a counter. no check is made |
| 734 | */ |
| 735 | static inline void |
| 736 | pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val) |
| 737 | { |
| 738 | unsigned long ovfl_val = pmu_conf->ovfl_val; |
| 739 | |
| 740 | ctx->ctx_pmds[i].val = val & ~ovfl_val; |
| 741 | /* |
| 742 | * writing to unimplemented part is ignore, so we do not need to |
| 743 | * mask off top part |
| 744 | */ |
| 745 | ia64_set_pmd(i, val & ovfl_val); |
| 746 | } |
| 747 | |
| 748 | static pfm_msg_t * |
| 749 | pfm_get_new_msg(pfm_context_t *ctx) |
| 750 | { |
| 751 | int idx, next; |
| 752 | |
| 753 | next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS; |
| 754 | |
| 755 | DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); |
| 756 | if (next == ctx->ctx_msgq_head) return NULL; |
| 757 | |
| 758 | idx = ctx->ctx_msgq_tail; |
| 759 | ctx->ctx_msgq_tail = next; |
| 760 | |
| 761 | DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx)); |
| 762 | |
| 763 | return ctx->ctx_msgq+idx; |
| 764 | } |
| 765 | |
| 766 | static pfm_msg_t * |
| 767 | pfm_get_next_msg(pfm_context_t *ctx) |
| 768 | { |
| 769 | pfm_msg_t *msg; |
| 770 | |
| 771 | DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); |
| 772 | |
| 773 | if (PFM_CTXQ_EMPTY(ctx)) return NULL; |
| 774 | |
| 775 | /* |
| 776 | * get oldest message |
| 777 | */ |
| 778 | msg = ctx->ctx_msgq+ctx->ctx_msgq_head; |
| 779 | |
| 780 | /* |
| 781 | * and move forward |
| 782 | */ |
| 783 | ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS; |
| 784 | |
| 785 | DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type)); |
| 786 | |
| 787 | return msg; |
| 788 | } |
| 789 | |
| 790 | static void |
| 791 | pfm_reset_msgq(pfm_context_t *ctx) |
| 792 | { |
| 793 | ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0; |
| 794 | DPRINT(("ctx=%p msgq reset\n", ctx)); |
| 795 | } |
| 796 | |
| 797 | static void * |
| 798 | pfm_rvmalloc(unsigned long size) |
| 799 | { |
| 800 | void *mem; |
| 801 | unsigned long addr; |
| 802 | |
| 803 | size = PAGE_ALIGN(size); |
| 804 | mem = vmalloc(size); |
| 805 | if (mem) { |
| 806 | //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem); |
| 807 | memset(mem, 0, size); |
| 808 | addr = (unsigned long)mem; |
| 809 | while (size > 0) { |
| 810 | pfm_reserve_page(addr); |
| 811 | addr+=PAGE_SIZE; |
| 812 | size-=PAGE_SIZE; |
| 813 | } |
| 814 | } |
| 815 | return mem; |
| 816 | } |
| 817 | |
| 818 | static void |
| 819 | pfm_rvfree(void *mem, unsigned long size) |
| 820 | { |
| 821 | unsigned long addr; |
| 822 | |
| 823 | if (mem) { |
| 824 | DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size)); |
| 825 | addr = (unsigned long) mem; |
| 826 | while ((long) size > 0) { |
| 827 | pfm_unreserve_page(addr); |
| 828 | addr+=PAGE_SIZE; |
| 829 | size-=PAGE_SIZE; |
| 830 | } |
| 831 | vfree(mem); |
| 832 | } |
| 833 | return; |
| 834 | } |
| 835 | |
| 836 | static pfm_context_t * |
| 837 | pfm_context_alloc(void) |
| 838 | { |
| 839 | pfm_context_t *ctx; |
| 840 | |
| 841 | /* |
| 842 | * allocate context descriptor |
| 843 | * must be able to free with interrupts disabled |
| 844 | */ |
| 845 | ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL); |
| 846 | if (ctx) { |
| 847 | memset(ctx, 0, sizeof(pfm_context_t)); |
| 848 | DPRINT(("alloc ctx @%p\n", ctx)); |
| 849 | } |
| 850 | return ctx; |
| 851 | } |
| 852 | |
| 853 | static void |
| 854 | pfm_context_free(pfm_context_t *ctx) |
| 855 | { |
| 856 | if (ctx) { |
| 857 | DPRINT(("free ctx @%p\n", ctx)); |
| 858 | kfree(ctx); |
| 859 | } |
| 860 | } |
| 861 | |
| 862 | static void |
| 863 | pfm_mask_monitoring(struct task_struct *task) |
| 864 | { |
| 865 | pfm_context_t *ctx = PFM_GET_CTX(task); |
| 866 | struct thread_struct *th = &task->thread; |
| 867 | unsigned long mask, val, ovfl_mask; |
| 868 | int i; |
| 869 | |
| 870 | DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid)); |
| 871 | |
| 872 | ovfl_mask = pmu_conf->ovfl_val; |
| 873 | /* |
| 874 | * monitoring can only be masked as a result of a valid |
| 875 | * counter overflow. In UP, it means that the PMU still |
| 876 | * has an owner. Note that the owner can be different |
| 877 | * from the current task. However the PMU state belongs |
| 878 | * to the owner. |
| 879 | * In SMP, a valid overflow only happens when task is |
| 880 | * current. Therefore if we come here, we know that |
| 881 | * the PMU state belongs to the current task, therefore |
| 882 | * we can access the live registers. |
| 883 | * |
| 884 | * So in both cases, the live register contains the owner's |
| 885 | * state. We can ONLY touch the PMU registers and NOT the PSR. |
| 886 | * |
| 887 | * As a consequence to this call, the thread->pmds[] array |
| 888 | * contains stale information which must be ignored |
| 889 | * when context is reloaded AND monitoring is active (see |
| 890 | * pfm_restart). |
| 891 | */ |
| 892 | mask = ctx->ctx_used_pmds[0]; |
| 893 | for (i = 0; mask; i++, mask>>=1) { |
| 894 | /* skip non used pmds */ |
| 895 | if ((mask & 0x1) == 0) continue; |
| 896 | val = ia64_get_pmd(i); |
| 897 | |
| 898 | if (PMD_IS_COUNTING(i)) { |
| 899 | /* |
| 900 | * we rebuild the full 64 bit value of the counter |
| 901 | */ |
| 902 | ctx->ctx_pmds[i].val += (val & ovfl_mask); |
| 903 | } else { |
| 904 | ctx->ctx_pmds[i].val = val; |
| 905 | } |
| 906 | DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n", |
| 907 | i, |
| 908 | ctx->ctx_pmds[i].val, |
| 909 | val & ovfl_mask)); |
| 910 | } |
| 911 | /* |
| 912 | * mask monitoring by setting the privilege level to 0 |
| 913 | * we cannot use psr.pp/psr.up for this, it is controlled by |
| 914 | * the user |
| 915 | * |
| 916 | * if task is current, modify actual registers, otherwise modify |
| 917 | * thread save state, i.e., what will be restored in pfm_load_regs() |
| 918 | */ |
| 919 | mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER; |
| 920 | for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) { |
| 921 | if ((mask & 0x1) == 0UL) continue; |
| 922 | ia64_set_pmc(i, th->pmcs[i] & ~0xfUL); |
| 923 | th->pmcs[i] &= ~0xfUL; |
| 924 | DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, th->pmcs[i])); |
| 925 | } |
| 926 | /* |
| 927 | * make all of this visible |
| 928 | */ |
| 929 | ia64_srlz_d(); |
| 930 | } |
| 931 | |
| 932 | /* |
| 933 | * must always be done with task == current |
| 934 | * |
| 935 | * context must be in MASKED state when calling |
| 936 | */ |
| 937 | static void |
| 938 | pfm_restore_monitoring(struct task_struct *task) |
| 939 | { |
| 940 | pfm_context_t *ctx = PFM_GET_CTX(task); |
| 941 | struct thread_struct *th = &task->thread; |
| 942 | unsigned long mask, ovfl_mask; |
| 943 | unsigned long psr, val; |
| 944 | int i, is_system; |
| 945 | |
| 946 | is_system = ctx->ctx_fl_system; |
| 947 | ovfl_mask = pmu_conf->ovfl_val; |
| 948 | |
| 949 | if (task != current) { |
| 950 | printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid); |
| 951 | return; |
| 952 | } |
| 953 | if (ctx->ctx_state != PFM_CTX_MASKED) { |
| 954 | printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__, |
| 955 | task->pid, current->pid, ctx->ctx_state); |
| 956 | return; |
| 957 | } |
| 958 | psr = pfm_get_psr(); |
| 959 | /* |
| 960 | * monitoring is masked via the PMC. |
| 961 | * As we restore their value, we do not want each counter to |
| 962 | * restart right away. We stop monitoring using the PSR, |
| 963 | * restore the PMC (and PMD) and then re-establish the psr |
| 964 | * as it was. Note that there can be no pending overflow at |
| 965 | * this point, because monitoring was MASKED. |
| 966 | * |
| 967 | * system-wide session are pinned and self-monitoring |
| 968 | */ |
| 969 | if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) { |
| 970 | /* disable dcr pp */ |
| 971 | ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP); |
| 972 | pfm_clear_psr_pp(); |
| 973 | } else { |
| 974 | pfm_clear_psr_up(); |
| 975 | } |
| 976 | /* |
| 977 | * first, we restore the PMD |
| 978 | */ |
| 979 | mask = ctx->ctx_used_pmds[0]; |
| 980 | for (i = 0; mask; i++, mask>>=1) { |
| 981 | /* skip non used pmds */ |
| 982 | if ((mask & 0x1) == 0) continue; |
| 983 | |
| 984 | if (PMD_IS_COUNTING(i)) { |
| 985 | /* |
| 986 | * we split the 64bit value according to |
| 987 | * counter width |
| 988 | */ |
| 989 | val = ctx->ctx_pmds[i].val & ovfl_mask; |
| 990 | ctx->ctx_pmds[i].val &= ~ovfl_mask; |
| 991 | } else { |
| 992 | val = ctx->ctx_pmds[i].val; |
| 993 | } |
| 994 | ia64_set_pmd(i, val); |
| 995 | |
| 996 | DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n", |
| 997 | i, |
| 998 | ctx->ctx_pmds[i].val, |
| 999 | val)); |
| 1000 | } |
| 1001 | /* |
| 1002 | * restore the PMCs |
| 1003 | */ |
| 1004 | mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER; |
| 1005 | for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) { |
| 1006 | if ((mask & 0x1) == 0UL) continue; |
| 1007 | th->pmcs[i] = ctx->ctx_pmcs[i]; |
| 1008 | ia64_set_pmc(i, th->pmcs[i]); |
| 1009 | DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, th->pmcs[i])); |
| 1010 | } |
| 1011 | ia64_srlz_d(); |
| 1012 | |
| 1013 | /* |
| 1014 | * must restore DBR/IBR because could be modified while masked |
| 1015 | * XXX: need to optimize |
| 1016 | */ |
| 1017 | if (ctx->ctx_fl_using_dbreg) { |
| 1018 | pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); |
| 1019 | pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); |
| 1020 | } |
| 1021 | |
| 1022 | /* |
| 1023 | * now restore PSR |
| 1024 | */ |
| 1025 | if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) { |
| 1026 | /* enable dcr pp */ |
| 1027 | ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP); |
| 1028 | ia64_srlz_i(); |
| 1029 | } |
| 1030 | pfm_set_psr_l(psr); |
| 1031 | } |
| 1032 | |
| 1033 | static inline void |
| 1034 | pfm_save_pmds(unsigned long *pmds, unsigned long mask) |
| 1035 | { |
| 1036 | int i; |
| 1037 | |
| 1038 | ia64_srlz_d(); |
| 1039 | |
| 1040 | for (i=0; mask; i++, mask>>=1) { |
| 1041 | if (mask & 0x1) pmds[i] = ia64_get_pmd(i); |
| 1042 | } |
| 1043 | } |
| 1044 | |
| 1045 | /* |
| 1046 | * reload from thread state (used for ctxw only) |
| 1047 | */ |
| 1048 | static inline void |
| 1049 | pfm_restore_pmds(unsigned long *pmds, unsigned long mask) |
| 1050 | { |
| 1051 | int i; |
| 1052 | unsigned long val, ovfl_val = pmu_conf->ovfl_val; |
| 1053 | |
| 1054 | for (i=0; mask; i++, mask>>=1) { |
| 1055 | if ((mask & 0x1) == 0) continue; |
| 1056 | val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i]; |
| 1057 | ia64_set_pmd(i, val); |
| 1058 | } |
| 1059 | ia64_srlz_d(); |
| 1060 | } |
| 1061 | |
| 1062 | /* |
| 1063 | * propagate PMD from context to thread-state |
| 1064 | */ |
| 1065 | static inline void |
| 1066 | pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx) |
| 1067 | { |
| 1068 | struct thread_struct *thread = &task->thread; |
| 1069 | unsigned long ovfl_val = pmu_conf->ovfl_val; |
| 1070 | unsigned long mask = ctx->ctx_all_pmds[0]; |
| 1071 | unsigned long val; |
| 1072 | int i; |
| 1073 | |
| 1074 | DPRINT(("mask=0x%lx\n", mask)); |
| 1075 | |
| 1076 | for (i=0; mask; i++, mask>>=1) { |
| 1077 | |
| 1078 | val = ctx->ctx_pmds[i].val; |
| 1079 | |
| 1080 | /* |
| 1081 | * We break up the 64 bit value into 2 pieces |
| 1082 | * the lower bits go to the machine state in the |
| 1083 | * thread (will be reloaded on ctxsw in). |
| 1084 | * The upper part stays in the soft-counter. |
| 1085 | */ |
| 1086 | if (PMD_IS_COUNTING(i)) { |
| 1087 | ctx->ctx_pmds[i].val = val & ~ovfl_val; |
| 1088 | val &= ovfl_val; |
| 1089 | } |
| 1090 | thread->pmds[i] = val; |
| 1091 | |
| 1092 | DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n", |
| 1093 | i, |
| 1094 | thread->pmds[i], |
| 1095 | ctx->ctx_pmds[i].val)); |
| 1096 | } |
| 1097 | } |
| 1098 | |
| 1099 | /* |
| 1100 | * propagate PMC from context to thread-state |
| 1101 | */ |
| 1102 | static inline void |
| 1103 | pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx) |
| 1104 | { |
| 1105 | struct thread_struct *thread = &task->thread; |
| 1106 | unsigned long mask = ctx->ctx_all_pmcs[0]; |
| 1107 | int i; |
| 1108 | |
| 1109 | DPRINT(("mask=0x%lx\n", mask)); |
| 1110 | |
| 1111 | for (i=0; mask; i++, mask>>=1) { |
| 1112 | /* masking 0 with ovfl_val yields 0 */ |
| 1113 | thread->pmcs[i] = ctx->ctx_pmcs[i]; |
| 1114 | DPRINT(("pmc[%d]=0x%lx\n", i, thread->pmcs[i])); |
| 1115 | } |
| 1116 | } |
| 1117 | |
| 1118 | |
| 1119 | |
| 1120 | static inline void |
| 1121 | pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask) |
| 1122 | { |
| 1123 | int i; |
| 1124 | |
| 1125 | for (i=0; mask; i++, mask>>=1) { |
| 1126 | if ((mask & 0x1) == 0) continue; |
| 1127 | ia64_set_pmc(i, pmcs[i]); |
| 1128 | } |
| 1129 | ia64_srlz_d(); |
| 1130 | } |
| 1131 | |
| 1132 | static inline int |
| 1133 | pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b) |
| 1134 | { |
| 1135 | return memcmp(a, b, sizeof(pfm_uuid_t)); |
| 1136 | } |
| 1137 | |
| 1138 | static inline int |
| 1139 | pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs) |
| 1140 | { |
| 1141 | int ret = 0; |
| 1142 | if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs); |
| 1143 | return ret; |
| 1144 | } |
| 1145 | |
| 1146 | static inline int |
| 1147 | pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size) |
| 1148 | { |
| 1149 | int ret = 0; |
| 1150 | if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size); |
| 1151 | return ret; |
| 1152 | } |
| 1153 | |
| 1154 | |
| 1155 | static inline int |
| 1156 | pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, |
| 1157 | int cpu, void *arg) |
| 1158 | { |
| 1159 | int ret = 0; |
| 1160 | if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg); |
| 1161 | return ret; |
| 1162 | } |
| 1163 | |
| 1164 | static inline int |
| 1165 | pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags, |
| 1166 | int cpu, void *arg) |
| 1167 | { |
| 1168 | int ret = 0; |
| 1169 | if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg); |
| 1170 | return ret; |
| 1171 | } |
| 1172 | |
| 1173 | static inline int |
| 1174 | pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs) |
| 1175 | { |
| 1176 | int ret = 0; |
| 1177 | if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs); |
| 1178 | return ret; |
| 1179 | } |
| 1180 | |
| 1181 | static inline int |
| 1182 | pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs) |
| 1183 | { |
| 1184 | int ret = 0; |
| 1185 | if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs); |
| 1186 | return ret; |
| 1187 | } |
| 1188 | |
| 1189 | static pfm_buffer_fmt_t * |
| 1190 | __pfm_find_buffer_fmt(pfm_uuid_t uuid) |
| 1191 | { |
| 1192 | struct list_head * pos; |
| 1193 | pfm_buffer_fmt_t * entry; |
| 1194 | |
| 1195 | list_for_each(pos, &pfm_buffer_fmt_list) { |
| 1196 | entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list); |
| 1197 | if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0) |
| 1198 | return entry; |
| 1199 | } |
| 1200 | return NULL; |
| 1201 | } |
| 1202 | |
| 1203 | /* |
| 1204 | * find a buffer format based on its uuid |
| 1205 | */ |
| 1206 | static pfm_buffer_fmt_t * |
| 1207 | pfm_find_buffer_fmt(pfm_uuid_t uuid) |
| 1208 | { |
| 1209 | pfm_buffer_fmt_t * fmt; |
| 1210 | spin_lock(&pfm_buffer_fmt_lock); |
| 1211 | fmt = __pfm_find_buffer_fmt(uuid); |
| 1212 | spin_unlock(&pfm_buffer_fmt_lock); |
| 1213 | return fmt; |
| 1214 | } |
| 1215 | |
| 1216 | int |
| 1217 | pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt) |
| 1218 | { |
| 1219 | int ret = 0; |
| 1220 | |
| 1221 | /* some sanity checks */ |
| 1222 | if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL; |
| 1223 | |
| 1224 | /* we need at least a handler */ |
| 1225 | if (fmt->fmt_handler == NULL) return -EINVAL; |
| 1226 | |
| 1227 | /* |
| 1228 | * XXX: need check validity of fmt_arg_size |
| 1229 | */ |
| 1230 | |
| 1231 | spin_lock(&pfm_buffer_fmt_lock); |
| 1232 | |
| 1233 | if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) { |
| 1234 | printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name); |
| 1235 | ret = -EBUSY; |
| 1236 | goto out; |
| 1237 | } |
| 1238 | list_add(&fmt->fmt_list, &pfm_buffer_fmt_list); |
| 1239 | printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name); |
| 1240 | |
| 1241 | out: |
| 1242 | spin_unlock(&pfm_buffer_fmt_lock); |
| 1243 | return ret; |
| 1244 | } |
| 1245 | EXPORT_SYMBOL(pfm_register_buffer_fmt); |
| 1246 | |
| 1247 | int |
| 1248 | pfm_unregister_buffer_fmt(pfm_uuid_t uuid) |
| 1249 | { |
| 1250 | pfm_buffer_fmt_t *fmt; |
| 1251 | int ret = 0; |
| 1252 | |
| 1253 | spin_lock(&pfm_buffer_fmt_lock); |
| 1254 | |
| 1255 | fmt = __pfm_find_buffer_fmt(uuid); |
| 1256 | if (!fmt) { |
| 1257 | printk(KERN_ERR "perfmon: cannot unregister format, not found\n"); |
| 1258 | ret = -EINVAL; |
| 1259 | goto out; |
| 1260 | } |
| 1261 | list_del_init(&fmt->fmt_list); |
| 1262 | printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name); |
| 1263 | |
| 1264 | out: |
| 1265 | spin_unlock(&pfm_buffer_fmt_lock); |
| 1266 | return ret; |
| 1267 | |
| 1268 | } |
| 1269 | EXPORT_SYMBOL(pfm_unregister_buffer_fmt); |
| 1270 | |
Stephane Eranian | 8df5a50 | 2005-04-11 13:45:00 -0700 | [diff] [blame] | 1271 | extern void update_pal_halt_status(int); |
| 1272 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1273 | static int |
| 1274 | pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu) |
| 1275 | { |
| 1276 | unsigned long flags; |
| 1277 | /* |
| 1278 | * validy checks on cpu_mask have been done upstream |
| 1279 | */ |
| 1280 | LOCK_PFS(flags); |
| 1281 | |
| 1282 | DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", |
| 1283 | pfm_sessions.pfs_sys_sessions, |
| 1284 | pfm_sessions.pfs_task_sessions, |
| 1285 | pfm_sessions.pfs_sys_use_dbregs, |
| 1286 | is_syswide, |
| 1287 | cpu)); |
| 1288 | |
| 1289 | if (is_syswide) { |
| 1290 | /* |
| 1291 | * cannot mix system wide and per-task sessions |
| 1292 | */ |
| 1293 | if (pfm_sessions.pfs_task_sessions > 0UL) { |
| 1294 | DPRINT(("system wide not possible, %u conflicting task_sessions\n", |
| 1295 | pfm_sessions.pfs_task_sessions)); |
| 1296 | goto abort; |
| 1297 | } |
| 1298 | |
| 1299 | if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict; |
| 1300 | |
| 1301 | DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id())); |
| 1302 | |
| 1303 | pfm_sessions.pfs_sys_session[cpu] = task; |
| 1304 | |
| 1305 | pfm_sessions.pfs_sys_sessions++ ; |
| 1306 | |
| 1307 | } else { |
| 1308 | if (pfm_sessions.pfs_sys_sessions) goto abort; |
| 1309 | pfm_sessions.pfs_task_sessions++; |
| 1310 | } |
| 1311 | |
| 1312 | DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", |
| 1313 | pfm_sessions.pfs_sys_sessions, |
| 1314 | pfm_sessions.pfs_task_sessions, |
| 1315 | pfm_sessions.pfs_sys_use_dbregs, |
| 1316 | is_syswide, |
| 1317 | cpu)); |
| 1318 | |
Stephane Eranian | 8df5a50 | 2005-04-11 13:45:00 -0700 | [diff] [blame] | 1319 | /* |
| 1320 | * disable default_idle() to go to PAL_HALT |
| 1321 | */ |
| 1322 | update_pal_halt_status(0); |
| 1323 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1324 | UNLOCK_PFS(flags); |
| 1325 | |
| 1326 | return 0; |
| 1327 | |
| 1328 | error_conflict: |
| 1329 | DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n", |
| 1330 | pfm_sessions.pfs_sys_session[cpu]->pid, |
Tony Luck | a1ecf7f | 2005-05-18 16:06:00 -0700 | [diff] [blame] | 1331 | cpu)); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1332 | abort: |
| 1333 | UNLOCK_PFS(flags); |
| 1334 | |
| 1335 | return -EBUSY; |
| 1336 | |
| 1337 | } |
| 1338 | |
| 1339 | static int |
| 1340 | pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu) |
| 1341 | { |
| 1342 | unsigned long flags; |
| 1343 | /* |
| 1344 | * validy checks on cpu_mask have been done upstream |
| 1345 | */ |
| 1346 | LOCK_PFS(flags); |
| 1347 | |
| 1348 | DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", |
| 1349 | pfm_sessions.pfs_sys_sessions, |
| 1350 | pfm_sessions.pfs_task_sessions, |
| 1351 | pfm_sessions.pfs_sys_use_dbregs, |
| 1352 | is_syswide, |
| 1353 | cpu)); |
| 1354 | |
| 1355 | |
| 1356 | if (is_syswide) { |
| 1357 | pfm_sessions.pfs_sys_session[cpu] = NULL; |
| 1358 | /* |
| 1359 | * would not work with perfmon+more than one bit in cpu_mask |
| 1360 | */ |
| 1361 | if (ctx && ctx->ctx_fl_using_dbreg) { |
| 1362 | if (pfm_sessions.pfs_sys_use_dbregs == 0) { |
| 1363 | printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx); |
| 1364 | } else { |
| 1365 | pfm_sessions.pfs_sys_use_dbregs--; |
| 1366 | } |
| 1367 | } |
| 1368 | pfm_sessions.pfs_sys_sessions--; |
| 1369 | } else { |
| 1370 | pfm_sessions.pfs_task_sessions--; |
| 1371 | } |
| 1372 | DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", |
| 1373 | pfm_sessions.pfs_sys_sessions, |
| 1374 | pfm_sessions.pfs_task_sessions, |
| 1375 | pfm_sessions.pfs_sys_use_dbregs, |
| 1376 | is_syswide, |
| 1377 | cpu)); |
| 1378 | |
Stephane Eranian | 8df5a50 | 2005-04-11 13:45:00 -0700 | [diff] [blame] | 1379 | /* |
| 1380 | * if possible, enable default_idle() to go into PAL_HALT |
| 1381 | */ |
| 1382 | if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0) |
| 1383 | update_pal_halt_status(1); |
| 1384 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1385 | UNLOCK_PFS(flags); |
| 1386 | |
| 1387 | return 0; |
| 1388 | } |
| 1389 | |
| 1390 | /* |
| 1391 | * removes virtual mapping of the sampling buffer. |
| 1392 | * IMPORTANT: cannot be called with interrupts disable, e.g. inside |
| 1393 | * a PROTECT_CTX() section. |
| 1394 | */ |
| 1395 | static int |
| 1396 | pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size) |
| 1397 | { |
| 1398 | int r; |
| 1399 | |
| 1400 | /* sanity checks */ |
| 1401 | if (task->mm == NULL || size == 0UL || vaddr == NULL) { |
| 1402 | printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm); |
| 1403 | return -EINVAL; |
| 1404 | } |
| 1405 | |
| 1406 | DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size)); |
| 1407 | |
| 1408 | /* |
| 1409 | * does the actual unmapping |
| 1410 | */ |
| 1411 | down_write(&task->mm->mmap_sem); |
| 1412 | |
| 1413 | DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size)); |
| 1414 | |
| 1415 | r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0); |
| 1416 | |
| 1417 | up_write(&task->mm->mmap_sem); |
| 1418 | if (r !=0) { |
| 1419 | printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size); |
| 1420 | } |
| 1421 | |
| 1422 | DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r)); |
| 1423 | |
| 1424 | return 0; |
| 1425 | } |
| 1426 | |
| 1427 | /* |
| 1428 | * free actual physical storage used by sampling buffer |
| 1429 | */ |
| 1430 | #if 0 |
| 1431 | static int |
| 1432 | pfm_free_smpl_buffer(pfm_context_t *ctx) |
| 1433 | { |
| 1434 | pfm_buffer_fmt_t *fmt; |
| 1435 | |
| 1436 | if (ctx->ctx_smpl_hdr == NULL) goto invalid_free; |
| 1437 | |
| 1438 | /* |
| 1439 | * we won't use the buffer format anymore |
| 1440 | */ |
| 1441 | fmt = ctx->ctx_buf_fmt; |
| 1442 | |
| 1443 | DPRINT(("sampling buffer @%p size %lu vaddr=%p\n", |
| 1444 | ctx->ctx_smpl_hdr, |
| 1445 | ctx->ctx_smpl_size, |
| 1446 | ctx->ctx_smpl_vaddr)); |
| 1447 | |
| 1448 | pfm_buf_fmt_exit(fmt, current, NULL, NULL); |
| 1449 | |
| 1450 | /* |
| 1451 | * free the buffer |
| 1452 | */ |
| 1453 | pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size); |
| 1454 | |
| 1455 | ctx->ctx_smpl_hdr = NULL; |
| 1456 | ctx->ctx_smpl_size = 0UL; |
| 1457 | |
| 1458 | return 0; |
| 1459 | |
| 1460 | invalid_free: |
| 1461 | printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid); |
| 1462 | return -EINVAL; |
| 1463 | } |
| 1464 | #endif |
| 1465 | |
| 1466 | static inline void |
| 1467 | pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt) |
| 1468 | { |
| 1469 | if (fmt == NULL) return; |
| 1470 | |
| 1471 | pfm_buf_fmt_exit(fmt, current, NULL, NULL); |
| 1472 | |
| 1473 | } |
| 1474 | |
| 1475 | /* |
| 1476 | * pfmfs should _never_ be mounted by userland - too much of security hassle, |
| 1477 | * no real gain from having the whole whorehouse mounted. So we don't need |
| 1478 | * any operations on the root directory. However, we need a non-trivial |
| 1479 | * d_name - pfm: will go nicely and kill the special-casing in procfs. |
| 1480 | */ |
| 1481 | static struct vfsmount *pfmfs_mnt; |
| 1482 | |
| 1483 | static int __init |
| 1484 | init_pfm_fs(void) |
| 1485 | { |
| 1486 | int err = register_filesystem(&pfm_fs_type); |
| 1487 | if (!err) { |
| 1488 | pfmfs_mnt = kern_mount(&pfm_fs_type); |
| 1489 | err = PTR_ERR(pfmfs_mnt); |
| 1490 | if (IS_ERR(pfmfs_mnt)) |
| 1491 | unregister_filesystem(&pfm_fs_type); |
| 1492 | else |
| 1493 | err = 0; |
| 1494 | } |
| 1495 | return err; |
| 1496 | } |
| 1497 | |
| 1498 | static void __exit |
| 1499 | exit_pfm_fs(void) |
| 1500 | { |
| 1501 | unregister_filesystem(&pfm_fs_type); |
| 1502 | mntput(pfmfs_mnt); |
| 1503 | } |
| 1504 | |
| 1505 | static ssize_t |
| 1506 | pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos) |
| 1507 | { |
| 1508 | pfm_context_t *ctx; |
| 1509 | pfm_msg_t *msg; |
| 1510 | ssize_t ret; |
| 1511 | unsigned long flags; |
| 1512 | DECLARE_WAITQUEUE(wait, current); |
| 1513 | if (PFM_IS_FILE(filp) == 0) { |
| 1514 | printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid); |
| 1515 | return -EINVAL; |
| 1516 | } |
| 1517 | |
| 1518 | ctx = (pfm_context_t *)filp->private_data; |
| 1519 | if (ctx == NULL) { |
| 1520 | printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid); |
