blob: b70ada0028d251d7171f13b0de7e9e47e1e6086c [file] [log] [blame]
Dave Younga43cac02015-09-09 15:38:51 -07001/*
2 * kexec: kexec_file_load system call
3 *
4 * Copyright (C) 2014 Red Hat Inc.
5 * Authors:
6 * Vivek Goyal <vgoyal@redhat.com>
7 *
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
10 */
11
Minfei Huangde90a6b2015-11-06 16:32:45 -080012#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
Dave Younga43cac02015-09-09 15:38:51 -070014#include <linux/capability.h>
15#include <linux/mm.h>
16#include <linux/file.h>
17#include <linux/slab.h>
18#include <linux/kexec.h>
19#include <linux/mutex.h>
20#include <linux/list.h>
21#include <crypto/hash.h>
22#include <crypto/sha.h>
23#include <linux/syscalls.h>
24#include <linux/vmalloc.h>
25#include "kexec_internal.h"
26
27/*
28 * Declare these symbols weak so that if architecture provides a purgatory,
29 * these will be overridden.
30 */
31char __weak kexec_purgatory[0];
32size_t __weak kexec_purgatory_size = 0;
33
34static int kexec_calculate_store_digests(struct kimage *image);
35
36static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
37{
38 struct fd f = fdget(fd);
39 int ret;
40 struct kstat stat;
41 loff_t pos;
42 ssize_t bytes = 0;
43
44 if (!f.file)
45 return -EBADF;
46
47 ret = vfs_getattr(&f.file->f_path, &stat);
48 if (ret)
49 goto out;
50
51 if (stat.size > INT_MAX) {
52 ret = -EFBIG;
53 goto out;
54 }
55
56 /* Don't hand 0 to vmalloc, it whines. */
57 if (stat.size == 0) {
58 ret = -EINVAL;
59 goto out;
60 }
61
62 *buf = vmalloc(stat.size);
63 if (!*buf) {
64 ret = -ENOMEM;
65 goto out;
66 }
67
68 pos = 0;
69 while (pos < stat.size) {
70 bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
71 stat.size - pos);
72 if (bytes < 0) {
73 vfree(*buf);
74 ret = bytes;
75 goto out;
76 }
77
78 if (bytes == 0)
79 break;
80 pos += bytes;
81 }
82
83 if (pos != stat.size) {
84 ret = -EBADF;
85 vfree(*buf);
86 goto out;
87 }
88
89 *buf_len = pos;
90out:
91 fdput(f);
92 return ret;
93}
94
95/* Architectures can provide this probe function */
96int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
97 unsigned long buf_len)
98{
99 return -ENOEXEC;
100}
101
102void * __weak arch_kexec_kernel_image_load(struct kimage *image)
103{
104 return ERR_PTR(-ENOEXEC);
105}
106
107int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
108{
109 return -EINVAL;
110}
111
112int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
113 unsigned long buf_len)
114{
115 return -EKEYREJECTED;
116}
117
118/* Apply relocations of type RELA */
119int __weak
120arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
121 unsigned int relsec)
122{
123 pr_err("RELA relocation unsupported.\n");
124 return -ENOEXEC;
125}
126
127/* Apply relocations of type REL */
128int __weak
129arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
130 unsigned int relsec)
131{
132 pr_err("REL relocation unsupported.\n");
133 return -ENOEXEC;
134}
135
136/*
137 * Free up memory used by kernel, initrd, and command line. This is temporary
138 * memory allocation which is not needed any more after these buffers have
139 * been loaded into separate segments and have been copied elsewhere.
140 */
141void kimage_file_post_load_cleanup(struct kimage *image)
142{
143 struct purgatory_info *pi = &image->purgatory_info;
144
145 vfree(image->kernel_buf);
146 image->kernel_buf = NULL;
147
148 vfree(image->initrd_buf);
149 image->initrd_buf = NULL;
150
151 kfree(image->cmdline_buf);
152 image->cmdline_buf = NULL;
153
154 vfree(pi->purgatory_buf);
155 pi->purgatory_buf = NULL;
156
157 vfree(pi->sechdrs);
158 pi->sechdrs = NULL;
159
160 /* See if architecture has anything to cleanup post load */
161 arch_kimage_file_post_load_cleanup(image);
162
163 /*
164 * Above call should have called into bootloader to free up
165 * any data stored in kimage->image_loader_data. It should
166 * be ok now to free it up.
