blob: f073a2461faa0b2090c4094215aa9d7804882eae [file] [log] [blame]
Thomas Gleixnerc0a31322006-01-09 20:52:32 -08001/*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API implemented in
10 * kernel/timer.c, hrtimers provide finer resolution and accuracy
11 * depending on system configuration and capabilities.
12 *
13 * These timers are currently used for:
14 * - itimers
15 * - POSIX timers
16 * - nanosleep
17 * - precise in-kernel timing
18 *
19 * Started by: Thomas Gleixner and Ingo Molnar
20 *
21 * Credits:
22 * based on kernel/timer.c
23 *
24 * For licencing details see kernel-base/COPYING
25 */
26
27#include <linux/cpu.h>
28#include <linux/module.h>
29#include <linux/percpu.h>
30#include <linux/hrtimer.h>
31#include <linux/notifier.h>
32#include <linux/syscalls.h>
33#include <linux/interrupt.h>
34
35#include <asm/uaccess.h>
36
37/**
38 * ktime_get - get the monotonic time in ktime_t format
39 *
40 * returns the time in ktime_t format
41 */
42static ktime_t ktime_get(void)
43{
44 struct timespec now;
45
46 ktime_get_ts(&now);
47
48 return timespec_to_ktime(now);
49}
50
51/**
52 * ktime_get_real - get the real (wall-) time in ktime_t format
53 *
54 * returns the time in ktime_t format
55 */
56static ktime_t ktime_get_real(void)
57{
58 struct timespec now;
59
60 getnstimeofday(&now);
61
62 return timespec_to_ktime(now);
63}
64
65EXPORT_SYMBOL_GPL(ktime_get_real);
66
67/*
68 * The timer bases:
69 */
70
71#define MAX_HRTIMER_BASES 2
72
73static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) =
74{
75 {
76 .index = CLOCK_REALTIME,
77 .get_time = &ktime_get_real,
78 .resolution = KTIME_REALTIME_RES,
79 },
80 {
81 .index = CLOCK_MONOTONIC,
82 .get_time = &ktime_get,
83 .resolution = KTIME_MONOTONIC_RES,
84 },
85};
86
87/**
88 * ktime_get_ts - get the monotonic clock in timespec format
89 *
90 * @ts: pointer to timespec variable
91 *
92 * The function calculates the monotonic clock from the realtime
93 * clock and the wall_to_monotonic offset and stores the result
94 * in normalized timespec format in the variable pointed to by ts.
95 */
96void ktime_get_ts(struct timespec *ts)
97{
98 struct timespec tomono;
99 unsigned long seq;
100
101 do {
102 seq = read_seqbegin(&xtime_lock);
103 getnstimeofday(ts);
104 tomono = wall_to_monotonic;
105
106 } while (read_seqretry(&xtime_lock, seq));
107
108 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
109 ts->tv_nsec + tomono.tv_nsec);
110}
Matt Helsley69778e32006-01-09 20:52:39 -0800111EXPORT_SYMBOL_GPL(ktime_get_ts);
Thomas Gleixnerc0a31322006-01-09 20:52:32 -0800112
113/*
114 * Functions and macros which are different for UP/SMP systems are kept in a
115 * single place
116 */
117#ifdef CONFIG_SMP
118
119#define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0)
120
121/*
122 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
123 * means that all timers which are tied to this base via timer->base are
124 * locked, and the base itself is locked too.
125 *
126 * So __run_timers/migrate_timers can safely modify all timers which could
127 * be found on the lists/queues.
128 *
129 * When the timer's base is locked, and the timer removed from list, it is
130 * possible to set timer->base = NULL and drop the lock: the timer remains
131 * locked.
