Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Driver for Cirrus Logic EP93xx SPI controller. |
| 3 | * |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 4 | * Copyright (C) 2010-2011 Mika Westerberg |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 5 | * |
| 6 | * Explicit FIFO handling code was inspired by amba-pl022 driver. |
| 7 | * |
| 8 | * Chip select support using other than built-in GPIOs by H. Hartley Sweeten. |
| 9 | * |
| 10 | * For more information about the SPI controller see documentation on Cirrus |
| 11 | * Logic web site: |
| 12 | * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf |
| 13 | * |
| 14 | * This program is free software; you can redistribute it and/or modify |
| 15 | * it under the terms of the GNU General Public License version 2 as |
| 16 | * published by the Free Software Foundation. |
| 17 | */ |
| 18 | |
| 19 | #include <linux/io.h> |
| 20 | #include <linux/clk.h> |
| 21 | #include <linux/err.h> |
| 22 | #include <linux/delay.h> |
| 23 | #include <linux/device.h> |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 24 | #include <linux/dmaengine.h> |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 25 | #include <linux/bitops.h> |
| 26 | #include <linux/interrupt.h> |
Mika Westerberg | 5bdb7613 | 2011-10-15 21:40:09 +0300 | [diff] [blame^] | 27 | #include <linux/module.h> |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 28 | #include <linux/platform_device.h> |
| 29 | #include <linux/workqueue.h> |
| 30 | #include <linux/sched.h> |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 31 | #include <linux/scatterlist.h> |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 32 | #include <linux/spi/spi.h> |
| 33 | |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 34 | #include <mach/dma.h> |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 35 | #include <mach/ep93xx_spi.h> |
| 36 | |
| 37 | #define SSPCR0 0x0000 |
| 38 | #define SSPCR0_MODE_SHIFT 6 |
| 39 | #define SSPCR0_SCR_SHIFT 8 |
| 40 | |
| 41 | #define SSPCR1 0x0004 |
| 42 | #define SSPCR1_RIE BIT(0) |
| 43 | #define SSPCR1_TIE BIT(1) |
| 44 | #define SSPCR1_RORIE BIT(2) |
| 45 | #define SSPCR1_LBM BIT(3) |
| 46 | #define SSPCR1_SSE BIT(4) |
| 47 | #define SSPCR1_MS BIT(5) |
| 48 | #define SSPCR1_SOD BIT(6) |
| 49 | |
| 50 | #define SSPDR 0x0008 |
| 51 | |
| 52 | #define SSPSR 0x000c |
| 53 | #define SSPSR_TFE BIT(0) |
| 54 | #define SSPSR_TNF BIT(1) |
| 55 | #define SSPSR_RNE BIT(2) |
| 56 | #define SSPSR_RFF BIT(3) |
| 57 | #define SSPSR_BSY BIT(4) |
| 58 | #define SSPCPSR 0x0010 |
| 59 | |
| 60 | #define SSPIIR 0x0014 |
| 61 | #define SSPIIR_RIS BIT(0) |
| 62 | #define SSPIIR_TIS BIT(1) |
| 63 | #define SSPIIR_RORIS BIT(2) |
| 64 | #define SSPICR SSPIIR |
| 65 | |
| 66 | /* timeout in milliseconds */ |
| 67 | #define SPI_TIMEOUT 5 |
| 68 | /* maximum depth of RX/TX FIFO */ |
| 69 | #define SPI_FIFO_SIZE 8 |
| 70 | |
| 71 | /** |
| 72 | * struct ep93xx_spi - EP93xx SPI controller structure |
| 73 | * @lock: spinlock that protects concurrent accesses to fields @running, |
| 74 | * @current_msg and @msg_queue |
| 75 | * @pdev: pointer to platform device |
| 76 | * @clk: clock for the controller |
| 77 | * @regs_base: pointer to ioremap()'d registers |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 78 | * @sspdr_phys: physical address of the SSPDR register |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 79 | * @irq: IRQ number used by the driver |
| 80 | * @min_rate: minimum clock rate (in Hz) supported by the controller |
| 81 | * @max_rate: maximum clock rate (in Hz) supported by the controller |
| 82 | * @running: is the queue running |
| 83 | * @wq: workqueue used by the driver |
| 84 | * @msg_work: work that is queued for the driver |
| 85 | * @wait: wait here until given transfer is completed |
| 86 | * @msg_queue: queue for the messages |
| 87 | * @current_msg: message that is currently processed (or %NULL if none) |
| 88 | * @tx: current byte in transfer to transmit |
| 89 | * @rx: current byte in transfer to receive |
| 90 | * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one |
| 91 | * frame decreases this level and sending one frame increases it. |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 92 | * @dma_rx: RX DMA channel |
| 93 | * @dma_tx: TX DMA channel |
| 94 | * @dma_rx_data: RX parameters passed to the DMA engine |
| 95 | * @dma_tx_data: TX parameters passed to the DMA engine |
| 96 | * @rx_sgt: sg table for RX transfers |
| 97 | * @tx_sgt: sg table for TX transfers |
| 98 | * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by |
| 99 | * the client |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 100 | * |
| 101 | * This structure holds EP93xx SPI controller specific information. When |
| 102 | * @running is %true, driver accepts transfer requests from protocol drivers. |
| 103 | * @current_msg is used to hold pointer to the message that is currently |
| 104 | * processed. If @current_msg is %NULL, it means that no processing is going |
| 105 | * on. |
| 106 | * |
| 107 | * Most of the fields are only written once and they can be accessed without |
| 108 | * taking the @lock. Fields that are accessed concurrently are: @current_msg, |
| 109 | * @running, and @msg_queue. |
| 110 | */ |
| 111 | struct ep93xx_spi { |
| 112 | spinlock_t lock; |
| 113 | const struct platform_device *pdev; |
| 114 | struct clk *clk; |
| 115 | void __iomem *regs_base; |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 116 | unsigned long sspdr_phys; |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 117 | int irq; |
| 118 | unsigned long min_rate; |