167 */
168 kfree(image->image_loader_data);
169 image->image_loader_data = NULL;
170}
171
172/*
173 * In file mode list of segments is prepared by kernel. Copy relevant
174 * data from user space, do error checking, prepare segment list
175 */
176static int
177kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
178 const char __user *cmdline_ptr,
179 unsigned long cmdline_len, unsigned flags)
180{
181 int ret = 0;
182 void *ldata;
183
184 ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
185 &image->kernel_buf_len);
186 if (ret)
187 return ret;
188
189 /* Call arch image probe handlers */
190 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
191 image->kernel_buf_len);
192
193 if (ret)
194 goto out;
195
196#ifdef CONFIG_KEXEC_VERIFY_SIG
197 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
198 image->kernel_buf_len);
199 if (ret) {
200 pr_debug("kernel signature verification failed.\n");
201 goto out;
202 }
203 pr_debug("kernel signature verification successful.\n");
204#endif
205 /* It is possible that there no initramfs is being loaded */
206 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
207 ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
208 &image->initrd_buf_len);
209 if (ret)
210 goto out;
211 }
212
213 if (cmdline_len) {
214 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
215 if (!image->cmdline_buf) {
216 ret = -ENOMEM;
217 goto out;
218 }
219
220 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
221 cmdline_len);
222 if (ret) {
223 ret = -EFAULT;
224 goto out;
225 }
226
227 image->cmdline_buf_len = cmdline_len;
228
229 /* command line should be a string with last byte null */
230 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
231 ret = -EINVAL;
232 goto out;
233 }
234 }
235
236 /* Call arch image load handlers */
237 ldata = arch_kexec_kernel_image_load(image);
238
239 if (IS_ERR(ldata)) {
240 ret = PTR_ERR(ldata);
241 goto out;
242 }
243
244 image->image_loader_data = ldata;
245out:
246 /* In case of error, free up all allocated memory in this function */
247 if (ret)
248 kimage_file_post_load_cleanup(image);
249 return ret;
250}
251
252static int
253kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
254 int initrd_fd, const char __user *cmdline_ptr,
255 unsigned long cmdline_len, unsigned long flags)
256{
257 int ret;
258 struct kimage *image;
259 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
260
261 image = do_kimage_alloc_init();
262 if (!image)
263 return -ENOMEM;
264
265 image->file_mode = 1;
266
267 if (kexec_on_panic) {
268 /* Enable special crash kernel control page alloc policy. */
269 image->control_page = crashk_res.start;
270 image->type = KEXEC_TYPE_CRASH;
271 }
272
273 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
274 cmdline_ptr, cmdline_len, flags);
275 if (ret)
276 goto out_free_image;
277
278 ret = sanity_check_segment_list(image);
279 if (ret)
280 goto out_free_post_load_bufs;
281
282 ret = -ENOMEM;
283 image->control_code_page = kimage_alloc_control_pages(image,
284 get_order(KEXEC_CONTROL_PAGE_SIZE));
285 if (!image->control_code_page) {
286 pr_err("Could not allocate control_code_buffer\n");
287 goto out_free_post_load_bufs;
288 }
289
290 if (!kexec_on_panic) {
291 image->swap_page = kimage_alloc_control_pages(image, 0);
292 if (!image->swap_page) {
293 pr_err("Could not allocate swap buffer\n");
294 goto out_free_control_pages;
295 }
296 }
297
298 *rimage = image;
299 return 0;
300out_free_control_pages:
301 kimage_free_page_list(&image->control_pages);
302out_free_post_load_bufs:
303 kimage_file_post_load_cleanup(image);
304out_free_image:
305 kfree(image);
306 return ret;
307}
308
309SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
310 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
311 unsigned long, flags)
312{
313 int ret = 0, i;
314 struct kimage **dest_image, *image;
315
316 /* We only trust the superuser with rebooting the system. */
317 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
318 return -EPERM;
319
320 /* Make sure we have a legal set of flags */
321 if (flags != (flags & KEXEC_FILE_FLAGS))
322 return -EINVAL;
323
324 image = NULL;
325
326 if (!mutex_trylock(&kexec_mutex))
327 return -EBUSY;
328
329 dest_image = &kexec_image;
330 if (flags & KEXEC_FILE_ON_CRASH)
331 dest_image = &kexec_crash_image;
332
333 if (flags & KEXEC_FILE_UNLOAD)
334 goto exchange;
335
336 /*
337 * In case of crash, new kernel gets loaded in reserved region. It is
338 * same memory where old crash kernel might be loaded. Free any
339 * current crash dump kernel before we corrupt it.
