blob: c43e847a4b8fd94f659a197454b18677f161020e [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/parisc/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7 *
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070013#include <linux/errno.h>
14#include <linux/module.h>
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/param.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/time.h>
22#include <linux/init.h>
23#include <linux/smp.h>
24#include <linux/profile.h>
25
26#include <asm/uaccess.h>
27#include <asm/io.h>
28#include <asm/irq.h>
29#include <asm/param.h>
30#include <asm/pdc.h>
31#include <asm/led.h>
32
33#include <linux/timex.h>
34
Grant Grundlerbed583f2006-09-08 23:29:22 -070035static unsigned long clocktick __read_mostly; /* timer cycles per tick */
Linus Torvalds1da177e2005-04-16 15:20:36 -070036
37#ifdef CONFIG_SMP
38extern void smp_do_timer(struct pt_regs *regs);
39#endif
40
41irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
42{
Grant Grundlerbed583f2006-09-08 23:29:22 -070043 unsigned long now;
44 unsigned long next_tick;
45 unsigned long cycles_elapsed;
46 unsigned long cycles_remainder;
47 unsigned long ticks_elapsed = 1; /* at least one elapsed */
Linus Torvalds1da177e2005-04-16 15:20:36 -070048 int cpu = smp_processor_id();
49
Grant Grundler6b799d92006-09-04 13:56:11 -070050 /* gcc can optimize for "read-only" case with a local clocktick */
51 unsigned long local_ct = clocktick;
52
Linus Torvalds1da177e2005-04-16 15:20:36 -070053 profile_tick(CPU_PROFILING, regs);
54
Grant Grundlerbed583f2006-09-08 23:29:22 -070055 /* Initialize next_tick to the expected tick time. */
Linus Torvalds1da177e2005-04-16 15:20:36 -070056 next_tick = cpu_data[cpu].it_value;
57
Grant Grundlerbed583f2006-09-08 23:29:22 -070058 /* Get current interval timer.
59 * CR16 reads as 64 bits in CPU wide mode.
60 * CR16 reads as 32 bits in CPU narrow mode.
Linus Torvalds1da177e2005-04-16 15:20:36 -070061 */
Grant Grundlerbed583f2006-09-08 23:29:22 -070062 now = mfctl(16);
Linus Torvalds1da177e2005-04-16 15:20:36 -070063
Grant Grundlerbed583f2006-09-08 23:29:22 -070064 cycles_elapsed = now - next_tick;
65
66 /* Determine how much time elapsed. */
67 if (now < next_tick) {
68 /* Scenario 2: CR16 wrapped after clock tick.
69 * 1's complement will give us the "elapse cycles".
70 *
71 * This "cr16 wrapped" cruft is primarily for 32-bit kernels.
72 * So think "unsigned long is u32" when reading the code.
73 * And yes, of course 64-bit will someday wrap, but only
74 * every 198841 days on a 1GHz machine.
75 */
76 cycles_elapsed = ~cycles_elapsed; /* off by one cycle - don't care */
Linus Torvalds1da177e2005-04-16 15:20:36 -070077 }
Grant Grundlerbed583f2006-09-08 23:29:22 -070078
Grant Grundler6b799d92006-09-04 13:56:11 -070079 if (likely(cycles_elapsed < local_ct)) {
80 /* ticks_elapsed = 1 -- We already assumed one tick elapsed. */
81 cycles_remainder = cycles_elapsed;
82 } else {
83 /* more than one tick elapsed. Do "expensive" math. */
84 ticks_elapsed += cycles_elapsed / local_ct;
85
86 /* Faster version of "remainder = elapsed % clocktick" */
87 cycles_remainder = cycles_elapsed - (ticks_elapsed * local_ct);
88 }
Grant Grundlerbed583f2006-09-08 23:29:22 -070089
90 /* Can we differentiate between "early CR16" (aka Scenario 1) and
91 * "long delay" (aka Scenario 3)? I don't think so.
92 *
93 * We expected timer_interrupt to be delivered at least a few hundred
94 * cycles after the IT fires. But it's arbitrary how much time passes
95 * before we call it "late". I've picked one second.
96 */
97 if (ticks_elapsed > HZ) {
98 /* Scenario 3: very long delay? bad in any case */
Grant Grundler6b799d92006-09-04 13:56:11 -070099 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
Grant Grundlerbed583f2006-09-08 23:29:22 -0700100 " ticks %ld cycles %lX rem %lX"
101 " next/now %lX/%lX\n",
102 cpu,
103 ticks_elapsed, cycles_elapsed, cycles_remainder,
104 next_tick, now );
Grant Grundlerbed583f2006-09-08 23:29:22 -0700105 }
106
107
108 /* Determine when (in CR16 cycles) next IT interrupt will fire.
