Stephen Hemminger | aaa248f | 2006-10-17 00:09:42 -0700 | [diff] [blame] | 1 | /* |
Daniel Borkmann | d3d47eb | 2014-04-03 14:49:08 -0700 | [diff] [blame] | 2 | * This is a maximally equidistributed combined Tausworthe generator |
| 3 | * based on code from GNU Scientific Library 1.5 (30 Jun 2004) |
| 4 | * |
| 5 | * lfsr113 version: |
| 6 | * |
| 7 | * x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n) |
| 8 | * |
| 9 | * s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n << 6) ^ s1_n) >> 13)) |
| 10 | * s2_{n+1} = (((s2_n & 4294967288) << 2) ^ (((s2_n << 2) ^ s2_n) >> 27)) |
| 11 | * s3_{n+1} = (((s3_n & 4294967280) << 7) ^ (((s3_n << 13) ^ s3_n) >> 21)) |
| 12 | * s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n << 3) ^ s4_n) >> 12)) |
| 13 | * |
| 14 | * The period of this generator is about 2^113 (see erratum paper). |
| 15 | * |
| 16 | * From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe |
| 17 | * Generators", Mathematics of Computation, 65, 213 (1996), 203--213: |
| 18 | * http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps |
| 19 | * ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps |
| 20 | * |
| 21 | * There is an erratum in the paper "Tables of Maximally Equidistributed |
| 22 | * Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999), |
| 23 | * 261--269: http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps |
| 24 | * |
| 25 | * ... the k_j most significant bits of z_j must be non-zero, |
| 26 | * for each j. (Note: this restriction also applies to the |
| 27 | * computer code given in [4], but was mistakenly not mentioned |
| 28 | * in that paper.) |
| 29 | * |
| 30 | * This affects the seeding procedure by imposing the requirement |
| 31 | * s1 > 1, s2 > 7, s3 > 15, s4 > 127. |
| 32 | */ |
Stephen Hemminger | aaa248f | 2006-10-17 00:09:42 -0700 | [diff] [blame] | 33 | |
| 34 | #include <linux/types.h> |
| 35 | #include <linux/percpu.h> |
Paul Gortmaker | 8bc3bcc | 2011-11-16 21:29:17 -0500 | [diff] [blame] | 36 | #include <linux/export.h> |
Al Viro | f6a5703 | 2006-10-18 01:47:25 -0400 | [diff] [blame] | 37 | #include <linux/jiffies.h> |
Stephen Hemminger | aaa248f | 2006-10-17 00:09:42 -0700 | [diff] [blame] | 38 | #include <linux/random.h> |
Daniel Borkmann | a6a9c0f | 2013-11-11 12:20:37 +0100 | [diff] [blame] | 39 | #include <linux/sched.h> |
Jason A. Donenfeld | 11e8da3 | 2022-02-10 16:40:44 +0100 | [diff] [blame] | 40 | #include <linux/bitops.h> |
| 41 | #include <linux/slab.h> |
Jason A. Donenfeld | 3ddb66f | 2022-03-01 20:03:49 +0100 | [diff] [blame] | 42 | #include <linux/notifier.h> |
Daniel Borkmann | a98406e | 2014-08-23 17:03:28 +0200 | [diff] [blame] | 43 | #include <asm/unaligned.h> |
Daniel Borkmann | a6a9c0f | 2013-11-11 12:20:37 +0100 | [diff] [blame] | 44 | |
Joe Eykholt | 5960164 | 2010-05-26 14:44:13 -0700 | [diff] [blame] | 45 | /** |
Akinobu Mita | 496f2f9 | 2012-12-17 16:04:23 -0800 | [diff] [blame] | 46 | * prandom_u32_state - seeded pseudo-random number generator. |
Joe Eykholt | 5960164 | 2010-05-26 14:44:13 -0700 | [diff] [blame] | 47 | * @state: pointer to state structure holding seeded state. |
| 48 | * |
| 49 | * This is used for pseudo-randomness with no outside seeding. |
Akinobu Mita | 496f2f9 | 2012-12-17 16:04:23 -0800 | [diff] [blame] | 50 | * For more random results, use prandom_u32(). |