| 119 | unsigned long max_rate; |
| 120 | bool running; |
| 121 | struct workqueue_struct *wq; |
| 122 | struct work_struct msg_work; |
| 123 | struct completion wait; |
| 124 | struct list_head msg_queue; |
| 125 | struct spi_message *current_msg; |
| 126 | size_t tx; |
| 127 | size_t rx; |
| 128 | size_t fifo_level; |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 129 | struct dma_chan *dma_rx; |
| 130 | struct dma_chan *dma_tx; |
| 131 | struct ep93xx_dma_data dma_rx_data; |
| 132 | struct ep93xx_dma_data dma_tx_data; |
| 133 | struct sg_table rx_sgt; |
| 134 | struct sg_table tx_sgt; |
| 135 | void *zeropage; |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 136 | }; |
| 137 | |
| 138 | /** |
| 139 | * struct ep93xx_spi_chip - SPI device hardware settings |
| 140 | * @spi: back pointer to the SPI device |
| 141 | * @rate: max rate in hz this chip supports |
| 142 | * @div_cpsr: cpsr (pre-scaler) divider |
| 143 | * @div_scr: scr divider |
| 144 | * @dss: bits per word (4 - 16 bits) |
| 145 | * @ops: private chip operations |
| 146 | * |
| 147 | * This structure is used to store hardware register specific settings for each |
| 148 | * SPI device. Settings are written to hardware by function |
| 149 | * ep93xx_spi_chip_setup(). |
| 150 | */ |
| 151 | struct ep93xx_spi_chip { |
| 152 | const struct spi_device *spi; |
| 153 | unsigned long rate; |
| 154 | u8 div_cpsr; |
| 155 | u8 div_scr; |
| 156 | u8 dss; |
| 157 | struct ep93xx_spi_chip_ops *ops; |
| 158 | }; |
| 159 | |
| 160 | /* converts bits per word to CR0.DSS value */ |
| 161 | #define bits_per_word_to_dss(bpw) ((bpw) - 1) |
| 162 | |
| 163 | static inline void |
| 164 | ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value) |
| 165 | { |
| 166 | __raw_writeb(value, espi->regs_base + reg); |
| 167 | } |
| 168 | |
| 169 | static inline u8 |
| 170 | ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg) |
| 171 | { |
| 172 | return __raw_readb(spi->regs_base + reg); |
| 173 | } |
| 174 | |
| 175 | static inline void |
| 176 | ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value) |
| 177 | { |
| 178 | __raw_writew(value, espi->regs_base + reg); |
| 179 | } |
| 180 | |
| 181 | static inline u16 |
| 182 | ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg) |
| 183 | { |
| 184 | return __raw_readw(spi->regs_base + reg); |
| 185 | } |
| 186 | |
| 187 | static int ep93xx_spi_enable(const struct ep93xx_spi *espi) |
| 188 | { |
| 189 | u8 regval; |
| 190 | int err; |
| 191 | |
| 192 | err = clk_enable(espi->clk); |
| 193 | if (err) |
| 194 | return err; |
| 195 | |
| 196 | regval = ep93xx_spi_read_u8(espi, SSPCR1); |
| 197 | regval |= SSPCR1_SSE; |
| 198 | ep93xx_spi_write_u8(espi, SSPCR1, regval); |
| 199 | |
| 200 | return 0; |
| 201 | } |
| 202 | |
| 203 | static void ep93xx_spi_disable(const struct ep93xx_spi *espi) |
| 204 | { |
| 205 | u8 regval; |
| 206 | |
| 207 | regval = ep93xx_spi_read_u8(espi, SSPCR1); |
| 208 | regval &= ~SSPCR1_SSE; |
| 209 | ep93xx_spi_write_u8(espi, SSPCR1, regval); |
| 210 | |
| 211 | clk_disable(espi->clk); |
| 212 | } |
| 213 | |
| 214 | static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi) |
| 215 | { |
| 216 | u8 regval; |
| 217 | |
| 218 | regval = ep93xx_spi_read_u8(espi, SSPCR1); |
| 219 | regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); |
| 220 | ep93xx_spi_write_u8(espi, SSPCR1, regval); |
| 221 | } |
| 222 | |
| 223 | static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi) |
| 224 | { |
| 225 | u8 regval; |
| 226 | |
| 227 | regval = ep93xx_spi_read_u8(espi, SSPCR1); |
| 228 | regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); |
| 229 | ep93xx_spi_write_u8(espi, SSPCR1, regval); |
| 230 | } |
| 231 | |
| 232 | /** |
| 233 | * ep93xx_spi_calc_divisors() - calculates SPI clock divisors |
| 234 | * @espi: ep93xx SPI controller struct |
| 235 | * @chip: divisors are calculated for this chip |
| 236 | * @rate: desired SPI output clock rate |
| 237 | * |
| 238 | * Function calculates cpsr (clock pre-scaler) and scr divisors based on |
| 239 | * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If, |
| 240 | * for some reason, divisors cannot be calculated nothing is stored and |
| 241 | * %-EINVAL is returned. |
| 242 | */ |
| 243 | static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi, |
| 244 | struct ep93xx_spi_chip *chip, |
| 245 | unsigned long rate) |
| 246 | { |
| 247 | unsigned long spi_clk_rate = clk_get_rate(espi->clk); |
| 248 | int cpsr, scr; |
| 249 | |
| 250 | /* |
| 251 | * Make sure that max value is between values supported by the |
| 252 | * controller. Note that minimum value is already checked in |
| 253 | * ep93xx_spi_transfer(). |
| 254 | */ |
| 255 | rate = clamp(rate, espi->min_rate, espi->max_rate); |
| 256 | |
| 257 | /* |
| 258 | * Calculate divisors so that we can get speed according the |
| 259 | * following formula: |
| 260 | * rate = spi_clock_rate / (cpsr * (1 + scr)) |
| 261 | * |
| 262 | * cpsr must be even number and starts from 2, scr can be any number |
| 263 | * between 0 and 255. |
| 264 | */ |
| 265 | for (cpsr = 2; cpsr <= 254; cpsr += 2) { |
| 266 | for (scr = 0; scr <= 255; scr++) { |
| 267 | if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) { |
| 268 | chip->div_scr = (u8)scr; |
| 269 | chip->div_cpsr = (u8)cpsr; |
| 270 | return 0; |
| 271 | } |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | return -EINVAL; |
| 276 | } |
| 277 | |
| 278 | static void ep93xx_spi_cs_control(struct spi_device *spi, bool control) |
| 279 | { |
| 280 | struct ep93xx_spi_chip *chip = spi_get_ctldata(spi); |
| 281 | int value = (spi->mode & SPI_CS_HIGH) ? control : !control; |