109 * We want IT to fire modulo clocktick even if we miss/skip some.
110 * But those interrupts don't in fact get delivered that regularly.
111 */
Grant Grundler6b799d92006-09-04 13:56:11 -0700112 next_tick = now + (local_ct - cycles_remainder);
113
114 /* Skip one clocktick on purpose if we are likely to miss next_tick.
115 * We'll catch what we missed on the tick after that.
116 * We should never need 0x1000 cycles to read CR16, calc the
117 * new next_tick, then write CR16 back. */
118 if (!((local_ct - cycles_remainder) >> 12))
119 next_tick += local_ct;
Grant Grundlerbed583f2006-09-08 23:29:22 -0700120
121 /* Program the IT when to deliver the next interrupt. */
122 /* Only bottom 32-bits of next_tick are written to cr16. */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700123 cpu_data[cpu].it_value = next_tick;
Grant Grundler6b799d92006-09-04 13:56:11 -0700124 mtctl(next_tick, 16);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700125
Grant Grundlerbed583f2006-09-08 23:29:22 -0700126 /* Now that we are done mucking with unreliable delivery of interrupts,
127 * go do system house keeping.
128 */
129 while (ticks_elapsed--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700130#ifdef CONFIG_SMP
131 smp_do_timer(regs);
132#else
133 update_process_times(user_mode(regs));
134#endif
135 if (cpu == 0) {
136 write_seqlock(&xtime_lock);
Atsushi Nemoto3171a032006-09-29 02:00:32 -0700137 do_timer(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700138 write_sequnlock(&xtime_lock);
139 }
140 }
141
Linus Torvalds1da177e2005-04-16 15:20:36 -0700142 /* check soft power switch status */
143 if (cpu == 0 && !atomic_read(&power_tasklet.count))
144 tasklet_schedule(&power_tasklet);
145
146 return IRQ_HANDLED;
147}
148
Randolph Chung5cd55b02005-10-21 22:42:18 -0400149
150unsigned long profile_pc(struct pt_regs *regs)
151{
152 unsigned long pc = instruction_pointer(regs);
153
154 if (regs->gr[0] & PSW_N)
155 pc -= 4;
156
157#ifdef CONFIG_SMP
158 if (in_lock_functions(pc))
159 pc = regs->gr[2];
160#endif
161
162 return pc;
163}
164EXPORT_SYMBOL(profile_pc);
165
166
Linus Torvalds1da177e2005-04-16 15:20:36 -0700167/*** converted from ia64 ***/
168/*
169 * Return the number of micro-seconds that elapsed since the last
Atsushi Nemoto8ef38602006-09-30 23:28:31 -0700170 * update to wall time (aka xtime). The xtime_lock
Linus Torvalds1da177e2005-04-16 15:20:36 -0700171 * must be at least read-locked when calling this routine.
172 */
173static inline unsigned long
174gettimeoffset (void)
175{
176#ifndef CONFIG_SMP
177 /*
178 * FIXME: This won't work on smp because jiffies are updated by cpu 0.
179 * Once parisc-linux learns the cr16 difference between processors,
180 * this could be made to work.
181 */
Grant Grundlerbed583f2006-09-08 23:29:22 -0700182 unsigned long now;
183 unsigned long prev_tick;
184 unsigned long next_tick;
185 unsigned long elapsed_cycles;
186 unsigned long usec;
Grant Grundler6b799d92006-09-04 13:56:11 -0700187 unsigned long cpuid = smp_processor_id();
188 unsigned long local_ct = clocktick;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700189
Grant Grundler6b799d92006-09-04 13:56:11 -0700190 next_tick = cpu_data[cpuid].it_value;
Grant Grundlerbed583f2006-09-08 23:29:22 -0700191 now = mfctl(16); /* Read the hardware interval timer. */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700192
Grant Grundler6b799d92006-09-04 13:56:11 -0700193 prev_tick = next_tick - local_ct;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700194
Grant Grundlerbed583f2006-09-08 23:29:22 -0700195 /* Assume Scenario 1: "now" is later than prev_tick. */
196 elapsed_cycles = now - prev_tick;
197
198 if (now < prev_tick) {
199 /* Scenario 2: CR16 wrapped!
Grant Grundler6b799d92006-09-04 13:56:11 -0700200 * ones complement is off-by-one. Don't care.