Joe Eykholt | 5960164 | 2010-05-26 14:44:13 -0700 | [diff] [blame] | 51 | */ |
Akinobu Mita | 496f2f9 | 2012-12-17 16:04:23 -0800 | [diff] [blame] | 52 | u32 prandom_u32_state(struct rnd_state *state) |
Stephen Hemminger | aaa248f | 2006-10-17 00:09:42 -0700 | [diff] [blame] | 53 | { |
Hannes Frederic Sowa | 4ada97a | 2014-07-28 14:01:38 +0200 | [diff] [blame] | 54 | #define TAUSWORTHE(s, a, b, c, d) ((s & c) << d) ^ (((s << a) ^ s) >> b) |
Daniel Borkmann | a98814c | 2013-11-11 12:20:36 +0100 | [diff] [blame] | 55 | state->s1 = TAUSWORTHE(state->s1, 6U, 13U, 4294967294U, 18U); |
| 56 | state->s2 = TAUSWORTHE(state->s2, 2U, 27U, 4294967288U, 2U); |
| 57 | state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U, 7U); |
| 58 | state->s4 = TAUSWORTHE(state->s4, 3U, 12U, 4294967168U, 13U); |
Stephen Hemminger | aaa248f | 2006-10-17 00:09:42 -0700 | [diff] [blame] | 59 | |
Daniel Borkmann | a98814c | 2013-11-11 12:20:36 +0100 | [diff] [blame] | 60 | return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4); |
Stephen Hemminger | aaa248f | 2006-10-17 00:09:42 -0700 | [diff] [blame] | 61 | } |
Akinobu Mita | 496f2f9 | 2012-12-17 16:04:23 -0800 | [diff] [blame] | 62 | EXPORT_SYMBOL(prandom_u32_state); |
Stephen Hemminger | aaa248f | 2006-10-17 00:09:42 -0700 | [diff] [blame] | 63 | |
| 64 | /** |
Akinobu Mita | 6582c66 | 2012-12-17 16:04:25 -0800 | [diff] [blame] | 65 | * prandom_bytes_state - get the requested number of pseudo-random bytes |
| 66 | * |
| 67 | * @state: pointer to state structure holding seeded state. |
| 68 | * @buf: where to copy the pseudo-random bytes to |
| 69 | * @bytes: the requested number of bytes |
| 70 | * |
| 71 | * This is used for pseudo-randomness with no outside seeding. |
| 72 | * For more random results, use prandom_bytes(). |
| 73 | */ |
Daniel Borkmann | a98406e | 2014-08-23 17:03:28 +0200 | [diff] [blame] | 74 | void prandom_bytes_state(struct rnd_state *state, void *buf, size_t bytes) |
Akinobu Mita | 6582c66 | 2012-12-17 16:04:25 -0800 | [diff] [blame] | 75 | { |
Daniel Borkmann | a98406e | 2014-08-23 17:03:28 +0200 | [diff] [blame] | 76 | u8 *ptr = buf; |
Akinobu Mita | 6582c66 | 2012-12-17 16:04:25 -0800 | [diff] [blame] | 77 | |
Daniel Borkmann | a98406e | 2014-08-23 17:03:28 +0200 | [diff] [blame] | 78 | while (bytes >= sizeof(u32)) { |
| 79 | put_unaligned(prandom_u32_state(state), (u32 *) ptr); |
| 80 | ptr += sizeof(u32); |
| 81 | bytes -= sizeof(u32); |
Akinobu Mita | 6582c66 | 2012-12-17 16:04:25 -0800 | [diff] [blame] | 82 | } |
Akinobu Mita | 6582c66 | 2012-12-17 16:04:25 -0800 | [diff] [blame] | 83 | |
Daniel Borkmann | a98406e | 2014-08-23 17:03:28 +0200 | [diff] [blame] | 84 | if (bytes > 0) { |
| 85 | u32 rem = prandom_u32_state(state); |
| 86 | do { |
| 87 | *ptr++ = (u8) rem; |
| 88 | bytes--; |
| 89 | rem >>= BITS_PER_BYTE; |
| 90 | } while (bytes > 0); |
Akinobu Mita | 6582c66 | 2012-12-17 16:04:25 -0800 | [diff] [blame] | 91 | } |
| 92 | } |
| 93 | EXPORT_SYMBOL(prandom_bytes_state); |
| 94 | |
Daniel Borkmann | a98814c | 2013-11-11 12:20:36 +0100 | [diff] [blame] | 95 | static void prandom_warmup(struct rnd_state *state) |
| 96 | { |
Daniel Borkmann | a98406e | 2014-08-23 17:03:28 +0200 | [diff] [blame] | 97 | /* Calling RNG ten times to satisfy recurrence condition */ |