| 282 | |
| 283 | if (chip->ops && chip->ops->cs_control) |
| 284 | chip->ops->cs_control(spi, value); |
| 285 | } |
| 286 | |
| 287 | /** |
| 288 | * ep93xx_spi_setup() - setup an SPI device |
| 289 | * @spi: SPI device to setup |
| 290 | * |
| 291 | * This function sets up SPI device mode, speed etc. Can be called multiple |
| 292 | * times for a single device. Returns %0 in case of success, negative error in |
| 293 | * case of failure. When this function returns success, the device is |
| 294 | * deselected. |
| 295 | */ |
| 296 | static int ep93xx_spi_setup(struct spi_device *spi) |
| 297 | { |
| 298 | struct ep93xx_spi *espi = spi_master_get_devdata(spi->master); |
| 299 | struct ep93xx_spi_chip *chip; |
| 300 | |
| 301 | if (spi->bits_per_word < 4 || spi->bits_per_word > 16) { |
| 302 | dev_err(&espi->pdev->dev, "invalid bits per word %d\n", |
| 303 | spi->bits_per_word); |
| 304 | return -EINVAL; |
| 305 | } |
| 306 | |
| 307 | chip = spi_get_ctldata(spi); |
| 308 | if (!chip) { |
| 309 | dev_dbg(&espi->pdev->dev, "initial setup for %s\n", |
| 310 | spi->modalias); |
| 311 | |
| 312 | chip = kzalloc(sizeof(*chip), GFP_KERNEL); |
| 313 | if (!chip) |
| 314 | return -ENOMEM; |
| 315 | |
| 316 | chip->spi = spi; |
| 317 | chip->ops = spi->controller_data; |
| 318 | |
| 319 | if (chip->ops && chip->ops->setup) { |
| 320 | int ret = chip->ops->setup(spi); |
| 321 | if (ret) { |
| 322 | kfree(chip); |
| 323 | return ret; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | spi_set_ctldata(spi, chip); |
| 328 | } |
| 329 | |
| 330 | if (spi->max_speed_hz != chip->rate) { |
| 331 | int err; |
| 332 | |
| 333 | err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz); |
| 334 | if (err != 0) { |
| 335 | spi_set_ctldata(spi, NULL); |
| 336 | kfree(chip); |
| 337 | return err; |
| 338 | } |
| 339 | chip->rate = spi->max_speed_hz; |
| 340 | } |
| 341 | |
| 342 | chip->dss = bits_per_word_to_dss(spi->bits_per_word); |
| 343 | |
| 344 | ep93xx_spi_cs_control(spi, false); |
| 345 | return 0; |
| 346 | } |
| 347 | |
| 348 | /** |
| 349 | * ep93xx_spi_transfer() - queue message to be transferred |
| 350 | * @spi: target SPI device |
| 351 | * @msg: message to be transferred |
| 352 | * |
| 353 | * This function is called by SPI device drivers when they are going to transfer |
| 354 | * a new message. It simply puts the message in the queue and schedules |
| 355 | * workqueue to perform the actual transfer later on. |
| 356 | * |
| 357 | * Returns %0 on success and negative error in case of failure. |
| 358 | */ |
| 359 | static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg) |
| 360 | { |
| 361 | struct ep93xx_spi *espi = spi_master_get_devdata(spi->master); |
| 362 | struct spi_transfer *t; |
| 363 | unsigned long flags; |
| 364 | |
| 365 | if (!msg || !msg->complete) |
| 366 | return -EINVAL; |
| 367 | |
| 368 | /* first validate each transfer */ |
| 369 | list_for_each_entry(t, &msg->transfers, transfer_list) { |
| 370 | if (t->bits_per_word) { |
| 371 | if (t->bits_per_word < 4 || t->bits_per_word > 16) |
| 372 | return -EINVAL; |
| 373 | } |
| 374 | if (t->speed_hz && t->speed_hz < espi->min_rate) |
| 375 | return -EINVAL; |
| 376 | } |
| 377 | |
| 378 | /* |
| 379 | * Now that we own the message, let's initialize it so that it is |
| 380 | * suitable for us. We use @msg->status to signal whether there was |
| 381 | * error in transfer and @msg->state is used to hold pointer to the |
| 382 | * current transfer (or %NULL if no active current transfer). |
| 383 | */ |
| 384 | msg->state = NULL; |
| 385 | msg->status = 0; |
| 386 | msg->actual_length = 0; |
| 387 | |
| 388 | spin_lock_irqsave(&espi->lock, flags); |
| 389 | if (!espi->running) { |
| 390 | spin_unlock_irqrestore(&espi->lock, flags); |
| 391 | return -ESHUTDOWN; |
| 392 | } |
| 393 | list_add_tail(&msg->queue, &espi->msg_queue); |
| 394 | queue_work(espi->wq, &espi->msg_work); |
| 395 | spin_unlock_irqrestore(&espi->lock, flags); |
| 396 | |
| 397 | return 0; |
| 398 | } |
| 399 | |
| 400 | /** |
| 401 | * ep93xx_spi_cleanup() - cleans up master controller specific state |
| 402 | * @spi: SPI device to cleanup |
| 403 | * |
| 404 | * This function releases master controller specific state for given @spi |
| 405 | * device. |
| 406 | */ |
| 407 | static void ep93xx_spi_cleanup(struct spi_device *spi) |
| 408 | { |
| 409 | struct ep93xx_spi_chip *chip; |
| 410 | |
| 411 | chip = spi_get_ctldata(spi); |
| 412 | if (chip) { |
| 413 | if (chip->ops && chip->ops->cleanup) |
| 414 | chip->ops->cleanup(spi); |
| 415 | spi_set_ctldata(spi, NULL); |
| 416 | kfree(chip); |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | /** |
| 421 | * ep93xx_spi_chip_setup() - configures hardware according to given @chip |
| 422 | * @espi: ep93xx SPI controller struct |
| 423 | * @chip: chip specific settings |
| 424 | * |
| 425 | * This function sets up the actual hardware registers with settings given in |
| 426 | * @chip. Note that no validation is done so make sure that callers validate |
| 427 | * settings before calling this. |
| 428 | */ |
| 429 | static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi, |
| 430 | const struct ep93xx_spi_chip *chip) |
| 431 | { |
| 432 | u16 cr0; |
| 433 | |
| 434 | cr0 = chip->div_scr << SSPCR0_SCR_SHIFT; |
| 435 | cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT; |
| 436 | cr0 |= chip->dss; |
| 437 | |
| 438 | dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n", |
| 439 | chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss); |
| 440 | dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0); |