| 1521 | return -EINVAL; |
| 1522 | } |
| 1523 | |
| 1524 | /* |
| 1525 | * check even when there is no message |
| 1526 | */ |
| 1527 | if (size < sizeof(pfm_msg_t)) { |
| 1528 | DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t))); |
| 1529 | return -EINVAL; |
| 1530 | } |
| 1531 | |
| 1532 | PROTECT_CTX(ctx, flags); |
| 1533 | |
| 1534 | /* |
| 1535 | * put ourselves on the wait queue |
| 1536 | */ |
| 1537 | add_wait_queue(&ctx->ctx_msgq_wait, &wait); |
| 1538 | |
| 1539 | |
| 1540 | for(;;) { |
| 1541 | /* |
| 1542 | * check wait queue |
| 1543 | */ |
| 1544 | |
| 1545 | set_current_state(TASK_INTERRUPTIBLE); |
| 1546 | |
| 1547 | DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); |
| 1548 | |
| 1549 | ret = 0; |
| 1550 | if(PFM_CTXQ_EMPTY(ctx) == 0) break; |
| 1551 | |
| 1552 | UNPROTECT_CTX(ctx, flags); |
| 1553 | |
| 1554 | /* |
| 1555 | * check non-blocking read |
| 1556 | */ |
| 1557 | ret = -EAGAIN; |
| 1558 | if(filp->f_flags & O_NONBLOCK) break; |
| 1559 | |
| 1560 | /* |
| 1561 | * check pending signals |
| 1562 | */ |
| 1563 | if(signal_pending(current)) { |
| 1564 | ret = -EINTR; |
| 1565 | break; |
| 1566 | } |
| 1567 | /* |
| 1568 | * no message, so wait |
| 1569 | */ |
| 1570 | schedule(); |
| 1571 | |
| 1572 | PROTECT_CTX(ctx, flags); |
| 1573 | } |
| 1574 | DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret)); |
| 1575 | set_current_state(TASK_RUNNING); |
| 1576 | remove_wait_queue(&ctx->ctx_msgq_wait, &wait); |
| 1577 | |
| 1578 | if (ret < 0) goto abort; |
| 1579 | |
| 1580 | ret = -EINVAL; |
| 1581 | msg = pfm_get_next_msg(ctx); |
| 1582 | if (msg == NULL) { |
| 1583 | printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid); |
| 1584 | goto abort_locked; |
| 1585 | } |
| 1586 | |
Stephane Eranian | 4944930 | 2005-04-25 13:08:30 -0700 | [diff] [blame] | 1587 | DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type)); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1588 | |
| 1589 | ret = -EFAULT; |
| 1590 | if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t); |
| 1591 | |
| 1592 | abort_locked: |
| 1593 | UNPROTECT_CTX(ctx, flags); |
| 1594 | abort: |
| 1595 | return ret; |
| 1596 | } |
| 1597 | |
| 1598 | static ssize_t |
| 1599 | pfm_write(struct file *file, const char __user *ubuf, |
| 1600 | size_t size, loff_t *ppos) |
| 1601 | { |
| 1602 | DPRINT(("pfm_write called\n")); |
| 1603 | return -EINVAL; |
| 1604 | } |
| 1605 | |
| 1606 | static unsigned int |
| 1607 | pfm_poll(struct file *filp, poll_table * wait) |
| 1608 | { |
| 1609 | pfm_context_t *ctx; |
| 1610 | unsigned long flags; |
| 1611 | unsigned int mask = 0; |
| 1612 | |
| 1613 | if (PFM_IS_FILE(filp) == 0) { |
| 1614 | printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid); |
| 1615 | return 0; |
| 1616 | } |
| 1617 | |
| 1618 | ctx = (pfm_context_t *)filp->private_data; |
| 1619 | if (ctx == NULL) { |
| 1620 | printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid); |
| 1621 | return 0; |
| 1622 | } |
| 1623 | |
| 1624 | |
| 1625 | DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd)); |
| 1626 | |
| 1627 | poll_wait(filp, &ctx->ctx_msgq_wait, wait); |
| 1628 | |
| 1629 | PROTECT_CTX(ctx, flags); |
| 1630 | |
| 1631 | if (PFM_CTXQ_EMPTY(ctx) == 0) |
| 1632 | mask = POLLIN | POLLRDNORM; |
| 1633 | |
| 1634 | UNPROTECT_CTX(ctx, flags); |
| 1635 | |
| 1636 | DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask)); |
| 1637 | |
| 1638 | return mask; |
| 1639 | } |
| 1640 | |
| 1641 | static int |
| 1642 | pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) |
| 1643 | { |
| 1644 | DPRINT(("pfm_ioctl called\n")); |
| 1645 | return -EINVAL; |
| 1646 | } |
| 1647 | |
| 1648 | /* |
| 1649 | * interrupt cannot be masked when coming here |
| 1650 | */ |
| 1651 | static inline int |
| 1652 | pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on) |
| 1653 | { |
| 1654 | int ret; |
| 1655 | |
| 1656 | ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue); |
| 1657 | |
| 1658 | DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n", |
| 1659 | current->pid, |
| 1660 | fd, |
| 1661 | on, |
| 1662 | ctx->ctx_async_queue, ret)); |
| 1663 | |
| 1664 | return ret; |
| 1665 | } |
| 1666 | |
| 1667 | static int |
| 1668 | pfm_fasync(int fd, struct file *filp, int on) |
| 1669 | { |
| 1670 | pfm_context_t *ctx; |
| 1671 | int ret; |
| 1672 | |
| 1673 | if (PFM_IS_FILE(filp) == 0) { |
| 1674 | printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid); |
| 1675 | return -EBADF; |
| 1676 | } |
| 1677 | |
| 1678 | ctx = (pfm_context_t *)filp->private_data; |
| 1679 | if (ctx == NULL) { |
| 1680 | printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid); |
| 1681 | return -EBADF; |
| 1682 | } |
| 1683 | /* |
| 1684 | * we cannot mask interrupts during this call because this may |
| 1685 | * may go to sleep if memory is not readily avalaible. |
| 1686 | * |
| 1687 | * We are protected from the conetxt disappearing by the get_fd()/put_fd() |
| 1688 | * done in caller. Serialization of this function is ensured by caller. |
| 1689 | */ |
| 1690 | ret = pfm_do_fasync(fd, filp, ctx, on); |
| 1691 | |
| 1692 | |
| 1693 | DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n", |
| 1694 | fd, |
| 1695 | on, |
| 1696 | ctx->ctx_async_queue, ret)); |
| 1697 | |
| 1698 | return ret; |
| 1699 | } |
| 1700 | |
| 1701 | #ifdef CONFIG_SMP |
| 1702 | /* |
| 1703 | * this function is exclusively called from pfm_close(). |
| 1704 | * The context is not protected at that time, nor are interrupts |
| 1705 | * on the remote CPU. That's necessary to avoid deadlocks. |
| 1706 | */ |
| 1707 | static void |
| 1708 | pfm_syswide_force_stop(void *info) |
| 1709 | { |
| 1710 | pfm_context_t *ctx = (pfm_context_t *)info; |
| 1711 | struct pt_regs *regs = ia64_task_regs(current); |
| 1712 | struct task_struct *owner; |
| 1713 | unsigned long flags; |
| 1714 | int ret; |
| 1715 | |
| 1716 | if (ctx->ctx_cpu != smp_processor_id()) { |
| 1717 | printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n", |
| 1718 | ctx->ctx_cpu, |
| 1719 | smp_processor_id()); |
| 1720 | return; |
| 1721 | } |
| 1722 | owner = GET_PMU_OWNER(); |
| 1723 | if (owner != ctx->ctx_task) { |
| 1724 | printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n", |
| 1725 | smp_processor_id(), |
| 1726 | owner->pid, ctx->ctx_task->pid); |
| 1727 | return; |
| 1728 | } |
| 1729 | if (GET_PMU_CTX() != ctx) { |
| 1730 | printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n", |
| 1731 | smp_processor_id(), |
| 1732 | GET_PMU_CTX(), ctx); |
| 1733 | return; |
| 1734 | } |
| 1735 | |
| 1736 | DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid)); |
| 1737 | /* |
| 1738 | * the context is already protected in pfm_close(), we simply |
| 1739 | * need to mask interrupts to avoid a PMU interrupt race on |
| 1740 | * this CPU |
| 1741 | */ |
| 1742 | local_irq_save(flags); |
| 1743 | |
| 1744 | ret = pfm_context_unload(ctx, NULL, 0, regs); |
| 1745 | if (ret) { |
| 1746 | DPRINT(("context_unload returned %d\n", ret)); |
| 1747 | } |
| 1748 | |
| 1749 | /* |
| 1750 | * unmask interrupts, PMU interrupts are now spurious here |
| 1751 | */ |
| 1752 | local_irq_restore(flags); |
| 1753 | } |
| 1754 | |
| 1755 | static void |
| 1756 | pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx) |
| 1757 | { |
| 1758 | int ret; |
| 1759 | |
| 1760 | DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu)); |
| 1761 | ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1); |
| 1762 | DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret)); |
| 1763 | } |
| 1764 | #endif /* CONFIG_SMP */ |
| 1765 | |
| 1766 | /* |
| 1767 | * called for each close(). Partially free resources. |
| 1768 | * When caller is self-monitoring, the context is unloaded. |
| 1769 | */ |
| 1770 | static int |
| 1771 | pfm_flush(struct file *filp) |
| 1772 | { |
| 1773 | pfm_context_t *ctx; |
| 1774 | struct task_struct *task; |
| 1775 | struct pt_regs *regs; |
| 1776 | unsigned long flags; |
| 1777 | unsigned long smpl_buf_size = 0UL; |
| 1778 | void *smpl_buf_vaddr = NULL; |
| 1779 | int state, is_system; |
| 1780 | |
| 1781 | if (PFM_IS_FILE(filp) == 0) { |
| 1782 | DPRINT(("bad magic for\n")); |
| 1783 | return -EBADF; |
| 1784 | } |
| 1785 | |
| 1786 | ctx = (pfm_context_t *)filp->private_data; |
| 1787 | if (ctx == NULL) { |
| 1788 | printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid); |
| 1789 | return -EBADF; |
| 1790 | } |
| 1791 | |
| 1792 | /* |
| 1793 | * remove our file from the async queue, if we use this mode. |
| 1794 | * This can be done without the context being protected. We come |
| 1795 | * here when the context has become unreacheable by other tasks. |
| 1796 | * |
| 1797 | * We may still have active monitoring at this point and we may |
| 1798 | * end up in pfm_overflow_handler(). However, fasync_helper() |
| 1799 | * operates with interrupts disabled and it cleans up the |
| 1800 | * queue. If the PMU handler is called prior to entering |
| 1801 | * fasync_helper() then it will send a signal. If it is |
| 1802 | * invoked after, it will find an empty queue and no |
| 1803 | * signal will be sent. In both case, we are safe |
| 1804 | */ |
| 1805 | if (filp->f_flags & FASYNC) { |
| 1806 | DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue)); |
| 1807 | pfm_do_fasync (-1, filp, ctx, 0); |
| 1808 | } |
| 1809 | |
| 1810 | PROTECT_CTX(ctx, flags); |
| 1811 | |
| 1812 | state = ctx->ctx_state; |
| 1813 | is_system = ctx->ctx_fl_system; |
| 1814 | |
| 1815 | task = PFM_CTX_TASK(ctx); |
| 1816 | regs = ia64_task_regs(task); |
| 1817 | |
| 1818 | DPRINT(("ctx_state=%d is_current=%d\n", |
| 1819 | state, |
| 1820 | task == current ? 1 : 0)); |
| 1821 | |
| 1822 | /* |
| 1823 | * if state == UNLOADED, then task is NULL |
| 1824 | */ |
| 1825 | |
| 1826 | /* |
| 1827 | * we must stop and unload because we are losing access to the context. |
| 1828 | */ |
| 1829 | if (task == current) { |
| 1830 | #ifdef CONFIG_SMP |
| 1831 | /* |
| 1832 | * the task IS the owner but it migrated to another CPU: that's bad |
| 1833 | * but we must handle this cleanly. Unfortunately, the kernel does |
| 1834 | * not provide a mechanism to block migration (while the context is loaded). |
| 1835 | * |
| 1836 | * We need to release the resource on the ORIGINAL cpu. |
| 1837 | */ |
| 1838 | if (is_system && ctx->ctx_cpu != smp_processor_id()) { |
| 1839 | |
| 1840 | DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); |
| 1841 | /* |
| 1842 | * keep context protected but unmask interrupt for IPI |
| 1843 | */ |
| 1844 | local_irq_restore(flags); |
| 1845 | |
| 1846 | pfm_syswide_cleanup_other_cpu(ctx); |
| 1847 | |
| 1848 | /* |
| 1849 | * restore interrupt masking |
| 1850 | */ |
| 1851 | local_irq_save(flags); |
| 1852 | |
| 1853 | /* |
| 1854 | * context is unloaded at this point |
| 1855 | */ |
| 1856 | } else |
| 1857 | #endif /* CONFIG_SMP */ |
| 1858 | { |
| 1859 | |
| 1860 | DPRINT(("forcing unload\n")); |
| 1861 | /* |
| 1862 | * stop and unload, returning with state UNLOADED |
| 1863 | * and session unreserved. |
| 1864 | */ |
| 1865 | pfm_context_unload(ctx, NULL, 0, regs); |
| 1866 | |
| 1867 | DPRINT(("ctx_state=%d\n", ctx->ctx_state)); |
| 1868 | } |
| 1869 | } |
| 1870 | |
| 1871 | /* |
| 1872 | * remove virtual mapping, if any, for the calling task. |
| 1873 | * cannot reset ctx field until last user is calling close(). |
| 1874 | * |
| 1875 | * ctx_smpl_vaddr must never be cleared because it is needed |
| 1876 | * by every task with access to the context |
| 1877 | * |
| 1878 | * When called from do_exit(), the mm context is gone already, therefore |
| 1879 | * mm is NULL, i.e., the VMA is already gone and we do not have to |
| 1880 | * do anything here |
| 1881 | */ |
| 1882 | if (ctx->ctx_smpl_vaddr && current->mm) { |
| 1883 | smpl_buf_vaddr = ctx->ctx_smpl_vaddr; |
| 1884 | smpl_buf_size = ctx->ctx_smpl_size; |
| 1885 | } |
| 1886 | |
| 1887 | UNPROTECT_CTX(ctx, flags); |
| 1888 | |
| 1889 | /* |
| 1890 | * if there was a mapping, then we systematically remove it |
| 1891 | * at this point. Cannot be done inside critical section |
| 1892 | * because some VM function reenables interrupts. |
| 1893 | * |
| 1894 | */ |
| 1895 | if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size); |
| 1896 | |
| 1897 | return 0; |
| 1898 | } |
| 1899 | /* |
| 1900 | * called either on explicit close() or from exit_files(). |
| 1901 | * Only the LAST user of the file gets to this point, i.e., it is |
| 1902 | * called only ONCE. |
| 1903 | * |
| 1904 | * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero |
| 1905 | * (fput()),i.e, last task to access the file. Nobody else can access the |
| 1906 | * file at this point. |
| 1907 | * |
| 1908 | * When called from exit_files(), the VMA has been freed because exit_mm() |
| 1909 | * is executed before exit_files(). |
| 1910 | * |
| 1911 | * When called from exit_files(), the current task is not yet ZOMBIE but we |
| 1912 | * flush the PMU state to the context. |
| 1913 | */ |
| 1914 | static int |
| 1915 | pfm_close(struct inode *inode, struct file *filp) |
| 1916 | { |
| 1917 | pfm_context_t *ctx; |
| 1918 | struct task_struct *task; |
| 1919 | struct pt_regs *regs; |
| 1920 | DECLARE_WAITQUEUE(wait, current); |
| 1921 | unsigned long flags; |
| 1922 | unsigned long smpl_buf_size = 0UL; |
| 1923 | void *smpl_buf_addr = NULL; |
| 1924 | int free_possible = 1; |
| 1925 | int state, is_system; |
| 1926 | |
| 1927 | DPRINT(("pfm_close called private=%p\n", filp->private_data)); |
| 1928 | |
| 1929 | if (PFM_IS_FILE(filp) == 0) { |
| 1930 | DPRINT(("bad magic\n")); |
| 1931 | return -EBADF; |
| 1932 | } |
| 1933 | |
| 1934 | ctx = (pfm_context_t *)filp->private_data; |
| 1935 | if (ctx == NULL) { |
| 1936 | printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid); |
| 1937 | return -EBADF; |
| 1938 | } |
| 1939 | |
| 1940 | PROTECT_CTX(ctx, flags); |
| 1941 | |
| 1942 | state = ctx->ctx_state; |
| 1943 | is_system = ctx->ctx_fl_system; |
| 1944 | |
| 1945 | task = PFM_CTX_TASK(ctx); |
| 1946 | regs = ia64_task_regs(task); |
| 1947 | |
| 1948 | DPRINT(("ctx_state=%d is_current=%d\n", |
| 1949 | state, |
| 1950 | task == current ? 1 : 0)); |
| 1951 | |
| 1952 | /* |
| 1953 | * if task == current, then pfm_flush() unloaded the context |
| 1954 | */ |
| 1955 | if (state == PFM_CTX_UNLOADED) goto doit; |
| 1956 | |
| 1957 | /* |
| 1958 | * context is loaded/masked and task != current, we need to |
| 1959 | * either force an unload or go zombie |
| 1960 | */ |
| 1961 | |
| 1962 | /* |
| 1963 | * The task is currently blocked or will block after an overflow. |
| 1964 | * we must force it to wakeup to get out of the |
| 1965 | * MASKED state and transition to the unloaded state by itself. |
| 1966 | * |
| 1967 | * This situation is only possible for per-task mode |
| 1968 | */ |
| 1969 | if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) { |
| 1970 | |
| 1971 | /* |
| 1972 | * set a "partial" zombie state to be checked |
| 1973 | * upon return from down() in pfm_handle_work(). |
| 1974 | * |
| 1975 | * We cannot use the ZOMBIE state, because it is checked |
| 1976 | * by pfm_load_regs() which is called upon wakeup from down(). |
| 1977 | * In such case, it would free the context and then we would |
| 1978 | * return to pfm_handle_work() which would access the |
| 1979 | * stale context. Instead, we set a flag invisible to pfm_load_regs() |
| 1980 | * but visible to pfm_handle_work(). |
| 1981 | * |
| 1982 | * For some window of time, we have a zombie context with |
| 1983 | * ctx_state = MASKED and not ZOMBIE |
| 1984 | */ |
| 1985 | ctx->ctx_fl_going_zombie = 1; |
| 1986 | |
| 1987 | /* |
| 1988 | * force task to wake up from MASKED state |
| 1989 | */ |
| 1990 | up(&ctx->ctx_restart_sem); |
| 1991 | |
| 1992 | DPRINT(("waking up ctx_state=%d\n", state)); |
| 1993 | |
| 1994 | /* |
| 1995 | * put ourself to sleep waiting for the other |
| 1996 | * task to report completion |
| 1997 | * |
| 1998 | * the context is protected by mutex, therefore there |
| 1999 | * is no risk of being notified of completion before |
| 2000 | * begin actually on the waitq. |
| 2001 | */ |
| 2002 | set_current_state(TASK_INTERRUPTIBLE); |
| 2003 | add_wait_queue(&ctx->ctx_zombieq, &wait); |
| 2004 | |
| 2005 | UNPROTECT_CTX(ctx, flags); |
| 2006 | |
| 2007 | /* |
| 2008 | * XXX: check for signals : |
| 2009 | * - ok for explicit close |
| 2010 | * - not ok when coming from exit_files() |
| 2011 | */ |
| 2012 | schedule(); |
| 2013 | |
| 2014 | |
| 2015 | PROTECT_CTX(ctx, flags); |
| 2016 | |
| 2017 | |
| 2018 | remove_wait_queue(&ctx->ctx_zombieq, &wait); |
| 2019 | set_current_state(TASK_RUNNING); |
| 2020 | |
| 2021 | /* |
| 2022 | * context is unloaded at this point |
| 2023 | */ |
| 2024 | DPRINT(("after zombie wakeup ctx_state=%d for\n", state)); |
| 2025 | } |
| 2026 | else if (task != current) { |
| 2027 | #ifdef CONFIG_SMP |
| 2028 | /* |
| 2029 | * switch context to zombie state |
| 2030 | */ |
| 2031 | ctx->ctx_state = PFM_CTX_ZOMBIE; |
| 2032 | |
| 2033 | DPRINT(("zombie ctx for [%d]\n", task->pid)); |
| 2034 | /* |
| 2035 | * cannot free the context on the spot. deferred until |
| 2036 | * the task notices the ZOMBIE state |
| 2037 | */ |
| 2038 | free_possible = 0; |
| 2039 | #else |
| 2040 | pfm_context_unload(ctx, NULL, 0, regs); |
| 2041 | #endif |
| 2042 | } |
| 2043 | |
| 2044 | doit: |
| 2045 | /* reload state, may have changed during opening of critical section */ |
| 2046 | state = ctx->ctx_state; |
| 2047 | |
| 2048 | /* |
| 2049 | * the context is still attached to a task (possibly current) |
| 2050 | * we cannot destroy it right now |
| 2051 | */ |
| 2052 | |
| 2053 | /* |
| 2054 | * we must free the sampling buffer right here because |
| 2055 | * we cannot rely on it being cleaned up later by the |
| 2056 | * monitored task. It is not possible to free vmalloc'ed |
| 2057 | * memory in pfm_load_regs(). Instead, we remove the buffer |
| 2058 | * now. should there be subsequent PMU overflow originally |
| 2059 | * meant for sampling, the will be converted to spurious |
| 2060 | * and that's fine because the monitoring tools is gone anyway. |
| 2061 | */ |
| 2062 | if (ctx->ctx_smpl_hdr) { |
| 2063 | smpl_buf_addr = ctx->ctx_smpl_hdr; |
| 2064 | smpl_buf_size = ctx->ctx_smpl_size; |
| 2065 | /* no more sampling */ |
| 2066 | ctx->ctx_smpl_hdr = NULL; |
| 2067 | ctx->ctx_fl_is_sampling = 0; |
| 2068 | } |
| 2069 | |
| 2070 | DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n", |
| 2071 | state, |
| 2072 | free_possible, |
| 2073 | smpl_buf_addr, |
| 2074 | smpl_buf_size)); |
| 2075 | |
| 2076 | if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt); |
| 2077 | |
| 2078 | /* |
| 2079 | * UNLOADED that the session has already been unreserved. |
| 2080 | */ |
| 2081 | if (state == PFM_CTX_ZOMBIE) { |
| 2082 | pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu); |
| 2083 | } |
| 2084 | |
| 2085 | /* |
| 2086 | * disconnect file descriptor from context must be done |
| 2087 | * before we unlock. |
| 2088 | */ |
| 2089 | filp->private_data = NULL; |
| 2090 | |
| 2091 | /* |
| 2092 | * if we free on the spot, the context is now completely unreacheable |
| 2093 | * from the callers side. The monitored task side is also cut, so we |
| 2094 | * can freely cut. |
| 2095 | * |
| 2096 | * If we have a deferred free, only the caller side is disconnected. |
| 2097 | */ |
| 2098 | UNPROTECT_CTX(ctx, flags); |
| 2099 | |
| 2100 | /* |
| 2101 | * All memory free operations (especially for vmalloc'ed memory) |
| 2102 | * MUST be done with interrupts ENABLED. |
| 2103 | */ |
| 2104 | if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size); |
| 2105 | |
| 2106 | /* |
| 2107 | * return the memory used by the context |
| 2108 | */ |
| 2109 | if (free_possible) pfm_context_free(ctx); |
| 2110 | |
| 2111 | return 0; |
| 2112 | } |
| 2113 | |
| 2114 | static int |
| 2115 | pfm_no_open(struct inode *irrelevant, struct file *dontcare) |
| 2116 | { |
| 2117 | DPRINT(("pfm_no_open called\n")); |
| 2118 | return -ENXIO; |
| 2119 | } |
| 2120 | |
| 2121 | |
| 2122 | |
| 2123 | static struct file_operations pfm_file_ops = { |
| 2124 | .llseek = no_llseek, |
| 2125 | .read = pfm_read, |
| 2126 | .write = pfm_write, |
| 2127 | .poll = pfm_poll, |
| 2128 | .ioctl = pfm_ioctl, |
| 2129 | .open = pfm_no_open, /* special open code to disallow open via /proc */ |
| 2130 | .fasync = pfm_fasync, |
| 2131 | .release = pfm_close, |
| 2132 | .flush = pfm_flush |
| 2133 | }; |
| 2134 | |
| 2135 | static int |
| 2136 | pfmfs_delete_dentry(struct dentry *dentry) |
| 2137 | { |
| 2138 | return 1; |
| 2139 | } |
| 2140 | |
| 2141 | static struct dentry_operations pfmfs_dentry_operations = { |
| 2142 | .d_delete = pfmfs_delete_dentry, |
| 2143 | }; |
| 2144 | |
| 2145 | |
| 2146 | static int |
| 2147 | pfm_alloc_fd(struct file **cfile) |
| 2148 | { |
| 2149 | int fd, ret = 0; |
| 2150 | struct file *file = NULL; |
| 2151 | struct inode * inode; |
| 2152 | char name[32]; |
| 2153 | struct qstr this; |
| 2154 | |
| 2155 | fd = get_unused_fd(); |
| 2156 | if (fd < 0) return -ENFILE; |
| 2157 | |
| 2158 | ret = -ENFILE; |
| 2159 | |
| 2160 | file = get_empty_filp(); |
| 2161 | if (!file) goto out; |
| 2162 | |
| 2163 | /* |
| 2164 | * allocate a new inode |
| 2165 | */ |
| 2166 | inode = new_inode(pfmfs_mnt->mnt_sb); |
| 2167 | if (!inode) goto out; |
| 2168 | |
| 2169 | DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode)); |
| 2170 | |
| 2171 | inode->i_mode = S_IFCHR|S_IRUGO; |
| 2172 | inode->i_uid = current->fsuid; |
| 2173 | inode->i_gid = current->fsgid; |
| 2174 | |
| 2175 | sprintf(name, "[%lu]", inode->i_ino); |
| 2176 | this.name = name; |
| 2177 | this.len = strlen(name); |
| 2178 | this.hash = inode->i_ino; |
| 2179 | |
| 2180 | ret = -ENOMEM; |
| 2181 | |
| 2182 | /* |
| 2183 | * allocate a new dcache entry |
| 2184 | */ |
| 2185 | file->f_dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this); |
| 2186 | if (!file->f_dentry) goto out; |
| 2187 | |
| 2188 | file->f_dentry->d_op = &pfmfs_dentry_operations; |
| 2189 | |
| 2190 | d_add(file->f_dentry, inode); |
| 2191 | file->f_vfsmnt = mntget(pfmfs_mnt); |
| 2192 | file->f_mapping = inode->i_mapping; |
| 2193 | |
| 2194 | file->f_op = &pfm_file_ops; |
| 2195 | file->f_mode = FMODE_READ; |
| 2196 | file->f_flags = O_RDONLY; |
| 2197 | file->f_pos = 0; |
| 2198 | |
| 2199 | /* |
| 2200 | * may have to delay until context is attached? |
| 2201 | */ |
| 2202 | fd_install(fd, file); |
| 2203 | |
| 2204 | /* |
| 2205 | * the file structure we will use |
| 2206 | */ |
| 2207 | *cfile = file; |
| 2208 | |
| 2209 | return fd; |
| 2210 | out: |
| 2211 | if (file) put_filp(file); |
| 2212 | put_unused_fd(fd); |
| 2213 | return ret; |
| 2214 | } |
| 2215 | |
| 2216 | static void |
| 2217 | pfm_free_fd(int fd, struct file *file) |
| 2218 | { |
| 2219 | struct files_struct *files = current->files; |
| 2220 | |
| 2221 | /* |
| 2222 | * there ie no fd_uninstall(), so we do it here |
| 2223 | */ |
| 2224 | spin_lock(&files->file_lock); |
| 2225 | files->fd[fd] = NULL; |
| 2226 | spin_unlock(&files->file_lock); |
| 2227 | |
| 2228 | if (file) put_filp(file); |
| 2229 | put_unused_fd(fd); |
| 2230 | } |
| 2231 | |
| 2232 | static int |
| 2233 | pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size) |
| 2234 | { |
| 2235 | DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size)); |
| 2236 | |
| 2237 | while (size > 0) { |
| 2238 | unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT; |
| 2239 | |
| 2240 | |
| 2241 | if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY)) |
| 2242 | return -ENOMEM; |
| 2243 | |
| 2244 | addr += PAGE_SIZE; |
| 2245 | buf += PAGE_SIZE; |
| 2246 | size -= PAGE_SIZE; |
| 2247 | } |
| 2248 | return 0; |
| 2249 | } |
| 2250 | |
| 2251 | /* |
| 2252 | * allocate a sampling buffer and remaps it into the user address space of the task |
| 2253 | */ |
| 2254 | static int |
| 2255 | pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr) |
| 2256 | { |
| 2257 | struct mm_struct *mm = task->mm; |
| 2258 | struct vm_area_struct *vma = NULL; |
| 2259 | unsigned long size; |
| 2260 | void *smpl_buf; |
| 2261 | |
| 2262 | |
| 2263 | /* |
| 2264 | * the fixed header + requested size and align to page boundary |
| 2265 | */ |
| 2266 | size = PAGE_ALIGN(rsize); |
| 2267 | |
| 2268 | DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size)); |
| 2269 | |
| 2270 | /* |
| 2271 | * check requested size to avoid Denial-of-service attacks |
| 2272 | * XXX: may have to refine this test |
| 2273 | * Check against address space limit. |
| 2274 | * |
| 2275 | * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur) |
| 2276 | * return -ENOMEM; |
| 2277 | */ |
| 2278 | if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur) |
| 2279 | return -ENOMEM; |
| 2280 | |
| 2281 | /* |
| 2282 | * We do the easy to undo allocations first. |
| 2283 | * |
| 2284 | * pfm_rvmalloc(), clears the buffer, so there is no leak |
| 2285 | */ |
| 2286 | smpl_buf = pfm_rvmalloc(size); |
| 2287 | if (smpl_buf == NULL) { |
| 2288 | DPRINT(("Can't allocate sampling buffer\n")); |
| 2289 | return -ENOMEM; |
| 2290 | } |
| 2291 | |
| 2292 | DPRINT(("smpl_buf @%p\n", smpl_buf)); |
| 2293 | |
| 2294 | /* allocate vma */ |
| 2295 | vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); |
| 2296 | if (!vma) { |
| 2297 | DPRINT(("Cannot allocate vma\n")); |
| 2298 | goto error_kmem; |
| 2299 | } |
| 2300 | memset(vma, 0, sizeof(*vma)); |
| 2301 | |