Daniel Borkmann | a98814c | 2013-11-11 12:20:36 +0100 | [diff] [blame] | 98 | prandom_u32_state(state); |
| 99 | prandom_u32_state(state); |
| 100 | prandom_u32_state(state); |
| 101 | prandom_u32_state(state); |
| 102 | prandom_u32_state(state); |
| 103 | prandom_u32_state(state); |
| 104 | prandom_u32_state(state); |
| 105 | prandom_u32_state(state); |
| 106 | prandom_u32_state(state); |
| 107 | prandom_u32_state(state); |
| 108 | } |
| 109 | |
Daniel Borkmann | 897ece5 | 2015-10-08 01:20:38 +0200 | [diff] [blame] | 110 | void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state) |
Daniel Borkmann | 0dd50d1 | 2015-10-08 01:20:37 +0200 | [diff] [blame] | 111 | { |
| 112 | int i; |
| 113 | |
| 114 | for_each_possible_cpu(i) { |
| 115 | struct rnd_state *state = per_cpu_ptr(pcpu_state, i); |
| 116 | u32 seeds[4]; |
| 117 | |
| 118 | get_random_bytes(&seeds, sizeof(seeds)); |
| 119 | state->s1 = __seed(seeds[0], 2U); |
| 120 | state->s2 = __seed(seeds[1], 8U); |
| 121 | state->s3 = __seed(seeds[2], 16U); |
| 122 | state->s4 = __seed(seeds[3], 128U); |
| 123 | |
| 124 | prandom_warmup(state); |
| 125 | } |
| 126 | } |
Florian Westphal | b07edbe | 2016-02-16 17:24:08 +0100 | [diff] [blame] | 127 | EXPORT_SYMBOL(prandom_seed_full_state); |
Daniel Borkmann | 0dd50d1 | 2015-10-08 01:20:37 +0200 | [diff] [blame] | 128 | |
Daniel Borkmann | a6a9c0f | 2013-11-11 12:20:37 +0100 | [diff] [blame] | 129 | #ifdef CONFIG_RANDOM32_SELFTEST |
| 130 | static struct prandom_test1 { |
| 131 | u32 seed; |
| 132 | u32 result; |
| 133 | } test1[] = { |
| 134 | { 1U, 3484351685U }, |
| 135 | { 2U, 2623130059U }, |
| 136 | { 3U, 3125133893U }, |
| 137 | { 4U, 984847254U }, |
| 138 | }; |
| 139 | |
| 140 | static struct prandom_test2 { |
| 141 | u32 seed; |
| 142 | u32 iteration; |
| 143 | u32 result; |
| 144 | } test2[] = { |
| 145 | /* Test cases against taus113 from GSL library. */ |
| 146 | { 931557656U, 959U, 2975593782U }, |
| 147 | { 1339693295U, 876U, 3887776532U }, |
| 148 | { 1545556285U, 961U, 1615538833U }, |
| 149 | { 601730776U, 723U, 1776162651U }, |
| 150 | { 1027516047U, 687U, 511983079U }, |
| 151 | { 416526298U, 700U, 916156552U }, |
| 152 | { 1395522032U, 652U, 2222063676U }, |
| 153 | { 366221443U, 617U, 2992857763U }, |
| 154 | { 1539836965U, 714U, 3783265725U }, |
| 155 | { 556206671U, 994U, 799626459U }, |
| 156 | { 684907218U, 799U, 367789491U }, |
| 157 | { 2121230701U, 931U, 2115467001U }, |
| 158 | { 1668516451U, 644U, 3620590685U }, |
| 159 | { 768046066U, 883U, 2034077390U }, |
| 160 | { 1989159136U, 833U, 1195767305U }, |
| 161 | { 536585145U, 996U, 3577259204U }, |
| 162 | { 1008129373U, 642U, 1478080776U }, |
| 163 | { 1740775604U, 939U, 1264980372U }, |
| 164 | { 1967883163U, 508U, 10734624U }, |
| 165 | { 1923019697U, 730U, 3821419629U }, |
| 166 | { 442079932U, 560U, 3440032343U }, |
| 167 | { 1961302714U, 845U, 841962572U }, |
| 168 | { 2030205964U, 962U, 1325144227U }, |
| 169 | { 1160407529U, 507U, 240940858U }, |
| 170 | { 635482502U, 779U, 4200489746U }, |
| 171 | { 1252788931U, 699U, 867195434U }, |
| 172 | { 1961817131U, 719U, 668237657U }, |
| 173 | { 1071468216U, 983U, 917876630U }, |
| 174 | { 1281848367U, 932U, 1003100039U }, |
| 175 | { 582537119U, 780U, 1127273778U }, |