| 441 | |
| 442 | ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr); |
| 443 | ep93xx_spi_write_u16(espi, SSPCR0, cr0); |
| 444 | } |
| 445 | |
| 446 | static inline int bits_per_word(const struct ep93xx_spi *espi) |
| 447 | { |
| 448 | struct spi_message *msg = espi->current_msg; |
| 449 | struct spi_transfer *t = msg->state; |
| 450 | |
| 451 | return t->bits_per_word ? t->bits_per_word : msg->spi->bits_per_word; |
| 452 | } |
| 453 | |
| 454 | static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t) |
| 455 | { |
| 456 | if (bits_per_word(espi) > 8) { |
| 457 | u16 tx_val = 0; |
| 458 | |
| 459 | if (t->tx_buf) |
| 460 | tx_val = ((u16 *)t->tx_buf)[espi->tx]; |
| 461 | ep93xx_spi_write_u16(espi, SSPDR, tx_val); |
| 462 | espi->tx += sizeof(tx_val); |
| 463 | } else { |
| 464 | u8 tx_val = 0; |
| 465 | |
| 466 | if (t->tx_buf) |
| 467 | tx_val = ((u8 *)t->tx_buf)[espi->tx]; |
| 468 | ep93xx_spi_write_u8(espi, SSPDR, tx_val); |
| 469 | espi->tx += sizeof(tx_val); |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t) |
| 474 | { |
| 475 | if (bits_per_word(espi) > 8) { |
| 476 | u16 rx_val; |
| 477 | |
| 478 | rx_val = ep93xx_spi_read_u16(espi, SSPDR); |
| 479 | if (t->rx_buf) |
| 480 | ((u16 *)t->rx_buf)[espi->rx] = rx_val; |
| 481 | espi->rx += sizeof(rx_val); |
| 482 | } else { |
| 483 | u8 rx_val; |
| 484 | |
| 485 | rx_val = ep93xx_spi_read_u8(espi, SSPDR); |
| 486 | if (t->rx_buf) |
| 487 | ((u8 *)t->rx_buf)[espi->rx] = rx_val; |
| 488 | espi->rx += sizeof(rx_val); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | /** |
| 493 | * ep93xx_spi_read_write() - perform next RX/TX transfer |
| 494 | * @espi: ep93xx SPI controller struct |
| 495 | * |
| 496 | * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If |
| 497 | * called several times, the whole transfer will be completed. Returns |
| 498 | * %-EINPROGRESS when current transfer was not yet completed otherwise %0. |
| 499 | * |
| 500 | * When this function is finished, RX FIFO should be empty and TX FIFO should be |
| 501 | * full. |
| 502 | */ |
| 503 | static int ep93xx_spi_read_write(struct ep93xx_spi *espi) |
| 504 | { |
| 505 | struct spi_message *msg = espi->current_msg; |
| 506 | struct spi_transfer *t = msg->state; |
| 507 | |
| 508 | /* read as long as RX FIFO has frames in it */ |
| 509 | while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) { |
| 510 | ep93xx_do_read(espi, t); |
| 511 | espi->fifo_level--; |
| 512 | } |
| 513 | |
| 514 | /* write as long as TX FIFO has room */ |
| 515 | while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) { |
| 516 | ep93xx_do_write(espi, t); |
| 517 | espi->fifo_level++; |
| 518 | } |
| 519 | |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 520 | if (espi->rx == t->len) |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 521 | return 0; |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 522 | |
| 523 | return -EINPROGRESS; |
| 524 | } |
| 525 | |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 526 | static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi) |
| 527 | { |
| 528 | /* |
| 529 | * Now everything is set up for the current transfer. We prime the TX |
| 530 | * FIFO, enable interrupts, and wait for the transfer to complete. |
| 531 | */ |
| 532 | if (ep93xx_spi_read_write(espi)) { |
| 533 | ep93xx_spi_enable_interrupts(espi); |
| 534 | wait_for_completion(&espi->wait); |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | /** |
| 539 | * ep93xx_spi_dma_prepare() - prepares a DMA transfer |
| 540 | * @espi: ep93xx SPI controller struct |
| 541 | * @dir: DMA transfer direction |
| 542 | * |
| 543 | * Function configures the DMA, maps the buffer and prepares the DMA |
| 544 | * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR |
| 545 | * in case of failure. |
| 546 | */ |
| 547 | static struct dma_async_tx_descriptor * |
| 548 | ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_data_direction dir) |
| 549 | { |
| 550 | struct spi_transfer *t = espi->current_msg->state; |
| 551 | struct dma_async_tx_descriptor *txd; |
| 552 | enum dma_slave_buswidth buswidth; |
| 553 | struct dma_slave_config conf; |
| 554 | struct scatterlist *sg; |
| 555 | struct sg_table *sgt; |
| 556 | struct dma_chan *chan; |
| 557 | const void *buf, *pbuf; |
| 558 | size_t len = t->len; |
| 559 | int i, ret, nents; |
| 560 | |
| 561 | if (bits_per_word(espi) > 8) |
| 562 | buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; |
| 563 | else |
| 564 | buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; |
| 565 | |
| 566 | memset(&conf, 0, sizeof(conf)); |
| 567 | conf.direction = dir; |
| 568 | |
| 569 | if (dir == DMA_FROM_DEVICE) { |
| 570 | chan = espi->dma_rx; |
| 571 | buf = t->rx_buf; |
| 572 | sgt = &espi->rx_sgt; |
| 573 | |
| 574 | conf.src_addr = espi->sspdr_phys; |
| 575 | conf.src_addr_width = buswidth; |
| 576 | } else { |
| 577 | chan = espi->dma_tx; |
| 578 | buf = t->tx_buf; |
| 579 | sgt = &espi->tx_sgt; |
| 580 | |
| 581 | conf.dst_addr = espi->sspdr_phys; |
| 582 | conf.dst_addr_width = buswidth; |
| 583 | } |
| 584 | |
| 585 | ret = dmaengine_slave_config(chan, &conf); |
| 586 | if (ret) |
| 587 | return ERR_PTR(ret); |
| 588 | |
| 589 | /* |
| 590 | * We need to split the transfer into PAGE_SIZE'd chunks. This is |
| 591 | * because we are using @espi->zeropage to provide a zero RX buffer |
| 592 | * for the TX transfers and we have only allocated one page for that. |
| 593 | * |
| 594 | * For performance reasons we allocate a new sg_table only when |
| 595 | * needed. Otherwise we will re-use the current one. Eventually the |