| 2302 | /* |
| 2303 | * partially initialize the vma for the sampling buffer |
| 2304 | */ |
| 2305 | vma->vm_mm = mm; |
| 2306 | vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED; |
| 2307 | vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */ |
| 2308 | |
| 2309 | /* |
| 2310 | * Now we have everything we need and we can initialize |
| 2311 | * and connect all the data structures |
| 2312 | */ |
| 2313 | |
| 2314 | ctx->ctx_smpl_hdr = smpl_buf; |
| 2315 | ctx->ctx_smpl_size = size; /* aligned size */ |
| 2316 | |
| 2317 | /* |
| 2318 | * Let's do the difficult operations next. |
| 2319 | * |
| 2320 | * now we atomically find some area in the address space and |
| 2321 | * remap the buffer in it. |
| 2322 | */ |
| 2323 | down_write(&task->mm->mmap_sem); |
| 2324 | |
| 2325 | /* find some free area in address space, must have mmap sem held */ |
| 2326 | vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0); |
| 2327 | if (vma->vm_start == 0UL) { |
| 2328 | DPRINT(("Cannot find unmapped area for size %ld\n", size)); |
| 2329 | up_write(&task->mm->mmap_sem); |
| 2330 | goto error; |
| 2331 | } |
| 2332 | vma->vm_end = vma->vm_start + size; |
| 2333 | vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; |
| 2334 | |
| 2335 | DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start)); |
| 2336 | |
| 2337 | /* can only be applied to current task, need to have the mm semaphore held when called */ |
| 2338 | if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) { |
| 2339 | DPRINT(("Can't remap buffer\n")); |
| 2340 | up_write(&task->mm->mmap_sem); |
| 2341 | goto error; |
| 2342 | } |
| 2343 | |
| 2344 | /* |
| 2345 | * now insert the vma in the vm list for the process, must be |
| 2346 | * done with mmap lock held |
| 2347 | */ |
| 2348 | insert_vm_struct(mm, vma); |
| 2349 | |
| 2350 | mm->total_vm += size >> PAGE_SHIFT; |
| 2351 | vm_stat_account(vma); |
| 2352 | up_write(&task->mm->mmap_sem); |
| 2353 | |
| 2354 | /* |
| 2355 | * keep track of user level virtual address |
| 2356 | */ |
| 2357 | ctx->ctx_smpl_vaddr = (void *)vma->vm_start; |
| 2358 | *(unsigned long *)user_vaddr = vma->vm_start; |
| 2359 | |
| 2360 | return 0; |
| 2361 | |
| 2362 | error: |
| 2363 | kmem_cache_free(vm_area_cachep, vma); |
| 2364 | error_kmem: |
| 2365 | pfm_rvfree(smpl_buf, size); |
| 2366 | |
| 2367 | return -ENOMEM; |
| 2368 | } |
| 2369 | |
| 2370 | /* |
| 2371 | * XXX: do something better here |
| 2372 | */ |
| 2373 | static int |
| 2374 | pfm_bad_permissions(struct task_struct *task) |
| 2375 | { |
| 2376 | /* inspired by ptrace_attach() */ |
| 2377 | DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n", |
| 2378 | current->uid, |
| 2379 | current->gid, |
| 2380 | task->euid, |
| 2381 | task->suid, |
| 2382 | task->uid, |
| 2383 | task->egid, |
| 2384 | task->sgid)); |
| 2385 | |
| 2386 | return ((current->uid != task->euid) |
| 2387 | || (current->uid != task->suid) |
| 2388 | || (current->uid != task->uid) |
| 2389 | || (current->gid != task->egid) |
| 2390 | || (current->gid != task->sgid) |
| 2391 | || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE); |
| 2392 | } |
| 2393 | |
| 2394 | static int |
| 2395 | pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx) |
| 2396 | { |
| 2397 | int ctx_flags; |
| 2398 | |
| 2399 | /* valid signal */ |
| 2400 | |
| 2401 | ctx_flags = pfx->ctx_flags; |
| 2402 | |
| 2403 | if (ctx_flags & PFM_FL_SYSTEM_WIDE) { |
| 2404 | |
| 2405 | /* |
| 2406 | * cannot block in this mode |
| 2407 | */ |
| 2408 | if (ctx_flags & PFM_FL_NOTIFY_BLOCK) { |
| 2409 | DPRINT(("cannot use blocking mode when in system wide monitoring\n")); |
| 2410 | return -EINVAL; |
| 2411 | } |
| 2412 | } else { |
| 2413 | } |
| 2414 | /* probably more to add here */ |
| 2415 | |
| 2416 | return 0; |
| 2417 | } |
| 2418 | |
| 2419 | static int |
| 2420 | pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags, |
| 2421 | unsigned int cpu, pfarg_context_t *arg) |
| 2422 | { |
| 2423 | pfm_buffer_fmt_t *fmt = NULL; |
| 2424 | unsigned long size = 0UL; |
| 2425 | void *uaddr = NULL; |
| 2426 | void *fmt_arg = NULL; |
| 2427 | int ret = 0; |
| 2428 | #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1) |
| 2429 | |
| 2430 | /* invoke and lock buffer format, if found */ |
| 2431 | fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id); |
| 2432 | if (fmt == NULL) { |
| 2433 | DPRINT(("[%d] cannot find buffer format\n", task->pid)); |
| 2434 | return -EINVAL; |
| 2435 | } |
| 2436 | |
| 2437 | /* |
| 2438 | * buffer argument MUST be contiguous to pfarg_context_t |
| 2439 | */ |
| 2440 | if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg); |
| 2441 | |
| 2442 | ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg); |
| 2443 | |
| 2444 | DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret)); |
| 2445 | |
| 2446 | if (ret) goto error; |
| 2447 | |
| 2448 | /* link buffer format and context */ |
| 2449 | ctx->ctx_buf_fmt = fmt; |
| 2450 | |
| 2451 | /* |
| 2452 | * check if buffer format wants to use perfmon buffer allocation/mapping service |
| 2453 | */ |
| 2454 | ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size); |
| 2455 | if (ret) goto error; |
| 2456 | |
| 2457 | if (size) { |
| 2458 | /* |
| 2459 | * buffer is always remapped into the caller's address space |
| 2460 | */ |
| 2461 | ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr); |
| 2462 | if (ret) goto error; |
| 2463 | |
| 2464 | /* keep track of user address of buffer */ |
| 2465 | arg->ctx_smpl_vaddr = uaddr; |
| 2466 | } |
| 2467 | ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg); |
| 2468 | |
| 2469 | error: |
| 2470 | return ret; |
| 2471 | } |
| 2472 | |
| 2473 | static void |
| 2474 | pfm_reset_pmu_state(pfm_context_t *ctx) |
| 2475 | { |
| 2476 | int i; |
| 2477 | |
| 2478 | /* |
| 2479 | * install reset values for PMC. |
| 2480 | */ |
| 2481 | for (i=1; PMC_IS_LAST(i) == 0; i++) { |
| 2482 | if (PMC_IS_IMPL(i) == 0) continue; |
| 2483 | ctx->ctx_pmcs[i] = PMC_DFL_VAL(i); |
| 2484 | DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i])); |
| 2485 | } |
| 2486 | /* |
| 2487 | * PMD registers are set to 0UL when the context in memset() |
| 2488 | */ |
| 2489 | |
| 2490 | /* |
| 2491 | * On context switched restore, we must restore ALL pmc and ALL pmd even |
| 2492 | * when they are not actively used by the task. In UP, the incoming process |
| 2493 | * may otherwise pick up left over PMC, PMD state from the previous process. |
| 2494 | * As opposed to PMD, stale PMC can cause harm to the incoming |
| 2495 | * process because they may change what is being measured. |
| 2496 | * Therefore, we must systematically reinstall the entire |
| 2497 | * PMC state. In SMP, the same thing is possible on the |
| 2498 | * same CPU but also on between 2 CPUs. |
| 2499 | * |
| 2500 | * The problem with PMD is information leaking especially |
| 2501 | * to user level when psr.sp=0 |
| 2502 | * |
| 2503 | * There is unfortunately no easy way to avoid this problem |
| 2504 | * on either UP or SMP. This definitively slows down the |
| 2505 | * pfm_load_regs() function. |
| 2506 | */ |
| 2507 | |
| 2508 | /* |
| 2509 | * bitmask of all PMCs accessible to this context |
| 2510 | * |
| 2511 | * PMC0 is treated differently. |
| 2512 | */ |
| 2513 | ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1; |
| 2514 | |
| 2515 | /* |
| 2516 | * bitmask of all PMDs that are accesible to this context |
| 2517 | */ |
| 2518 | ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0]; |
| 2519 | |
| 2520 | DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0])); |
| 2521 | |
| 2522 | /* |
| 2523 | * useful in case of re-enable after disable |
| 2524 | */ |
| 2525 | ctx->ctx_used_ibrs[0] = 0UL; |
| 2526 | ctx->ctx_used_dbrs[0] = 0UL; |
| 2527 | } |
| 2528 | |
| 2529 | static int |
| 2530 | pfm_ctx_getsize(void *arg, size_t *sz) |
| 2531 | { |
| 2532 | pfarg_context_t *req = (pfarg_context_t *)arg; |
| 2533 | pfm_buffer_fmt_t *fmt; |
| 2534 | |
| 2535 | *sz = 0; |
| 2536 | |
| 2537 | if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0; |
| 2538 | |
| 2539 | fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id); |
| 2540 | if (fmt == NULL) { |
| 2541 | DPRINT(("cannot find buffer format\n")); |
| 2542 | return -EINVAL; |
| 2543 | } |
| 2544 | /* get just enough to copy in user parameters */ |
| 2545 | *sz = fmt->fmt_arg_size; |
| 2546 | DPRINT(("arg_size=%lu\n", *sz)); |
| 2547 | |
| 2548 | return 0; |
| 2549 | } |
| 2550 | |
| 2551 | |
| 2552 | |
| 2553 | /* |
| 2554 | * cannot attach if : |
| 2555 | * - kernel task |
| 2556 | * - task not owned by caller |
| 2557 | * - task incompatible with context mode |
| 2558 | */ |
| 2559 | static int |
| 2560 | pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task) |
| 2561 | { |
| 2562 | /* |
| 2563 | * no kernel task or task not owner by caller |
| 2564 | */ |
| 2565 | if (task->mm == NULL) { |
| 2566 | DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid)); |
| 2567 | return -EPERM; |
| 2568 | } |
| 2569 | if (pfm_bad_permissions(task)) { |
| 2570 | DPRINT(("no permission to attach to [%d]\n", task->pid)); |
| 2571 | return -EPERM; |
| 2572 | } |
| 2573 | /* |
| 2574 | * cannot block in self-monitoring mode |
| 2575 | */ |
| 2576 | if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) { |
| 2577 | DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid)); |
| 2578 | return -EINVAL; |
| 2579 | } |
| 2580 | |
| 2581 | if (task->exit_state == EXIT_ZOMBIE) { |
| 2582 | DPRINT(("cannot attach to zombie task [%d]\n", task->pid)); |
| 2583 | return -EBUSY; |
| 2584 | } |
| 2585 | |
| 2586 | /* |
| 2587 | * always ok for self |
| 2588 | */ |
| 2589 | if (task == current) return 0; |
| 2590 | |
| 2591 | if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) { |
| 2592 | DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state)); |
| 2593 | return -EBUSY; |
| 2594 | } |
| 2595 | /* |
| 2596 | * make sure the task is off any CPU |
| 2597 | */ |
| 2598 | wait_task_inactive(task); |
| 2599 | |
| 2600 | /* more to come... */ |
| 2601 | |
| 2602 | return 0; |
| 2603 | } |
| 2604 | |
| 2605 | static int |
| 2606 | pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task) |
| 2607 | { |
| 2608 | struct task_struct *p = current; |
| 2609 | int ret; |
| 2610 | |
| 2611 | /* XXX: need to add more checks here */ |
| 2612 | if (pid < 2) return -EPERM; |
| 2613 | |
| 2614 | if (pid != current->pid) { |
| 2615 | |
| 2616 | read_lock(&tasklist_lock); |
| 2617 | |
| 2618 | p = find_task_by_pid(pid); |
| 2619 | |
| 2620 | /* make sure task cannot go away while we operate on it */ |
| 2621 | if (p) get_task_struct(p); |
| 2622 | |
| 2623 | read_unlock(&tasklist_lock); |
| 2624 | |
| 2625 | if (p == NULL) return -ESRCH; |
| 2626 | } |
| 2627 | |
| 2628 | ret = pfm_task_incompatible(ctx, p); |
| 2629 | if (ret == 0) { |
| 2630 | *task = p; |
| 2631 | } else if (p != current) { |
| 2632 | pfm_put_task(p); |
| 2633 | } |
| 2634 | return ret; |
| 2635 | } |
| 2636 | |
| 2637 | |
| 2638 | |
| 2639 | static int |
| 2640 | pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| 2641 | { |
| 2642 | pfarg_context_t *req = (pfarg_context_t *)arg; |
| 2643 | struct file *filp; |
| 2644 | int ctx_flags; |
| 2645 | int ret; |
| 2646 | |
| 2647 | /* let's check the arguments first */ |
| 2648 | ret = pfarg_is_sane(current, req); |
| 2649 | if (ret < 0) return ret; |
| 2650 | |
| 2651 | ctx_flags = req->ctx_flags; |
| 2652 | |
| 2653 | ret = -ENOMEM; |
| 2654 | |
| 2655 | ctx = pfm_context_alloc(); |
| 2656 | if (!ctx) goto error; |
| 2657 | |
| 2658 | ret = pfm_alloc_fd(&filp); |
| 2659 | if (ret < 0) goto error_file; |
| 2660 | |
| 2661 | req->ctx_fd = ctx->ctx_fd = ret; |
| 2662 | |
| 2663 | /* |
| 2664 | * attach context to file |
| 2665 | */ |
| 2666 | filp->private_data = ctx; |
| 2667 | |
| 2668 | /* |
| 2669 | * does the user want to sample? |
| 2670 | */ |
| 2671 | if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) { |
| 2672 | ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req); |
| 2673 | if (ret) goto buffer_error; |
| 2674 | } |
| 2675 | |
| 2676 | /* |
| 2677 | * init context protection lock |
| 2678 | */ |
| 2679 | spin_lock_init(&ctx->ctx_lock); |
| 2680 | |
| 2681 | /* |
| 2682 | * context is unloaded |
| 2683 | */ |
| 2684 | ctx->ctx_state = PFM_CTX_UNLOADED; |
| 2685 | |
| 2686 | /* |
| 2687 | * initialization of context's flags |
| 2688 | */ |
| 2689 | ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0; |
| 2690 | ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0; |
| 2691 | ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */ |
| 2692 | ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0; |
| 2693 | /* |
| 2694 | * will move to set properties |
| 2695 | * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0; |
| 2696 | */ |
| 2697 | |
| 2698 | /* |
| 2699 | * init restart semaphore to locked |
| 2700 | */ |
| 2701 | sema_init(&ctx->ctx_restart_sem, 0); |
| 2702 | |
| 2703 | /* |
| 2704 | * activation is used in SMP only |
| 2705 | */ |
| 2706 | ctx->ctx_last_activation = PFM_INVALID_ACTIVATION; |
| 2707 | SET_LAST_CPU(ctx, -1); |
| 2708 | |
| 2709 | /* |
| 2710 | * initialize notification message queue |
| 2711 | */ |
| 2712 | ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0; |
| 2713 | init_waitqueue_head(&ctx->ctx_msgq_wait); |
| 2714 | init_waitqueue_head(&ctx->ctx_zombieq); |
| 2715 | |
| 2716 | DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n", |
| 2717 | ctx, |
| 2718 | ctx_flags, |
| 2719 | ctx->ctx_fl_system, |
| 2720 | ctx->ctx_fl_block, |
| 2721 | ctx->ctx_fl_excl_idle, |
| 2722 | ctx->ctx_fl_no_msg, |
| 2723 | ctx->ctx_fd)); |
| 2724 | |
| 2725 | /* |
| 2726 | * initialize soft PMU state |
| 2727 | */ |
| 2728 | pfm_reset_pmu_state(ctx); |
| 2729 | |
| 2730 | return 0; |
| 2731 | |
| 2732 | buffer_error: |
| 2733 | pfm_free_fd(ctx->ctx_fd, filp); |
| 2734 | |
| 2735 | if (ctx->ctx_buf_fmt) { |
| 2736 | pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs); |
| 2737 | } |
| 2738 | error_file: |
| 2739 | pfm_context_free(ctx); |
| 2740 | |
| 2741 | error: |
| 2742 | return ret; |
| 2743 | } |
| 2744 | |
| 2745 | static inline unsigned long |
| 2746 | pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset) |
| 2747 | { |
| 2748 | unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset; |
| 2749 | unsigned long new_seed, old_seed = reg->seed, mask = reg->mask; |
| 2750 | extern unsigned long carta_random32 (unsigned long seed); |
| 2751 | |
| 2752 | if (reg->flags & PFM_REGFL_RANDOM) { |
| 2753 | new_seed = carta_random32(old_seed); |
| 2754 | val -= (old_seed & mask); /* counter values are negative numbers! */ |
| 2755 | if ((mask >> 32) != 0) |
| 2756 | /* construct a full 64-bit random value: */ |
| 2757 | new_seed |= carta_random32(old_seed >> 32) << 32; |
| 2758 | reg->seed = new_seed; |
| 2759 | } |
| 2760 | reg->lval = val; |
| 2761 | return val; |
| 2762 | } |
| 2763 | |
| 2764 | static void |
| 2765 | pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset) |
| 2766 | { |
| 2767 | unsigned long mask = ovfl_regs[0]; |
| 2768 | unsigned long reset_others = 0UL; |
| 2769 | unsigned long val; |
| 2770 | int i; |
| 2771 | |
| 2772 | /* |
| 2773 | * now restore reset value on sampling overflowed counters |
| 2774 | */ |
| 2775 | mask >>= PMU_FIRST_COUNTER; |
| 2776 | for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) { |
| 2777 | |
| 2778 | if ((mask & 0x1UL) == 0UL) continue; |
| 2779 | |
| 2780 | ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset); |
| 2781 | reset_others |= ctx->ctx_pmds[i].reset_pmds[0]; |
| 2782 | |
| 2783 | DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val)); |
| 2784 | } |
| 2785 | |
| 2786 | /* |
| 2787 | * Now take care of resetting the other registers |
| 2788 | */ |
| 2789 | for(i = 0; reset_others; i++, reset_others >>= 1) { |
| 2790 | |
| 2791 | if ((reset_others & 0x1) == 0) continue; |
| 2792 | |
| 2793 | ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset); |
| 2794 | |
| 2795 | DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n", |
| 2796 | is_long_reset ? "long" : "short", i, val)); |
| 2797 | } |
| 2798 | } |
| 2799 | |
| 2800 | static void |
| 2801 | pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset) |
| 2802 | { |
| 2803 | unsigned long mask = ovfl_regs[0]; |
| 2804 | unsigned long reset_others = 0UL; |
| 2805 | unsigned long val; |
| 2806 | int i; |
| 2807 | |
| 2808 | DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset)); |
| 2809 | |
| 2810 | if (ctx->ctx_state == PFM_CTX_MASKED) { |
| 2811 | pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset); |
| 2812 | return; |
| 2813 | } |
| 2814 | |
| 2815 | /* |
| 2816 | * now restore reset value on sampling overflowed counters |
| 2817 | */ |
| 2818 | mask >>= PMU_FIRST_COUNTER; |
| 2819 | for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) { |
| 2820 | |
| 2821 | if ((mask & 0x1UL) == 0UL) continue; |
| 2822 | |
| 2823 | val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset); |
| 2824 | reset_others |= ctx->ctx_pmds[i].reset_pmds[0]; |
| 2825 | |
| 2826 | DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val)); |
| 2827 | |
| 2828 | pfm_write_soft_counter(ctx, i, val); |
| 2829 | } |
| 2830 | |
| 2831 | /* |
| 2832 | * Now take care of resetting the other registers |
| 2833 | */ |
| 2834 | for(i = 0; reset_others; i++, reset_others >>= 1) { |
| 2835 | |
| 2836 | if ((reset_others & 0x1) == 0) continue; |
| 2837 | |
| 2838 | val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset); |
| 2839 | |
| 2840 | if (PMD_IS_COUNTING(i)) { |
| 2841 | pfm_write_soft_counter(ctx, i, val); |
| 2842 | } else { |
| 2843 | ia64_set_pmd(i, val); |
| 2844 | } |
| 2845 | DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n", |
| 2846 | is_long_reset ? "long" : "short", i, val)); |
| 2847 | } |
| 2848 | ia64_srlz_d(); |
| 2849 | } |
| 2850 | |
| 2851 | static int |
| 2852 | pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| 2853 | { |
| 2854 | struct thread_struct *thread = NULL; |
| 2855 | struct task_struct *task; |
| 2856 | pfarg_reg_t *req = (pfarg_reg_t *)arg; |
| 2857 | unsigned long value, pmc_pm; |
| 2858 | unsigned long smpl_pmds, reset_pmds, impl_pmds; |
| 2859 | unsigned int cnum, reg_flags, flags, pmc_type; |
| 2860 | int i, can_access_pmu = 0, is_loaded, is_system, expert_mode; |
| 2861 | int is_monitor, is_counting, state; |
| 2862 | int ret = -EINVAL; |
| 2863 | pfm_reg_check_t wr_func; |
| 2864 | #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z)) |
| 2865 | |
| 2866 | state = ctx->ctx_state; |
| 2867 | is_loaded = state == PFM_CTX_LOADED ? 1 : 0; |
| 2868 | is_system = ctx->ctx_fl_system; |
| 2869 | task = ctx->ctx_task; |
| 2870 | impl_pmds = pmu_conf->impl_pmds[0]; |
| 2871 | |
| 2872 | if (state == PFM_CTX_ZOMBIE) return -EINVAL; |
| 2873 | |
| 2874 | if (is_loaded) { |
| 2875 | thread = &task->thread; |
| 2876 | /* |
| 2877 | * In system wide and when the context is loaded, access can only happen |
| 2878 | * when the caller is running on the CPU being monitored by the session. |
| 2879 | * It does not have to be the owner (ctx_task) of the context per se. |
| 2880 | */ |
| 2881 | if (is_system && ctx->ctx_cpu != smp_processor_id()) { |
| 2882 | DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); |
| 2883 | return -EBUSY; |
| 2884 | } |
| 2885 | can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; |
| 2886 | } |
| 2887 | expert_mode = pfm_sysctl.expert_mode; |
| 2888 | |
| 2889 | for (i = 0; i < count; i++, req++) { |
| 2890 | |
| 2891 | cnum = req->reg_num; |
| 2892 | reg_flags = req->reg_flags; |
| 2893 | value = req->reg_value; |
| 2894 | smpl_pmds = req->reg_smpl_pmds[0]; |
| 2895 | reset_pmds = req->reg_reset_pmds[0]; |
| 2896 | flags = 0; |
| 2897 | |
| 2898 | |
| 2899 | if (cnum >= PMU_MAX_PMCS) { |
| 2900 | DPRINT(("pmc%u is invalid\n", cnum)); |
| 2901 | goto error; |
| 2902 | } |
| 2903 | |
| 2904 | pmc_type = pmu_conf->pmc_desc[cnum].type; |
| 2905 | pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1; |
| 2906 | is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0; |
| 2907 | is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0; |
| 2908 | |
| 2909 | /* |
| 2910 | * we reject all non implemented PMC as well |
| 2911 | * as attempts to modify PMC[0-3] which are used |
| 2912 | * as status registers by the PMU |
| 2913 | */ |
| 2914 | if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) { |
| 2915 | DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type)); |
| 2916 | goto error; |
| 2917 | } |
| 2918 | wr_func = pmu_conf->pmc_desc[cnum].write_check; |
| 2919 | /* |
| 2920 | * If the PMC is a monitor, then if the value is not the default: |
| 2921 | * - system-wide session: PMCx.pm=1 (privileged monitor) |
| 2922 | * - per-task : PMCx.pm=0 (user monitor) |
| 2923 | */ |
| 2924 | if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) { |
| 2925 | DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n", |
| 2926 | cnum, |
| 2927 | pmc_pm, |
| 2928 | is_system)); |
| 2929 | goto error; |
| 2930 | } |
| 2931 | |
| 2932 | if (is_counting) { |
| 2933 | /* |
| 2934 | * enforce generation of overflow interrupt. Necessary on all |
| 2935 | * CPUs. |
| 2936 | */ |
| 2937 | value |= 1 << PMU_PMC_OI; |
| 2938 | |
| 2939 | if (reg_flags & PFM_REGFL_OVFL_NOTIFY) { |
| 2940 | flags |= PFM_REGFL_OVFL_NOTIFY; |
| 2941 | } |
| 2942 | |
| 2943 | if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM; |
| 2944 | |
| 2945 | /* verify validity of smpl_pmds */ |
| 2946 | if ((smpl_pmds & impl_pmds) != smpl_pmds) { |
| 2947 | DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum)); |
| 2948 | goto error; |
| 2949 | } |
| 2950 | |
| 2951 | /* verify validity of reset_pmds */ |
| 2952 | if ((reset_pmds & impl_pmds) != reset_pmds) { |
| 2953 | DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum)); |
| 2954 | goto error; |
| 2955 | } |
| 2956 | } else { |
| 2957 | if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) { |
| 2958 | DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum)); |
| 2959 | goto error; |
| 2960 | } |
| 2961 | /* eventid on non-counting monitors are ignored */ |
| 2962 | } |
| 2963 | |
| 2964 | /* |
| 2965 | * execute write checker, if any |
| 2966 | */ |
| 2967 | if (likely(expert_mode == 0 && wr_func)) { |
| 2968 | ret = (*wr_func)(task, ctx, cnum, &value, regs); |
| 2969 | if (ret) goto error; |
| 2970 | ret = -EINVAL; |
| 2971 | } |
| 2972 | |
| 2973 | /* |
| 2974 | * no error on this register |
| 2975 | */ |
| 2976 | PFM_REG_RETFLAG_SET(req->reg_flags, 0); |
| 2977 | |
| 2978 | /* |
| 2979 | * Now we commit the changes to the software state |
| 2980 | */ |
| 2981 | |
| 2982 | /* |
| 2983 | * update overflow information |
| 2984 | */ |
| 2985 | if (is_counting) { |
| 2986 | /* |
| 2987 | * full flag update each time a register is programmed |
| 2988 | */ |
| 2989 | ctx->ctx_pmds[cnum].flags = flags; |
| 2990 | |
| 2991 | ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds; |
| 2992 | ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds; |
| 2993 | ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid; |
| 2994 | |
| 2995 | /* |
| 2996 | * Mark all PMDS to be accessed as used. |
| 2997 | * |
| 2998 | * We do not keep track of PMC because we have to |
| 2999 | * systematically restore ALL of them. |
| 3000 | * |
| 3001 | * We do not update the used_monitors mask, because |
| 3002 | * if we have not programmed them, then will be in |
| 3003 | * a quiescent state, therefore we will not need to |
| 3004 | * mask/restore then when context is MASKED. |
| 3005 | */ |
| 3006 | CTX_USED_PMD(ctx, reset_pmds); |
| 3007 | CTX_USED_PMD(ctx, smpl_pmds); |
| 3008 | /* |
| 3009 | * make sure we do not try to reset on |
| 3010 | * restart because we have established new values |
| 3011 | */ |
| 3012 | if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum; |
| 3013 | } |
| 3014 | /* |
| 3015 | * Needed in case the user does not initialize the equivalent |
| 3016 | * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no |
| 3017 | * possible leak here. |
| 3018 | */ |
| 3019 | CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]); |
| 3020 | |
| 3021 | /* |
| 3022 | * keep track of the monitor PMC that we are using. |
| 3023 | * we save the value of the pmc in ctx_pmcs[] and if |
| 3024 | * the monitoring is not stopped for the context we also |
| 3025 | * place it in the saved state area so that it will be |
| 3026 | * picked up later by the context switch code. |
| 3027 | * |
| 3028 | * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs(). |
| 3029 | * |
| 3030 | * The value in thread->pmcs[] may be modified on overflow, i.e., when |
| 3031 | * monitoring needs to be stopped. |
| 3032 | */ |
| 3033 | if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum); |
| 3034 | |
| 3035 | /* |
| 3036 | * update context state |
| 3037 | */ |
| 3038 | ctx->ctx_pmcs[cnum] = value; |
| 3039 | |
| 3040 | if (is_loaded) { |
| 3041 | /* |
| 3042 | * write thread state |
| 3043 | */ |
| 3044 | if (is_system == 0) thread->pmcs[cnum] = value; |
| 3045 | |
| 3046 | /* |
| 3047 | * write hardware register if we can |
| 3048 | */ |
| 3049 | if (can_access_pmu) { |
| 3050 | ia64_set_pmc(cnum, value); |
| 3051 | } |
| 3052 | #ifdef CONFIG_SMP |
| 3053 | else { |
| 3054 | /* |
| 3055 | * per-task SMP only here |
| 3056 | * |
| 3057 | * we are guaranteed that the task is not running on the other CPU, |
| 3058 | * we indicate that this PMD will need to be reloaded if the task |