| 176 | { 1973672777U, 853U, 1071368872U }, |
| 177 | { 1896756996U, 762U, 1127851055U }, |
| 178 | { 847917054U, 500U, 1717499075U }, |
| 179 | { 1240520510U, 951U, 2849576657U }, |
| 180 | { 1685071682U, 567U, 1961810396U }, |
| 181 | { 1516232129U, 557U, 3173877U }, |
| 182 | { 1208118903U, 612U, 1613145022U }, |
| 183 | { 1817269927U, 693U, 4279122573U }, |
| 184 | { 1510091701U, 717U, 638191229U }, |
| 185 | { 365916850U, 807U, 600424314U }, |
| 186 | { 399324359U, 702U, 1803598116U }, |
| 187 | { 1318480274U, 779U, 2074237022U }, |
| 188 | { 697758115U, 840U, 1483639402U }, |
| 189 | { 1696507773U, 840U, 577415447U }, |
| 190 | { 2081979121U, 981U, 3041486449U }, |
| 191 | { 955646687U, 742U, 3846494357U }, |
| 192 | { 1250683506U, 749U, 836419859U }, |
| 193 | { 595003102U, 534U, 366794109U }, |
| 194 | { 47485338U, 558U, 3521120834U }, |
| 195 | { 619433479U, 610U, 3991783875U }, |
| 196 | { 704096520U, 518U, 4139493852U }, |
| 197 | { 1712224984U, 606U, 2393312003U }, |
| 198 | { 1318233152U, 922U, 3880361134U }, |
| 199 | { 855572992U, 761U, 1472974787U }, |
| 200 | { 64721421U, 703U, 683860550U }, |
| 201 | { 678931758U, 840U, 380616043U }, |
| 202 | { 692711973U, 778U, 1382361947U }, |
| 203 | { 677703619U, 530U, 2826914161U }, |
| 204 | { 92393223U, 586U, 1522128471U }, |
| 205 | { 1222592920U, 743U, 3466726667U }, |
| 206 | { 358288986U, 695U, 1091956998U }, |
| 207 | { 1935056945U, 958U, 514864477U }, |
| 208 | { 735675993U, 990U, 1294239989U }, |
| 209 | { 1560089402U, 897U, 2238551287U }, |
| 210 | { 70616361U, 829U, 22483098U }, |
| 211 | { 368234700U, 731U, 2913875084U }, |
| 212 | { 20221190U, 879U, 1564152970U }, |
| 213 | { 539444654U, 682U, 1835141259U }, |
| 214 | { 1314987297U, 840U, 1801114136U }, |
| 215 | { 2019295544U, 645U, 3286438930U }, |
| 216 | { 469023838U, 716U, 1637918202U }, |
| 217 | { 1843754496U, 653U, 2562092152U }, |
| 218 | { 400672036U, 809U, 4264212785U }, |
| 219 | { 404722249U, 965U, 2704116999U }, |
| 220 | { 600702209U, 758U, 584979986U }, |
| 221 | { 519953954U, 667U, 2574436237U }, |
| 222 | { 1658071126U, 694U, 2214569490U }, |
| 223 | { 420480037U, 749U, 3430010866U }, |
| 224 | { 690103647U, 969U, 3700758083U }, |
| 225 | { 1029424799U, 937U, 3787746841U }, |
| 226 | { 2012608669U, 506U, 3362628973U }, |
| 227 | { 1535432887U, 998U, 42610943U }, |
| 228 | { 1330635533U, 857U, 3040806504U }, |
| 229 | { 1223800550U, 539U, 3954229517U }, |
| 230 | { 1322411537U, 680U, 3223250324U }, |
| 231 | { 1877847898U, 945U, 2915147143U }, |
| 232 | { 1646356099U, 874U, 965988280U }, |
| 233 | { 805687536U, 744U, 4032277920U }, |
| 234 | { 1948093210U, 633U, 1346597684U }, |
| 235 | { 392609744U, 783U, 1636083295U }, |
| 236 | { 690241304U, 770U, 1201031298U }, |
| 237 | { 1360302965U, 696U, 1665394461U }, |
| 238 | { 1220090946U, 780U, 1316922812U }, |
| 239 | { 447092251U, 500U, 3438743375U }, |
| 240 | { 1613868791U, 592U, 828546883U }, |
| 241 | { 523430951U, 548U, 2552392304U }, |
| 242 | { 726692899U, 810U, 1656872867U }, |
| 243 | { 1364340021U, 836U, 3710513486U }, |
| 244 | { 1986257729U, 931U, 935013962U }, |
| 245 | { 407983964U, 921U, 728767059U }, |
| 246 | }; |
| 247 | |
George Spelvin | 29da3bb | 2020-08-09 06:57:44 +0000 | [diff] [blame] | 248 | static u32 __extract_hwseed(void) |
| 249 | { |