| 596 | * last sg_table is released in ep93xx_spi_release_dma(). |
| 597 | */ |
| 598 | |
| 599 | nents = DIV_ROUND_UP(len, PAGE_SIZE); |
| 600 | if (nents != sgt->nents) { |
| 601 | sg_free_table(sgt); |
| 602 | |
| 603 | ret = sg_alloc_table(sgt, nents, GFP_KERNEL); |
| 604 | if (ret) |
| 605 | return ERR_PTR(ret); |
| 606 | } |
| 607 | |
| 608 | pbuf = buf; |
| 609 | for_each_sg(sgt->sgl, sg, sgt->nents, i) { |
| 610 | size_t bytes = min_t(size_t, len, PAGE_SIZE); |
| 611 | |
| 612 | if (buf) { |
| 613 | sg_set_page(sg, virt_to_page(pbuf), bytes, |
| 614 | offset_in_page(pbuf)); |
| 615 | } else { |
| 616 | sg_set_page(sg, virt_to_page(espi->zeropage), |
| 617 | bytes, 0); |
| 618 | } |
| 619 | |
| 620 | pbuf += bytes; |
| 621 | len -= bytes; |
| 622 | } |
| 623 | |
| 624 | if (WARN_ON(len)) { |
| 625 | dev_warn(&espi->pdev->dev, "len = %d expected 0!", len); |
| 626 | return ERR_PTR(-EINVAL); |
| 627 | } |
| 628 | |
| 629 | nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); |
| 630 | if (!nents) |
| 631 | return ERR_PTR(-ENOMEM); |
| 632 | |
| 633 | txd = chan->device->device_prep_slave_sg(chan, sgt->sgl, nents, |
| 634 | dir, DMA_CTRL_ACK); |
| 635 | if (!txd) { |
| 636 | dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); |
| 637 | return ERR_PTR(-ENOMEM); |
| 638 | } |
| 639 | return txd; |
| 640 | } |
| 641 | |
| 642 | /** |
| 643 | * ep93xx_spi_dma_finish() - finishes with a DMA transfer |
| 644 | * @espi: ep93xx SPI controller struct |
| 645 | * @dir: DMA transfer direction |
| 646 | * |
| 647 | * Function finishes with the DMA transfer. After this, the DMA buffer is |
| 648 | * unmapped. |
| 649 | */ |
| 650 | static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi, |
| 651 | enum dma_data_direction dir) |
| 652 | { |
| 653 | struct dma_chan *chan; |
| 654 | struct sg_table *sgt; |
| 655 | |
| 656 | if (dir == DMA_FROM_DEVICE) { |
| 657 | chan = espi->dma_rx; |
| 658 | sgt = &espi->rx_sgt; |
| 659 | } else { |
| 660 | chan = espi->dma_tx; |
| 661 | sgt = &espi->tx_sgt; |
| 662 | } |
| 663 | |
| 664 | dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); |
| 665 | } |
| 666 | |
| 667 | static void ep93xx_spi_dma_callback(void *callback_param) |
| 668 | { |
| 669 | complete(callback_param); |
| 670 | } |
| 671 | |
| 672 | static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi) |
| 673 | { |
| 674 | struct spi_message *msg = espi->current_msg; |
| 675 | struct dma_async_tx_descriptor *rxd, *txd; |
| 676 | |
| 677 | rxd = ep93xx_spi_dma_prepare(espi, DMA_FROM_DEVICE); |
| 678 | if (IS_ERR(rxd)) { |
| 679 | dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd)); |
| 680 | msg->status = PTR_ERR(rxd); |
| 681 | return; |
| 682 | } |
| 683 | |
| 684 | txd = ep93xx_spi_dma_prepare(espi, DMA_TO_DEVICE); |
| 685 | if (IS_ERR(txd)) { |
| 686 | ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE); |
| 687 | dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd)); |
| 688 | msg->status = PTR_ERR(txd); |
| 689 | return; |
| 690 | } |
| 691 | |
| 692 | /* We are ready when RX is done */ |
| 693 | rxd->callback = ep93xx_spi_dma_callback; |
| 694 | rxd->callback_param = &espi->wait; |
| 695 | |
| 696 | /* Now submit both descriptors and wait while they finish */ |
| 697 | dmaengine_submit(rxd); |
| 698 | dmaengine_submit(txd); |
| 699 | |
| 700 | dma_async_issue_pending(espi->dma_rx); |
| 701 | dma_async_issue_pending(espi->dma_tx); |
| 702 | |
| 703 | wait_for_completion(&espi->wait); |
| 704 | |
| 705 | ep93xx_spi_dma_finish(espi, DMA_TO_DEVICE); |
| 706 | ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE); |
| 707 | } |
| 708 | |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 709 | /** |
| 710 | * ep93xx_spi_process_transfer() - processes one SPI transfer |
| 711 | * @espi: ep93xx SPI controller struct |
| 712 | * @msg: current message |
| 713 | * @t: transfer to process |
| 714 | * |
| 715 | * This function processes one SPI transfer given in @t. Function waits until |
| 716 | * transfer is complete (may sleep) and updates @msg->status based on whether |
Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame] | 717 | * transfer was successfully processed or not. |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 718 | */ |
| 719 | static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi, |
| 720 | struct spi_message *msg, |
| 721 | struct spi_transfer *t) |
| 722 | { |
| 723 | struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi); |
| 724 | |
| 725 | msg->state = t; |
| 726 | |
| 727 | /* |
| 728 | * Handle any transfer specific settings if needed. We use |
| 729 | * temporary chip settings here and restore original later when |
| 730 | * the transfer is finished. |
| 731 | */ |
| 732 | if (t->speed_hz || t->bits_per_word) { |
| 733 | struct ep93xx_spi_chip tmp_chip = *chip; |
| 734 | |
| 735 | if (t->speed_hz) { |
| 736 | int err; |
| 737 | |
| 738 | err = ep93xx_spi_calc_divisors(espi, &tmp_chip, |
| 739 | t->speed_hz); |
| 740 | if (err) { |
| 741 | dev_err(&espi->pdev->dev, |
| 742 | "failed to adjust speed\n"); |
| 743 | msg->status = err; |
| 744 | return; |
| 745 | } |
| 746 | } |
| 747 | |
| 748 | if (t->bits_per_word) |
| 749 | tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word); |
| 750 | |
| 751 | /* |
| 752 | * Set up temporary new hw settings for this transfer. |
| 753 | */ |
| 754 | ep93xx_spi_chip_setup(espi, &tmp_chip); |
| 755 | } |
| 756 | |
| 757 | espi->rx = 0; |
| 758 | espi->tx = 0; |
| 759 | |
| 760 | /* |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 761 | * There is no point of setting up DMA for the transfers which will |