| 3059 | * is rescheduled on the CPU it ran last on. |
| 3060 | */ |
| 3061 | ctx->ctx_reload_pmcs[0] |= 1UL << cnum; |
| 3062 | } |
| 3063 | #endif |
| 3064 | } |
| 3065 | |
| 3066 | DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n", |
| 3067 | cnum, |
| 3068 | value, |
| 3069 | is_loaded, |
| 3070 | can_access_pmu, |
| 3071 | flags, |
| 3072 | ctx->ctx_all_pmcs[0], |
| 3073 | ctx->ctx_used_pmds[0], |
| 3074 | ctx->ctx_pmds[cnum].eventid, |
| 3075 | smpl_pmds, |
| 3076 | reset_pmds, |
| 3077 | ctx->ctx_reload_pmcs[0], |
| 3078 | ctx->ctx_used_monitors[0], |
| 3079 | ctx->ctx_ovfl_regs[0])); |
| 3080 | } |
| 3081 | |
| 3082 | /* |
| 3083 | * make sure the changes are visible |
| 3084 | */ |
| 3085 | if (can_access_pmu) ia64_srlz_d(); |
| 3086 | |
| 3087 | return 0; |
| 3088 | error: |
| 3089 | PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); |
| 3090 | return ret; |
| 3091 | } |
| 3092 | |
| 3093 | static int |
| 3094 | pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| 3095 | { |
| 3096 | struct thread_struct *thread = NULL; |
| 3097 | struct task_struct *task; |
| 3098 | pfarg_reg_t *req = (pfarg_reg_t *)arg; |
| 3099 | unsigned long value, hw_value, ovfl_mask; |
| 3100 | unsigned int cnum; |
| 3101 | int i, can_access_pmu = 0, state; |
| 3102 | int is_counting, is_loaded, is_system, expert_mode; |
| 3103 | int ret = -EINVAL; |
| 3104 | pfm_reg_check_t wr_func; |
| 3105 | |
| 3106 | |
| 3107 | state = ctx->ctx_state; |
| 3108 | is_loaded = state == PFM_CTX_LOADED ? 1 : 0; |
| 3109 | is_system = ctx->ctx_fl_system; |
| 3110 | ovfl_mask = pmu_conf->ovfl_val; |
| 3111 | task = ctx->ctx_task; |
| 3112 | |
| 3113 | if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL; |
| 3114 | |
| 3115 | /* |
| 3116 | * on both UP and SMP, we can only write to the PMC when the task is |
| 3117 | * the owner of the local PMU. |
| 3118 | */ |
| 3119 | if (likely(is_loaded)) { |
| 3120 | thread = &task->thread; |
| 3121 | /* |
| 3122 | * In system wide and when the context is loaded, access can only happen |
| 3123 | * when the caller is running on the CPU being monitored by the session. |
| 3124 | * It does not have to be the owner (ctx_task) of the context per se. |
| 3125 | */ |
| 3126 | if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) { |
| 3127 | DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); |
| 3128 | return -EBUSY; |
| 3129 | } |
| 3130 | can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; |
| 3131 | } |
| 3132 | expert_mode = pfm_sysctl.expert_mode; |
| 3133 | |
| 3134 | for (i = 0; i < count; i++, req++) { |
| 3135 | |
| 3136 | cnum = req->reg_num; |
| 3137 | value = req->reg_value; |
| 3138 | |
| 3139 | if (!PMD_IS_IMPL(cnum)) { |
| 3140 | DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum)); |
| 3141 | goto abort_mission; |
| 3142 | } |
| 3143 | is_counting = PMD_IS_COUNTING(cnum); |
| 3144 | wr_func = pmu_conf->pmd_desc[cnum].write_check; |
| 3145 | |
| 3146 | /* |
| 3147 | * execute write checker, if any |
| 3148 | */ |
| 3149 | if (unlikely(expert_mode == 0 && wr_func)) { |
| 3150 | unsigned long v = value; |
| 3151 | |
| 3152 | ret = (*wr_func)(task, ctx, cnum, &v, regs); |
| 3153 | if (ret) goto abort_mission; |
| 3154 | |
| 3155 | value = v; |
| 3156 | ret = -EINVAL; |
| 3157 | } |
| 3158 | |
| 3159 | /* |
| 3160 | * no error on this register |
| 3161 | */ |
| 3162 | PFM_REG_RETFLAG_SET(req->reg_flags, 0); |
| 3163 | |
| 3164 | /* |
| 3165 | * now commit changes to software state |
| 3166 | */ |
| 3167 | hw_value = value; |
| 3168 | |
| 3169 | /* |
| 3170 | * update virtualized (64bits) counter |
| 3171 | */ |
| 3172 | if (is_counting) { |
| 3173 | /* |
| 3174 | * write context state |
| 3175 | */ |
| 3176 | ctx->ctx_pmds[cnum].lval = value; |
| 3177 | |
| 3178 | /* |
| 3179 | * when context is load we use the split value |
| 3180 | */ |
| 3181 | if (is_loaded) { |
| 3182 | hw_value = value & ovfl_mask; |
| 3183 | value = value & ~ovfl_mask; |
| 3184 | } |
| 3185 | } |
| 3186 | /* |
| 3187 | * update reset values (not just for counters) |
| 3188 | */ |
| 3189 | ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset; |
| 3190 | ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset; |
| 3191 | |
| 3192 | /* |
| 3193 | * update randomization parameters (not just for counters) |
| 3194 | */ |
| 3195 | ctx->ctx_pmds[cnum].seed = req->reg_random_seed; |
| 3196 | ctx->ctx_pmds[cnum].mask = req->reg_random_mask; |
| 3197 | |
| 3198 | /* |
| 3199 | * update context value |
| 3200 | */ |
| 3201 | ctx->ctx_pmds[cnum].val = value; |
| 3202 | |
| 3203 | /* |
| 3204 | * Keep track of what we use |
| 3205 | * |
| 3206 | * We do not keep track of PMC because we have to |
| 3207 | * systematically restore ALL of them. |
| 3208 | */ |
| 3209 | CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum)); |
| 3210 | |
| 3211 | /* |
| 3212 | * mark this PMD register used as well |
| 3213 | */ |
| 3214 | CTX_USED_PMD(ctx, RDEP(cnum)); |
| 3215 | |
| 3216 | /* |
| 3217 | * make sure we do not try to reset on |
| 3218 | * restart because we have established new values |
| 3219 | */ |
| 3220 | if (is_counting && state == PFM_CTX_MASKED) { |
| 3221 | ctx->ctx_ovfl_regs[0] &= ~1UL << cnum; |
| 3222 | } |
| 3223 | |
| 3224 | if (is_loaded) { |
| 3225 | /* |
| 3226 | * write thread state |
| 3227 | */ |
| 3228 | if (is_system == 0) thread->pmds[cnum] = hw_value; |
| 3229 | |
| 3230 | /* |
| 3231 | * write hardware register if we can |
| 3232 | */ |
| 3233 | if (can_access_pmu) { |
| 3234 | ia64_set_pmd(cnum, hw_value); |
| 3235 | } else { |
| 3236 | #ifdef CONFIG_SMP |
| 3237 | /* |
| 3238 | * we are guaranteed that the task is not running on the other CPU, |
| 3239 | * we indicate that this PMD will need to be reloaded if the task |
| 3240 | * is rescheduled on the CPU it ran last on. |
| 3241 | */ |
| 3242 | ctx->ctx_reload_pmds[0] |= 1UL << cnum; |
| 3243 | #endif |
| 3244 | } |
| 3245 | } |
| 3246 | |
| 3247 | DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx " |
| 3248 | "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n", |
| 3249 | cnum, |
| 3250 | value, |
| 3251 | is_loaded, |
| 3252 | can_access_pmu, |
| 3253 | hw_value, |
| 3254 | ctx->ctx_pmds[cnum].val, |
| 3255 | ctx->ctx_pmds[cnum].short_reset, |
| 3256 | ctx->ctx_pmds[cnum].long_reset, |
| 3257 | PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N', |
| 3258 | ctx->ctx_pmds[cnum].seed, |
| 3259 | ctx->ctx_pmds[cnum].mask, |
| 3260 | ctx->ctx_used_pmds[0], |
| 3261 | ctx->ctx_pmds[cnum].reset_pmds[0], |
| 3262 | ctx->ctx_reload_pmds[0], |
| 3263 | ctx->ctx_all_pmds[0], |
| 3264 | ctx->ctx_ovfl_regs[0])); |
| 3265 | } |
| 3266 | |
| 3267 | /* |
| 3268 | * make changes visible |
| 3269 | */ |
| 3270 | if (can_access_pmu) ia64_srlz_d(); |
| 3271 | |
| 3272 | return 0; |
| 3273 | |
| 3274 | abort_mission: |
| 3275 | /* |
| 3276 | * for now, we have only one possibility for error |
| 3277 | */ |
| 3278 | PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); |
| 3279 | return ret; |
| 3280 | } |
| 3281 | |
| 3282 | /* |
| 3283 | * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function. |
| 3284 | * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an |
| 3285 | * interrupt is delivered during the call, it will be kept pending until we leave, making |
| 3286 | * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are |
| 3287 | * guaranteed to return consistent data to the user, it may simply be old. It is not |
| 3288 | * trivial to treat the overflow while inside the call because you may end up in |
| 3289 | * some module sampling buffer code causing deadlocks. |
| 3290 | */ |
| 3291 | static int |
| 3292 | pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| 3293 | { |
| 3294 | struct thread_struct *thread = NULL; |
| 3295 | struct task_struct *task; |
| 3296 | unsigned long val = 0UL, lval, ovfl_mask, sval; |
| 3297 | pfarg_reg_t *req = (pfarg_reg_t *)arg; |
| 3298 | unsigned int cnum, reg_flags = 0; |
| 3299 | int i, can_access_pmu = 0, state; |
| 3300 | int is_loaded, is_system, is_counting, expert_mode; |
| 3301 | int ret = -EINVAL; |
| 3302 | pfm_reg_check_t rd_func; |
| 3303 | |
| 3304 | /* |
| 3305 | * access is possible when loaded only for |
| 3306 | * self-monitoring tasks or in UP mode |
| 3307 | */ |
| 3308 | |
| 3309 | state = ctx->ctx_state; |
| 3310 | is_loaded = state == PFM_CTX_LOADED ? 1 : 0; |
| 3311 | is_system = ctx->ctx_fl_system; |
| 3312 | ovfl_mask = pmu_conf->ovfl_val; |
| 3313 | task = ctx->ctx_task; |
| 3314 | |
| 3315 | if (state == PFM_CTX_ZOMBIE) return -EINVAL; |
| 3316 | |
| 3317 | if (likely(is_loaded)) { |
| 3318 | thread = &task->thread; |
| 3319 | /* |
| 3320 | * In system wide and when the context is loaded, access can only happen |
| 3321 | * when the caller is running on the CPU being monitored by the session. |
| 3322 | * It does not have to be the owner (ctx_task) of the context per se. |
| 3323 | */ |
| 3324 | if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) { |
| 3325 | DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); |
| 3326 | return -EBUSY; |
| 3327 | } |
| 3328 | /* |
| 3329 | * this can be true when not self-monitoring only in UP |
| 3330 | */ |
| 3331 | can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; |
| 3332 | |
| 3333 | if (can_access_pmu) ia64_srlz_d(); |
| 3334 | } |
| 3335 | expert_mode = pfm_sysctl.expert_mode; |
| 3336 | |
| 3337 | DPRINT(("ld=%d apmu=%d ctx_state=%d\n", |
| 3338 | is_loaded, |
| 3339 | can_access_pmu, |
| 3340 | state)); |
| 3341 | |
| 3342 | /* |
| 3343 | * on both UP and SMP, we can only read the PMD from the hardware register when |
| 3344 | * the task is the owner of the local PMU. |
| 3345 | */ |
| 3346 | |
| 3347 | for (i = 0; i < count; i++, req++) { |
| 3348 | |
| 3349 | cnum = req->reg_num; |
| 3350 | reg_flags = req->reg_flags; |
| 3351 | |
| 3352 | if (unlikely(!PMD_IS_IMPL(cnum))) goto error; |
| 3353 | /* |
| 3354 | * we can only read the register that we use. That includes |
| 3355 | * the one we explicitely initialize AND the one we want included |
| 3356 | * in the sampling buffer (smpl_regs). |
| 3357 | * |
| 3358 | * Having this restriction allows optimization in the ctxsw routine |
| 3359 | * without compromising security (leaks) |
| 3360 | */ |
| 3361 | if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error; |
| 3362 | |
| 3363 | sval = ctx->ctx_pmds[cnum].val; |
| 3364 | lval = ctx->ctx_pmds[cnum].lval; |
| 3365 | is_counting = PMD_IS_COUNTING(cnum); |
| 3366 | |
| 3367 | /* |
| 3368 | * If the task is not the current one, then we check if the |
| 3369 | * PMU state is still in the local live register due to lazy ctxsw. |
| 3370 | * If true, then we read directly from the registers. |
| 3371 | */ |
| 3372 | if (can_access_pmu){ |
| 3373 | val = ia64_get_pmd(cnum); |
| 3374 | } else { |
| 3375 | /* |
| 3376 | * context has been saved |
| 3377 | * if context is zombie, then task does not exist anymore. |
| 3378 | * In this case, we use the full value saved in the context (pfm_flush_regs()). |
| 3379 | */ |
| 3380 | val = is_loaded ? thread->pmds[cnum] : 0UL; |
| 3381 | } |
| 3382 | rd_func = pmu_conf->pmd_desc[cnum].read_check; |
| 3383 | |
| 3384 | if (is_counting) { |
| 3385 | /* |
| 3386 | * XXX: need to check for overflow when loaded |
| 3387 | */ |
| 3388 | val &= ovfl_mask; |
| 3389 | val += sval; |
| 3390 | } |
| 3391 | |
| 3392 | /* |
| 3393 | * execute read checker, if any |
| 3394 | */ |
| 3395 | if (unlikely(expert_mode == 0 && rd_func)) { |
| 3396 | unsigned long v = val; |
| 3397 | ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs); |
| 3398 | if (ret) goto error; |
| 3399 | val = v; |
| 3400 | ret = -EINVAL; |
| 3401 | } |
| 3402 | |
| 3403 | PFM_REG_RETFLAG_SET(reg_flags, 0); |
| 3404 | |
| 3405 | DPRINT(("pmd[%u]=0x%lx\n", cnum, val)); |
| 3406 | |
| 3407 | /* |
| 3408 | * update register return value, abort all if problem during copy. |
| 3409 | * we only modify the reg_flags field. no check mode is fine because |
| 3410 | * access has been verified upfront in sys_perfmonctl(). |
| 3411 | */ |
| 3412 | req->reg_value = val; |
| 3413 | req->reg_flags = reg_flags; |
| 3414 | req->reg_last_reset_val = lval; |
| 3415 | } |
| 3416 | |
| 3417 | return 0; |
| 3418 | |
| 3419 | error: |
| 3420 | PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); |
| 3421 | return ret; |
| 3422 | } |
| 3423 | |
| 3424 | int |
| 3425 | pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) |
| 3426 | { |
| 3427 | pfm_context_t *ctx; |
| 3428 | |
| 3429 | if (req == NULL) return -EINVAL; |
| 3430 | |
| 3431 | ctx = GET_PMU_CTX(); |
| 3432 | |
| 3433 | if (ctx == NULL) return -EINVAL; |
| 3434 | |
| 3435 | /* |
| 3436 | * for now limit to current task, which is enough when calling |
| 3437 | * from overflow handler |
| 3438 | */ |
| 3439 | if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; |
| 3440 | |
| 3441 | return pfm_write_pmcs(ctx, req, nreq, regs); |
| 3442 | } |
| 3443 | EXPORT_SYMBOL(pfm_mod_write_pmcs); |
| 3444 | |
| 3445 | int |
| 3446 | pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) |
| 3447 | { |
| 3448 | pfm_context_t *ctx; |
| 3449 | |
| 3450 | if (req == NULL) return -EINVAL; |
| 3451 | |
| 3452 | ctx = GET_PMU_CTX(); |
| 3453 | |
| 3454 | if (ctx == NULL) return -EINVAL; |
| 3455 | |
| 3456 | /* |
| 3457 | * for now limit to current task, which is enough when calling |
| 3458 | * from overflow handler |
| 3459 | */ |
| 3460 | if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; |
| 3461 | |
| 3462 | return pfm_read_pmds(ctx, req, nreq, regs); |
| 3463 | } |
| 3464 | EXPORT_SYMBOL(pfm_mod_read_pmds); |
| 3465 | |
| 3466 | /* |
| 3467 | * Only call this function when a process it trying to |
| 3468 | * write the debug registers (reading is always allowed) |
| 3469 | */ |
| 3470 | int |
| 3471 | pfm_use_debug_registers(struct task_struct *task) |
| 3472 | { |
| 3473 | pfm_context_t *ctx = task->thread.pfm_context; |
| 3474 | unsigned long flags; |
| 3475 | int ret = 0; |
| 3476 | |
| 3477 | if (pmu_conf->use_rr_dbregs == 0) return 0; |
| 3478 | |
| 3479 | DPRINT(("called for [%d]\n", task->pid)); |
| 3480 | |
| 3481 | /* |
| 3482 | * do it only once |
| 3483 | */ |
| 3484 | if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0; |
| 3485 | |
| 3486 | /* |
| 3487 | * Even on SMP, we do not need to use an atomic here because |
| 3488 | * the only way in is via ptrace() and this is possible only when the |
| 3489 | * process is stopped. Even in the case where the ctxsw out is not totally |
| 3490 | * completed by the time we come here, there is no way the 'stopped' process |
| 3491 | * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine. |
| 3492 | * So this is always safe. |
| 3493 | */ |
| 3494 | if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1; |
| 3495 | |
| 3496 | LOCK_PFS(flags); |
| 3497 | |
| 3498 | /* |
| 3499 | * We cannot allow setting breakpoints when system wide monitoring |
| 3500 | * sessions are using the debug registers. |
| 3501 | */ |
| 3502 | if (pfm_sessions.pfs_sys_use_dbregs> 0) |
| 3503 | ret = -1; |
| 3504 | else |
| 3505 | pfm_sessions.pfs_ptrace_use_dbregs++; |
| 3506 | |
| 3507 | DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n", |
| 3508 | pfm_sessions.pfs_ptrace_use_dbregs, |
| 3509 | pfm_sessions.pfs_sys_use_dbregs, |
| 3510 | task->pid, ret)); |
| 3511 | |
| 3512 | UNLOCK_PFS(flags); |
| 3513 | |
| 3514 | return ret; |
| 3515 | } |
| 3516 | |
| 3517 | /* |
| 3518 | * This function is called for every task that exits with the |
| 3519 | * IA64_THREAD_DBG_VALID set. This indicates a task which was |
| 3520 | * able to use the debug registers for debugging purposes via |
| 3521 | * ptrace(). Therefore we know it was not using them for |
| 3522 | * perfmormance monitoring, so we only decrement the number |
| 3523 | * of "ptraced" debug register users to keep the count up to date |
| 3524 | */ |
| 3525 | int |
| 3526 | pfm_release_debug_registers(struct task_struct *task) |
| 3527 | { |
| 3528 | unsigned long flags; |
| 3529 | int ret; |
| 3530 | |
| 3531 | if (pmu_conf->use_rr_dbregs == 0) return 0; |
| 3532 | |
| 3533 | LOCK_PFS(flags); |
| 3534 | if (pfm_sessions.pfs_ptrace_use_dbregs == 0) { |
| 3535 | printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid); |
| 3536 | ret = -1; |
| 3537 | } else { |
| 3538 | pfm_sessions.pfs_ptrace_use_dbregs--; |
| 3539 | ret = 0; |
| 3540 | } |
| 3541 | UNLOCK_PFS(flags); |
| 3542 | |
| 3543 | return ret; |
| 3544 | } |
| 3545 | |
| 3546 | static int |
| 3547 | pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| 3548 | { |
| 3549 | struct task_struct *task; |
| 3550 | pfm_buffer_fmt_t *fmt; |
| 3551 | pfm_ovfl_ctrl_t rst_ctrl; |
| 3552 | int state, is_system; |
| 3553 | int ret = 0; |
| 3554 | |
| 3555 | state = ctx->ctx_state; |
| 3556 | fmt = ctx->ctx_buf_fmt; |
| 3557 | is_system = ctx->ctx_fl_system; |
| 3558 | task = PFM_CTX_TASK(ctx); |
| 3559 | |
| 3560 | switch(state) { |
| 3561 | case PFM_CTX_MASKED: |
| 3562 | break; |
| 3563 | case PFM_CTX_LOADED: |
| 3564 | if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break; |
| 3565 | /* fall through */ |
| 3566 | case PFM_CTX_UNLOADED: |
| 3567 | case PFM_CTX_ZOMBIE: |
| 3568 | DPRINT(("invalid state=%d\n", state)); |
| 3569 | return -EBUSY; |
| 3570 | default: |
| 3571 | DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state)); |
| 3572 | return -EINVAL; |
| 3573 | } |
| 3574 | |
| 3575 | /* |
| 3576 | * In system wide and when the context is loaded, access can only happen |
| 3577 | * when the caller is running on the CPU being monitored by the session. |
| 3578 | * It does not have to be the owner (ctx_task) of the context per se. |
| 3579 | */ |
| 3580 | if (is_system && ctx->ctx_cpu != smp_processor_id()) { |
| 3581 | DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); |
| 3582 | return -EBUSY; |
| 3583 | } |
| 3584 | |
| 3585 | /* sanity check */ |
| 3586 | if (unlikely(task == NULL)) { |
| 3587 | printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid); |
| 3588 | return -EINVAL; |
| 3589 | } |
| 3590 | |
| 3591 | if (task == current || is_system) { |
| 3592 | |
| 3593 | fmt = ctx->ctx_buf_fmt; |
| 3594 | |
| 3595 | DPRINT(("restarting self %d ovfl=0x%lx\n", |
| 3596 | task->pid, |
| 3597 | ctx->ctx_ovfl_regs[0])); |
| 3598 | |
| 3599 | if (CTX_HAS_SMPL(ctx)) { |
| 3600 | |
| 3601 | prefetch(ctx->ctx_smpl_hdr); |
| 3602 | |
| 3603 | rst_ctrl.bits.mask_monitoring = 0; |
| 3604 | rst_ctrl.bits.reset_ovfl_pmds = 0; |
| 3605 | |
| 3606 | if (state == PFM_CTX_LOADED) |
| 3607 | ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs); |
| 3608 | else |
| 3609 | ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs); |
| 3610 | } else { |
| 3611 | rst_ctrl.bits.mask_monitoring = 0; |
| 3612 | rst_ctrl.bits.reset_ovfl_pmds = 1; |
| 3613 | } |
| 3614 | |
| 3615 | if (ret == 0) { |
| 3616 | if (rst_ctrl.bits.reset_ovfl_pmds) |
| 3617 | pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET); |
| 3618 | |
| 3619 | if (rst_ctrl.bits.mask_monitoring == 0) { |
| 3620 | DPRINT(("resuming monitoring for [%d]\n", task->pid)); |
| 3621 | |
| 3622 | if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task); |
| 3623 | } else { |
| 3624 | DPRINT(("keeping monitoring stopped for [%d]\n", task->pid)); |
| 3625 | |
| 3626 | // cannot use pfm_stop_monitoring(task, regs); |
| 3627 | } |
| 3628 | } |
| 3629 | /* |
| 3630 | * clear overflowed PMD mask to remove any stale information |
| 3631 | */ |
| 3632 | ctx->ctx_ovfl_regs[0] = 0UL; |
| 3633 | |
| 3634 | /* |
| 3635 | * back to LOADED state |
| 3636 | */ |
| 3637 | ctx->ctx_state = PFM_CTX_LOADED; |
| 3638 | |
| 3639 | /* |
| 3640 | * XXX: not really useful for self monitoring |
| 3641 | */ |
| 3642 | ctx->ctx_fl_can_restart = 0; |
| 3643 | |
| 3644 | return 0; |
| 3645 | } |
| 3646 | |
| 3647 | /* |
| 3648 | * restart another task |
| 3649 | */ |
| 3650 | |
| 3651 | /* |
| 3652 | * When PFM_CTX_MASKED, we cannot issue a restart before the previous |
| 3653 | * one is seen by the task. |
| 3654 | */ |
| 3655 | if (state == PFM_CTX_MASKED) { |
| 3656 | if (ctx->ctx_fl_can_restart == 0) return -EINVAL; |
| 3657 | /* |
| 3658 | * will prevent subsequent restart before this one is |
| 3659 | * seen by other task |
| 3660 | */ |
| 3661 | ctx->ctx_fl_can_restart = 0; |
| 3662 | } |
| 3663 | |
| 3664 | /* |
| 3665 | * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e. |
| 3666 | * the task is blocked or on its way to block. That's the normal |
| 3667 | * restart path. If the monitoring is not masked, then the task |
| 3668 | * can be actively monitoring and we cannot directly intervene. |
| 3669 | * Therefore we use the trap mechanism to catch the task and |
| 3670 | * force it to reset the buffer/reset PMDs. |
| 3671 | * |
| 3672 | * if non-blocking, then we ensure that the task will go into |
| 3673 | * pfm_handle_work() before returning to user mode. |
| 3674 | * |
| 3675 | * We cannot explicitely reset another task, it MUST always |
| 3676 | * be done by the task itself. This works for system wide because |
| 3677 | * the tool that is controlling the session is logically doing |
| 3678 | * "self-monitoring". |
| 3679 | */ |
| 3680 | if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) { |
| 3681 | DPRINT(("unblocking [%d] \n", task->pid)); |
| 3682 | up(&ctx->ctx_restart_sem); |
| 3683 | } else { |
| 3684 | DPRINT(("[%d] armed exit trap\n", task->pid)); |
| 3685 | |
| 3686 | ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET; |
| 3687 | |
| 3688 | PFM_SET_WORK_PENDING(task, 1); |
| 3689 | |
| 3690 | pfm_set_task_notify(task); |
| 3691 | |
| 3692 | /* |
| 3693 | * XXX: send reschedule if task runs on another CPU |
| 3694 | */ |
| 3695 | } |
| 3696 | return 0; |
| 3697 | } |
| 3698 | |
| 3699 | static int |
| 3700 | pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| 3701 | { |
| 3702 | unsigned int m = *(unsigned int *)arg; |
| 3703 | |
| 3704 | pfm_sysctl.debug = m == 0 ? 0 : 1; |
| 3705 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3706 | printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off"); |
| 3707 | |
| 3708 | if (m == 0) { |
| 3709 | memset(pfm_stats, 0, sizeof(pfm_stats)); |
| 3710 | for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL; |
| 3711 | } |
| 3712 | return 0; |
| 3713 | } |
| 3714 | |
| 3715 | /* |
| 3716 | * arg can be NULL and count can be zero for this function |
| 3717 | */ |
| 3718 | static int |
| 3719 | pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| 3720 | { |
| 3721 | struct thread_struct *thread = NULL; |
| 3722 | struct task_struct *task; |
| 3723 | pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg; |
| 3724 | unsigned long flags; |
| 3725 | dbreg_t dbreg; |
| 3726 | unsigned int rnum; |
| 3727 | int first_time; |
| 3728 | int ret = 0, state; |
| 3729 | int i, can_access_pmu = 0; |
| 3730 | int is_system, is_loaded; |
| 3731 | |
| 3732 | if (pmu_conf->use_rr_dbregs == 0) return -EINVAL; |
| 3733 | |
| 3734 | state = ctx->ctx_state; |
| 3735 | is_loaded = state == PFM_CTX_LOADED ? 1 : 0; |
| 3736 | is_system = ctx->ctx_fl_system; |
| 3737 | task = ctx->ctx_task; |
| 3738 | |
| 3739 | if (state == PFM_CTX_ZOMBIE) return -EINVAL; |
| 3740 | |
| 3741 | /* |
| 3742 | * on both UP and SMP, we can only write to the PMC when the task is |
| 3743 | * the owner of the local PMU. |
| 3744 | */ |
| 3745 | if (is_loaded) { |
| 3746 | thread = &task->thread; |
| 3747 | /* |
| 3748 | * In system wide and when the context is loaded, access can only happen |
| 3749 | * when the caller is running on the CPU being monitored by the session. |
| 3750 | * It does not have to be the owner (ctx_task) of the context per se. |
| 3751 | */ |
| 3752 | if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) { |
| 3753 | DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); |
| 3754 | return -EBUSY; |
| 3755 | } |
| 3756 | can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; |
| 3757 | } |
| 3758 | |
| 3759 | /* |
| 3760 | * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w |
| 3761 | * ensuring that no real breakpoint can be installed via this call. |
| 3762 | * |
| 3763 | * IMPORTANT: regs can be NULL in this function |
| 3764 | */ |
| 3765 | |
| 3766 | first_time = ctx->ctx_fl_using_dbreg == 0; |
| 3767 | |
| 3768 | /* |
| 3769 | * don't bother if we are loaded and task is being debugged |
| 3770 | */ |
| 3771 | if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) { |
| 3772 | DPRINT(("debug registers already in use for [%d]\n", task->pid)); |
| 3773 | return -EBUSY; |
| 3774 | } |
| 3775 | |
| 3776 | /* |
| 3777 | * check for debug registers in system wide mode |
| 3778 | * |
| 3779 | * If though a check is done in pfm_context_load(), |
| 3780 | * we must repeat it here, in case the registers are |
| 3781 | * written after the context is loaded |
| 3782 | */ |
| 3783 | if (is_loaded) { |
| 3784 | LOCK_PFS(flags); |
| 3785 | |
| 3786 | if (first_time && is_system) { |
| 3787 | if (pfm_sessions.pfs_ptrace_use_dbregs) |
| 3788 | ret = -EBUSY; |
| 3789 | else |
| 3790 | pfm_sessions.pfs_sys_use_dbregs++; |
| 3791 | } |
| 3792 | UNLOCK_PFS(flags); |
| 3793 | } |
| 3794 | |
| 3795 | if (ret != 0) return ret; |
| 3796 | |
| 3797 | /* |
| 3798 | * mark ourself as user of the debug registers for |
| 3799 | * perfmon purposes. |
| 3800 | */ |
| 3801 | ctx->ctx_fl_using_dbreg = 1; |
| 3802 | |
| 3803 | /* |
| 3804 | * clear hardware registers to make sure we don't |
| 3805 | * pick up stale state. |
| 3806 | * |