132 */
133static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer,
134 unsigned long *flags)
135{
136 struct hrtimer_base *base;
137
138 for (;;) {
139 base = timer->base;
140 if (likely(base != NULL)) {
141 spin_lock_irqsave(&base->lock, *flags);
142 if (likely(base == timer->base))
143 return base;
144 /* The timer has migrated to another CPU: */
145 spin_unlock_irqrestore(&base->lock, *flags);
146 }
147 cpu_relax();
148 }
149}
150
151/*
152 * Switch the timer base to the current CPU when possible.
153 */
154static inline struct hrtimer_base *
155switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base)
156{
157 struct hrtimer_base *new_base;
158
159 new_base = &__get_cpu_var(hrtimer_bases[base->index]);
160
161 if (base != new_base) {
162 /*
163 * We are trying to schedule the timer on the local CPU.
164 * However we can't change timer's base while it is running,
165 * so we keep it on the same CPU. No hassle vs. reprogramming
166 * the event source in the high resolution case. The softirq
167 * code will take care of this when the timer function has
168 * completed. There is no conflict as we hold the lock until
169 * the timer is enqueued.
170 */
171 if (unlikely(base->curr_timer == timer))
172 return base;
173
174 /* See the comment in lock_timer_base() */
175 timer->base = NULL;
176 spin_unlock(&base->lock);
177 spin_lock(&new_base->lock);
178 timer->base = new_base;
179 }
180 return new_base;
181}
182
183#else /* CONFIG_SMP */
184
185#define set_curr_timer(b, t) do { } while (0)
186
187static inline struct hrtimer_base *
188lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
189{
190 struct hrtimer_base *base = timer->base;
191
192 spin_lock_irqsave(&base->lock, *flags);
193
194 return base;
195}
196
197#define switch_hrtimer_base(t, b) (b)
198
199#endif /* !CONFIG_SMP */
200
201/*
202 * Functions for the union type storage format of ktime_t which are
203 * too large for inlining:
204 */
205#if BITS_PER_LONG < 64
206# ifndef CONFIG_KTIME_SCALAR
207/**
208 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
209 *
210 * @kt: addend
211 * @nsec: the scalar nsec value to add
212 *
213 * Returns the sum of kt and nsec in ktime_t format
214 */
215ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
216{
217 ktime_t tmp;
218
219 if (likely(nsec < NSEC_PER_SEC)) {
220 tmp.tv64 = nsec;
221 } else {
222 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
223
224 tmp = ktime_set((long)nsec, rem);
225 }
226
227 return ktime_add(kt, tmp);
228}
229
230#else /* CONFIG_KTIME_SCALAR */
231
232# endif /* !CONFIG_KTIME_SCALAR */
233
234/*
235 * Divide a ktime value by a nanosecond value
236 */
237static unsigned long ktime_divns(const ktime_t kt, nsec_t div)
238{
239 u64 dclc, inc, dns;
240 int sft = 0;
241
242 dclc = dns = ktime_to_ns(kt);
243 inc = div;
244 /* Make sure the divisor is less than 2^32: */
245 while (div >> 32) {
246 sft++;
247 div >>= 1;
248 }
249 dclc >>= sft;
250 do_div(dclc, (unsigned long) div);
251
252 return (unsigned long) dclc;
253}
254
255#else /* BITS_PER_LONG < 64 */
256# define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div))
257#endif /* BITS_PER_LONG >= 64 */
258
259/*
260 * Counterpart to lock_timer_base above:
261 */
262static inline
263void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
264{
265 spin_unlock_irqrestore(&timer->base->lock, *flags);
266}
267
268/**
269 * hrtimer_forward - forward the timer expiry
270 *
271 * @timer: hrtimer to forward
272 * @interval: the interval to forward
273 *
274 * Forward the timer expiry so it will expire in the future.
275 * The number of overruns is added to the overrun field.