340 */
341 if (flags & KEXEC_FILE_ON_CRASH)
342 kimage_free(xchg(&kexec_crash_image, NULL));
343
344 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
345 cmdline_len, flags);
346 if (ret)
347 goto out;
348
349 ret = machine_kexec_prepare(image);
350 if (ret)
351 goto out;
352
353 ret = kexec_calculate_store_digests(image);
354 if (ret)
355 goto out;
356
357 for (i = 0; i < image->nr_segments; i++) {
358 struct kexec_segment *ksegment;
359
360 ksegment = &image->segment[i];
361 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
362 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
363 ksegment->memsz);
364
365 ret = kimage_load_segment(image, &image->segment[i]);
366 if (ret)
367 goto out;
368 }
369
370 kimage_terminate(image);
371
372 /*
373 * Free up any temporary buffers allocated which are not needed
374 * after image has been loaded
375 */
376 kimage_file_post_load_cleanup(image);
377exchange:
378 image = xchg(dest_image, image);
379out:
380 mutex_unlock(&kexec_mutex);
381 kimage_free(image);
382 return ret;
383}
384
385static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
386 struct kexec_buf *kbuf)
387{
388 struct kimage *image = kbuf->image;
389 unsigned long temp_start, temp_end;
390
391 temp_end = min(end, kbuf->buf_max);
392 temp_start = temp_end - kbuf->memsz;
393
394 do {
395 /* align down start */
396 temp_start = temp_start & (~(kbuf->buf_align - 1));
397
398 if (temp_start < start || temp_start < kbuf->buf_min)
399 return 0;
400
401 temp_end = temp_start + kbuf->memsz - 1;
402
403 /*
404 * Make sure this does not conflict with any of existing
405 * segments
406 */
407 if (kimage_is_destination_range(image, temp_start, temp_end)) {
408 temp_start = temp_start - PAGE_SIZE;
409 continue;
410 }
411
412 /* We found a suitable memory range */
413 break;
414 } while (1);
415
416 /* If we are here, we found a suitable memory range */
417 kbuf->mem = temp_start;
418
419 /* Success, stop navigating through remaining System RAM ranges */
420 return 1;
421}
422
423static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
424 struct kexec_buf *kbuf)
425{
426 struct kimage *image = kbuf->image;
427 unsigned long temp_start, temp_end;
428
429 temp_start = max(start, kbuf->buf_min);
430
431 do {
432 temp_start = ALIGN(temp_start, kbuf->buf_align);
433 temp_end = temp_start + kbuf->memsz - 1;
434
435 if (temp_end > end || temp_end > kbuf->buf_max)
436 return 0;
437 /*
438 * Make sure this does not conflict with any of existing
439 * segments
440 */
441 if (kimage_is_destination_range(image, temp_start, temp_end)) {
442 temp_start = temp_start + PAGE_SIZE;
443 continue;
444 }
445
446 /* We found a suitable memory range */
447 break;
448 } while (1);
449
450 /* If we are here, we found a suitable memory range */
451 kbuf->mem = temp_start;
452
453 /* Success, stop navigating through remaining System RAM ranges */
454 return 1;
455}
456
457static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
458{
459 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
460 unsigned long sz = end - start + 1;
461
462 /* Returning 0 will take to next memory range */
463 if (sz < kbuf->memsz)
464 return 0;
465
466 if (end < kbuf->buf_min || start > kbuf->buf_max)
467 return 0;
468
469 /*
470 * Allocate memory top down with-in ram range. Otherwise bottom up
471 * allocation.
472 */
473 if (kbuf->top_down)
474 return locate_mem_hole_top_down(start, end, kbuf);
475 return locate_mem_hole_bottom_up(start, end, kbuf);
476}
477
478/*
479 * Helper function for placing a buffer in a kexec segment. This assumes
480 * that kexec_mutex is held.