| 3807 | * for a system wide session, we do not use |
| 3808 | * thread.dbr, thread.ibr because this process |
| 3809 | * never leaves the current CPU and the state |
| 3810 | * is shared by all processes running on it |
| 3811 | */ |
| 3812 | if (first_time && can_access_pmu) { |
| 3813 | DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid)); |
| 3814 | for (i=0; i < pmu_conf->num_ibrs; i++) { |
| 3815 | ia64_set_ibr(i, 0UL); |
| 3816 | ia64_dv_serialize_instruction(); |
| 3817 | } |
| 3818 | ia64_srlz_i(); |
| 3819 | for (i=0; i < pmu_conf->num_dbrs; i++) { |
| 3820 | ia64_set_dbr(i, 0UL); |
| 3821 | ia64_dv_serialize_data(); |
| 3822 | } |
| 3823 | ia64_srlz_d(); |
| 3824 | } |
| 3825 | |
| 3826 | /* |
| 3827 | * Now install the values into the registers |
| 3828 | */ |
| 3829 | for (i = 0; i < count; i++, req++) { |
| 3830 | |
| 3831 | rnum = req->dbreg_num; |
| 3832 | dbreg.val = req->dbreg_value; |
| 3833 | |
| 3834 | ret = -EINVAL; |
| 3835 | |
| 3836 | if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) { |
| 3837 | DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n", |
| 3838 | rnum, dbreg.val, mode, i, count)); |
| 3839 | |
| 3840 | goto abort_mission; |
| 3841 | } |
| 3842 | |
| 3843 | /* |
| 3844 | * make sure we do not install enabled breakpoint |
| 3845 | */ |
| 3846 | if (rnum & 0x1) { |
| 3847 | if (mode == PFM_CODE_RR) |
| 3848 | dbreg.ibr.ibr_x = 0; |
| 3849 | else |
| 3850 | dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0; |
| 3851 | } |
| 3852 | |
| 3853 | PFM_REG_RETFLAG_SET(req->dbreg_flags, 0); |
| 3854 | |
| 3855 | /* |
| 3856 | * Debug registers, just like PMC, can only be modified |
| 3857 | * by a kernel call. Moreover, perfmon() access to those |
| 3858 | * registers are centralized in this routine. The hardware |
| 3859 | * does not modify the value of these registers, therefore, |
| 3860 | * if we save them as they are written, we can avoid having |
| 3861 | * to save them on context switch out. This is made possible |
| 3862 | * by the fact that when perfmon uses debug registers, ptrace() |
| 3863 | * won't be able to modify them concurrently. |
| 3864 | */ |
| 3865 | if (mode == PFM_CODE_RR) { |
| 3866 | CTX_USED_IBR(ctx, rnum); |
| 3867 | |
| 3868 | if (can_access_pmu) { |
| 3869 | ia64_set_ibr(rnum, dbreg.val); |
| 3870 | ia64_dv_serialize_instruction(); |
| 3871 | } |
| 3872 | |
| 3873 | ctx->ctx_ibrs[rnum] = dbreg.val; |
| 3874 | |
| 3875 | DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n", |
| 3876 | rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu)); |
| 3877 | } else { |
| 3878 | CTX_USED_DBR(ctx, rnum); |
| 3879 | |
| 3880 | if (can_access_pmu) { |
| 3881 | ia64_set_dbr(rnum, dbreg.val); |
| 3882 | ia64_dv_serialize_data(); |
| 3883 | } |
| 3884 | ctx->ctx_dbrs[rnum] = dbreg.val; |
| 3885 | |
| 3886 | DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n", |
| 3887 | rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu)); |
| 3888 | } |
| 3889 | } |
| 3890 | |
| 3891 | return 0; |
| 3892 | |
| 3893 | abort_mission: |
| 3894 | /* |
| 3895 | * in case it was our first attempt, we undo the global modifications |
| 3896 | */ |
| 3897 | if (first_time) { |
| 3898 | LOCK_PFS(flags); |
| 3899 | if (ctx->ctx_fl_system) { |
| 3900 | pfm_sessions.pfs_sys_use_dbregs--; |
| 3901 | } |
| 3902 | UNLOCK_PFS(flags); |
| 3903 | ctx->ctx_fl_using_dbreg = 0; |
| 3904 | } |
| 3905 | /* |
| 3906 | * install error return flag |
| 3907 | */ |
| 3908 | PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL); |
| 3909 | |
| 3910 | return ret; |
| 3911 | } |
| 3912 | |
| 3913 | static int |
| 3914 | pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| 3915 | { |
| 3916 | return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs); |
| 3917 | } |
| 3918 | |
| 3919 | static int |
| 3920 | pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| 3921 | { |
| 3922 | return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs); |
| 3923 | } |
| 3924 | |
| 3925 | int |
| 3926 | pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) |
| 3927 | { |
| 3928 | pfm_context_t *ctx; |
| 3929 | |
| 3930 | if (req == NULL) return -EINVAL; |
| 3931 | |
| 3932 | ctx = GET_PMU_CTX(); |
| 3933 | |
| 3934 | if (ctx == NULL) return -EINVAL; |
| 3935 | |
| 3936 | /* |
| 3937 | * for now limit to current task, which is enough when calling |
| 3938 | * from overflow handler |
| 3939 | */ |
| 3940 | if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; |
| 3941 | |
| 3942 | return pfm_write_ibrs(ctx, req, nreq, regs); |
| 3943 | } |
| 3944 | EXPORT_SYMBOL(pfm_mod_write_ibrs); |
| 3945 | |
| 3946 | int |
| 3947 | pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) |
| 3948 | { |
| 3949 | pfm_context_t *ctx; |
| 3950 | |
| 3951 | if (req == NULL) return -EINVAL; |
| 3952 | |
| 3953 | ctx = GET_PMU_CTX(); |
| 3954 | |
| 3955 | if (ctx == NULL) return -EINVAL; |
| 3956 | |
| 3957 | /* |
| 3958 | * for now limit to current task, which is enough when calling |
| 3959 | * from overflow handler |
| 3960 | */ |
| 3961 | if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; |
| 3962 | |
| 3963 | return pfm_write_dbrs(ctx, req, nreq, regs); |
| 3964 | } |
| 3965 | EXPORT_SYMBOL(pfm_mod_write_dbrs); |
| 3966 | |
| 3967 | |
| 3968 | static int |
| 3969 | pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| 3970 | { |
| 3971 | pfarg_features_t *req = (pfarg_features_t *)arg; |
| 3972 | |
| 3973 | req->ft_version = PFM_VERSION; |
| 3974 | return 0; |
| 3975 | } |
| 3976 | |
| 3977 | static int |
| 3978 | pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| 3979 | { |
| 3980 | struct pt_regs *tregs; |
| 3981 | struct task_struct *task = PFM_CTX_TASK(ctx); |
| 3982 | int state, is_system; |
| 3983 | |
| 3984 | state = ctx->ctx_state; |
| 3985 | is_system = ctx->ctx_fl_system; |
| 3986 | |
| 3987 | /* |
| 3988 | * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE) |
| 3989 | */ |
| 3990 | if (state == PFM_CTX_UNLOADED) return -EINVAL; |
| 3991 | |
| 3992 | /* |
| 3993 | * In system wide and when the context is loaded, access can only happen |
| 3994 | * when the caller is running on the CPU being monitored by the session. |
| 3995 | * It does not have to be the owner (ctx_task) of the context per se. |
| 3996 | */ |
| 3997 | if (is_system && ctx->ctx_cpu != smp_processor_id()) { |
| 3998 | DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); |
| 3999 | return -EBUSY; |
| 4000 | } |
| 4001 | DPRINT(("task [%d] ctx_state=%d is_system=%d\n", |
| 4002 | PFM_CTX_TASK(ctx)->pid, |
| 4003 | state, |
| 4004 | is_system)); |
| 4005 | /* |
| 4006 | * in system mode, we need to update the PMU directly |
| 4007 | * and the user level state of the caller, which may not |
| 4008 | * necessarily be the creator of the context. |
| 4009 | */ |
| 4010 | if (is_system) { |
| 4011 | /* |
| 4012 | * Update local PMU first |
| 4013 | * |
| 4014 | * disable dcr pp |
| 4015 | */ |
| 4016 | ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP); |
| 4017 | ia64_srlz_i(); |
| 4018 | |
| 4019 | /* |
| 4020 | * update local cpuinfo |
| 4021 | */ |
| 4022 | PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP); |
| 4023 | |
| 4024 | /* |
| 4025 | * stop monitoring, does srlz.i |
| 4026 | */ |
| 4027 | pfm_clear_psr_pp(); |
| 4028 | |
| 4029 | /* |
| 4030 | * stop monitoring in the caller |
| 4031 | */ |
| 4032 | ia64_psr(regs)->pp = 0; |
| 4033 | |
| 4034 | return 0; |
| 4035 | } |
| 4036 | /* |
| 4037 | * per-task mode |
| 4038 | */ |
| 4039 | |
| 4040 | if (task == current) { |
| 4041 | /* stop monitoring at kernel level */ |
| 4042 | pfm_clear_psr_up(); |
| 4043 | |
| 4044 | /* |
| 4045 | * stop monitoring at the user level |
| 4046 | */ |
| 4047 | ia64_psr(regs)->up = 0; |
| 4048 | } else { |
| 4049 | tregs = ia64_task_regs(task); |
| 4050 | |
| 4051 | /* |
| 4052 | * stop monitoring at the user level |
| 4053 | */ |
| 4054 | ia64_psr(tregs)->up = 0; |
| 4055 | |
| 4056 | /* |
| 4057 | * monitoring disabled in kernel at next reschedule |
| 4058 | */ |
| 4059 | ctx->ctx_saved_psr_up = 0; |
| 4060 | DPRINT(("task=[%d]\n", task->pid)); |
| 4061 | } |
| 4062 | return 0; |
| 4063 | } |
| 4064 | |
| 4065 | |
| 4066 | static int |
| 4067 | pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| 4068 | { |
| 4069 | struct pt_regs *tregs; |
| 4070 | int state, is_system; |
| 4071 | |
| 4072 | state = ctx->ctx_state; |
| 4073 | is_system = ctx->ctx_fl_system; |
| 4074 | |
| 4075 | if (state != PFM_CTX_LOADED) return -EINVAL; |
| 4076 | |
| 4077 | /* |
| 4078 | * In system wide and when the context is loaded, access can only happen |
| 4079 | * when the caller is running on the CPU being monitored by the session. |
| 4080 | * It does not have to be the owner (ctx_task) of the context per se. |
| 4081 | */ |
| 4082 | if (is_system && ctx->ctx_cpu != smp_processor_id()) { |
| 4083 | DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); |
| 4084 | return -EBUSY; |
| 4085 | } |
| 4086 | |
| 4087 | /* |
| 4088 | * in system mode, we need to update the PMU directly |
| 4089 | * and the user level state of the caller, which may not |
| 4090 | * necessarily be the creator of the context. |
| 4091 | */ |
| 4092 | if (is_system) { |
| 4093 | |
| 4094 | /* |
| 4095 | * set user level psr.pp for the caller |
| 4096 | */ |
| 4097 | ia64_psr(regs)->pp = 1; |
| 4098 | |
| 4099 | /* |
| 4100 | * now update the local PMU and cpuinfo |
| 4101 | */ |
| 4102 | PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP); |
| 4103 | |
| 4104 | /* |
| 4105 | * start monitoring at kernel level |
| 4106 | */ |
| 4107 | pfm_set_psr_pp(); |
| 4108 | |
| 4109 | /* enable dcr pp */ |
| 4110 | ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP); |
| 4111 | ia64_srlz_i(); |
| 4112 | |
| 4113 | return 0; |
| 4114 | } |
| 4115 | |
| 4116 | /* |
| 4117 | * per-process mode |
| 4118 | */ |
| 4119 | |
| 4120 | if (ctx->ctx_task == current) { |
| 4121 | |
| 4122 | /* start monitoring at kernel level */ |
| 4123 | pfm_set_psr_up(); |
| 4124 | |
| 4125 | /* |
| 4126 | * activate monitoring at user level |
| 4127 | */ |
| 4128 | ia64_psr(regs)->up = 1; |
| 4129 | |
| 4130 | } else { |
| 4131 | tregs = ia64_task_regs(ctx->ctx_task); |
| 4132 | |
| 4133 | /* |
| 4134 | * start monitoring at the kernel level the next |
| 4135 | * time the task is scheduled |
| 4136 | */ |
| 4137 | ctx->ctx_saved_psr_up = IA64_PSR_UP; |
| 4138 | |
| 4139 | /* |
| 4140 | * activate monitoring at user level |
| 4141 | */ |
| 4142 | ia64_psr(tregs)->up = 1; |
| 4143 | } |
| 4144 | return 0; |
| 4145 | } |
| 4146 | |
| 4147 | static int |
| 4148 | pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| 4149 | { |
| 4150 | pfarg_reg_t *req = (pfarg_reg_t *)arg; |
| 4151 | unsigned int cnum; |
| 4152 | int i; |
| 4153 | int ret = -EINVAL; |
| 4154 | |
| 4155 | for (i = 0; i < count; i++, req++) { |
| 4156 | |
| 4157 | cnum = req->reg_num; |
| 4158 | |
| 4159 | if (!PMC_IS_IMPL(cnum)) goto abort_mission; |
| 4160 | |
| 4161 | req->reg_value = PMC_DFL_VAL(cnum); |
| 4162 | |
| 4163 | PFM_REG_RETFLAG_SET(req->reg_flags, 0); |
| 4164 | |
| 4165 | DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value)); |
| 4166 | } |
| 4167 | return 0; |
| 4168 | |
| 4169 | abort_mission: |
| 4170 | PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); |
| 4171 | return ret; |
| 4172 | } |
| 4173 | |
| 4174 | static int |
| 4175 | pfm_check_task_exist(pfm_context_t *ctx) |
| 4176 | { |
| 4177 | struct task_struct *g, *t; |
| 4178 | int ret = -ESRCH; |
| 4179 | |
| 4180 | read_lock(&tasklist_lock); |
| 4181 | |
| 4182 | do_each_thread (g, t) { |
| 4183 | if (t->thread.pfm_context == ctx) { |
| 4184 | ret = 0; |
| 4185 | break; |
| 4186 | } |
| 4187 | } while_each_thread (g, t); |
| 4188 | |
| 4189 | read_unlock(&tasklist_lock); |
| 4190 | |
| 4191 | DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx)); |
| 4192 | |
| 4193 | return ret; |
| 4194 | } |
| 4195 | |
| 4196 | static int |
| 4197 | pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| 4198 | { |
| 4199 | struct task_struct *task; |
| 4200 | struct thread_struct *thread; |
| 4201 | struct pfm_context_t *old; |
| 4202 | unsigned long flags; |
| 4203 | #ifndef CONFIG_SMP |
| 4204 | struct task_struct *owner_task = NULL; |
| 4205 | #endif |
| 4206 | pfarg_load_t *req = (pfarg_load_t *)arg; |
| 4207 | unsigned long *pmcs_source, *pmds_source; |
| 4208 | int the_cpu; |
| 4209 | int ret = 0; |
| 4210 | int state, is_system, set_dbregs = 0; |
| 4211 | |
| 4212 | state = ctx->ctx_state; |
| 4213 | is_system = ctx->ctx_fl_system; |
| 4214 | /* |
| 4215 | * can only load from unloaded or terminated state |
| 4216 | */ |
| 4217 | if (state != PFM_CTX_UNLOADED) { |
| 4218 | DPRINT(("cannot load to [%d], invalid ctx_state=%d\n", |
| 4219 | req->load_pid, |
| 4220 | ctx->ctx_state)); |
stephane eranian | a5a70b7 | 2005-04-18 11:42:00 -0700 | [diff] [blame] | 4221 | return -EBUSY; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4222 | } |
| 4223 | |
| 4224 | DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg)); |
| 4225 | |
| 4226 | if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) { |
| 4227 | DPRINT(("cannot use blocking mode on self\n")); |
| 4228 | return -EINVAL; |
| 4229 | } |
| 4230 | |
| 4231 | ret = pfm_get_task(ctx, req->load_pid, &task); |
| 4232 | if (ret) { |
| 4233 | DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret)); |
| 4234 | return ret; |
| 4235 | } |
| 4236 | |
| 4237 | ret = -EINVAL; |
| 4238 | |
| 4239 | /* |
| 4240 | * system wide is self monitoring only |
| 4241 | */ |
| 4242 | if (is_system && task != current) { |
| 4243 | DPRINT(("system wide is self monitoring only load_pid=%d\n", |
| 4244 | req->load_pid)); |
| 4245 | goto error; |
| 4246 | } |
| 4247 | |
| 4248 | thread = &task->thread; |
| 4249 | |
| 4250 | ret = 0; |
| 4251 | /* |
| 4252 | * cannot load a context which is using range restrictions, |
| 4253 | * into a task that is being debugged. |
| 4254 | */ |
| 4255 | if (ctx->ctx_fl_using_dbreg) { |
| 4256 | if (thread->flags & IA64_THREAD_DBG_VALID) { |
| 4257 | ret = -EBUSY; |
| 4258 | DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid)); |
| 4259 | goto error; |
| 4260 | } |
| 4261 | LOCK_PFS(flags); |
| 4262 | |
| 4263 | if (is_system) { |
| 4264 | if (pfm_sessions.pfs_ptrace_use_dbregs) { |
| 4265 | DPRINT(("cannot load [%d] dbregs in use\n", task->pid)); |
| 4266 | ret = -EBUSY; |
| 4267 | } else { |
| 4268 | pfm_sessions.pfs_sys_use_dbregs++; |
| 4269 | DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs)); |
| 4270 | set_dbregs = 1; |
| 4271 | } |
| 4272 | } |
| 4273 | |
| 4274 | UNLOCK_PFS(flags); |
| 4275 | |
| 4276 | if (ret) goto error; |
| 4277 | } |
| 4278 | |
| 4279 | /* |
| 4280 | * SMP system-wide monitoring implies self-monitoring. |
| 4281 | * |
| 4282 | * The programming model expects the task to |
| 4283 | * be pinned on a CPU throughout the session. |
| 4284 | * Here we take note of the current CPU at the |
| 4285 | * time the context is loaded. No call from |
| 4286 | * another CPU will be allowed. |
| 4287 | * |
| 4288 | * The pinning via shed_setaffinity() |
| 4289 | * must be done by the calling task prior |
| 4290 | * to this call. |
| 4291 | * |
| 4292 | * systemwide: keep track of CPU this session is supposed to run on |
| 4293 | */ |
| 4294 | the_cpu = ctx->ctx_cpu = smp_processor_id(); |
| 4295 | |
| 4296 | ret = -EBUSY; |
| 4297 | /* |
| 4298 | * now reserve the session |
| 4299 | */ |
| 4300 | ret = pfm_reserve_session(current, is_system, the_cpu); |
| 4301 | if (ret) goto error; |
| 4302 | |
| 4303 | /* |
| 4304 | * task is necessarily stopped at this point. |
| 4305 | * |
| 4306 | * If the previous context was zombie, then it got removed in |
| 4307 | * pfm_save_regs(). Therefore we should not see it here. |
| 4308 | * If we see a context, then this is an active context |
| 4309 | * |
| 4310 | * XXX: needs to be atomic |
| 4311 | */ |
| 4312 | DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n", |
| 4313 | thread->pfm_context, ctx)); |
| 4314 | |
stephane.eranian@hp.com | 6bf11e8 | 2005-07-28 05:18:00 -0700 | [diff] [blame^] | 4315 | ret = -EBUSY; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4316 | old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *)); |
| 4317 | if (old != NULL) { |
| 4318 | DPRINT(("load_pid [%d] already has a context\n", req->load_pid)); |
| 4319 | goto error_unres; |
| 4320 | } |
| 4321 | |
| 4322 | pfm_reset_msgq(ctx); |
| 4323 | |
| 4324 | ctx->ctx_state = PFM_CTX_LOADED; |
| 4325 | |
| 4326 | /* |
| 4327 | * link context to task |
| 4328 | */ |
| 4329 | ctx->ctx_task = task; |
| 4330 | |
| 4331 | if (is_system) { |
| 4332 | /* |
| 4333 | * we load as stopped |
| 4334 | */ |
| 4335 | PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE); |
| 4336 | PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP); |
| 4337 | |
| 4338 | if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE); |
| 4339 | } else { |
| 4340 | thread->flags |= IA64_THREAD_PM_VALID; |
| 4341 | } |
| 4342 | |
| 4343 | /* |
| 4344 | * propagate into thread-state |
| 4345 | */ |
| 4346 | pfm_copy_pmds(task, ctx); |
| 4347 | pfm_copy_pmcs(task, ctx); |
| 4348 | |
| 4349 | pmcs_source = thread->pmcs; |
| 4350 | pmds_source = thread->pmds; |
| 4351 | |
| 4352 | /* |
| 4353 | * always the case for system-wide |
| 4354 | */ |
| 4355 | if (task == current) { |
| 4356 | |
| 4357 | if (is_system == 0) { |
| 4358 | |
| 4359 | /* allow user level control */ |
| 4360 | ia64_psr(regs)->sp = 0; |
| 4361 | DPRINT(("clearing psr.sp for [%d]\n", task->pid)); |
| 4362 | |
| 4363 | SET_LAST_CPU(ctx, smp_processor_id()); |
| 4364 | INC_ACTIVATION(); |
| 4365 | SET_ACTIVATION(ctx); |
| 4366 | #ifndef CONFIG_SMP |
| 4367 | /* |
| 4368 | * push the other task out, if any |
| 4369 | */ |
| 4370 | owner_task = GET_PMU_OWNER(); |
| 4371 | if (owner_task) pfm_lazy_save_regs(owner_task); |
| 4372 | #endif |
| 4373 | } |
| 4374 | /* |
| 4375 | * load all PMD from ctx to PMU (as opposed to thread state) |
| 4376 | * restore all PMC from ctx to PMU |
| 4377 | */ |
| 4378 | pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]); |
| 4379 | pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]); |
| 4380 | |
| 4381 | ctx->ctx_reload_pmcs[0] = 0UL; |
| 4382 | ctx->ctx_reload_pmds[0] = 0UL; |
| 4383 | |
| 4384 | /* |
| 4385 | * guaranteed safe by earlier check against DBG_VALID |
| 4386 | */ |
| 4387 | if (ctx->ctx_fl_using_dbreg) { |
| 4388 | pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); |
| 4389 | pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); |
| 4390 | } |
| 4391 | /* |
| 4392 | * set new ownership |
| 4393 | */ |
| 4394 | SET_PMU_OWNER(task, ctx); |
| 4395 | |
| 4396 | DPRINT(("context loaded on PMU for [%d]\n", task->pid)); |
| 4397 | } else { |
| 4398 | /* |
| 4399 | * when not current, task MUST be stopped, so this is safe |
| 4400 | */ |
| 4401 | regs = ia64_task_regs(task); |
| 4402 | |
| 4403 | /* force a full reload */ |
| 4404 | ctx->ctx_last_activation = PFM_INVALID_ACTIVATION; |
| 4405 | SET_LAST_CPU(ctx, -1); |
| 4406 | |
| 4407 | /* initial saved psr (stopped) */ |
| 4408 | ctx->ctx_saved_psr_up = 0UL; |
| 4409 | ia64_psr(regs)->up = ia64_psr(regs)->pp = 0; |
| 4410 | } |
| 4411 | |
| 4412 | ret = 0; |
| 4413 | |
| 4414 | error_unres: |
| 4415 | if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu); |
| 4416 | error: |
| 4417 | /* |
| 4418 | * we must undo the dbregs setting (for system-wide) |
| 4419 | */ |
| 4420 | if (ret && set_dbregs) { |
| 4421 | LOCK_PFS(flags); |
| 4422 | pfm_sessions.pfs_sys_use_dbregs--; |
| 4423 | UNLOCK_PFS(flags); |
| 4424 | } |
| 4425 | /* |
| 4426 | * release task, there is now a link with the context |
| 4427 | */ |
| 4428 | if (is_system == 0 && task != current) { |
| 4429 | pfm_put_task(task); |
| 4430 | |
| 4431 | if (ret == 0) { |
| 4432 | ret = pfm_check_task_exist(ctx); |
| 4433 | if (ret) { |
| 4434 | ctx->ctx_state = PFM_CTX_UNLOADED; |
| 4435 | ctx->ctx_task = NULL; |
| 4436 | } |
| 4437 | } |
| 4438 | } |
| 4439 | return ret; |
| 4440 | } |
| 4441 | |
| 4442 | /* |
| 4443 | * in this function, we do not need to increase the use count |
| 4444 | * for the task via get_task_struct(), because we hold the |
| 4445 | * context lock. If the task were to disappear while having |
| 4446 | * a context attached, it would go through pfm_exit_thread() |
| 4447 | * which also grabs the context lock and would therefore be blocked |
| 4448 | * until we are here. |
| 4449 | */ |
| 4450 | static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx); |
| 4451 | |
| 4452 | static int |
| 4453 | pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| 4454 | { |
| 4455 | struct task_struct *task = PFM_CTX_TASK(ctx); |
| 4456 | struct pt_regs *tregs; |
| 4457 | int prev_state, is_system; |
| 4458 | int ret; |
| 4459 | |
| 4460 | DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1)); |
| 4461 | |
| 4462 | prev_state = ctx->ctx_state; |
| 4463 | is_system = ctx->ctx_fl_system; |
| 4464 | |
| 4465 | /* |
| 4466 | * unload only when necessary |
| 4467 | */ |
| 4468 | if (prev_state == PFM_CTX_UNLOADED) { |
| 4469 | DPRINT(("ctx_state=%d, nothing to do\n", prev_state)); |
| 4470 | return 0; |
| 4471 | } |
| 4472 | |
| 4473 | /* |
| 4474 | * clear psr and dcr bits |
| 4475 | */ |
| 4476 | ret = pfm_stop(ctx, NULL, 0, regs); |
| 4477 | if (ret) return ret; |
| 4478 | |
| 4479 | ctx->ctx_state = PFM_CTX_UNLOADED; |
| 4480 | |
| 4481 | /* |
| 4482 | * in system mode, we need to update the PMU directly |
| 4483 | * and the user level state of the caller, which may not |
| 4484 | * necessarily be the creator of the context. |
| 4485 | */ |
| 4486 | if (is_system) { |
| 4487 | |
| 4488 | /* |
| 4489 | * Update cpuinfo |
| 4490 | * |
| 4491 | * local PMU is taken care of in pfm_stop() |
| 4492 | */ |
| 4493 | PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE); |
| 4494 | PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE); |
| 4495 | |
| 4496 | /* |
| 4497 | * save PMDs in context |
| 4498 | * release ownership |
| 4499 | */ |
| 4500 | pfm_flush_pmds(current, ctx); |
| 4501 | |
| 4502 | /* |
| 4503 | * at this point we are done with the PMU |
| 4504 | * so we can unreserve the resource. |
| 4505 | */ |
| 4506 | if (prev_state != PFM_CTX_ZOMBIE) |
| 4507 | pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu); |
| 4508 | |
| 4509 | /* |
| 4510 | * disconnect context from task |
| 4511 | */ |
| 4512 | task->thread.pfm_context = NULL; |
| 4513 | /* |
| 4514 | * disconnect task from context |
| 4515 | */ |
| 4516 | ctx->ctx_task = NULL; |
| 4517 | |
| 4518 | /* |
| 4519 | * There is nothing more to cleanup here. |
| 4520 | */ |
| 4521 | return 0; |
| 4522 | } |
| 4523 | |
| 4524 | /* |
| 4525 | * per-task mode |
| 4526 | */ |
| 4527 | tregs = task == current ? regs : ia64_task_regs(task); |
| 4528 | |
| 4529 | if (task == current) { |
| 4530 | /* |
| 4531 | * cancel user level control |
| 4532 | */ |
| 4533 | ia64_psr(regs)->sp = 1; |
| 4534 | |
| 4535 | DPRINT(("setting psr.sp for [%d]\n", task->pid)); |
| 4536 | } |
| 4537 | /* |
| 4538 | * save PMDs to context |
| 4539 | * release ownership |
| 4540 | */ |
| 4541 | pfm_flush_pmds(task, ctx); |
| 4542 | |
| 4543 | /* |
| 4544 | * at this point we are done with the PMU |
| 4545 | * so we can unreserve the resource. |
| 4546 | * |
| 4547 | * when state was ZOMBIE, we have already unreserved. |
| 4548 | */ |
| 4549 | if (prev_state != PFM_CTX_ZOMBIE) |
| 4550 | pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu); |
| 4551 | |
| 4552 | /* |
| 4553 | * reset activation counter and psr |
| 4554 | */ |
| 4555 | ctx->ctx_last_activation = PFM_INVALID_ACTIVATION; |
| 4556 | SET_LAST_CPU(ctx, -1); |
| 4557 | |
| 4558 | /* |
| 4559 | * PMU state will not be restored |
| 4560 | */ |
| 4561 | task->thread.flags &= ~IA64_THREAD_PM_VALID; |
| 4562 | |
| 4563 | /* |
| 4564 | * break links between context and task |
| 4565 | */ |
| 4566 | task->thread.pfm_context = NULL; |
| 4567 | ctx->ctx_task = NULL; |
| 4568 | |
| 4569 | PFM_SET_WORK_PENDING(task, 0); |
| 4570 | |
| 4571 | ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE; |
| 4572 | ctx->ctx_fl_can_restart = 0; |
| 4573 | ctx->ctx_fl_going_zombie = 0; |
| 4574 | |
| 4575 | DPRINT(("disconnected [%d] from context\n", task->pid)); |
| 4576 | |
| 4577 | return 0; |
| 4578 | } |
| 4579 | |
| 4580 | |
| 4581 | /* |
| 4582 | * called only from exit_thread(): task == current |
| 4583 | * we come here only if current has a context attached (loaded or masked) |
| 4584 | */ |
| 4585 | void |
| 4586 | pfm_exit_thread(struct task_struct *task) |
| 4587 | { |
| 4588 | pfm_context_t *ctx; |
| 4589 | unsigned long flags; |
| 4590 | struct pt_regs *regs = ia64_task_regs(task); |
| 4591 | int ret, state; |
| 4592 | int free_ok = 0; |
| 4593 | |
| 4594 | ctx = PFM_GET_CTX(task); |
| 4595 | |
| 4596 | PROTECT_CTX(ctx, flags); |
| 4597 | |
| 4598 | DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid)); |
| 4599 | |
| 4600 | state = ctx->ctx_state; |
| 4601 | switch(state) { |
| 4602 | case PFM_CTX_UNLOADED: |
| 4603 | /* |
| 4604 | * only comes to thios function if pfm_context is not NULL, i.e., cannot |
| 4605 | * be in unloaded state |
| 4606 | */ |
| 4607 | printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid); |
| 4608 | break; |
| 4609 | case PFM_CTX_LOADED: |
| 4610 | case PFM_CTX_MASKED: |
| 4611 | ret = pfm_context_unload(ctx, NULL, 0, regs); |
| 4612 | if (ret) { |
| 4613 | printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret); |
| 4614 | } |