276 */
277unsigned long
278hrtimer_forward(struct hrtimer *timer, const ktime_t interval)
279{
280 unsigned long orun = 1;
281 ktime_t delta, now;
282
283 now = timer->base->get_time();
284
285 delta = ktime_sub(now, timer->expires);
286
287 if (delta.tv64 < 0)
288 return 0;
289
290 if (unlikely(delta.tv64 >= interval.tv64)) {
291 nsec_t incr = ktime_to_ns(interval);
292
293 orun = ktime_divns(delta, incr);
294 timer->expires = ktime_add_ns(timer->expires, incr * orun);
295 if (timer->expires.tv64 > now.tv64)
296 return orun;
297 /*
298 * This (and the ktime_add() below) is the
299 * correction for exact:
300 */
301 orun++;
302 }
303 timer->expires = ktime_add(timer->expires, interval);
304
305 return orun;
306}
307
308/*
309 * enqueue_hrtimer - internal function to (re)start a timer
310 *
311 * The timer is inserted in expiry order. Insertion into the
312 * red black tree is O(log(n)). Must hold the base lock.
313 */
314static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
315{
316 struct rb_node **link = &base->active.rb_node;
317 struct list_head *prev = &base->pending;
318 struct rb_node *parent = NULL;
319 struct hrtimer *entry;
320
321 /*
322 * Find the right place in the rbtree:
323 */
324 while (*link) {
325 parent = *link;
326 entry = rb_entry(parent, struct hrtimer, node);
327 /*
328 * We dont care about collisions. Nodes with
329 * the same expiry time stay together.
330 */
331 if (timer->expires.tv64 < entry->expires.tv64)
332 link = &(*link)->rb_left;
333 else {
334 link = &(*link)->rb_right;
335 prev = &entry->list;
336 }
337 }
338
339 /*
340 * Insert the timer to the rbtree and to the sorted list:
341 */
342 rb_link_node(&timer->node, parent, link);
343 rb_insert_color(&timer->node, &base->active);
344 list_add(&timer->list, prev);
345
346 timer->state = HRTIMER_PENDING;
347}
348
349
350/*
351 * __remove_hrtimer - internal function to remove a timer
352 *
353 * Caller must hold the base lock.
354 */
355static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
356{
357 /*
358 * Remove the timer from the sorted list and from the rbtree:
359 */
360 list_del(&timer->list);
361 rb_erase(&timer->node, &base->active);
362}
363
364/*
365 * remove hrtimer, called with base lock held
366 */
367static inline int
368remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
369{
370 if (hrtimer_active(timer)) {
371 __remove_hrtimer(timer, base);
372 timer->state = HRTIMER_INACTIVE;
373 return 1;
374 }
375 return 0;
376}
377
378/**
379 * hrtimer_start - (re)start an relative timer on the current CPU
380 *
381 * @timer: the timer to be added
382 * @tim: expiry time
383 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
384 *
385 * Returns:
386 * 0 on success
387 * 1 when the timer was active
388 */
389int
390hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
391{
392 struct hrtimer_base *base, *new_base;
393 unsigned long flags;
394 int ret;
395
396 base = lock_hrtimer_base(timer, &flags);
397
398 /* Remove an active timer from the queue: */
399 ret = remove_hrtimer(timer, base);
400
401 /* Switch the timer base, if necessary: */
402 new_base = switch_hrtimer_base(timer, base);
403
404 if (mode == HRTIMER_REL)
405 tim = ktime_add(tim, new_base->get_time());
406 timer->expires = tim;
407
408 enqueue_hrtimer(timer, new_base);
409
410 unlock_hrtimer_base(timer, &flags);
411
412 return ret;
413}
414
415/**
416 * hrtimer_try_to_cancel - try to deactivate a timer
417 *
418 * @timer: hrtimer to stop
419 *
420 * Returns:
421 * 0 when the timer was not active
422 * 1 when the timer was active
423 * -1 when the timer is currently excuting the callback function and
424 * can not be stopped
425 */
426int hrtimer_try_to_cancel(struct hrtimer *timer)
427{
428 struct hrtimer_base *base;
429 unsigned long flags;
430 int ret = -1;
431
432 base = lock_hrtimer_base(timer, &flags);
433
434 if (base->curr_timer != timer)