| 762 | * fit into the FIFO and can be transferred with a single interrupt. |
| 763 | * So in these cases we will be using PIO and don't bother for DMA. |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 764 | */ |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 765 | if (espi->dma_rx && t->len > SPI_FIFO_SIZE) |
| 766 | ep93xx_spi_dma_transfer(espi); |
| 767 | else |
| 768 | ep93xx_spi_pio_transfer(espi); |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 769 | |
| 770 | /* |
| 771 | * In case of error during transmit, we bail out from processing |
| 772 | * the message. |
| 773 | */ |
| 774 | if (msg->status) |
| 775 | return; |
| 776 | |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 777 | msg->actual_length += t->len; |
| 778 | |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 779 | /* |
| 780 | * After this transfer is finished, perform any possible |
| 781 | * post-transfer actions requested by the protocol driver. |
| 782 | */ |
| 783 | if (t->delay_usecs) { |
| 784 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 785 | schedule_timeout(usecs_to_jiffies(t->delay_usecs)); |
| 786 | } |
| 787 | if (t->cs_change) { |
| 788 | if (!list_is_last(&t->transfer_list, &msg->transfers)) { |
| 789 | /* |
| 790 | * In case protocol driver is asking us to drop the |
| 791 | * chipselect briefly, we let the scheduler to handle |
| 792 | * any "delay" here. |
| 793 | */ |
| 794 | ep93xx_spi_cs_control(msg->spi, false); |
| 795 | cond_resched(); |
| 796 | ep93xx_spi_cs_control(msg->spi, true); |
| 797 | } |
| 798 | } |
| 799 | |
| 800 | if (t->speed_hz || t->bits_per_word) |
| 801 | ep93xx_spi_chip_setup(espi, chip); |
| 802 | } |
| 803 | |
| 804 | /* |
| 805 | * ep93xx_spi_process_message() - process one SPI message |
| 806 | * @espi: ep93xx SPI controller struct |
| 807 | * @msg: message to process |
| 808 | * |
| 809 | * This function processes a single SPI message. We go through all transfers in |
| 810 | * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is |
| 811 | * asserted during the whole message (unless per transfer cs_change is set). |
| 812 | * |
| 813 | * @msg->status contains %0 in case of success or negative error code in case of |
| 814 | * failure. |
| 815 | */ |
| 816 | static void ep93xx_spi_process_message(struct ep93xx_spi *espi, |
| 817 | struct spi_message *msg) |
| 818 | { |
| 819 | unsigned long timeout; |
| 820 | struct spi_transfer *t; |
| 821 | int err; |
| 822 | |
| 823 | /* |
| 824 | * Enable the SPI controller and its clock. |
| 825 | */ |
| 826 | err = ep93xx_spi_enable(espi); |
| 827 | if (err) { |
| 828 | dev_err(&espi->pdev->dev, "failed to enable SPI controller\n"); |
| 829 | msg->status = err; |
| 830 | return; |
| 831 | } |
| 832 | |
| 833 | /* |
| 834 | * Just to be sure: flush any data from RX FIFO. |
| 835 | */ |
| 836 | timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT); |
| 837 | while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) { |
| 838 | if (time_after(jiffies, timeout)) { |
| 839 | dev_warn(&espi->pdev->dev, |
| 840 | "timeout while flushing RX FIFO\n"); |
| 841 | msg->status = -ETIMEDOUT; |
| 842 | return; |
| 843 | } |
| 844 | ep93xx_spi_read_u16(espi, SSPDR); |
| 845 | } |
| 846 | |
| 847 | /* |
| 848 | * We explicitly handle FIFO level. This way we don't have to check TX |
| 849 | * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns. |
| 850 | */ |
| 851 | espi->fifo_level = 0; |
| 852 | |
| 853 | /* |
| 854 | * Update SPI controller registers according to spi device and assert |
| 855 | * the chipselect. |
| 856 | */ |
| 857 | ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi)); |
| 858 | ep93xx_spi_cs_control(msg->spi, true); |
| 859 | |
| 860 | list_for_each_entry(t, &msg->transfers, transfer_list) { |
| 861 | ep93xx_spi_process_transfer(espi, msg, t); |
| 862 | if (msg->status) |
| 863 | break; |
| 864 | } |
| 865 | |
| 866 | /* |
| 867 | * Now the whole message is transferred (or failed for some reason). We |
| 868 | * deselect the device and disable the SPI controller. |
| 869 | */ |
| 870 | ep93xx_spi_cs_control(msg->spi, false); |
| 871 | ep93xx_spi_disable(espi); |
| 872 | } |
| 873 | |
| 874 | #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work)) |
| 875 | |
| 876 | /** |
| 877 | * ep93xx_spi_work() - EP93xx SPI workqueue worker function |
| 878 | * @work: work struct |
| 879 | * |
| 880 | * Workqueue worker function. This function is called when there are new |
| 881 | * SPI messages to be processed. Message is taken out from the queue and then |
| 882 | * passed to ep93xx_spi_process_message(). |
| 883 | * |
| 884 | * After message is transferred, protocol driver is notified by calling |
| 885 | * @msg->complete(). In case of error, @msg->status is set to negative error |
| 886 | * number, otherwise it contains zero (and @msg->actual_length is updated). |
| 887 | */ |
| 888 | static void ep93xx_spi_work(struct work_struct *work) |
| 889 | { |
| 890 | struct ep93xx_spi *espi = work_to_espi(work); |
| 891 | struct spi_message *msg; |
| 892 | |
| 893 | spin_lock_irq(&espi->lock); |
| 894 | if (!espi->running || espi->current_msg || |
| 895 | list_empty(&espi->msg_queue)) { |
| 896 | spin_unlock_irq(&espi->lock); |
| 897 | return; |
| 898 | } |
| 899 | msg = list_first_entry(&espi->msg_queue, struct spi_message, queue); |
| 900 | list_del_init(&msg->queue); |
| 901 | espi->current_msg = msg; |
| 902 | spin_unlock_irq(&espi->lock); |
| 903 | |
| 904 | ep93xx_spi_process_message(espi, msg); |
| 905 | |
| 906 | /* |
| 907 | * Update the current message and re-schedule ourselves if there are |
| 908 | * more messages in the queue. |
| 909 | */ |