| 4615 | DPRINT(("ctx unloaded for current state was %d\n", state)); |
| 4616 | |
| 4617 | pfm_end_notify_user(ctx); |
| 4618 | break; |
| 4619 | case PFM_CTX_ZOMBIE: |
| 4620 | ret = pfm_context_unload(ctx, NULL, 0, regs); |
| 4621 | if (ret) { |
| 4622 | printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret); |
| 4623 | } |
| 4624 | free_ok = 1; |
| 4625 | break; |
| 4626 | default: |
| 4627 | printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state); |
| 4628 | break; |
| 4629 | } |
| 4630 | UNPROTECT_CTX(ctx, flags); |
| 4631 | |
| 4632 | { u64 psr = pfm_get_psr(); |
| 4633 | BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP)); |
| 4634 | BUG_ON(GET_PMU_OWNER()); |
| 4635 | BUG_ON(ia64_psr(regs)->up); |
| 4636 | BUG_ON(ia64_psr(regs)->pp); |
| 4637 | } |
| 4638 | |
| 4639 | /* |
| 4640 | * All memory free operations (especially for vmalloc'ed memory) |
| 4641 | * MUST be done with interrupts ENABLED. |
| 4642 | */ |
| 4643 | if (free_ok) pfm_context_free(ctx); |
| 4644 | } |
| 4645 | |
| 4646 | /* |
| 4647 | * functions MUST be listed in the increasing order of their index (see permfon.h) |
| 4648 | */ |
| 4649 | #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz } |
| 4650 | #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL } |
| 4651 | #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP) |
| 4652 | #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW) |
| 4653 | #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL} |
| 4654 | |
| 4655 | static pfm_cmd_desc_t pfm_cmd_tab[]={ |
| 4656 | /* 0 */PFM_CMD_NONE, |
| 4657 | /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), |
| 4658 | /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), |
| 4659 | /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), |
| 4660 | /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS), |
| 4661 | /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS), |
| 4662 | /* 6 */PFM_CMD_NONE, |
| 4663 | /* 7 */PFM_CMD_NONE, |
| 4664 | /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize), |
| 4665 | /* 9 */PFM_CMD_NONE, |
| 4666 | /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW), |
| 4667 | /* 11 */PFM_CMD_NONE, |
| 4668 | /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL), |
| 4669 | /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL), |
| 4670 | /* 14 */PFM_CMD_NONE, |
| 4671 | /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), |
| 4672 | /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL), |
| 4673 | /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS), |
| 4674 | /* 18 */PFM_CMD_NONE, |
| 4675 | /* 19 */PFM_CMD_NONE, |
| 4676 | /* 20 */PFM_CMD_NONE, |
| 4677 | /* 21 */PFM_CMD_NONE, |
| 4678 | /* 22 */PFM_CMD_NONE, |
| 4679 | /* 23 */PFM_CMD_NONE, |
| 4680 | /* 24 */PFM_CMD_NONE, |
| 4681 | /* 25 */PFM_CMD_NONE, |
| 4682 | /* 26 */PFM_CMD_NONE, |
| 4683 | /* 27 */PFM_CMD_NONE, |
| 4684 | /* 28 */PFM_CMD_NONE, |
| 4685 | /* 29 */PFM_CMD_NONE, |
| 4686 | /* 30 */PFM_CMD_NONE, |
| 4687 | /* 31 */PFM_CMD_NONE, |
| 4688 | /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL), |
| 4689 | /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL) |
| 4690 | }; |
| 4691 | #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t)) |
| 4692 | |
| 4693 | static int |
| 4694 | pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags) |
| 4695 | { |
| 4696 | struct task_struct *task; |
| 4697 | int state, old_state; |
| 4698 | |
| 4699 | recheck: |
| 4700 | state = ctx->ctx_state; |
| 4701 | task = ctx->ctx_task; |
| 4702 | |
| 4703 | if (task == NULL) { |
| 4704 | DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state)); |
| 4705 | return 0; |
| 4706 | } |
| 4707 | |
| 4708 | DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n", |
| 4709 | ctx->ctx_fd, |
| 4710 | state, |
| 4711 | task->pid, |
| 4712 | task->state, PFM_CMD_STOPPED(cmd))); |
| 4713 | |
| 4714 | /* |
| 4715 | * self-monitoring always ok. |
| 4716 | * |
| 4717 | * for system-wide the caller can either be the creator of the |
| 4718 | * context (to one to which the context is attached to) OR |
| 4719 | * a task running on the same CPU as the session. |
| 4720 | */ |
| 4721 | if (task == current || ctx->ctx_fl_system) return 0; |
| 4722 | |
| 4723 | /* |
stephane eranian | a5a70b7 | 2005-04-18 11:42:00 -0700 | [diff] [blame] | 4724 | * we are monitoring another thread |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4725 | */ |
stephane eranian | a5a70b7 | 2005-04-18 11:42:00 -0700 | [diff] [blame] | 4726 | switch(state) { |
| 4727 | case PFM_CTX_UNLOADED: |
| 4728 | /* |
| 4729 | * if context is UNLOADED we are safe to go |
| 4730 | */ |
| 4731 | return 0; |
| 4732 | case PFM_CTX_ZOMBIE: |
| 4733 | /* |
| 4734 | * no command can operate on a zombie context |
| 4735 | */ |
| 4736 | DPRINT(("cmd %d state zombie cannot operate on context\n", cmd)); |
| 4737 | return -EINVAL; |
| 4738 | case PFM_CTX_MASKED: |
| 4739 | /* |
| 4740 | * PMU state has been saved to software even though |
| 4741 | * the thread may still be running. |
| 4742 | */ |
| 4743 | if (cmd != PFM_UNLOAD_CONTEXT) return 0; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4744 | } |
| 4745 | |
| 4746 | /* |
| 4747 | * context is LOADED or MASKED. Some commands may need to have |
| 4748 | * the task stopped. |
| 4749 | * |
| 4750 | * We could lift this restriction for UP but it would mean that |
| 4751 | * the user has no guarantee the task would not run between |
| 4752 | * two successive calls to perfmonctl(). That's probably OK. |
| 4753 | * If this user wants to ensure the task does not run, then |
| 4754 | * the task must be stopped. |
| 4755 | */ |
| 4756 | if (PFM_CMD_STOPPED(cmd)) { |
| 4757 | if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) { |
| 4758 | DPRINT(("[%d] task not in stopped state\n", task->pid)); |
| 4759 | return -EBUSY; |
| 4760 | } |
| 4761 | /* |
| 4762 | * task is now stopped, wait for ctxsw out |
| 4763 | * |
| 4764 | * This is an interesting point in the code. |
| 4765 | * We need to unprotect the context because |
| 4766 | * the pfm_save_regs() routines needs to grab |
| 4767 | * the same lock. There are danger in doing |
| 4768 | * this because it leaves a window open for |
| 4769 | * another task to get access to the context |
| 4770 | * and possibly change its state. The one thing |
| 4771 | * that is not possible is for the context to disappear |
| 4772 | * because we are protected by the VFS layer, i.e., |
| 4773 | * get_fd()/put_fd(). |
| 4774 | */ |
| 4775 | old_state = state; |
| 4776 | |
| 4777 | UNPROTECT_CTX(ctx, flags); |
| 4778 | |
| 4779 | wait_task_inactive(task); |
| 4780 | |
| 4781 | PROTECT_CTX(ctx, flags); |
| 4782 | |
| 4783 | /* |
| 4784 | * we must recheck to verify if state has changed |
| 4785 | */ |
| 4786 | if (ctx->ctx_state != old_state) { |
| 4787 | DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state)); |
| 4788 | goto recheck; |
| 4789 | } |
| 4790 | } |
| 4791 | return 0; |
| 4792 | } |
| 4793 | |
| 4794 | /* |
| 4795 | * system-call entry point (must return long) |
| 4796 | */ |
| 4797 | asmlinkage long |
| 4798 | sys_perfmonctl (int fd, int cmd, void __user *arg, int count) |
| 4799 | { |
| 4800 | struct file *file = NULL; |
| 4801 | pfm_context_t *ctx = NULL; |
| 4802 | unsigned long flags = 0UL; |
| 4803 | void *args_k = NULL; |
| 4804 | long ret; /* will expand int return types */ |
| 4805 | size_t base_sz, sz, xtra_sz = 0; |
| 4806 | int narg, completed_args = 0, call_made = 0, cmd_flags; |
| 4807 | int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); |
| 4808 | int (*getsize)(void *arg, size_t *sz); |
| 4809 | #define PFM_MAX_ARGSIZE 4096 |
| 4810 | |
| 4811 | /* |
| 4812 | * reject any call if perfmon was disabled at initialization |
| 4813 | */ |
| 4814 | if (unlikely(pmu_conf == NULL)) return -ENOSYS; |
| 4815 | |
| 4816 | if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) { |
| 4817 | DPRINT(("invalid cmd=%d\n", cmd)); |
| 4818 | return -EINVAL; |
| 4819 | } |
| 4820 | |
| 4821 | func = pfm_cmd_tab[cmd].cmd_func; |
| 4822 | narg = pfm_cmd_tab[cmd].cmd_narg; |
| 4823 | base_sz = pfm_cmd_tab[cmd].cmd_argsize; |
| 4824 | getsize = pfm_cmd_tab[cmd].cmd_getsize; |
| 4825 | cmd_flags = pfm_cmd_tab[cmd].cmd_flags; |
| 4826 | |
| 4827 | if (unlikely(func == NULL)) { |
| 4828 | DPRINT(("invalid cmd=%d\n", cmd)); |
| 4829 | return -EINVAL; |
| 4830 | } |
| 4831 | |
| 4832 | DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n", |
| 4833 | PFM_CMD_NAME(cmd), |
| 4834 | cmd, |
| 4835 | narg, |
| 4836 | base_sz, |
| 4837 | count)); |
| 4838 | |
| 4839 | /* |
| 4840 | * check if number of arguments matches what the command expects |
| 4841 | */ |
| 4842 | if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count))) |
| 4843 | return -EINVAL; |
| 4844 | |
| 4845 | restart_args: |
| 4846 | sz = xtra_sz + base_sz*count; |
| 4847 | /* |
| 4848 | * limit abuse to min page size |
| 4849 | */ |
| 4850 | if (unlikely(sz > PFM_MAX_ARGSIZE)) { |
| 4851 | printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz); |
| 4852 | return -E2BIG; |
| 4853 | } |
| 4854 | |
| 4855 | /* |
| 4856 | * allocate default-sized argument buffer |
| 4857 | */ |
| 4858 | if (likely(count && args_k == NULL)) { |
| 4859 | args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL); |
| 4860 | if (args_k == NULL) return -ENOMEM; |
| 4861 | } |
| 4862 | |
| 4863 | ret = -EFAULT; |
| 4864 | |
| 4865 | /* |
| 4866 | * copy arguments |
| 4867 | * |
| 4868 | * assume sz = 0 for command without parameters |
| 4869 | */ |
| 4870 | if (sz && copy_from_user(args_k, arg, sz)) { |
| 4871 | DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg)); |
| 4872 | goto error_args; |
| 4873 | } |
| 4874 | |
| 4875 | /* |
| 4876 | * check if command supports extra parameters |
| 4877 | */ |
| 4878 | if (completed_args == 0 && getsize) { |
| 4879 | /* |
| 4880 | * get extra parameters size (based on main argument) |
| 4881 | */ |
| 4882 | ret = (*getsize)(args_k, &xtra_sz); |
| 4883 | if (ret) goto error_args; |
| 4884 | |
| 4885 | completed_args = 1; |
| 4886 | |
| 4887 | DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz)); |
| 4888 | |
| 4889 | /* retry if necessary */ |
| 4890 | if (likely(xtra_sz)) goto restart_args; |
| 4891 | } |
| 4892 | |
| 4893 | if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd; |
| 4894 | |
| 4895 | ret = -EBADF; |
| 4896 | |
| 4897 | file = fget(fd); |
| 4898 | if (unlikely(file == NULL)) { |
| 4899 | DPRINT(("invalid fd %d\n", fd)); |
| 4900 | goto error_args; |
| 4901 | } |
| 4902 | if (unlikely(PFM_IS_FILE(file) == 0)) { |
| 4903 | DPRINT(("fd %d not related to perfmon\n", fd)); |
| 4904 | goto error_args; |
| 4905 | } |
| 4906 | |
| 4907 | ctx = (pfm_context_t *)file->private_data; |
| 4908 | if (unlikely(ctx == NULL)) { |
| 4909 | DPRINT(("no context for fd %d\n", fd)); |
| 4910 | goto error_args; |
| 4911 | } |
| 4912 | prefetch(&ctx->ctx_state); |
| 4913 | |
| 4914 | PROTECT_CTX(ctx, flags); |
| 4915 | |
| 4916 | /* |
| 4917 | * check task is stopped |
| 4918 | */ |
| 4919 | ret = pfm_check_task_state(ctx, cmd, flags); |
| 4920 | if (unlikely(ret)) goto abort_locked; |
| 4921 | |
| 4922 | skip_fd: |
| 4923 | ret = (*func)(ctx, args_k, count, ia64_task_regs(current)); |
| 4924 | |
| 4925 | call_made = 1; |
| 4926 | |
| 4927 | abort_locked: |
| 4928 | if (likely(ctx)) { |
| 4929 | DPRINT(("context unlocked\n")); |
| 4930 | UNPROTECT_CTX(ctx, flags); |
| 4931 | fput(file); |
| 4932 | } |
| 4933 | |
| 4934 | /* copy argument back to user, if needed */ |
| 4935 | if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT; |
| 4936 | |
| 4937 | error_args: |
| 4938 | if (args_k) kfree(args_k); |
| 4939 | |
| 4940 | DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret)); |
| 4941 | |
| 4942 | return ret; |
| 4943 | } |
| 4944 | |
| 4945 | static void |
| 4946 | pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs) |
| 4947 | { |
| 4948 | pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt; |
| 4949 | pfm_ovfl_ctrl_t rst_ctrl; |
| 4950 | int state; |
| 4951 | int ret = 0; |
| 4952 | |
| 4953 | state = ctx->ctx_state; |
| 4954 | /* |
| 4955 | * Unlock sampling buffer and reset index atomically |
| 4956 | * XXX: not really needed when blocking |
| 4957 | */ |
| 4958 | if (CTX_HAS_SMPL(ctx)) { |
| 4959 | |
| 4960 | rst_ctrl.bits.mask_monitoring = 0; |
| 4961 | rst_ctrl.bits.reset_ovfl_pmds = 0; |
| 4962 | |
| 4963 | if (state == PFM_CTX_LOADED) |
| 4964 | ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs); |
| 4965 | else |
| 4966 | ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs); |
| 4967 | } else { |
| 4968 | rst_ctrl.bits.mask_monitoring = 0; |
| 4969 | rst_ctrl.bits.reset_ovfl_pmds = 1; |
| 4970 | } |
| 4971 | |
| 4972 | if (ret == 0) { |
| 4973 | if (rst_ctrl.bits.reset_ovfl_pmds) { |
| 4974 | pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET); |
| 4975 | } |
| 4976 | if (rst_ctrl.bits.mask_monitoring == 0) { |
| 4977 | DPRINT(("resuming monitoring\n")); |
| 4978 | if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current); |
| 4979 | } else { |
| 4980 | DPRINT(("stopping monitoring\n")); |
| 4981 | //pfm_stop_monitoring(current, regs); |
| 4982 | } |
| 4983 | ctx->ctx_state = PFM_CTX_LOADED; |
| 4984 | } |
| 4985 | } |
| 4986 | |
| 4987 | /* |
| 4988 | * context MUST BE LOCKED when calling |
| 4989 | * can only be called for current |
| 4990 | */ |
| 4991 | static void |
| 4992 | pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs) |
| 4993 | { |
| 4994 | int ret; |
| 4995 | |
| 4996 | DPRINT(("entering for [%d]\n", current->pid)); |
| 4997 | |
| 4998 | ret = pfm_context_unload(ctx, NULL, 0, regs); |
| 4999 | if (ret) { |
| 5000 | printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret); |
| 5001 | } |
| 5002 | |
| 5003 | /* |
| 5004 | * and wakeup controlling task, indicating we are now disconnected |
| 5005 | */ |
| 5006 | wake_up_interruptible(&ctx->ctx_zombieq); |
| 5007 | |
| 5008 | /* |
| 5009 | * given that context is still locked, the controlling |
| 5010 | * task will only get access when we return from |
| 5011 | * pfm_handle_work(). |
| 5012 | */ |
| 5013 | } |
| 5014 | |
| 5015 | static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds); |
Stephane Eranian | 4944930 | 2005-04-25 13:08:30 -0700 | [diff] [blame] | 5016 | /* |
| 5017 | * pfm_handle_work() can be called with interrupts enabled |
| 5018 | * (TIF_NEED_RESCHED) or disabled. The down_interruptible |
| 5019 | * call may sleep, therefore we must re-enable interrupts |
| 5020 | * to avoid deadlocks. It is safe to do so because this function |
| 5021 | * is called ONLY when returning to user level (PUStk=1), in which case |
| 5022 | * there is no risk of kernel stack overflow due to deep |
| 5023 | * interrupt nesting. |
| 5024 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5025 | void |
| 5026 | pfm_handle_work(void) |
| 5027 | { |
| 5028 | pfm_context_t *ctx; |
| 5029 | struct pt_regs *regs; |
Stephane Eranian | 4944930 | 2005-04-25 13:08:30 -0700 | [diff] [blame] | 5030 | unsigned long flags, dummy_flags; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5031 | unsigned long ovfl_regs; |
| 5032 | unsigned int reason; |
| 5033 | int ret; |
| 5034 | |
| 5035 | ctx = PFM_GET_CTX(current); |
| 5036 | if (ctx == NULL) { |
| 5037 | printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid); |
| 5038 | return; |
| 5039 | } |
| 5040 | |
| 5041 | PROTECT_CTX(ctx, flags); |
| 5042 | |
| 5043 | PFM_SET_WORK_PENDING(current, 0); |
| 5044 | |
| 5045 | pfm_clear_task_notify(); |
| 5046 | |
| 5047 | regs = ia64_task_regs(current); |
| 5048 | |
| 5049 | /* |
| 5050 | * extract reason for being here and clear |
| 5051 | */ |
| 5052 | reason = ctx->ctx_fl_trap_reason; |
| 5053 | ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE; |
| 5054 | ovfl_regs = ctx->ctx_ovfl_regs[0]; |
| 5055 | |
| 5056 | DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state)); |
| 5057 | |
| 5058 | /* |
| 5059 | * must be done before we check for simple-reset mode |
| 5060 | */ |
| 5061 | if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie; |
| 5062 | |
| 5063 | |
| 5064 | //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking; |
| 5065 | if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking; |
| 5066 | |
Stephane Eranian | 4944930 | 2005-04-25 13:08:30 -0700 | [diff] [blame] | 5067 | /* |
| 5068 | * restore interrupt mask to what it was on entry. |
| 5069 | * Could be enabled/diasbled. |
| 5070 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5071 | UNPROTECT_CTX(ctx, flags); |
| 5072 | |
Stephane Eranian | 4944930 | 2005-04-25 13:08:30 -0700 | [diff] [blame] | 5073 | /* |
| 5074 | * force interrupt enable because of down_interruptible() |
| 5075 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5076 | local_irq_enable(); |
| 5077 | |
| 5078 | DPRINT(("before block sleeping\n")); |
| 5079 | |
| 5080 | /* |
| 5081 | * may go through without blocking on SMP systems |
| 5082 | * if restart has been received already by the time we call down() |
| 5083 | */ |
| 5084 | ret = down_interruptible(&ctx->ctx_restart_sem); |
| 5085 | |
| 5086 | DPRINT(("after block sleeping ret=%d\n", ret)); |
| 5087 | |
| 5088 | /* |
Stephane Eranian | 4944930 | 2005-04-25 13:08:30 -0700 | [diff] [blame] | 5089 | * lock context and mask interrupts again |
| 5090 | * We save flags into a dummy because we may have |
| 5091 | * altered interrupts mask compared to entry in this |
| 5092 | * function. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5093 | */ |
Stephane Eranian | 4944930 | 2005-04-25 13:08:30 -0700 | [diff] [blame] | 5094 | PROTECT_CTX(ctx, dummy_flags); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5095 | |
| 5096 | /* |
| 5097 | * we need to read the ovfl_regs only after wake-up |
| 5098 | * because we may have had pfm_write_pmds() in between |
| 5099 | * and that can changed PMD values and therefore |
| 5100 | * ovfl_regs is reset for these new PMD values. |
| 5101 | */ |
| 5102 | ovfl_regs = ctx->ctx_ovfl_regs[0]; |
| 5103 | |
| 5104 | if (ctx->ctx_fl_going_zombie) { |
| 5105 | do_zombie: |
| 5106 | DPRINT(("context is zombie, bailing out\n")); |
| 5107 | pfm_context_force_terminate(ctx, regs); |
| 5108 | goto nothing_to_do; |
| 5109 | } |
| 5110 | /* |
| 5111 | * in case of interruption of down() we don't restart anything |
| 5112 | */ |
| 5113 | if (ret < 0) goto nothing_to_do; |
| 5114 | |
| 5115 | skip_blocking: |
| 5116 | pfm_resume_after_ovfl(ctx, ovfl_regs, regs); |
| 5117 | ctx->ctx_ovfl_regs[0] = 0UL; |
| 5118 | |
| 5119 | nothing_to_do: |
Stephane Eranian | 4944930 | 2005-04-25 13:08:30 -0700 | [diff] [blame] | 5120 | /* |
| 5121 | * restore flags as they were upon entry |
| 5122 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5123 | UNPROTECT_CTX(ctx, flags); |
| 5124 | } |
| 5125 | |
| 5126 | static int |
| 5127 | pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg) |
| 5128 | { |
| 5129 | if (ctx->ctx_state == PFM_CTX_ZOMBIE) { |
| 5130 | DPRINT(("ignoring overflow notification, owner is zombie\n")); |
| 5131 | return 0; |
| 5132 | } |
| 5133 | |
| 5134 | DPRINT(("waking up somebody\n")); |
| 5135 | |
| 5136 | if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait); |
| 5137 | |
| 5138 | /* |
| 5139 | * safe, we are not in intr handler, nor in ctxsw when |
| 5140 | * we come here |
| 5141 | */ |
| 5142 | kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN); |
| 5143 | |
| 5144 | return 0; |
| 5145 | } |
| 5146 | |
| 5147 | static int |
| 5148 | pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds) |
| 5149 | { |
| 5150 | pfm_msg_t *msg = NULL; |
| 5151 | |
| 5152 | if (ctx->ctx_fl_no_msg == 0) { |
| 5153 | msg = pfm_get_new_msg(ctx); |
| 5154 | if (msg == NULL) { |
| 5155 | printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n"); |
| 5156 | return -1; |
| 5157 | } |
| 5158 | |
| 5159 | msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL; |
| 5160 | msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd; |
| 5161 | msg->pfm_ovfl_msg.msg_active_set = 0; |
| 5162 | msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds; |
| 5163 | msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL; |
| 5164 | msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL; |
| 5165 | msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL; |
| 5166 | msg->pfm_ovfl_msg.msg_tstamp = 0UL; |
| 5167 | } |
| 5168 | |
| 5169 | DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n", |
| 5170 | msg, |
| 5171 | ctx->ctx_fl_no_msg, |
| 5172 | ctx->ctx_fd, |
| 5173 | ovfl_pmds)); |
| 5174 | |
| 5175 | return pfm_notify_user(ctx, msg); |
| 5176 | } |
| 5177 | |
| 5178 | static int |
| 5179 | pfm_end_notify_user(pfm_context_t *ctx) |
| 5180 | { |
| 5181 | pfm_msg_t *msg; |
| 5182 | |
| 5183 | msg = pfm_get_new_msg(ctx); |
| 5184 | if (msg == NULL) { |
| 5185 | printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n"); |
| 5186 | return -1; |
| 5187 | } |
| 5188 | /* no leak */ |
| 5189 | memset(msg, 0, sizeof(*msg)); |
| 5190 | |
| 5191 | msg->pfm_end_msg.msg_type = PFM_MSG_END; |
| 5192 | msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd; |
| 5193 | msg->pfm_ovfl_msg.msg_tstamp = 0UL; |
| 5194 | |
| 5195 | DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n", |
| 5196 | msg, |
| 5197 | ctx->ctx_fl_no_msg, |
| 5198 | ctx->ctx_fd)); |
| 5199 | |
| 5200 | return pfm_notify_user(ctx, msg); |
| 5201 | } |
| 5202 | |
| 5203 | /* |
| 5204 | * main overflow processing routine. |
| 5205 | * it can be called from the interrupt path or explicitely during the context switch code |
| 5206 | */ |
| 5207 | static void |
| 5208 | pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs) |
| 5209 | { |
| 5210 | pfm_ovfl_arg_t *ovfl_arg; |
| 5211 | unsigned long mask; |
| 5212 | unsigned long old_val, ovfl_val, new_val; |
| 5213 | unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds; |
| 5214 | unsigned long tstamp; |
| 5215 | pfm_ovfl_ctrl_t ovfl_ctrl; |
| 5216 | unsigned int i, has_smpl; |
| 5217 | int must_notify = 0; |
| 5218 | |
| 5219 | if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring; |
| 5220 | |
| 5221 | /* |
| 5222 | * sanity test. Should never happen |
| 5223 | */ |
| 5224 | if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check; |
| 5225 | |
| 5226 | tstamp = ia64_get_itc(); |
| 5227 | mask = pmc0 >> PMU_FIRST_COUNTER; |
| 5228 | ovfl_val = pmu_conf->ovfl_val; |
| 5229 | has_smpl = CTX_HAS_SMPL(ctx); |
| 5230 | |
| 5231 | DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s " |
| 5232 | "used_pmds=0x%lx\n", |
| 5233 | pmc0, |
| 5234 | task ? task->pid: -1, |
| 5235 | (regs ? regs->cr_iip : 0), |
| 5236 | CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking", |
| 5237 | ctx->ctx_used_pmds[0])); |
| 5238 | |
| 5239 | |
| 5240 | /* |
| 5241 | * first we update the virtual counters |
| 5242 | * assume there was a prior ia64_srlz_d() issued |
| 5243 | */ |
| 5244 | for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) { |
| 5245 | |
| 5246 | /* skip pmd which did not overflow */ |
| 5247 | if ((mask & 0x1) == 0) continue; |
| 5248 | |
| 5249 | /* |
| 5250 | * Note that the pmd is not necessarily 0 at this point as qualified events |
| 5251 | * may have happened before the PMU was frozen. The residual count is not |
| 5252 | * taken into consideration here but will be with any read of the pmd via |
| 5253 | * pfm_read_pmds(). |
| 5254 | */ |
| 5255 | old_val = new_val = ctx->ctx_pmds[i].val; |
| 5256 | new_val += 1 + ovfl_val; |
| 5257 | ctx->ctx_pmds[i].val = new_val; |
| 5258 | |
| 5259 | /* |
| 5260 | * check for overflow condition |
| 5261 | */ |
| 5262 | if (likely(old_val > new_val)) { |
| 5263 | ovfl_pmds |= 1UL << i; |
| 5264 | if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i; |
| 5265 | } |
| 5266 | |
| 5267 | DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n", |
| 5268 | i, |
| 5269 | new_val, |
| 5270 | old_val, |
| 5271 | ia64_get_pmd(i) & ovfl_val, |
| 5272 | ovfl_pmds, |
| 5273 | ovfl_notify)); |
| 5274 | } |
| 5275 | |
| 5276 | /* |
| 5277 | * there was no 64-bit overflow, nothing else to do |
| 5278 | */ |
| 5279 | if (ovfl_pmds == 0UL) return; |
| 5280 | |
| 5281 | /* |
| 5282 | * reset all control bits |
| 5283 | */ |
| 5284 | ovfl_ctrl.val = 0; |
| 5285 | reset_pmds = 0UL; |
| 5286 | |
| 5287 | /* |
| 5288 | * if a sampling format module exists, then we "cache" the overflow by |
| 5289 | * calling the module's handler() routine. |
| 5290 | */ |
| 5291 | if (has_smpl) { |
| 5292 | unsigned long start_cycles, end_cycles; |
| 5293 | unsigned long pmd_mask; |
| 5294 | int j, k, ret = 0; |
| 5295 | int this_cpu = smp_processor_id(); |
| 5296 | |
| 5297 | pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER; |
| 5298 | ovfl_arg = &ctx->ctx_ovfl_arg; |
| 5299 | |
| 5300 | prefetch(ctx->ctx_smpl_hdr); |
| 5301 | |
| 5302 | for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) { |
| 5303 | |
| 5304 | mask = 1UL << i; |
| 5305 | |
| 5306 | if ((pmd_mask & 0x1) == 0) continue; |
| 5307 | |
| 5308 | ovfl_arg->ovfl_pmd = (unsigned char )i; |
| 5309 | ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0; |
| 5310 | ovfl_arg->active_set = 0; |
| 5311 | ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */ |
| 5312 | ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0]; |
| 5313 | |
| 5314 | ovfl_arg->pmd_value = ctx->ctx_pmds[i].val; |
| 5315 | ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval; |
| 5316 | ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid; |
| 5317 | |