Grant Grundlerbed583f2006-09-08 23:29:22 -0700201 */
202 elapsed_cycles = ~elapsed_cycles;
203 }
204
Grant Grundler6b799d92006-09-04 13:56:11 -0700205 if (elapsed_cycles > (HZ * local_ct)) {
Grant Grundlerbed583f2006-09-08 23:29:22 -0700206 /* Scenario 3: clock ticks are missing. */
207 printk (KERN_CRIT "gettimeoffset(CPU %d): missing ticks!"
208 "cycles %lX prev/now/next %lX/%lX/%lX clock %lX\n",
209 cpuid,
Grant Grundler6b799d92006-09-04 13:56:11 -0700210 elapsed_cycles, prev_tick, now, next_tick, local_ct);
Grant Grundlerbed583f2006-09-08 23:29:22 -0700211 }
212
213 /* FIXME: Can we improve the precision? Not with PAGE0. */
214 usec = (elapsed_cycles * 10000) / PAGE0->mem_10msec;
215
216 /* add in "lost" jiffies */
Grant Grundler6b799d92006-09-04 13:56:11 -0700217 usec += local_ct * (jiffies - wall_jiffies);
Grant Grundlerbed583f2006-09-08 23:29:22 -0700218 return usec;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700219#else
220 return 0;
221#endif
222}
223
224void
225do_gettimeofday (struct timeval *tv)
226{
227 unsigned long flags, seq, usec, sec;
228
Grant Grundlerbed583f2006-09-08 23:29:22 -0700229 /* Hold xtime_lock and adjust timeval. */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700230 do {
231 seq = read_seqbegin_irqsave(&xtime_lock, flags);
232 usec = gettimeoffset();
233 sec = xtime.tv_sec;
234 usec += (xtime.tv_nsec / 1000);
235 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
236
Grant Grundlerbed583f2006-09-08 23:29:22 -0700237 /* Move adjusted usec's into sec's. */
James Bottomley61c34012006-06-24 16:05:18 +0000238 while (usec >= USEC_PER_SEC) {
239 usec -= USEC_PER_SEC;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700240 ++sec;
241 }
242
Grant Grundlerbed583f2006-09-08 23:29:22 -0700243 /* Return adjusted result. */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700244 tv->tv_sec = sec;
245 tv->tv_usec = usec;
246}
247
248EXPORT_SYMBOL(do_gettimeofday);
249
250int
251do_settimeofday (struct timespec *tv)
252{
253 time_t wtm_sec, sec = tv->tv_sec;
254 long wtm_nsec, nsec = tv->tv_nsec;
255
256 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
257 return -EINVAL;
258
259 write_seqlock_irq(&xtime_lock);
260 {
261 /*
262 * This is revolting. We need to set "xtime"
263 * correctly. However, the value in this location is
264 * the value at the most recent update of wall time.
265 * Discover what correction gettimeofday would have
266 * done, and then undo it!
267 */
268 nsec -= gettimeoffset() * 1000;
269
270 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
271 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
272
273 set_normalized_timespec(&xtime, sec, nsec);
274 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
275
john stultzb149ee22005-09-06 15:17:46 -0700276 ntp_clear();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700277 }
278 write_sequnlock_irq(&xtime_lock);
279 clock_was_set();
280 return 0;
281}
282EXPORT_SYMBOL(do_settimeofday);
283
284/*
285 * XXX: We can do better than this.
286 * Returns nanoseconds
287 */
288
289unsigned long long sched_clock(void)
290{
291 return (unsigned long long)jiffies * (1000000000 / HZ);
292}
293
294
Grant Grundler56f335c2006-09-03 00:02:16 -0700295void __init start_cpu_itimer(void)
296{
297 unsigned int cpu = smp_processor_id();
298 unsigned long next_tick = mfctl(16) + clocktick;
299
300 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
301
302 cpu_data[cpu].it_value = next_tick;
303}
304
Linus Torvalds1da177e2005-04-16 15:20:36 -0700305void __init time_init(void)
306{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700307 static struct pdc_tod tod_data;
308
309 clocktick = (100 * PAGE0->mem_10msec) / HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700310
Grant Grundler56f335c2006-09-03 00:02:16 -0700311 start_cpu_itimer(); /* get CPU 0 started */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700312
313 if(pdc_tod_read(&tod_data) == 0) {
314 write_seqlock_irq(&xtime_lock);
315 xtime.tv_sec = tod_data.tod_sec;
316 xtime.tv_nsec = tod_data.tod_usec * 1000;
317 set_normalized_timespec(&wall_to_monotonic,
318 -xtime.tv_sec, -xtime.tv_nsec);
319 write_sequnlock_irq(&xtime_lock);
320 } else {
321 printk(KERN_ERR "Error reading tod clock\n");
322 xtime.tv_sec = 0;
323 xtime.tv_nsec = 0;
324 }
325}
326