| 250 | unsigned int val = 0; |
| 251 | |
| 252 | (void)(arch_get_random_seed_int(&val) || |
| 253 | arch_get_random_int(&val)); |
| 254 | |
| 255 | return val; |
| 256 | } |
| 257 | |
| 258 | static void prandom_seed_early(struct rnd_state *state, u32 seed, |
| 259 | bool mix_with_hwseed) |
| 260 | { |
| 261 | #define LCG(x) ((x) * 69069U) /* super-duper LCG */ |
| 262 | #define HWSEED() (mix_with_hwseed ? __extract_hwseed() : 0) |
| 263 | state->s1 = __seed(HWSEED() ^ LCG(seed), 2U); |
| 264 | state->s2 = __seed(HWSEED() ^ LCG(state->s1), 8U); |
| 265 | state->s3 = __seed(HWSEED() ^ LCG(state->s2), 16U); |
| 266 | state->s4 = __seed(HWSEED() ^ LCG(state->s3), 128U); |
| 267 | } |
| 268 | |
| 269 | static int __init prandom_state_selftest(void) |
Daniel Borkmann | a6a9c0f | 2013-11-11 12:20:37 +0100 | [diff] [blame] | 270 | { |
| 271 | int i, j, errors = 0, runs = 0; |
| 272 | bool error = false; |
| 273 | |
| 274 | for (i = 0; i < ARRAY_SIZE(test1); i++) { |
| 275 | struct rnd_state state; |
| 276 | |
Hannes Frederic Sowa | 4ada97a | 2014-07-28 14:01:38 +0200 | [diff] [blame] | 277 | prandom_seed_early(&state, test1[i].seed, false); |
Daniel Borkmann | a6a9c0f | 2013-11-11 12:20:37 +0100 | [diff] [blame] | 278 | prandom_warmup(&state); |
| 279 | |
| 280 | if (test1[i].result != prandom_u32_state(&state)) |
| 281 | error = true; |
| 282 | } |
| 283 | |
| 284 | if (error) |
| 285 | pr_warn("prandom: seed boundary self test failed\n"); |
| 286 | else |
| 287 | pr_info("prandom: seed boundary self test passed\n"); |
| 288 | |
| 289 | for (i = 0; i < ARRAY_SIZE(test2); i++) { |
| 290 | struct rnd_state state; |
| 291 | |
Hannes Frederic Sowa | 4ada97a | 2014-07-28 14:01:38 +0200 | [diff] [blame] | 292 | prandom_seed_early(&state, test2[i].seed, false); |
Daniel Borkmann | a6a9c0f | 2013-11-11 12:20:37 +0100 | [diff] [blame] | 293 | prandom_warmup(&state); |
| 294 | |
| 295 | for (j = 0; j < test2[i].iteration - 1; j++) |
| 296 | prandom_u32_state(&state); |
| 297 | |
| 298 | if (test2[i].result != prandom_u32_state(&state)) |
| 299 | errors++; |
| 300 | |
| 301 | runs++; |
| 302 | cond_resched(); |
| 303 | } |
| 304 | |
| 305 | if (errors) |
| 306 | pr_warn("prandom: %d/%d self tests failed\n", errors, runs); |
| 307 | else |
| 308 | pr_info("prandom: %d self tests passed\n", runs); |
George Spelvin | 29da3bb | 2020-08-09 06:57:44 +0000 | [diff] [blame] | 309 | return 0; |
Daniel Borkmann | a6a9c0f | 2013-11-11 12:20:37 +0100 | [diff] [blame] | 310 | } |
George Spelvin | 29da3bb | 2020-08-09 06:57:44 +0000 | [diff] [blame] | 311 | core_initcall(prandom_state_selftest); |
Daniel Borkmann | a6a9c0f | 2013-11-11 12:20:37 +0100 | [diff] [blame] | 312 | #endif |
George Spelvin | 29da3bb | 2020-08-09 06:57:44 +0000 | [diff] [blame] | 313 | |
| 314 | /* |
| 315 | * The prandom_u32() implementation is now completely separate from the |
| 316 | * prandom_state() functions, which are retained (for now) for compatibility. |
| 317 | * |
| 318 | * Because of (ab)use in the networking code for choosing random TCP/UDP port |
| 319 | * numbers, which open DoS possibilities if guessable, we want something |
| 320 | * stronger than a standard PRNG. But the performance requirements of |
| 321 | * the network code do not allow robust crypto for this application. |
| 322 | * |