| 5318 | /* |
| 5319 | * copy values of pmds of interest. Sampling format may copy them |
| 5320 | * into sampling buffer. |
| 5321 | */ |
| 5322 | if (smpl_pmds) { |
| 5323 | for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) { |
| 5324 | if ((smpl_pmds & 0x1) == 0) continue; |
| 5325 | ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j); |
| 5326 | DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1])); |
| 5327 | } |
| 5328 | } |
| 5329 | |
| 5330 | pfm_stats[this_cpu].pfm_smpl_handler_calls++; |
| 5331 | |
| 5332 | start_cycles = ia64_get_itc(); |
| 5333 | |
| 5334 | /* |
| 5335 | * call custom buffer format record (handler) routine |
| 5336 | */ |
| 5337 | ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp); |
| 5338 | |
| 5339 | end_cycles = ia64_get_itc(); |
| 5340 | |
| 5341 | /* |
| 5342 | * For those controls, we take the union because they have |
| 5343 | * an all or nothing behavior. |
| 5344 | */ |
| 5345 | ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user; |
| 5346 | ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task; |
| 5347 | ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring; |
| 5348 | /* |
| 5349 | * build the bitmask of pmds to reset now |
| 5350 | */ |
| 5351 | if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask; |
| 5352 | |
| 5353 | pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles; |
| 5354 | } |
| 5355 | /* |
| 5356 | * when the module cannot handle the rest of the overflows, we abort right here |
| 5357 | */ |
| 5358 | if (ret && pmd_mask) { |
| 5359 | DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n", |
| 5360 | pmd_mask<<PMU_FIRST_COUNTER)); |
| 5361 | } |
| 5362 | /* |
| 5363 | * remove the pmds we reset now from the set of pmds to reset in pfm_restart() |
| 5364 | */ |
| 5365 | ovfl_pmds &= ~reset_pmds; |
| 5366 | } else { |
| 5367 | /* |
| 5368 | * when no sampling module is used, then the default |
| 5369 | * is to notify on overflow if requested by user |
| 5370 | */ |
| 5371 | ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0; |
| 5372 | ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0; |
| 5373 | ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */ |
| 5374 | ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1; |
| 5375 | /* |
| 5376 | * if needed, we reset all overflowed pmds |
| 5377 | */ |
| 5378 | if (ovfl_notify == 0) reset_pmds = ovfl_pmds; |
| 5379 | } |
| 5380 | |
| 5381 | DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds)); |
| 5382 | |
| 5383 | /* |
| 5384 | * reset the requested PMD registers using the short reset values |
| 5385 | */ |
| 5386 | if (reset_pmds) { |
| 5387 | unsigned long bm = reset_pmds; |
| 5388 | pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET); |
| 5389 | } |
| 5390 | |
| 5391 | if (ovfl_notify && ovfl_ctrl.bits.notify_user) { |
| 5392 | /* |
| 5393 | * keep track of what to reset when unblocking |
| 5394 | */ |
| 5395 | ctx->ctx_ovfl_regs[0] = ovfl_pmds; |
| 5396 | |
| 5397 | /* |
| 5398 | * check for blocking context |
| 5399 | */ |
| 5400 | if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) { |
| 5401 | |
| 5402 | ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK; |
| 5403 | |
| 5404 | /* |
| 5405 | * set the perfmon specific checking pending work for the task |
| 5406 | */ |
| 5407 | PFM_SET_WORK_PENDING(task, 1); |
| 5408 | |
| 5409 | /* |
| 5410 | * when coming from ctxsw, current still points to the |
| 5411 | * previous task, therefore we must work with task and not current. |
| 5412 | */ |
| 5413 | pfm_set_task_notify(task); |
| 5414 | } |
| 5415 | /* |
| 5416 | * defer until state is changed (shorten spin window). the context is locked |
| 5417 | * anyway, so the signal receiver would come spin for nothing. |
| 5418 | */ |
| 5419 | must_notify = 1; |
| 5420 | } |
| 5421 | |
| 5422 | DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n", |
| 5423 | GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1, |
| 5424 | PFM_GET_WORK_PENDING(task), |
| 5425 | ctx->ctx_fl_trap_reason, |
| 5426 | ovfl_pmds, |
| 5427 | ovfl_notify, |
| 5428 | ovfl_ctrl.bits.mask_monitoring ? 1 : 0)); |
| 5429 | /* |
| 5430 | * in case monitoring must be stopped, we toggle the psr bits |
| 5431 | */ |
| 5432 | if (ovfl_ctrl.bits.mask_monitoring) { |
| 5433 | pfm_mask_monitoring(task); |
| 5434 | ctx->ctx_state = PFM_CTX_MASKED; |
| 5435 | ctx->ctx_fl_can_restart = 1; |
| 5436 | } |
| 5437 | |
| 5438 | /* |
| 5439 | * send notification now |
| 5440 | */ |
| 5441 | if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify); |
| 5442 | |
| 5443 | return; |
| 5444 | |
| 5445 | sanity_check: |
| 5446 | printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n", |
| 5447 | smp_processor_id(), |
| 5448 | task ? task->pid : -1, |
| 5449 | pmc0); |
| 5450 | return; |
| 5451 | |
| 5452 | stop_monitoring: |
| 5453 | /* |
| 5454 | * in SMP, zombie context is never restored but reclaimed in pfm_load_regs(). |
| 5455 | * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can |
| 5456 | * come here as zombie only if the task is the current task. In which case, we |
| 5457 | * can access the PMU hardware directly. |
| 5458 | * |
| 5459 | * Note that zombies do have PM_VALID set. So here we do the minimal. |
| 5460 | * |
| 5461 | * In case the context was zombified it could not be reclaimed at the time |
| 5462 | * the monitoring program exited. At this point, the PMU reservation has been |
| 5463 | * returned, the sampiing buffer has been freed. We must convert this call |
| 5464 | * into a spurious interrupt. However, we must also avoid infinite overflows |
| 5465 | * by stopping monitoring for this task. We can only come here for a per-task |
| 5466 | * context. All we need to do is to stop monitoring using the psr bits which |
| 5467 | * are always task private. By re-enabling secure montioring, we ensure that |
| 5468 | * the monitored task will not be able to re-activate monitoring. |
| 5469 | * The task will eventually be context switched out, at which point the context |
| 5470 | * will be reclaimed (that includes releasing ownership of the PMU). |
| 5471 | * |
| 5472 | * So there might be a window of time where the number of per-task session is zero |
| 5473 | * yet one PMU might have a owner and get at most one overflow interrupt for a zombie |
| 5474 | * context. This is safe because if a per-task session comes in, it will push this one |
| 5475 | * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide |
| 5476 | * session is force on that CPU, given that we use task pinning, pfm_save_regs() will |
| 5477 | * also push our zombie context out. |
| 5478 | * |
| 5479 | * Overall pretty hairy stuff.... |
| 5480 | */ |
| 5481 | DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1)); |
| 5482 | pfm_clear_psr_up(); |
| 5483 | ia64_psr(regs)->up = 0; |
| 5484 | ia64_psr(regs)->sp = 1; |
| 5485 | return; |
| 5486 | } |
| 5487 | |
| 5488 | static int |
| 5489 | pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs) |
| 5490 | { |
| 5491 | struct task_struct *task; |
| 5492 | pfm_context_t *ctx; |
| 5493 | unsigned long flags; |
| 5494 | u64 pmc0; |
| 5495 | int this_cpu = smp_processor_id(); |
| 5496 | int retval = 0; |
| 5497 | |
| 5498 | pfm_stats[this_cpu].pfm_ovfl_intr_count++; |
| 5499 | |
| 5500 | /* |
| 5501 | * srlz.d done before arriving here |
| 5502 | */ |
| 5503 | pmc0 = ia64_get_pmc(0); |
| 5504 | |
| 5505 | task = GET_PMU_OWNER(); |
| 5506 | ctx = GET_PMU_CTX(); |
| 5507 | |
| 5508 | /* |
| 5509 | * if we have some pending bits set |
| 5510 | * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1 |
| 5511 | */ |
| 5512 | if (PMC0_HAS_OVFL(pmc0) && task) { |
| 5513 | /* |
| 5514 | * we assume that pmc0.fr is always set here |
| 5515 | */ |
| 5516 | |
| 5517 | /* sanity check */ |
| 5518 | if (!ctx) goto report_spurious1; |
| 5519 | |
| 5520 | if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) |
| 5521 | goto report_spurious2; |
| 5522 | |
| 5523 | PROTECT_CTX_NOPRINT(ctx, flags); |
| 5524 | |
| 5525 | pfm_overflow_handler(task, ctx, pmc0, regs); |
| 5526 | |
| 5527 | UNPROTECT_CTX_NOPRINT(ctx, flags); |
| 5528 | |
| 5529 | } else { |
| 5530 | pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++; |
| 5531 | retval = -1; |
| 5532 | } |
| 5533 | /* |
| 5534 | * keep it unfrozen at all times |
| 5535 | */ |
| 5536 | pfm_unfreeze_pmu(); |
| 5537 | |
| 5538 | return retval; |
| 5539 | |
| 5540 | report_spurious1: |
| 5541 | printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n", |
| 5542 | this_cpu, task->pid); |
| 5543 | pfm_unfreeze_pmu(); |
| 5544 | return -1; |
| 5545 | report_spurious2: |
| 5546 | printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", |
| 5547 | this_cpu, |
| 5548 | task->pid); |
| 5549 | pfm_unfreeze_pmu(); |
| 5550 | return -1; |
| 5551 | } |
| 5552 | |
| 5553 | static irqreturn_t |
| 5554 | pfm_interrupt_handler(int irq, void *arg, struct pt_regs *regs) |
| 5555 | { |
| 5556 | unsigned long start_cycles, total_cycles; |
| 5557 | unsigned long min, max; |
| 5558 | int this_cpu; |
| 5559 | int ret; |
| 5560 | |
| 5561 | this_cpu = get_cpu(); |
Tony Luck | a1ecf7f | 2005-05-18 16:06:00 -0700 | [diff] [blame] | 5562 | if (likely(!pfm_alt_intr_handler)) { |
| 5563 | min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min; |
| 5564 | max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5565 | |
Tony Luck | a1ecf7f | 2005-05-18 16:06:00 -0700 | [diff] [blame] | 5566 | start_cycles = ia64_get_itc(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5567 | |
Tony Luck | a1ecf7f | 2005-05-18 16:06:00 -0700 | [diff] [blame] | 5568 | ret = pfm_do_interrupt_handler(irq, arg, regs); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5569 | |
Tony Luck | a1ecf7f | 2005-05-18 16:06:00 -0700 | [diff] [blame] | 5570 | total_cycles = ia64_get_itc(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5571 | |
Tony Luck | a1ecf7f | 2005-05-18 16:06:00 -0700 | [diff] [blame] | 5572 | /* |
| 5573 | * don't measure spurious interrupts |
| 5574 | */ |
| 5575 | if (likely(ret == 0)) { |
| 5576 | total_cycles -= start_cycles; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5577 | |
Tony Luck | a1ecf7f | 2005-05-18 16:06:00 -0700 | [diff] [blame] | 5578 | if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles; |
| 5579 | if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5580 | |
Tony Luck | a1ecf7f | 2005-05-18 16:06:00 -0700 | [diff] [blame] | 5581 | pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles; |
| 5582 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5583 | } |
Tony Luck | a1ecf7f | 2005-05-18 16:06:00 -0700 | [diff] [blame] | 5584 | else { |
| 5585 | (*pfm_alt_intr_handler->handler)(irq, arg, regs); |
| 5586 | } |
| 5587 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5588 | put_cpu_no_resched(); |
| 5589 | return IRQ_HANDLED; |
| 5590 | } |
| 5591 | |
| 5592 | /* |
| 5593 | * /proc/perfmon interface, for debug only |
| 5594 | */ |
| 5595 | |
| 5596 | #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1) |
| 5597 | |
| 5598 | static void * |
| 5599 | pfm_proc_start(struct seq_file *m, loff_t *pos) |
| 5600 | { |
| 5601 | if (*pos == 0) { |
| 5602 | return PFM_PROC_SHOW_HEADER; |
| 5603 | } |
| 5604 | |
| 5605 | while (*pos <= NR_CPUS) { |
| 5606 | if (cpu_online(*pos - 1)) { |
| 5607 | return (void *)*pos; |
| 5608 | } |
| 5609 | ++*pos; |
| 5610 | } |
| 5611 | return NULL; |
| 5612 | } |
| 5613 | |
| 5614 | static void * |
| 5615 | pfm_proc_next(struct seq_file *m, void *v, loff_t *pos) |
| 5616 | { |
| 5617 | ++*pos; |
| 5618 | return pfm_proc_start(m, pos); |
| 5619 | } |
| 5620 | |
| 5621 | static void |
| 5622 | pfm_proc_stop(struct seq_file *m, void *v) |
| 5623 | { |
| 5624 | } |
| 5625 | |
| 5626 | static void |
| 5627 | pfm_proc_show_header(struct seq_file *m) |
| 5628 | { |
| 5629 | struct list_head * pos; |
| 5630 | pfm_buffer_fmt_t * entry; |
| 5631 | unsigned long flags; |
| 5632 | |
| 5633 | seq_printf(m, |
| 5634 | "perfmon version : %u.%u\n" |
| 5635 | "model : %s\n" |
| 5636 | "fastctxsw : %s\n" |
| 5637 | "expert mode : %s\n" |
| 5638 | "ovfl_mask : 0x%lx\n" |
| 5639 | "PMU flags : 0x%x\n", |
| 5640 | PFM_VERSION_MAJ, PFM_VERSION_MIN, |
| 5641 | pmu_conf->pmu_name, |
| 5642 | pfm_sysctl.fastctxsw > 0 ? "Yes": "No", |
| 5643 | pfm_sysctl.expert_mode > 0 ? "Yes": "No", |
| 5644 | pmu_conf->ovfl_val, |
| 5645 | pmu_conf->flags); |
| 5646 | |
| 5647 | LOCK_PFS(flags); |
| 5648 | |
| 5649 | seq_printf(m, |
| 5650 | "proc_sessions : %u\n" |
| 5651 | "sys_sessions : %u\n" |
| 5652 | "sys_use_dbregs : %u\n" |
| 5653 | "ptrace_use_dbregs : %u\n", |
| 5654 | pfm_sessions.pfs_task_sessions, |
| 5655 | pfm_sessions.pfs_sys_sessions, |
| 5656 | pfm_sessions.pfs_sys_use_dbregs, |
| 5657 | pfm_sessions.pfs_ptrace_use_dbregs); |
| 5658 | |
| 5659 | UNLOCK_PFS(flags); |
| 5660 | |
| 5661 | spin_lock(&pfm_buffer_fmt_lock); |
| 5662 | |
| 5663 | list_for_each(pos, &pfm_buffer_fmt_list) { |
| 5664 | entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list); |
| 5665 | seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n", |
| 5666 | entry->fmt_uuid[0], |
| 5667 | entry->fmt_uuid[1], |
| 5668 | entry->fmt_uuid[2], |
| 5669 | entry->fmt_uuid[3], |
| 5670 | entry->fmt_uuid[4], |
| 5671 | entry->fmt_uuid[5], |
| 5672 | entry->fmt_uuid[6], |
| 5673 | entry->fmt_uuid[7], |
| 5674 | entry->fmt_uuid[8], |
| 5675 | entry->fmt_uuid[9], |
| 5676 | entry->fmt_uuid[10], |
| 5677 | entry->fmt_uuid[11], |
| 5678 | entry->fmt_uuid[12], |
| 5679 | entry->fmt_uuid[13], |
| 5680 | entry->fmt_uuid[14], |
| 5681 | entry->fmt_uuid[15], |
| 5682 | entry->fmt_name); |
| 5683 | } |
| 5684 | spin_unlock(&pfm_buffer_fmt_lock); |
| 5685 | |
| 5686 | } |
| 5687 | |
| 5688 | static int |
| 5689 | pfm_proc_show(struct seq_file *m, void *v) |
| 5690 | { |
| 5691 | unsigned long psr; |
| 5692 | unsigned int i; |
| 5693 | int cpu; |
| 5694 | |
| 5695 | if (v == PFM_PROC_SHOW_HEADER) { |
| 5696 | pfm_proc_show_header(m); |
| 5697 | return 0; |
| 5698 | } |
| 5699 | |
| 5700 | /* show info for CPU (v - 1) */ |
| 5701 | |
| 5702 | cpu = (long)v - 1; |
| 5703 | seq_printf(m, |
| 5704 | "CPU%-2d overflow intrs : %lu\n" |
| 5705 | "CPU%-2d overflow cycles : %lu\n" |
| 5706 | "CPU%-2d overflow min : %lu\n" |
| 5707 | "CPU%-2d overflow max : %lu\n" |
| 5708 | "CPU%-2d smpl handler calls : %lu\n" |
| 5709 | "CPU%-2d smpl handler cycles : %lu\n" |
| 5710 | "CPU%-2d spurious intrs : %lu\n" |
| 5711 | "CPU%-2d replay intrs : %lu\n" |
| 5712 | "CPU%-2d syst_wide : %d\n" |
| 5713 | "CPU%-2d dcr_pp : %d\n" |
| 5714 | "CPU%-2d exclude idle : %d\n" |
| 5715 | "CPU%-2d owner : %d\n" |
| 5716 | "CPU%-2d context : %p\n" |
| 5717 | "CPU%-2d activations : %lu\n", |
| 5718 | cpu, pfm_stats[cpu].pfm_ovfl_intr_count, |
| 5719 | cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles, |
| 5720 | cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min, |
| 5721 | cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max, |
| 5722 | cpu, pfm_stats[cpu].pfm_smpl_handler_calls, |
| 5723 | cpu, pfm_stats[cpu].pfm_smpl_handler_cycles, |
| 5724 | cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count, |
| 5725 | cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count, |
| 5726 | cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0, |
| 5727 | cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0, |
| 5728 | cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0, |
| 5729 | cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1, |
| 5730 | cpu, pfm_get_cpu_data(pmu_ctx, cpu), |
| 5731 | cpu, pfm_get_cpu_data(pmu_activation_number, cpu)); |
| 5732 | |
| 5733 | if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) { |
| 5734 | |
| 5735 | psr = pfm_get_psr(); |
| 5736 | |
| 5737 | ia64_srlz_d(); |
| 5738 | |
| 5739 | seq_printf(m, |
| 5740 | "CPU%-2d psr : 0x%lx\n" |
| 5741 | "CPU%-2d pmc0 : 0x%lx\n", |
| 5742 | cpu, psr, |
| 5743 | cpu, ia64_get_pmc(0)); |
| 5744 | |
| 5745 | for (i=0; PMC_IS_LAST(i) == 0; i++) { |
| 5746 | if (PMC_IS_COUNTING(i) == 0) continue; |
| 5747 | seq_printf(m, |
| 5748 | "CPU%-2d pmc%u : 0x%lx\n" |
| 5749 | "CPU%-2d pmd%u : 0x%lx\n", |
| 5750 | cpu, i, ia64_get_pmc(i), |
| 5751 | cpu, i, ia64_get_pmd(i)); |
| 5752 | } |
| 5753 | } |
| 5754 | return 0; |
| 5755 | } |
| 5756 | |
| 5757 | struct seq_operations pfm_seq_ops = { |
| 5758 | .start = pfm_proc_start, |
| 5759 | .next = pfm_proc_next, |
| 5760 | .stop = pfm_proc_stop, |
| 5761 | .show = pfm_proc_show |
| 5762 | }; |
| 5763 | |
| 5764 | static int |
| 5765 | pfm_proc_open(struct inode *inode, struct file *file) |
| 5766 | { |
| 5767 | return seq_open(file, &pfm_seq_ops); |
| 5768 | } |
| 5769 | |
| 5770 | |
| 5771 | /* |
| 5772 | * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens |
| 5773 | * during pfm_enable() hence before pfm_start(). We cannot assume monitoring |
| 5774 | * is active or inactive based on mode. We must rely on the value in |
| 5775 | * local_cpu_data->pfm_syst_info |
| 5776 | */ |
| 5777 | void |
| 5778 | pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin) |
| 5779 | { |
| 5780 | struct pt_regs *regs; |
| 5781 | unsigned long dcr; |
| 5782 | unsigned long dcr_pp; |
| 5783 | |
| 5784 | dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0; |
| 5785 | |
| 5786 | /* |
| 5787 | * pid 0 is guaranteed to be the idle task. There is one such task with pid 0 |
| 5788 | * on every CPU, so we can rely on the pid to identify the idle task. |
| 5789 | */ |
| 5790 | if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) { |
| 5791 | regs = ia64_task_regs(task); |
| 5792 | ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0; |
| 5793 | return; |
| 5794 | } |
| 5795 | /* |
| 5796 | * if monitoring has started |
| 5797 | */ |
| 5798 | if (dcr_pp) { |
| 5799 | dcr = ia64_getreg(_IA64_REG_CR_DCR); |
| 5800 | /* |
| 5801 | * context switching in? |
| 5802 | */ |
| 5803 | if (is_ctxswin) { |
| 5804 | /* mask monitoring for the idle task */ |
| 5805 | ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP); |
| 5806 | pfm_clear_psr_pp(); |
| 5807 | ia64_srlz_i(); |
| 5808 | return; |
| 5809 | } |
| 5810 | /* |
| 5811 | * context switching out |
| 5812 | * restore monitoring for next task |
| 5813 | * |
| 5814 | * Due to inlining this odd if-then-else construction generates |
| 5815 | * better code. |
| 5816 | */ |
| 5817 | ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP); |
| 5818 | pfm_set_psr_pp(); |
| 5819 | ia64_srlz_i(); |
| 5820 | } |
| 5821 | } |
| 5822 | |
| 5823 | #ifdef CONFIG_SMP |
| 5824 | |
| 5825 | static void |
| 5826 | pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs) |
| 5827 | { |
| 5828 | struct task_struct *task = ctx->ctx_task; |
| 5829 | |
| 5830 | ia64_psr(regs)->up = 0; |
| 5831 | ia64_psr(regs)->sp = 1; |
| 5832 | |
| 5833 | if (GET_PMU_OWNER() == task) { |
| 5834 | DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid)); |
| 5835 | SET_PMU_OWNER(NULL, NULL); |
| 5836 | } |
| 5837 | |
| 5838 | /* |
| 5839 | * disconnect the task from the context and vice-versa |
| 5840 | */ |
| 5841 | PFM_SET_WORK_PENDING(task, 0); |
| 5842 | |
| 5843 | task->thread.pfm_context = NULL; |
| 5844 | task->thread.flags &= ~IA64_THREAD_PM_VALID; |
| 5845 | |
| 5846 | DPRINT(("force cleanup for [%d]\n", task->pid)); |
| 5847 | } |
| 5848 | |
| 5849 | |
| 5850 | /* |
| 5851 | * in 2.6, interrupts are masked when we come here and the runqueue lock is held |
| 5852 | */ |
| 5853 | void |
| 5854 | pfm_save_regs(struct task_struct *task) |
| 5855 | { |
| 5856 | pfm_context_t *ctx; |
| 5857 | struct thread_struct *t; |
| 5858 | unsigned long flags; |
| 5859 | u64 psr; |
| 5860 | |
| 5861 | |
| 5862 | ctx = PFM_GET_CTX(task); |
| 5863 | if (ctx == NULL) return; |
| 5864 | t = &task->thread; |
| 5865 | |
| 5866 | /* |
| 5867 | * we always come here with interrupts ALREADY disabled by |
| 5868 | * the scheduler. So we simply need to protect against concurrent |
| 5869 | * access, not CPU concurrency. |
| 5870 | */ |
| 5871 | flags = pfm_protect_ctx_ctxsw(ctx); |
| 5872 | |
| 5873 | if (ctx->ctx_state == PFM_CTX_ZOMBIE) { |
| 5874 | struct pt_regs *regs = ia64_task_regs(task); |
| 5875 | |
| 5876 | pfm_clear_psr_up(); |
| 5877 | |
| 5878 | pfm_force_cleanup(ctx, regs); |
| 5879 | |
| 5880 | BUG_ON(ctx->ctx_smpl_hdr); |
| 5881 | |
| 5882 | pfm_unprotect_ctx_ctxsw(ctx, flags); |
| 5883 | |
| 5884 | pfm_context_free(ctx); |
| 5885 | return; |
| 5886 | } |
| 5887 | |
| 5888 | /* |
| 5889 | * save current PSR: needed because we modify it |
| 5890 | */ |
| 5891 | ia64_srlz_d(); |
| 5892 | psr = pfm_get_psr(); |
| 5893 | |
| 5894 | BUG_ON(psr & (IA64_PSR_I)); |
| 5895 | |
| 5896 | /* |
| 5897 | * stop monitoring: |
| 5898 | * This is the last instruction which may generate an overflow |
| 5899 | * |
| 5900 | * We do not need to set psr.sp because, it is irrelevant in kernel. |
| 5901 | * It will be restored from ipsr when going back to user level |
| 5902 | */ |
| 5903 | pfm_clear_psr_up(); |
| 5904 | |
| 5905 | /* |
| 5906 | * keep a copy of psr.up (for reload) |
| 5907 | */ |
| 5908 | ctx->ctx_saved_psr_up = psr & IA64_PSR_UP; |
| 5909 | |
| 5910 | /* |
| 5911 | * release ownership of this PMU. |
| 5912 | * PM interrupts are masked, so nothing |
| 5913 | * can happen. |
| 5914 | */ |
| 5915 | SET_PMU_OWNER(NULL, NULL); |
| 5916 | |
| 5917 | /* |
| 5918 | * we systematically save the PMD as we have no |
| 5919 | * guarantee we will be schedule at that same |
| 5920 | * CPU again. |
| 5921 | */ |
| 5922 | pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]); |
| 5923 | |
| 5924 | /* |
| 5925 | * save pmc0 ia64_srlz_d() done in pfm_save_pmds() |
| 5926 | * we will need it on the restore path to check |
| 5927 | * for pending overflow. |
| 5928 | */ |
| 5929 | t->pmcs[0] = ia64_get_pmc(0); |
| 5930 | |
| 5931 | /* |
| 5932 | * unfreeze PMU if had pending overflows |
| 5933 | */ |
| 5934 | if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu(); |
| 5935 | |
| 5936 | /* |
| 5937 | * finally, allow context access. |
| 5938 | * interrupts will still be masked after this call. |
| 5939 | */ |
| 5940 | pfm_unprotect_ctx_ctxsw(ctx, flags); |
| 5941 | } |
| 5942 | |
| 5943 | #else /* !CONFIG_SMP */ |
| 5944 | void |
| 5945 | pfm_save_regs(struct task_struct *task) |
| 5946 | { |
| 5947 | pfm_context_t *ctx; |
| 5948 | u64 psr; |
| 5949 | |
| 5950 | ctx = PFM_GET_CTX(task); |
| 5951 | if (ctx == NULL) return; |
| 5952 | |
| 5953 | /* |
| 5954 | * save current PSR: needed because we modify it |
| 5955 | */ |
| 5956 | psr = pfm_get_psr(); |
| 5957 | |
| 5958 | BUG_ON(psr & (IA64_PSR_I)); |
| 5959 | |
| 5960 | /* |
| 5961 | * stop monitoring: |
| 5962 | * This is the last instruction which may generate an overflow |
| 5963 | * |
| 5964 | * We do not need to set psr.sp because, it is irrelevant in kernel. |
| 5965 | * It will be restored from ipsr when going back to user level |
| 5966 | */ |
| 5967 | pfm_clear_psr_up(); |
| 5968 | |
| 5969 | /* |
| 5970 | * keep a copy of psr.up (for reload) |
| 5971 | */ |
| 5972 | ctx->ctx_saved_psr_up = psr & IA64_PSR_UP; |
| 5973 | } |
| 5974 | |
| 5975 | static void |
| 5976 | pfm_lazy_save_regs (struct task_struct *task) |
| 5977 | { |
| 5978 | pfm_context_t *ctx; |
| 5979 | struct thread_struct *t; |
| 5980 | unsigned long flags; |
| 5981 | |
| 5982 | { u64 psr = pfm_get_psr(); |
| 5983 | BUG_ON(psr & IA64_PSR_UP); |
| 5984 | } |
| 5985 | |
| 5986 | ctx = PFM_GET_CTX(task); |
| 5987 | t = &task->thread; |
| 5988 | |
| 5989 | /* |
| 5990 | * we need to mask PMU overflow here to |
| 5991 | * make sure that we maintain pmc0 until |
| 5992 | * we save it. overflow interrupts are |
| 5993 | * treated as spurious if there is no |
| 5994 | * owner. |
| 5995 | * |
| 5996 | * XXX: I don't think this is necessary |
| 5997 | */ |
| 5998 | PROTECT_CTX(ctx,flags); |
| 5999 | |
| 6000 | /* |
| 6001 | * release ownership of this PMU. |
| 6002 | * must be done before we save the registers. |
| 6003 | * |
| 6004 | * after this call any PMU interrupt is treated |
| 6005 | * as spurious. |
| 6006 | */ |
| 6007 | SET_PMU_OWNER(NULL, NULL); |
| 6008 | |
| 6009 | /* |
| 6010 | * save all the pmds we use |
| 6011 | */ |
| 6012 | pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]); |
| 6013 | |
| 6014 | /* |
| 6015 | * save pmc0 ia64_srlz_d() done in pfm_save_pmds() |
| 6016 | * it is needed to check for pended overflow |
| 6017 | * on the restore path |
| 6018 | */ |
| 6019 | t->pmcs[0] = ia64_get_pmc(0); |
| 6020 | |
| 6021 | /* |
| 6022 | * unfreeze PMU if had pending overflows |
| 6023 | */ |
| 6024 | if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu(); |
| 6025 | |
| 6026 | /* |
| 6027 | * now get can unmask PMU interrupts, they will |
| 6028 | * be treated as purely spurious and we will not |
| 6029 | * lose any information |
| 6030 | */ |
| 6031 | UNPROTECT_CTX(ctx,flags); |
| 6032 | } |
| 6033 | #endif /* CONFIG_SMP */ |
| 6034 | |
| 6035 | #ifdef CONFIG_SMP |
| 6036 | /* |
| 6037 | * in 2.6, interrupts are masked when we come here and the runqueue lock is held |
| 6038 | */ |
| 6039 | void |
| 6040 | pfm_load_regs (struct task_struct *task) |
| 6041 | { |
| 6042 | pfm_context_t *ctx; |
| 6043 | struct thread_struct *t; |
| 6044 | unsigned long pmc_mask = 0UL, pmd_mask = 0UL; |
| 6045 | unsigned long flags; |
| 6046 | u64 psr, psr_up; |
| 6047 | int need_irq_resend; |
| 6048 | |
| 6049 | ctx = PFM_GET_CTX(task); |
| 6050 | if (unlikely(ctx == NULL)) return; |
| 6051 | |
| 6052 | BUG_ON(GET_PMU_OWNER()); |
| 6053 | |
| 6054 | t = &task->thread; |
| 6055 | /* |