435 ret = remove_hrtimer(timer, base);
436
437 unlock_hrtimer_base(timer, &flags);
438
439 return ret;
440
441}
442
443/**
444 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
445 *
446 * @timer: the timer to be cancelled
447 *
448 * Returns:
449 * 0 when the timer was not active
450 * 1 when the timer was active
451 */
452int hrtimer_cancel(struct hrtimer *timer)
453{
454 for (;;) {
455 int ret = hrtimer_try_to_cancel(timer);
456
457 if (ret >= 0)
458 return ret;
459 }
460}
461
462/**
463 * hrtimer_get_remaining - get remaining time for the timer
464 *
465 * @timer: the timer to read
466 */
467ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
468{
469 struct hrtimer_base *base;
470 unsigned long flags;
471 ktime_t rem;
472
473 base = lock_hrtimer_base(timer, &flags);
474 rem = ktime_sub(timer->expires, timer->base->get_time());
475 unlock_hrtimer_base(timer, &flags);
476
477 return rem;
478}
479
480/**
481 * hrtimer_rebase - rebase an initialized hrtimer to a different base
482 *
483 * @timer: the timer to be rebased
484 * @clock_id: the clock to be used
485 */
486void hrtimer_rebase(struct hrtimer *timer, const clockid_t clock_id)
487{
488 struct hrtimer_base *bases;
489
490 bases = per_cpu(hrtimer_bases, raw_smp_processor_id());
491 timer->base = &bases[clock_id];
492}
493
494/**
495 * hrtimer_init - initialize a timer to the given clock
496 *
497 * @timer: the timer to be initialized
498 * @clock_id: the clock to be used
499 */
500void hrtimer_init(struct hrtimer *timer, const clockid_t clock_id)
501{
502 memset(timer, 0, sizeof(struct hrtimer));
503 hrtimer_rebase(timer, clock_id);
504}
505
506/**
507 * hrtimer_get_res - get the timer resolution for a clock
508 *
509 * @which_clock: which clock to query
510 * @tp: pointer to timespec variable to store the resolution
511 *
512 * Store the resolution of the clock selected by which_clock in the
513 * variable pointed to by tp.
514 */
515int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
516{
517 struct hrtimer_base *bases;
518
519 tp->tv_sec = 0;
520 bases = per_cpu(hrtimer_bases, raw_smp_processor_id());
521 tp->tv_nsec = bases[which_clock].resolution;
522
523 return 0;
524}
525
526/*
527 * Expire the per base hrtimer-queue:
528 */
529static inline void run_hrtimer_queue(struct hrtimer_base *base)
530{
531 ktime_t now = base->get_time();
532
533 spin_lock_irq(&base->lock);
534
535 while (!list_empty(&base->pending)) {
536 struct hrtimer *timer;
537 int (*fn)(void *);
538 int restart;
539 void *data;
540
541 timer = list_entry(base->pending.next, struct hrtimer, list);
542 if (now.tv64 <= timer->expires.tv64)
543 break;
544
545 fn = timer->function;
546 data = timer->data;
547 set_curr_timer(base, timer);
548 __remove_hrtimer(timer, base);
549 spin_unlock_irq(&base->lock);
550
551 /*
552 * fn == NULL is special case for the simplest timer
553 * variant - wake up process and do not restart:
554 */
555 if (!fn) {
556 wake_up_process(data);
557 restart = HRTIMER_NORESTART;
558 } else
559 restart = fn(data);
560
561 spin_lock_irq(&base->lock);
562
563 if (restart == HRTIMER_RESTART)
564 enqueue_hrtimer(timer, base);
565 else
566 timer->state = HRTIMER_EXPIRED;
567 }
568 set_curr_timer(base, NULL);
569 spin_unlock_irq(&base->lock);
570}
571
572/*
573 * Called from timer softirq every jiffy, expire hrtimers:
574 */
575void hrtimer_run_queues(void)
576{
577 struct hrtimer_base *base = __get_cpu_var(hrtimer_bases);
578 int i;
579
580 for (i = 0; i < MAX_HRTIMER_BASES; i++)
581 run_hrtimer_queue(&base[i]);
582}
583
584/*
Thomas Gleixner10c94ec2006-01-09 20:52:35 -0800585 * Sleep related functions:
586 */
587
588/**
589 * schedule_hrtimer - sleep until timeout
590 *
591 * @timer: hrtimer variable initialized with the correct clock base
592 * @mode: timeout value is abs/rel
593 *
594 * Make the current task sleep until @timeout is
595 * elapsed.