| 323 | * So this is a homebrew Junior Spaceman implementation, based on the |
| 324 | * lowest-latency trustworthy crypto primitive available, SipHash. |
| 325 | * (The authors of SipHash have not been consulted about this abuse of |
| 326 | * their work.) |
| 327 | * |
| 328 | * Standard SipHash-2-4 uses 2n+4 rounds to hash n words of input to |
| 329 | * one word of output. This abbreviated version uses 2 rounds per word |
| 330 | * of output. |
| 331 | */ |
| 332 | |
| 333 | struct siprand_state { |
| 334 | unsigned long v0; |
| 335 | unsigned long v1; |
| 336 | unsigned long v2; |
| 337 | unsigned long v3; |
| 338 | }; |
| 339 | |
| 340 | static DEFINE_PER_CPU(struct siprand_state, net_rand_state) __latent_entropy; |
| 341 | |
| 342 | /* |
| 343 | * This is the core CPRNG function. As "pseudorandom", this is not used |
| 344 | * for truly valuable things, just intended to be a PITA to guess. |
| 345 | * For maximum speed, we do just two SipHash rounds per word. This is |
| 346 | * the same rate as 4 rounds per 64 bits that SipHash normally uses, |
| 347 | * so hopefully it's reasonably secure. |
| 348 | * |
| 349 | * There are two changes from the official SipHash finalization: |
| 350 | * - We omit some constants XORed with v2 in the SipHash spec as irrelevant; |
| 351 | * they are there only to make the output rounds distinct from the input |
| 352 | * rounds, and this application has no input rounds. |
| 353 | * - Rather than returning v0^v1^v2^v3, return v1+v3. |
| 354 | * If you look at the SipHash round, the last operation on v3 is |
| 355 | * "v3 ^= v0", so "v0 ^ v3" just undoes that, a waste of time. |
| 356 | * Likewise "v1 ^= v2". (The rotate of v2 makes a difference, but |
| 357 | * it still cancels out half of the bits in v2 for no benefit.) |
| 358 | * Second, since the last combining operation was xor, continue the |
| 359 | * pattern of alternating xor/add for a tiny bit of extra non-linearity. |
| 360 | */ |
| 361 | static inline u32 siprand_u32(struct siprand_state *s) |
| 362 | { |
| 363 | unsigned long v0 = s->v0, v1 = s->v1, v2 = s->v2, v3 = s->v3; |
| 364 | |
| 365 | PRND_SIPROUND(v0, v1, v2, v3); |
| 366 | PRND_SIPROUND(v0, v1, v2, v3); |
| 367 | s->v0 = v0; s->v1 = v1; s->v2 = v2; s->v3 = v3; |
| 368 | return v1 + v3; |
| 369 | } |
| 370 | |
| 371 | |
| 372 | /** |
| 373 | * prandom_u32 - pseudo random number generator |
| 374 | * |
| 375 | * A 32 bit pseudo-random number is generated using a fast |
| 376 | * algorithm suitable for simulation. This algorithm is NOT |
| 377 | * considered safe for cryptographic use. |
| 378 | */ |
| 379 | u32 prandom_u32(void) |
| 380 | { |
| 381 | struct siprand_state *state = get_cpu_ptr(&net_rand_state); |
| 382 | u32 res = siprand_u32(state); |
| 383 | |
| 384 | put_cpu_ptr(&net_rand_state); |
| 385 | return res; |
| 386 | } |
| 387 | EXPORT_SYMBOL(prandom_u32); |
| 388 | |
| 389 | /** |
| 390 | * prandom_bytes - get the requested number of pseudo-random bytes |
| 391 | * @buf: where to copy the pseudo-random bytes to |
| 392 | * @bytes: the requested number of bytes |
| 393 | */ |
| 394 | void prandom_bytes(void *buf, size_t bytes) |
| 395 | { |
| 396 | struct siprand_state *state = get_cpu_ptr(&net_rand_state); |
| 397 | u8 *ptr = buf; |
| 398 | |
| 399 | while (bytes >= sizeof(u32)) { |