| 6056 | * possible on unload |
| 6057 | */ |
| 6058 | if (unlikely((t->flags & IA64_THREAD_PM_VALID) == 0)) return; |
| 6059 | |
| 6060 | /* |
| 6061 | * we always come here with interrupts ALREADY disabled by |
| 6062 | * the scheduler. So we simply need to protect against concurrent |
| 6063 | * access, not CPU concurrency. |
| 6064 | */ |
| 6065 | flags = pfm_protect_ctx_ctxsw(ctx); |
| 6066 | psr = pfm_get_psr(); |
| 6067 | |
| 6068 | need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND; |
| 6069 | |
| 6070 | BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP)); |
| 6071 | BUG_ON(psr & IA64_PSR_I); |
| 6072 | |
| 6073 | if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) { |
| 6074 | struct pt_regs *regs = ia64_task_regs(task); |
| 6075 | |
| 6076 | BUG_ON(ctx->ctx_smpl_hdr); |
| 6077 | |
| 6078 | pfm_force_cleanup(ctx, regs); |
| 6079 | |
| 6080 | pfm_unprotect_ctx_ctxsw(ctx, flags); |
| 6081 | |
| 6082 | /* |
| 6083 | * this one (kmalloc'ed) is fine with interrupts disabled |
| 6084 | */ |
| 6085 | pfm_context_free(ctx); |
| 6086 | |
| 6087 | return; |
| 6088 | } |
| 6089 | |
| 6090 | /* |
| 6091 | * we restore ALL the debug registers to avoid picking up |
| 6092 | * stale state. |
| 6093 | */ |
| 6094 | if (ctx->ctx_fl_using_dbreg) { |
| 6095 | pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); |
| 6096 | pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); |
| 6097 | } |
| 6098 | /* |
| 6099 | * retrieve saved psr.up |
| 6100 | */ |
| 6101 | psr_up = ctx->ctx_saved_psr_up; |
| 6102 | |
| 6103 | /* |
| 6104 | * if we were the last user of the PMU on that CPU, |
| 6105 | * then nothing to do except restore psr |
| 6106 | */ |
| 6107 | if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) { |
| 6108 | |
| 6109 | /* |
| 6110 | * retrieve partial reload masks (due to user modifications) |
| 6111 | */ |
| 6112 | pmc_mask = ctx->ctx_reload_pmcs[0]; |
| 6113 | pmd_mask = ctx->ctx_reload_pmds[0]; |
| 6114 | |
| 6115 | } else { |
| 6116 | /* |
| 6117 | * To avoid leaking information to the user level when psr.sp=0, |
| 6118 | * we must reload ALL implemented pmds (even the ones we don't use). |
| 6119 | * In the kernel we only allow PFM_READ_PMDS on registers which |
| 6120 | * we initialized or requested (sampling) so there is no risk there. |
| 6121 | */ |
| 6122 | pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0]; |
| 6123 | |
| 6124 | /* |
| 6125 | * ALL accessible PMCs are systematically reloaded, unused registers |
| 6126 | * get their default (from pfm_reset_pmu_state()) values to avoid picking |
| 6127 | * up stale configuration. |
| 6128 | * |
| 6129 | * PMC0 is never in the mask. It is always restored separately. |
| 6130 | */ |
| 6131 | pmc_mask = ctx->ctx_all_pmcs[0]; |
| 6132 | } |
| 6133 | /* |
| 6134 | * when context is MASKED, we will restore PMC with plm=0 |
| 6135 | * and PMD with stale information, but that's ok, nothing |
| 6136 | * will be captured. |
| 6137 | * |
| 6138 | * XXX: optimize here |
| 6139 | */ |
| 6140 | if (pmd_mask) pfm_restore_pmds(t->pmds, pmd_mask); |
| 6141 | if (pmc_mask) pfm_restore_pmcs(t->pmcs, pmc_mask); |
| 6142 | |
| 6143 | /* |
| 6144 | * check for pending overflow at the time the state |
| 6145 | * was saved. |
| 6146 | */ |
| 6147 | if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) { |
| 6148 | /* |
| 6149 | * reload pmc0 with the overflow information |
| 6150 | * On McKinley PMU, this will trigger a PMU interrupt |
| 6151 | */ |
| 6152 | ia64_set_pmc(0, t->pmcs[0]); |
| 6153 | ia64_srlz_d(); |
| 6154 | t->pmcs[0] = 0UL; |
| 6155 | |
| 6156 | /* |
| 6157 | * will replay the PMU interrupt |
| 6158 | */ |
| 6159 | if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR); |
| 6160 | |
| 6161 | pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++; |
| 6162 | } |
| 6163 | |
| 6164 | /* |
| 6165 | * we just did a reload, so we reset the partial reload fields |
| 6166 | */ |
| 6167 | ctx->ctx_reload_pmcs[0] = 0UL; |
| 6168 | ctx->ctx_reload_pmds[0] = 0UL; |
| 6169 | |
| 6170 | SET_LAST_CPU(ctx, smp_processor_id()); |
| 6171 | |
| 6172 | /* |
| 6173 | * dump activation value for this PMU |
| 6174 | */ |
| 6175 | INC_ACTIVATION(); |
| 6176 | /* |
| 6177 | * record current activation for this context |
| 6178 | */ |
| 6179 | SET_ACTIVATION(ctx); |
| 6180 | |
| 6181 | /* |
| 6182 | * establish new ownership. |
| 6183 | */ |
| 6184 | SET_PMU_OWNER(task, ctx); |
| 6185 | |
| 6186 | /* |
| 6187 | * restore the psr.up bit. measurement |
| 6188 | * is active again. |
| 6189 | * no PMU interrupt can happen at this point |
| 6190 | * because we still have interrupts disabled. |
| 6191 | */ |
| 6192 | if (likely(psr_up)) pfm_set_psr_up(); |
| 6193 | |
| 6194 | /* |
| 6195 | * allow concurrent access to context |
| 6196 | */ |
| 6197 | pfm_unprotect_ctx_ctxsw(ctx, flags); |
| 6198 | } |
| 6199 | #else /* !CONFIG_SMP */ |
| 6200 | /* |
| 6201 | * reload PMU state for UP kernels |
| 6202 | * in 2.5 we come here with interrupts disabled |
| 6203 | */ |
| 6204 | void |
| 6205 | pfm_load_regs (struct task_struct *task) |
| 6206 | { |
| 6207 | struct thread_struct *t; |
| 6208 | pfm_context_t *ctx; |
| 6209 | struct task_struct *owner; |
| 6210 | unsigned long pmd_mask, pmc_mask; |
| 6211 | u64 psr, psr_up; |
| 6212 | int need_irq_resend; |
| 6213 | |
| 6214 | owner = GET_PMU_OWNER(); |
| 6215 | ctx = PFM_GET_CTX(task); |
| 6216 | t = &task->thread; |
| 6217 | psr = pfm_get_psr(); |
| 6218 | |
| 6219 | BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP)); |
| 6220 | BUG_ON(psr & IA64_PSR_I); |
| 6221 | |
| 6222 | /* |
| 6223 | * we restore ALL the debug registers to avoid picking up |
| 6224 | * stale state. |
| 6225 | * |
| 6226 | * This must be done even when the task is still the owner |
| 6227 | * as the registers may have been modified via ptrace() |
| 6228 | * (not perfmon) by the previous task. |
| 6229 | */ |
| 6230 | if (ctx->ctx_fl_using_dbreg) { |
| 6231 | pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); |
| 6232 | pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); |
| 6233 | } |
| 6234 | |
| 6235 | /* |
| 6236 | * retrieved saved psr.up |
| 6237 | */ |
| 6238 | psr_up = ctx->ctx_saved_psr_up; |
| 6239 | need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND; |
| 6240 | |
| 6241 | /* |
| 6242 | * short path, our state is still there, just |
| 6243 | * need to restore psr and we go |
| 6244 | * |
| 6245 | * we do not touch either PMC nor PMD. the psr is not touched |
| 6246 | * by the overflow_handler. So we are safe w.r.t. to interrupt |
| 6247 | * concurrency even without interrupt masking. |
| 6248 | */ |
| 6249 | if (likely(owner == task)) { |
| 6250 | if (likely(psr_up)) pfm_set_psr_up(); |
| 6251 | return; |
| 6252 | } |
| 6253 | |
| 6254 | /* |
| 6255 | * someone else is still using the PMU, first push it out and |
| 6256 | * then we'll be able to install our stuff ! |
| 6257 | * |
| 6258 | * Upon return, there will be no owner for the current PMU |
| 6259 | */ |
| 6260 | if (owner) pfm_lazy_save_regs(owner); |
| 6261 | |
| 6262 | /* |
| 6263 | * To avoid leaking information to the user level when psr.sp=0, |
| 6264 | * we must reload ALL implemented pmds (even the ones we don't use). |
| 6265 | * In the kernel we only allow PFM_READ_PMDS on registers which |
| 6266 | * we initialized or requested (sampling) so there is no risk there. |
| 6267 | */ |
| 6268 | pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0]; |
| 6269 | |
| 6270 | /* |
| 6271 | * ALL accessible PMCs are systematically reloaded, unused registers |
| 6272 | * get their default (from pfm_reset_pmu_state()) values to avoid picking |
| 6273 | * up stale configuration. |
| 6274 | * |
| 6275 | * PMC0 is never in the mask. It is always restored separately |
| 6276 | */ |
| 6277 | pmc_mask = ctx->ctx_all_pmcs[0]; |
| 6278 | |
| 6279 | pfm_restore_pmds(t->pmds, pmd_mask); |
| 6280 | pfm_restore_pmcs(t->pmcs, pmc_mask); |
| 6281 | |
| 6282 | /* |
| 6283 | * check for pending overflow at the time the state |
| 6284 | * was saved. |
| 6285 | */ |
| 6286 | if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) { |
| 6287 | /* |
| 6288 | * reload pmc0 with the overflow information |
| 6289 | * On McKinley PMU, this will trigger a PMU interrupt |
| 6290 | */ |
| 6291 | ia64_set_pmc(0, t->pmcs[0]); |
| 6292 | ia64_srlz_d(); |
| 6293 | |
| 6294 | t->pmcs[0] = 0UL; |
| 6295 | |
| 6296 | /* |
| 6297 | * will replay the PMU interrupt |
| 6298 | */ |
| 6299 | if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR); |
| 6300 | |
| 6301 | pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++; |
| 6302 | } |
| 6303 | |
| 6304 | /* |
| 6305 | * establish new ownership. |
| 6306 | */ |
| 6307 | SET_PMU_OWNER(task, ctx); |
| 6308 | |
| 6309 | /* |
| 6310 | * restore the psr.up bit. measurement |
| 6311 | * is active again. |
| 6312 | * no PMU interrupt can happen at this point |
| 6313 | * because we still have interrupts disabled. |
| 6314 | */ |
| 6315 | if (likely(psr_up)) pfm_set_psr_up(); |
| 6316 | } |
| 6317 | #endif /* CONFIG_SMP */ |
| 6318 | |
| 6319 | /* |
| 6320 | * this function assumes monitoring is stopped |
| 6321 | */ |
| 6322 | static void |
| 6323 | pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx) |
| 6324 | { |
| 6325 | u64 pmc0; |
| 6326 | unsigned long mask2, val, pmd_val, ovfl_val; |
| 6327 | int i, can_access_pmu = 0; |
| 6328 | int is_self; |
| 6329 | |
| 6330 | /* |
| 6331 | * is the caller the task being monitored (or which initiated the |
| 6332 | * session for system wide measurements) |
| 6333 | */ |
| 6334 | is_self = ctx->ctx_task == task ? 1 : 0; |
| 6335 | |
| 6336 | /* |
| 6337 | * can access PMU is task is the owner of the PMU state on the current CPU |
| 6338 | * or if we are running on the CPU bound to the context in system-wide mode |
| 6339 | * (that is not necessarily the task the context is attached to in this mode). |
| 6340 | * In system-wide we always have can_access_pmu true because a task running on an |
| 6341 | * invalid processor is flagged earlier in the call stack (see pfm_stop). |
| 6342 | */ |
| 6343 | can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id()); |
| 6344 | if (can_access_pmu) { |
| 6345 | /* |
| 6346 | * Mark the PMU as not owned |
| 6347 | * This will cause the interrupt handler to do nothing in case an overflow |
| 6348 | * interrupt was in-flight |
| 6349 | * This also guarantees that pmc0 will contain the final state |
| 6350 | * It virtually gives us full control on overflow processing from that point |
| 6351 | * on. |
| 6352 | */ |
| 6353 | SET_PMU_OWNER(NULL, NULL); |
| 6354 | DPRINT(("releasing ownership\n")); |
| 6355 | |
| 6356 | /* |
| 6357 | * read current overflow status: |
| 6358 | * |
| 6359 | * we are guaranteed to read the final stable state |
| 6360 | */ |
| 6361 | ia64_srlz_d(); |
| 6362 | pmc0 = ia64_get_pmc(0); /* slow */ |
| 6363 | |
| 6364 | /* |
| 6365 | * reset freeze bit, overflow status information destroyed |
| 6366 | */ |
| 6367 | pfm_unfreeze_pmu(); |
| 6368 | } else { |
| 6369 | pmc0 = task->thread.pmcs[0]; |
| 6370 | /* |
| 6371 | * clear whatever overflow status bits there were |
| 6372 | */ |
| 6373 | task->thread.pmcs[0] = 0; |
| 6374 | } |
| 6375 | ovfl_val = pmu_conf->ovfl_val; |
| 6376 | /* |
| 6377 | * we save all the used pmds |
| 6378 | * we take care of overflows for counting PMDs |
| 6379 | * |
| 6380 | * XXX: sampling situation is not taken into account here |
| 6381 | */ |
| 6382 | mask2 = ctx->ctx_used_pmds[0]; |
| 6383 | |
| 6384 | DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2)); |
| 6385 | |
| 6386 | for (i = 0; mask2; i++, mask2>>=1) { |
| 6387 | |
| 6388 | /* skip non used pmds */ |
| 6389 | if ((mask2 & 0x1) == 0) continue; |
| 6390 | |
| 6391 | /* |
| 6392 | * can access PMU always true in system wide mode |
| 6393 | */ |
| 6394 | val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : task->thread.pmds[i]; |
| 6395 | |
| 6396 | if (PMD_IS_COUNTING(i)) { |
| 6397 | DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n", |
| 6398 | task->pid, |
| 6399 | i, |
| 6400 | ctx->ctx_pmds[i].val, |
| 6401 | val & ovfl_val)); |
| 6402 | |
| 6403 | /* |
| 6404 | * we rebuild the full 64 bit value of the counter |
| 6405 | */ |
| 6406 | val = ctx->ctx_pmds[i].val + (val & ovfl_val); |
| 6407 | |
| 6408 | /* |
| 6409 | * now everything is in ctx_pmds[] and we need |
| 6410 | * to clear the saved context from save_regs() such that |
| 6411 | * pfm_read_pmds() gets the correct value |
| 6412 | */ |
| 6413 | pmd_val = 0UL; |
| 6414 | |
| 6415 | /* |
| 6416 | * take care of overflow inline |
| 6417 | */ |
| 6418 | if (pmc0 & (1UL << i)) { |
| 6419 | val += 1 + ovfl_val; |
| 6420 | DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i)); |
| 6421 | } |
| 6422 | } |
| 6423 | |
| 6424 | DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val)); |
| 6425 | |
| 6426 | if (is_self) task->thread.pmds[i] = pmd_val; |
| 6427 | |
| 6428 | ctx->ctx_pmds[i].val = val; |
| 6429 | } |
| 6430 | } |
| 6431 | |
| 6432 | static struct irqaction perfmon_irqaction = { |
| 6433 | .handler = pfm_interrupt_handler, |
| 6434 | .flags = SA_INTERRUPT, |
| 6435 | .name = "perfmon" |
| 6436 | }; |
| 6437 | |
Tony Luck | a1ecf7f | 2005-05-18 16:06:00 -0700 | [diff] [blame] | 6438 | static void |
| 6439 | pfm_alt_save_pmu_state(void *data) |
| 6440 | { |
| 6441 | struct pt_regs *regs; |
| 6442 | |
| 6443 | regs = ia64_task_regs(current); |
| 6444 | |
| 6445 | DPRINT(("called\n")); |
| 6446 | |
| 6447 | /* |
| 6448 | * should not be necessary but |
| 6449 | * let's take not risk |
| 6450 | */ |
| 6451 | pfm_clear_psr_up(); |
| 6452 | pfm_clear_psr_pp(); |
| 6453 | ia64_psr(regs)->pp = 0; |
| 6454 | |
| 6455 | /* |
| 6456 | * This call is required |
| 6457 | * May cause a spurious interrupt on some processors |
| 6458 | */ |
| 6459 | pfm_freeze_pmu(); |
| 6460 | |
| 6461 | ia64_srlz_d(); |
| 6462 | } |
| 6463 | |
| 6464 | void |
| 6465 | pfm_alt_restore_pmu_state(void *data) |
| 6466 | { |
| 6467 | struct pt_regs *regs; |
| 6468 | |
| 6469 | regs = ia64_task_regs(current); |
| 6470 | |
| 6471 | DPRINT(("called\n")); |
| 6472 | |
| 6473 | /* |
| 6474 | * put PMU back in state expected |
| 6475 | * by perfmon |
| 6476 | */ |
| 6477 | pfm_clear_psr_up(); |
| 6478 | pfm_clear_psr_pp(); |
| 6479 | ia64_psr(regs)->pp = 0; |
| 6480 | |
| 6481 | /* |
| 6482 | * perfmon runs with PMU unfrozen at all times |
| 6483 | */ |
| 6484 | pfm_unfreeze_pmu(); |
| 6485 | |
| 6486 | ia64_srlz_d(); |
| 6487 | } |
| 6488 | |
| 6489 | int |
| 6490 | pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl) |
| 6491 | { |
| 6492 | int ret, i; |
| 6493 | int reserve_cpu; |
| 6494 | |
| 6495 | /* some sanity checks */ |
| 6496 | if (hdl == NULL || hdl->handler == NULL) return -EINVAL; |
| 6497 | |
| 6498 | /* do the easy test first */ |
| 6499 | if (pfm_alt_intr_handler) return -EBUSY; |
| 6500 | |
| 6501 | /* one at a time in the install or remove, just fail the others */ |
| 6502 | if (!spin_trylock(&pfm_alt_install_check)) { |
| 6503 | return -EBUSY; |
| 6504 | } |
| 6505 | |
| 6506 | /* reserve our session */ |
| 6507 | for_each_online_cpu(reserve_cpu) { |
| 6508 | ret = pfm_reserve_session(NULL, 1, reserve_cpu); |
| 6509 | if (ret) goto cleanup_reserve; |
| 6510 | } |
| 6511 | |
| 6512 | /* save the current system wide pmu states */ |
| 6513 | ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1); |
| 6514 | if (ret) { |
| 6515 | DPRINT(("on_each_cpu() failed: %d\n", ret)); |
| 6516 | goto cleanup_reserve; |
| 6517 | } |
| 6518 | |
| 6519 | /* officially change to the alternate interrupt handler */ |
| 6520 | pfm_alt_intr_handler = hdl; |
| 6521 | |
| 6522 | spin_unlock(&pfm_alt_install_check); |
| 6523 | |
| 6524 | return 0; |
| 6525 | |
| 6526 | cleanup_reserve: |
| 6527 | for_each_online_cpu(i) { |
| 6528 | /* don't unreserve more than we reserved */ |
| 6529 | if (i >= reserve_cpu) break; |
| 6530 | |
| 6531 | pfm_unreserve_session(NULL, 1, i); |
| 6532 | } |
| 6533 | |
| 6534 | spin_unlock(&pfm_alt_install_check); |
| 6535 | |
| 6536 | return ret; |
| 6537 | } |
| 6538 | EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt); |
| 6539 | |
| 6540 | int |
| 6541 | pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl) |
| 6542 | { |
| 6543 | int i; |
| 6544 | int ret; |
| 6545 | |
| 6546 | if (hdl == NULL) return -EINVAL; |
| 6547 | |
| 6548 | /* cannot remove someone else's handler! */ |
| 6549 | if (pfm_alt_intr_handler != hdl) return -EINVAL; |
| 6550 | |
| 6551 | /* one at a time in the install or remove, just fail the others */ |
| 6552 | if (!spin_trylock(&pfm_alt_install_check)) { |
| 6553 | return -EBUSY; |
| 6554 | } |
| 6555 | |
| 6556 | pfm_alt_intr_handler = NULL; |
| 6557 | |
| 6558 | ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1); |
| 6559 | if (ret) { |
| 6560 | DPRINT(("on_each_cpu() failed: %d\n", ret)); |
| 6561 | } |
| 6562 | |
| 6563 | for_each_online_cpu(i) { |
| 6564 | pfm_unreserve_session(NULL, 1, i); |
| 6565 | } |
| 6566 | |
| 6567 | spin_unlock(&pfm_alt_install_check); |
| 6568 | |
| 6569 | return 0; |
| 6570 | } |
| 6571 | EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt); |
| 6572 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6573 | /* |
| 6574 | * perfmon initialization routine, called from the initcall() table |
| 6575 | */ |
| 6576 | static int init_pfm_fs(void); |
| 6577 | |
| 6578 | static int __init |
| 6579 | pfm_probe_pmu(void) |
| 6580 | { |
| 6581 | pmu_config_t **p; |
| 6582 | int family; |
| 6583 | |
| 6584 | family = local_cpu_data->family; |
| 6585 | p = pmu_confs; |
| 6586 | |
| 6587 | while(*p) { |
| 6588 | if ((*p)->probe) { |
| 6589 | if ((*p)->probe() == 0) goto found; |
| 6590 | } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) { |
| 6591 | goto found; |
| 6592 | } |
| 6593 | p++; |
| 6594 | } |
| 6595 | return -1; |
| 6596 | found: |
| 6597 | pmu_conf = *p; |
| 6598 | return 0; |
| 6599 | } |
| 6600 | |
| 6601 | static struct file_operations pfm_proc_fops = { |
| 6602 | .open = pfm_proc_open, |
| 6603 | .read = seq_read, |
| 6604 | .llseek = seq_lseek, |
| 6605 | .release = seq_release, |
| 6606 | }; |
| 6607 | |
| 6608 | int __init |
| 6609 | pfm_init(void) |
| 6610 | { |
| 6611 | unsigned int n, n_counters, i; |
| 6612 | |
| 6613 | printk("perfmon: version %u.%u IRQ %u\n", |
| 6614 | PFM_VERSION_MAJ, |
| 6615 | PFM_VERSION_MIN, |
| 6616 | IA64_PERFMON_VECTOR); |
| 6617 | |
| 6618 | if (pfm_probe_pmu()) { |
| 6619 | printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", |
| 6620 | local_cpu_data->family); |
| 6621 | return -ENODEV; |
| 6622 | } |
| 6623 | |
| 6624 | /* |
| 6625 | * compute the number of implemented PMD/PMC from the |
| 6626 | * description tables |
| 6627 | */ |
| 6628 | n = 0; |
| 6629 | for (i=0; PMC_IS_LAST(i) == 0; i++) { |
| 6630 | if (PMC_IS_IMPL(i) == 0) continue; |
| 6631 | pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63); |
| 6632 | n++; |
| 6633 | } |
| 6634 | pmu_conf->num_pmcs = n; |
| 6635 | |
| 6636 | n = 0; n_counters = 0; |
| 6637 | for (i=0; PMD_IS_LAST(i) == 0; i++) { |
| 6638 | if (PMD_IS_IMPL(i) == 0) continue; |
| 6639 | pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63); |
| 6640 | n++; |
| 6641 | if (PMD_IS_COUNTING(i)) n_counters++; |
| 6642 | } |
| 6643 | pmu_conf->num_pmds = n; |
| 6644 | pmu_conf->num_counters = n_counters; |
| 6645 | |
| 6646 | /* |
| 6647 | * sanity checks on the number of debug registers |
| 6648 | */ |
| 6649 | if (pmu_conf->use_rr_dbregs) { |
| 6650 | if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) { |
| 6651 | printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs); |
| 6652 | pmu_conf = NULL; |
| 6653 | return -1; |
| 6654 | } |
| 6655 | if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) { |
| 6656 | printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs); |
| 6657 | pmu_conf = NULL; |
| 6658 | return -1; |
| 6659 | } |
| 6660 | } |
| 6661 | |
| 6662 | printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n", |
| 6663 | pmu_conf->pmu_name, |
| 6664 | pmu_conf->num_pmcs, |
| 6665 | pmu_conf->num_pmds, |
| 6666 | pmu_conf->num_counters, |
| 6667 | ffz(pmu_conf->ovfl_val)); |
| 6668 | |
| 6669 | /* sanity check */ |
| 6670 | if (pmu_conf->num_pmds >= IA64_NUM_PMD_REGS || pmu_conf->num_pmcs >= IA64_NUM_PMC_REGS) { |
| 6671 | printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n"); |
| 6672 | pmu_conf = NULL; |
| 6673 | return -1; |
| 6674 | } |
| 6675 | |
| 6676 | /* |
| 6677 | * create /proc/perfmon (mostly for debugging purposes) |
| 6678 | */ |
| 6679 | perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL); |
| 6680 | if (perfmon_dir == NULL) { |
| 6681 | printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n"); |
| 6682 | pmu_conf = NULL; |
| 6683 | return -1; |
| 6684 | } |
| 6685 | /* |
| 6686 | * install customized file operations for /proc/perfmon entry |
| 6687 | */ |
| 6688 | perfmon_dir->proc_fops = &pfm_proc_fops; |
| 6689 | |
| 6690 | /* |
| 6691 | * create /proc/sys/kernel/perfmon (for debugging purposes) |
| 6692 | */ |
| 6693 | pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0); |
| 6694 | |
| 6695 | /* |
| 6696 | * initialize all our spinlocks |
| 6697 | */ |
| 6698 | spin_lock_init(&pfm_sessions.pfs_lock); |
| 6699 | spin_lock_init(&pfm_buffer_fmt_lock); |
| 6700 | |
| 6701 | init_pfm_fs(); |
| 6702 | |
| 6703 | for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL; |
| 6704 | |
| 6705 | return 0; |
| 6706 | } |
| 6707 | |
| 6708 | __initcall(pfm_init); |
| 6709 | |
| 6710 | /* |
| 6711 | * this function is called before pfm_init() |
| 6712 | */ |
| 6713 | void |
| 6714 | pfm_init_percpu (void) |
| 6715 | { |
| 6716 | /* |
| 6717 | * make sure no measurement is active |
| 6718 | * (may inherit programmed PMCs from EFI). |
| 6719 | */ |
| 6720 | pfm_clear_psr_pp(); |
| 6721 | pfm_clear_psr_up(); |
| 6722 | |
| 6723 | /* |
| 6724 | * we run with the PMU not frozen at all times |
| 6725 | */ |
| 6726 | pfm_unfreeze_pmu(); |
| 6727 | |
| 6728 | if (smp_processor_id() == 0) |
| 6729 | register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction); |
| 6730 | |
| 6731 | ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR); |
| 6732 | ia64_srlz_d(); |
| 6733 | } |
| 6734 | |
| 6735 | /* |
| 6736 | * used for debug purposes only |
| 6737 | */ |
| 6738 | void |
| 6739 | dump_pmu_state(const char *from) |
| 6740 | { |
| 6741 | struct task_struct *task; |
| 6742 | struct thread_struct *t; |
| 6743 | struct pt_regs *regs; |
| 6744 | pfm_context_t *ctx; |
| 6745 | unsigned long psr, dcr, info, flags; |
| 6746 | int i, this_cpu; |
| 6747 | |
| 6748 | local_irq_save(flags); |
| 6749 | |
| 6750 | this_cpu = smp_processor_id(); |
| 6751 | regs = ia64_task_regs(current); |
| 6752 | info = PFM_CPUINFO_GET(); |
| 6753 | dcr = ia64_getreg(_IA64_REG_CR_DCR); |
| 6754 | |
| 6755 | if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) { |
| 6756 | local_irq_restore(flags); |
| 6757 | return; |
| 6758 | } |
| 6759 | |
| 6760 | printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", |
| 6761 | this_cpu, |
| 6762 | from, |
| 6763 | current->pid, |
| 6764 | regs->cr_iip, |
| 6765 | current->comm); |
| 6766 | |
| 6767 | task = GET_PMU_OWNER(); |
| 6768 | ctx = GET_PMU_CTX(); |
| 6769 | |
| 6770 | printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx); |
| 6771 | |
| 6772 | psr = pfm_get_psr(); |
| 6773 | |
| 6774 | printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", |
| 6775 | this_cpu, |
| 6776 | ia64_get_pmc(0), |
| 6777 | psr & IA64_PSR_PP ? 1 : 0, |
| 6778 | psr & IA64_PSR_UP ? 1 : 0, |
| 6779 | dcr & IA64_DCR_PP ? 1 : 0, |
| 6780 | info, |
| 6781 | ia64_psr(regs)->up, |
| 6782 | ia64_psr(regs)->pp); |
| 6783 | |
| 6784 | ia64_psr(regs)->up = 0; |
| 6785 | ia64_psr(regs)->pp = 0; |
| 6786 | |
| 6787 | t = ¤t->thread; |
| 6788 | |
| 6789 | for (i=1; PMC_IS_LAST(i) == 0; i++) { |
| 6790 | if (PMC_IS_IMPL(i) == 0) continue; |
| 6791 | printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, t->pmcs[i]); |
| 6792 | } |
| 6793 | |
| 6794 | for (i=1; PMD_IS_LAST(i) == 0; i++) { |
| 6795 | if (PMD_IS_IMPL(i) == 0) continue; |
| 6796 | printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, t->pmds[i]); |
| 6797 | } |
| 6798 | |
| 6799 | if (ctx) { |
| 6800 | printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n", |
| 6801 | this_cpu, |
| 6802 | ctx->ctx_state, |
| 6803 | ctx->ctx_smpl_vaddr, |
| 6804 | ctx->ctx_smpl_hdr, |
| 6805 | ctx->ctx_msgq_head, |
| 6806 | ctx->ctx_msgq_tail, |
| 6807 | ctx->ctx_saved_psr_up); |
| 6808 | } |
| 6809 | local_irq_restore(flags); |
| 6810 | } |
| 6811 | |
| 6812 | /* |
| 6813 | * called from process.c:copy_thread(). task is new child. |
| 6814 | */ |
| 6815 | void |
| 6816 | pfm_inherit(struct task_struct *task, struct pt_regs *regs) |
| 6817 | { |
| 6818 | struct thread_struct *thread; |
| 6819 | |
| 6820 | DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid)); |
| 6821 | |
| 6822 | thread = &task->thread; |
| 6823 | |
| 6824 | /* |
| 6825 | * cut links inherited from parent (current) |
| 6826 | */ |
| 6827 | thread->pfm_context = NULL; |
| 6828 | |
| 6829 | PFM_SET_WORK_PENDING(task, 0); |
| 6830 | |
| 6831 | /* |
| 6832 | * the psr bits are already set properly in copy_threads() |
| 6833 | */ |
| 6834 | } |
| 6835 | #else /* !CONFIG_PERFMON */ |
| 6836 | asmlinkage long |
| 6837 | sys_perfmonctl (int fd, int cmd, void *arg, int count) |
| 6838 | { |
| 6839 | return -ENOSYS; |
| 6840 | } |
| 6841 | #endif /* CONFIG_PERFMON */ |