596 *
597 * You can set the task state as follows -
598 *
599 * %TASK_UNINTERRUPTIBLE - at least @timeout is guaranteed to
600 * pass before the routine returns. The routine will return 0
601 *
602 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
603 * delivered to the current task. In this case the remaining time
604 * will be returned
605 *
606 * The current task state is guaranteed to be TASK_RUNNING when this
607 * routine returns.
608 */
609static ktime_t __sched
610schedule_hrtimer(struct hrtimer *timer, const enum hrtimer_mode mode)
611{
612 /* fn stays NULL, meaning single-shot wakeup: */
613 timer->data = current;
614
615 hrtimer_start(timer, timer->expires, mode);
616
617 schedule();
618 hrtimer_cancel(timer);
619
620 /* Return the remaining time: */
621 if (timer->state != HRTIMER_EXPIRED)
622 return ktime_sub(timer->expires, timer->base->get_time());
623 else
624 return (ktime_t) {.tv64 = 0 };
625}
626
627static inline ktime_t __sched
628schedule_hrtimer_interruptible(struct hrtimer *timer,
629 const enum hrtimer_mode mode)
630{
631 set_current_state(TASK_INTERRUPTIBLE);
632
633 return schedule_hrtimer(timer, mode);
634}
635
636static long __sched
637nanosleep_restart(struct restart_block *restart, clockid_t clockid)
638{
639 struct timespec __user *rmtp, tu;
640 void *rfn_save = restart->fn;
641 struct hrtimer timer;
642 ktime_t rem;
643
644 restart->fn = do_no_restart_syscall;
645
646 hrtimer_init(&timer, clockid);
647
648 timer.expires.tv64 = ((u64)restart->arg1 << 32) | (u64) restart->arg0;
649
650 rem = schedule_hrtimer_interruptible(&timer, HRTIMER_ABS);
651
652 if (rem.tv64 <= 0)
653 return 0;
654
655 rmtp = (struct timespec __user *) restart->arg2;
656 tu = ktime_to_timespec(rem);
657 if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu)))
658 return -EFAULT;
659
660 restart->fn = rfn_save;
661
662 /* The other values in restart are already filled in */
663 return -ERESTART_RESTARTBLOCK;
664}
665
666static long __sched nanosleep_restart_mono(struct restart_block *restart)
667{
668 return nanosleep_restart(restart, CLOCK_MONOTONIC);
669}
670
671static long __sched nanosleep_restart_real(struct restart_block *restart)
672{
673 return nanosleep_restart(restart, CLOCK_REALTIME);
674}
675
676long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
677 const enum hrtimer_mode mode, const clockid_t clockid)
678{
679 struct restart_block *restart;
680 struct hrtimer timer;
681 struct timespec tu;
682 ktime_t rem;
683
684 hrtimer_init(&timer, clockid);
685
686 timer.expires = timespec_to_ktime(*rqtp);
687
688 rem = schedule_hrtimer_interruptible(&timer, mode);
689 if (rem.tv64 <= 0)
690 return 0;
691
692 /* Absolute timers do not update the rmtp value: */
693 if (mode == HRTIMER_ABS)
694 return -ERESTARTNOHAND;
695
696 tu = ktime_to_timespec(rem);
697
698 if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu)))
699 return -EFAULT;
700
701 restart = &current_thread_info()->restart_block;
702 restart->fn = (clockid == CLOCK_MONOTONIC) ?