| 400 | put_unaligned(siprand_u32(state), (u32 *)ptr); |
| 401 | ptr += sizeof(u32); |
| 402 | bytes -= sizeof(u32); |
| 403 | } |
| 404 | |
| 405 | if (bytes > 0) { |
| 406 | u32 rem = siprand_u32(state); |
| 407 | |
| 408 | do { |
| 409 | *ptr++ = (u8)rem; |
| 410 | rem >>= BITS_PER_BYTE; |
| 411 | } while (--bytes > 0); |
| 412 | } |
| 413 | put_cpu_ptr(&net_rand_state); |
| 414 | } |
| 415 | EXPORT_SYMBOL(prandom_bytes); |
| 416 | |
| 417 | /** |
| 418 | * prandom_seed - add entropy to pseudo random number generator |
| 419 | * @entropy: entropy value |
| 420 | * |
| 421 | * Add some additional seed material to the prandom pool. |
| 422 | * The "entropy" is actually our IP address (the only caller is |
| 423 | * the network code), not for unpredictability, but to ensure that |
| 424 | * different machines are initialized differently. |
| 425 | */ |
| 426 | void prandom_seed(u32 entropy) |
| 427 | { |
| 428 | int i; |
| 429 | |
| 430 | add_device_randomness(&entropy, sizeof(entropy)); |
| 431 | |
| 432 | for_each_possible_cpu(i) { |
| 433 | struct siprand_state *state = per_cpu_ptr(&net_rand_state, i); |
| 434 | unsigned long v0 = state->v0, v1 = state->v1; |
| 435 | unsigned long v2 = state->v2, v3 = state->v3; |
| 436 | |
| 437 | do { |
| 438 | v3 ^= entropy; |
| 439 | PRND_SIPROUND(v0, v1, v2, v3); |
| 440 | PRND_SIPROUND(v0, v1, v2, v3); |
| 441 | v0 ^= entropy; |
| 442 | } while (unlikely(!v0 || !v1 || !v2 || !v3)); |
| 443 | |
| 444 | WRITE_ONCE(state->v0, v0); |
| 445 | WRITE_ONCE(state->v1, v1); |
| 446 | WRITE_ONCE(state->v2, v2); |
| 447 | WRITE_ONCE(state->v3, v3); |
| 448 | } |
| 449 | } |
| 450 | EXPORT_SYMBOL(prandom_seed); |
| 451 | |
| 452 | /* |
| 453 | * Generate some initially weak seeding values to allow |
| 454 | * the prandom_u32() engine to be started. |
| 455 | */ |
| 456 | static int __init prandom_init_early(void) |
| 457 | { |
| 458 | int i; |
| 459 | unsigned long v0, v1, v2, v3; |
| 460 | |
| 461 | if (!arch_get_random_long(&v0)) |
| 462 | v0 = jiffies; |
| 463 | if (!arch_get_random_long(&v1)) |
| 464 | v1 = random_get_entropy(); |
| 465 | v2 = v0 ^ PRND_K0; |
| 466 | v3 = v1 ^ PRND_K1; |
| 467 | |
| 468 | for_each_possible_cpu(i) { |
| 469 | struct siprand_state *state; |
| 470 | |
| 471 | v3 ^= i; |
| 472 | PRND_SIPROUND(v0, v1, v2, v3); |
| 473 | PRND_SIPROUND(v0, v1, v2, v3); |
| 474 | v0 ^= i; |
| 475 | |
| 476 | state = per_cpu_ptr(&net_rand_state, i); |
| 477 | state->v0 = v0; state->v1 = v1; |
| 478 | state->v2 = v2; state->v3 = v3; |
| 479 | } |
| 480 | |
| 481 | return 0; |
| 482 | } |
| 483 | core_initcall(prandom_init_early); |
| 484 | |
| 485 | |
| 486 | /* Stronger reseeding when available, and periodically thereafter. */ |
| 487 | static void prandom_reseed(unsigned long dontcare); |
| 488 | |
| 489 | static DEFINE_TIMER(seed_timer, prandom_reseed, 0, 0); |
| 490 | |
| 491 | static void prandom_reseed(unsigned long dontcare) |
| 492 | { |
| 493 | unsigned long expires; |
| 494 | int i; |
| 495 | |
| 496 | /* |
| 497 | * Reinitialize each CPU's PRNG with 128 bits of key. |
| 498 | * No locking on the CPUs, but then somewhat random results are, |
| 499 | * well, expected. |
| 500 | */ |
| 501 | for_each_possible_cpu(i) { |
| 502 | struct siprand_state *state; |