| 910 | spin_lock_irq(&espi->lock); |
| 911 | espi->current_msg = NULL; |
| 912 | if (espi->running && !list_empty(&espi->msg_queue)) |
| 913 | queue_work(espi->wq, &espi->msg_work); |
| 914 | spin_unlock_irq(&espi->lock); |
| 915 | |
| 916 | /* notify the protocol driver that we are done with this message */ |
| 917 | msg->complete(msg->context); |
| 918 | } |
| 919 | |
| 920 | static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id) |
| 921 | { |
| 922 | struct ep93xx_spi *espi = dev_id; |
| 923 | u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR); |
| 924 | |
| 925 | /* |
| 926 | * If we got ROR (receive overrun) interrupt we know that something is |
| 927 | * wrong. Just abort the message. |
| 928 | */ |
| 929 | if (unlikely(irq_status & SSPIIR_RORIS)) { |
| 930 | /* clear the overrun interrupt */ |
| 931 | ep93xx_spi_write_u8(espi, SSPICR, 0); |
| 932 | dev_warn(&espi->pdev->dev, |
| 933 | "receive overrun, aborting the message\n"); |
| 934 | espi->current_msg->status = -EIO; |
| 935 | } else { |
| 936 | /* |
| 937 | * Interrupt is either RX (RIS) or TX (TIS). For both cases we |
| 938 | * simply execute next data transfer. |
| 939 | */ |
| 940 | if (ep93xx_spi_read_write(espi)) { |
| 941 | /* |
| 942 | * In normal case, there still is some processing left |
| 943 | * for current transfer. Let's wait for the next |
| 944 | * interrupt then. |
| 945 | */ |
| 946 | return IRQ_HANDLED; |
| 947 | } |
| 948 | } |
| 949 | |
| 950 | /* |
| 951 | * Current transfer is finished, either with error or with success. In |
| 952 | * any case we disable interrupts and notify the worker to handle |
| 953 | * any post-processing of the message. |
| 954 | */ |
| 955 | ep93xx_spi_disable_interrupts(espi); |
| 956 | complete(&espi->wait); |
| 957 | return IRQ_HANDLED; |
| 958 | } |
| 959 | |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 960 | static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param) |
| 961 | { |
| 962 | if (ep93xx_dma_chan_is_m2p(chan)) |
| 963 | return false; |
| 964 | |
| 965 | chan->private = filter_param; |
| 966 | return true; |
| 967 | } |
| 968 | |
| 969 | static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi) |
| 970 | { |
| 971 | dma_cap_mask_t mask; |
| 972 | int ret; |
| 973 | |
| 974 | espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL); |
| 975 | if (!espi->zeropage) |
| 976 | return -ENOMEM; |
| 977 | |
| 978 | dma_cap_zero(mask); |
| 979 | dma_cap_set(DMA_SLAVE, mask); |
| 980 | |
| 981 | espi->dma_rx_data.port = EP93XX_DMA_SSP; |
| 982 | espi->dma_rx_data.direction = DMA_FROM_DEVICE; |
| 983 | espi->dma_rx_data.name = "ep93xx-spi-rx"; |
| 984 | |
| 985 | espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter, |
| 986 | &espi->dma_rx_data); |
| 987 | if (!espi->dma_rx) { |
| 988 | ret = -ENODEV; |
| 989 | goto fail_free_page; |
| 990 | } |
| 991 | |
| 992 | espi->dma_tx_data.port = EP93XX_DMA_SSP; |
| 993 | espi->dma_tx_data.direction = DMA_TO_DEVICE; |
| 994 | espi->dma_tx_data.name = "ep93xx-spi-tx"; |
| 995 | |
| 996 | espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter, |
| 997 | &espi->dma_tx_data); |
| 998 | if (!espi->dma_tx) { |
| 999 | ret = -ENODEV; |
| 1000 | goto fail_release_rx; |
| 1001 | } |
| 1002 | |
| 1003 | return 0; |
| 1004 | |
| 1005 | fail_release_rx: |
| 1006 | dma_release_channel(espi->dma_rx); |
| 1007 | espi->dma_rx = NULL; |
| 1008 | fail_free_page: |
| 1009 | free_page((unsigned long)espi->zeropage); |
| 1010 | |
| 1011 | return ret; |
| 1012 | } |
| 1013 | |
| 1014 | static void ep93xx_spi_release_dma(struct ep93xx_spi *espi) |
| 1015 | { |
| 1016 | if (espi->dma_rx) { |
| 1017 | dma_release_channel(espi->dma_rx); |
| 1018 | sg_free_table(&espi->rx_sgt); |
| 1019 | } |
| 1020 | if (espi->dma_tx) { |
| 1021 | dma_release_channel(espi->dma_tx); |
| 1022 | sg_free_table(&espi->tx_sgt); |
| 1023 | } |
| 1024 | |
| 1025 | if (espi->zeropage) |
| 1026 | free_page((unsigned long)espi->zeropage); |
| 1027 | } |
| 1028 | |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 1029 | static int __init ep93xx_spi_probe(struct platform_device *pdev) |
| 1030 | { |
| 1031 | struct spi_master *master; |
| 1032 | struct ep93xx_spi_info *info; |
| 1033 | struct ep93xx_spi *espi; |
| 1034 | struct resource *res; |
| 1035 | int error; |
| 1036 | |
| 1037 | info = pdev->dev.platform_data; |
| 1038 | |
| 1039 | master = spi_alloc_master(&pdev->dev, sizeof(*espi)); |
| 1040 | if (!master) { |
| 1041 | dev_err(&pdev->dev, "failed to allocate spi master\n"); |
| 1042 | return -ENOMEM; |
| 1043 | } |
| 1044 | |
| 1045 | master->setup = ep93xx_spi_setup; |
| 1046 | master->transfer = ep93xx_spi_transfer; |
| 1047 | master->cleanup = ep93xx_spi_cleanup; |
| 1048 | master->bus_num = pdev->id; |
| 1049 | master->num_chipselect = info->num_chipselect; |
| 1050 | master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; |
| 1051 | |
| 1052 | platform_set_drvdata(pdev, master); |
| 1053 | |
| 1054 | espi = spi_master_get_devdata(master); |
| 1055 | |
| 1056 | espi->clk = clk_get(&pdev->dev, NULL); |
| 1057 | if (IS_ERR(espi->clk)) { |
| 1058 | dev_err(&pdev->dev, "unable to get spi clock\n"); |
| 1059 | error = PTR_ERR(espi->clk); |
| 1060 | goto fail_release_master; |
| 1061 | } |
| 1062 | |
| 1063 | spin_lock_init(&espi->lock); |
| 1064 | init_completion(&espi->wait); |
| 1065 | |
| 1066 | /* |
| 1067 | * Calculate maximum and minimum supported clock rates |
| 1068 | * for the controller. |
| 1069 | */ |
| 1070 | espi->max_rate = clk_get_rate(espi->clk) / 2; |
| 1071 | espi->min_rate = clk_get_rate(espi->clk) / (254 * 256); |
| 1072 | espi->pdev = pdev; |