703 nanosleep_restart_mono : nanosleep_restart_real;
704 restart->arg0 = timer.expires.tv64 & 0xFFFFFFFF;
705 restart->arg1 = timer.expires.tv64 >> 32;
706 restart->arg2 = (unsigned long) rmtp;
707
708 return -ERESTART_RESTARTBLOCK;
709}
710
Thomas Gleixner6ba1b912006-01-09 20:52:36 -0800711asmlinkage long
712sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
713{
714 struct timespec tu;
715
716 if (copy_from_user(&tu, rqtp, sizeof(tu)))
717 return -EFAULT;
718
719 if (!timespec_valid(&tu))
720 return -EINVAL;
721
722 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC);
723}
724
Thomas Gleixner10c94ec2006-01-09 20:52:35 -0800725/*
Thomas Gleixnerc0a31322006-01-09 20:52:32 -0800726 * Functions related to boot-time initialization:
727 */
728static void __devinit init_hrtimers_cpu(int cpu)
729{
730 struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu);
731 int i;
732
733 for (i = 0; i < MAX_HRTIMER_BASES; i++) {
734 spin_lock_init(&base->lock);
735 INIT_LIST_HEAD(&base->pending);
736 base++;
737 }
738}
739
740#ifdef CONFIG_HOTPLUG_CPU
741
742static void migrate_hrtimer_list(struct hrtimer_base *old_base,
743 struct hrtimer_base *new_base)
744{
745 struct hrtimer *timer;
746 struct rb_node *node;
747
748 while ((node = rb_first(&old_base->active))) {
749 timer = rb_entry(node, struct hrtimer, node);
750 __remove_hrtimer(timer, old_base);
751 timer->base = new_base;
752 enqueue_hrtimer(timer, new_base);
753 }
754}
755
756static void migrate_hrtimers(int cpu)
757{
758 struct hrtimer_base *old_base, *new_base;
759 int i;
760
761 BUG_ON(cpu_online(cpu));
762 old_base = per_cpu(hrtimer_bases, cpu);
763 new_base = get_cpu_var(hrtimer_bases);
764
765 local_irq_disable();
766
767 for (i = 0; i < MAX_HRTIMER_BASES; i++) {
768
769 spin_lock(&new_base->lock);
770 spin_lock(&old_base->lock);
771
772 BUG_ON(old_base->curr_timer);
773
774 migrate_hrtimer_list(old_base, new_base);
775
776 spin_unlock(&old_base->lock);
777 spin_unlock(&new_base->lock);
778 old_base++;
779 new_base++;
780 }
781
782 local_irq_enable();
783 put_cpu_var(hrtimer_bases);
784}
785#endif /* CONFIG_HOTPLUG_CPU */
786
787static int __devinit hrtimer_cpu_notify(struct notifier_block *self,
788 unsigned long action, void *hcpu)
789{
790 long cpu = (long)hcpu;
791
792 switch (action) {
793
794 case CPU_UP_PREPARE:
795 init_hrtimers_cpu(cpu);
796 break;
797
798#ifdef CONFIG_HOTPLUG_CPU
799 case CPU_DEAD:
800 migrate_hrtimers(cpu);
801 break;
802#endif
803
804 default:
805 break;
806 }
807
808 return NOTIFY_OK;
809}
810
811static struct notifier_block __devinitdata hrtimers_nb = {
812 .notifier_call = hrtimer_cpu_notify,
813};
814
815void __init hrtimers_init(void)
816{
817 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
818 (void *)(long)smp_processor_id());
819 register_cpu_notifier(&hrtimers_nb);
820}
821