| 503 | unsigned long v0 = get_random_long(), v2 = v0 ^ PRND_K0; |
| 504 | unsigned long v1 = get_random_long(), v3 = v1 ^ PRND_K1; |
| 505 | #if BITS_PER_LONG == 32 |
| 506 | int j; |
| 507 | |
| 508 | /* |
| 509 | * On 32-bit machines, hash in two extra words to |
| 510 | * approximate 128-bit key length. Not that the hash |
| 511 | * has that much security, but this prevents a trivial |
| 512 | * 64-bit brute force. |
| 513 | */ |
| 514 | for (j = 0; j < 2; j++) { |
| 515 | unsigned long m = get_random_long(); |
| 516 | |
| 517 | v3 ^= m; |
| 518 | PRND_SIPROUND(v0, v1, v2, v3); |
| 519 | PRND_SIPROUND(v0, v1, v2, v3); |
| 520 | v0 ^= m; |
| 521 | } |
| 522 | #endif |
| 523 | /* |
| 524 | * Probably impossible in practice, but there is a |
| 525 | * theoretical risk that a race between this reseeding |
| 526 | * and the target CPU writing its state back could |
| 527 | * create the all-zero SipHash fixed point. |
| 528 | * |
| 529 | * To ensure that never happens, ensure the state |
| 530 | * we write contains no zero words. |
| 531 | */ |
| 532 | state = per_cpu_ptr(&net_rand_state, i); |
| 533 | WRITE_ONCE(state->v0, v0 ? v0 : -1ul); |
| 534 | WRITE_ONCE(state->v1, v1 ? v1 : -1ul); |
| 535 | WRITE_ONCE(state->v2, v2 ? v2 : -1ul); |
| 536 | WRITE_ONCE(state->v3, v3 ? v3 : -1ul); |
| 537 | } |
| 538 | |
| 539 | /* reseed every ~60 seconds, in [40 .. 80) interval with slack */ |
| 540 | expires = round_jiffies(jiffies + 40 * HZ + prandom_u32_max(40 * HZ)); |
| 541 | mod_timer(&seed_timer, expires); |
| 542 | } |
| 543 | |
| 544 | /* |
| 545 | * The random ready callback can be called from almost any interrupt. |
| 546 | * To avoid worrying about whether it's safe to delay that interrupt |
| 547 | * long enough to seed all CPUs, just schedule an immediate timer event. |
| 548 | */ |
Jason A. Donenfeld | 3ddb66f | 2022-03-01 20:03:49 +0100 | [diff] [blame] | 549 | static int prandom_timer_start(struct notifier_block *nb, |
| 550 | unsigned long action, void *data) |
George Spelvin | 29da3bb | 2020-08-09 06:57:44 +0000 | [diff] [blame] | 551 | { |
| 552 | mod_timer(&seed_timer, jiffies); |
Jason A. Donenfeld | 3ddb66f | 2022-03-01 20:03:49 +0100 | [diff] [blame] | 553 | return 0; |
George Spelvin | 29da3bb | 2020-08-09 06:57:44 +0000 | [diff] [blame] | 554 | } |
| 555 | |
| 556 | /* |
| 557 | * Start periodic full reseeding as soon as strong |
| 558 | * random numbers are available. |
| 559 | */ |
| 560 | static int __init prandom_init_late(void) |
| 561 | { |
Jason A. Donenfeld | 3ddb66f | 2022-03-01 20:03:49 +0100 | [diff] [blame] | 562 | static struct notifier_block random_ready = { |
| 563 | .notifier_call = prandom_timer_start |
George Spelvin | 29da3bb | 2020-08-09 06:57:44 +0000 | [diff] [blame] | 564 | }; |
Jason A. Donenfeld | 3ddb66f | 2022-03-01 20:03:49 +0100 | [diff] [blame] | 565 | int ret = register_random_ready_notifier(&random_ready); |
George Spelvin | 29da3bb | 2020-08-09 06:57:44 +0000 | [diff] [blame] | 566 | |
| 567 | if (ret == -EALREADY) { |
Jason A. Donenfeld | 3ddb66f | 2022-03-01 20:03:49 +0100 | [diff] [blame] | 568 | prandom_timer_start(&random_ready, 0, NULL); |
George Spelvin | 29da3bb | 2020-08-09 06:57:44 +0000 | [diff] [blame] | 569 | ret = 0; |
| 570 | } |
| 571 | return ret; |
| 572 | } |
| 573 | late_initcall(prandom_init_late); |