| 1073 | |
| 1074 | espi->irq = platform_get_irq(pdev, 0); |
| 1075 | if (espi->irq < 0) { |
| 1076 | error = -EBUSY; |
| 1077 | dev_err(&pdev->dev, "failed to get irq resources\n"); |
| 1078 | goto fail_put_clock; |
| 1079 | } |
| 1080 | |
| 1081 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 1082 | if (!res) { |
| 1083 | dev_err(&pdev->dev, "unable to get iomem resource\n"); |
| 1084 | error = -ENODEV; |
| 1085 | goto fail_put_clock; |
| 1086 | } |
| 1087 | |
| 1088 | res = request_mem_region(res->start, resource_size(res), pdev->name); |
| 1089 | if (!res) { |
| 1090 | dev_err(&pdev->dev, "unable to request iomem resources\n"); |
| 1091 | error = -EBUSY; |
| 1092 | goto fail_put_clock; |
| 1093 | } |
| 1094 | |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 1095 | espi->sspdr_phys = res->start + SSPDR; |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 1096 | espi->regs_base = ioremap(res->start, resource_size(res)); |
| 1097 | if (!espi->regs_base) { |
| 1098 | dev_err(&pdev->dev, "failed to map resources\n"); |
| 1099 | error = -ENODEV; |
| 1100 | goto fail_free_mem; |
| 1101 | } |
| 1102 | |
| 1103 | error = request_irq(espi->irq, ep93xx_spi_interrupt, 0, |
| 1104 | "ep93xx-spi", espi); |
| 1105 | if (error) { |
| 1106 | dev_err(&pdev->dev, "failed to request irq\n"); |
| 1107 | goto fail_unmap_regs; |
| 1108 | } |
| 1109 | |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 1110 | if (info->use_dma && ep93xx_spi_setup_dma(espi)) |
| 1111 | dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n"); |
| 1112 | |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 1113 | espi->wq = create_singlethread_workqueue("ep93xx_spid"); |
| 1114 | if (!espi->wq) { |
| 1115 | dev_err(&pdev->dev, "unable to create workqueue\n"); |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 1116 | goto fail_free_dma; |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 1117 | } |
| 1118 | INIT_WORK(&espi->msg_work, ep93xx_spi_work); |
| 1119 | INIT_LIST_HEAD(&espi->msg_queue); |
| 1120 | espi->running = true; |
| 1121 | |
| 1122 | /* make sure that the hardware is disabled */ |
| 1123 | ep93xx_spi_write_u8(espi, SSPCR1, 0); |
| 1124 | |
| 1125 | error = spi_register_master(master); |
| 1126 | if (error) { |
| 1127 | dev_err(&pdev->dev, "failed to register SPI master\n"); |
| 1128 | goto fail_free_queue; |
| 1129 | } |
| 1130 | |
| 1131 | dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n", |
| 1132 | (unsigned long)res->start, espi->irq); |
| 1133 | |
| 1134 | return 0; |
| 1135 | |
| 1136 | fail_free_queue: |
| 1137 | destroy_workqueue(espi->wq); |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 1138 | fail_free_dma: |
| 1139 | ep93xx_spi_release_dma(espi); |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 1140 | free_irq(espi->irq, espi); |
| 1141 | fail_unmap_regs: |
| 1142 | iounmap(espi->regs_base); |
| 1143 | fail_free_mem: |
| 1144 | release_mem_region(res->start, resource_size(res)); |
| 1145 | fail_put_clock: |
| 1146 | clk_put(espi->clk); |
| 1147 | fail_release_master: |
| 1148 | spi_master_put(master); |
| 1149 | platform_set_drvdata(pdev, NULL); |
| 1150 | |
| 1151 | return error; |
| 1152 | } |
| 1153 | |
| 1154 | static int __exit ep93xx_spi_remove(struct platform_device *pdev) |
| 1155 | { |
| 1156 | struct spi_master *master = platform_get_drvdata(pdev); |
| 1157 | struct ep93xx_spi *espi = spi_master_get_devdata(master); |
| 1158 | struct resource *res; |
| 1159 | |
| 1160 | spin_lock_irq(&espi->lock); |
| 1161 | espi->running = false; |
| 1162 | spin_unlock_irq(&espi->lock); |
| 1163 | |
| 1164 | destroy_workqueue(espi->wq); |
| 1165 | |
| 1166 | /* |
| 1167 | * Complete remaining messages with %-ESHUTDOWN status. |
| 1168 | */ |
| 1169 | spin_lock_irq(&espi->lock); |
| 1170 | while (!list_empty(&espi->msg_queue)) { |
| 1171 | struct spi_message *msg; |
| 1172 | |
| 1173 | msg = list_first_entry(&espi->msg_queue, |
| 1174 | struct spi_message, queue); |
| 1175 | list_del_init(&msg->queue); |
| 1176 | msg->status = -ESHUTDOWN; |
| 1177 | spin_unlock_irq(&espi->lock); |
| 1178 | msg->complete(msg->context); |
| 1179 | spin_lock_irq(&espi->lock); |
| 1180 | } |
| 1181 | spin_unlock_irq(&espi->lock); |
| 1182 | |
Mika Westerberg | 626a96d | 2011-05-29 13:10:06 +0300 | [diff] [blame] | 1183 | ep93xx_spi_release_dma(espi); |
Mika Westerberg | 011f23a | 2010-05-06 04:47:04 +0000 | [diff] [blame] | 1184 | free_irq(espi->irq, espi); |
| 1185 | iounmap(espi->regs_base); |
| 1186 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 1187 | release_mem_region(res->start, resource_size(res)); |
| 1188 | clk_put(espi->clk); |
| 1189 | platform_set_drvdata(pdev, NULL); |
| 1190 | |
| 1191 | spi_unregister_master(master); |
| 1192 | return 0; |
| 1193 | } |
| 1194 | |
| 1195 | static struct platform_driver ep93xx_spi_driver = { |
| 1196 | .driver = { |
| 1197 | .name = "ep93xx-spi", |
| 1198 | .owner = THIS_MODULE, |
| 1199 | }, |
| 1200 | .remove = __exit_p(ep93xx_spi_remove), |
| 1201 | }; |
| 1202 | |
| 1203 | static int __init ep93xx_spi_init(void) |
| 1204 | { |
| 1205 | return platform_driver_probe(&ep93xx_spi_driver, ep93xx_spi_probe); |
| 1206 | } |
| 1207 | module_init(ep93xx_spi_init); |
| 1208 | |
| 1209 | static void __exit ep93xx_spi_exit(void) |
| 1210 | { |
| 1211 | platform_driver_unregister(&ep93xx_spi_driver); |
| 1212 | } |
| 1213 | module_exit(ep93xx_spi_exit); |
| 1214 | |
| 1215 | MODULE_DESCRIPTION("EP93xx SPI Controller driver"); |
| 1216 | MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); |
| 1217 | MODULE_LICENSE("GPL"); |
| 1218 | MODULE_ALIAS("platform:ep93xx-spi"); |