481 */
482int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
483 unsigned long memsz, unsigned long buf_align,
484 unsigned long buf_min, unsigned long buf_max,
485 bool top_down, unsigned long *load_addr)
486{
487
488 struct kexec_segment *ksegment;
489 struct kexec_buf buf, *kbuf;
490 int ret;
491
492 /* Currently adding segment this way is allowed only in file mode */
493 if (!image->file_mode)
494 return -EINVAL;
495
496 if (image->nr_segments >= KEXEC_SEGMENT_MAX)
497 return -EINVAL;
498
499 /*
500 * Make sure we are not trying to add buffer after allocating
501 * control pages. All segments need to be placed first before
502 * any control pages are allocated. As control page allocation
503 * logic goes through list of segments to make sure there are
504 * no destination overlaps.
505 */
506 if (!list_empty(&image->control_pages)) {
507 WARN_ON(1);
508 return -EINVAL;
509 }
510
511 memset(&buf, 0, sizeof(struct kexec_buf));
512 kbuf = &buf;
513 kbuf->image = image;
514 kbuf->buffer = buffer;
515 kbuf->bufsz = bufsz;
516
517 kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
518 kbuf->buf_align = max(buf_align, PAGE_SIZE);
519 kbuf->buf_min = buf_min;
520 kbuf->buf_max = buf_max;
521 kbuf->top_down = top_down;
522
523 /* Walk the RAM ranges and allocate a suitable range for the buffer */
524 if (image->type == KEXEC_TYPE_CRASH)
525 ret = walk_iomem_res("Crash kernel",
526 IORESOURCE_MEM | IORESOURCE_BUSY,
527 crashk_res.start, crashk_res.end, kbuf,
528 locate_mem_hole_callback);
529 else
530 ret = walk_system_ram_res(0, -1, kbuf,
531 locate_mem_hole_callback);
532 if (ret != 1) {
533 /* A suitable memory range could not be found for buffer */
534 return -EADDRNOTAVAIL;
535 }
536
537 /* Found a suitable memory range */
538 ksegment = &image->segment[image->nr_segments];
539 ksegment->kbuf = kbuf->buffer;
540 ksegment->bufsz = kbuf->bufsz;
541 ksegment->mem = kbuf->mem;
542 ksegment->memsz = kbuf->memsz;
543 image->nr_segments++;
544 *load_addr = ksegment->mem;
545 return 0;
546}
547
548/* Calculate and store the digest of segments */
549static int kexec_calculate_store_digests(struct kimage *image)
550{
551 struct crypto_shash *tfm;
552 struct shash_desc *desc;
553 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
554 size_t desc_size, nullsz;
555 char *digest;
556 void *zero_buf;
557 struct kexec_sha_region *sha_regions;
558 struct purgatory_info *pi = &image->purgatory_info;
559
560 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
561 zero_buf_sz = PAGE_SIZE;
562
563 tfm = crypto_alloc_shash("sha256", 0, 0);
564 if (IS_ERR(tfm)) {
565 ret = PTR_ERR(tfm);
566 goto out;
567 }
568
569 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
570 desc = kzalloc(desc_size, GFP_KERNEL);
571 if (!desc) {
572 ret = -ENOMEM;
573 goto out_free_tfm;
574 }
575
576 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
577 sha_regions = vzalloc(sha_region_sz);
578 if (!sha_regions)
579 goto out_free_desc;
580
581 desc->tfm = tfm;
582 desc->flags = 0;
583
584 ret = crypto_shash_init(desc);
585 if (ret < 0)
586 goto out_free_sha_regions;
587
588 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
589 if (!digest) {
590 ret = -ENOMEM;
591 goto out_free_sha_regions;
592 }
593
594 for (j = i = 0; i < image->nr_segments; i++) {
595 struct kexec_segment *ksegment;
596
597 ksegment = &image->segment[i];
598 /*
599 * Skip purgatory as it will be modified once we put digest
600 * info in purgatory.
601 */
602 if (ksegment->kbuf == pi->purgatory_buf)
603 continue;
604
605 ret = crypto_shash_update(desc, ksegment->kbuf,
606 ksegment->bufsz);
607 if (ret)
608 break;
609
610 /*
611 * Assume rest of the buffer is filled with zero and
612 * update digest accordingly.
613 */
614 nullsz = ksegment->memsz - ksegment->bufsz;
615 while (nullsz) {
616 unsigned long bytes = nullsz;
617
618 if (bytes > zero_buf_sz)
619 bytes = zero_buf_sz;
620 ret = crypto_shash_update(desc, zero_buf, bytes);
621 if (ret)
622 break;
623 nullsz -= bytes;
624 }
625
626 if (ret)
627 break;
628
629 sha_regions[j].start = ksegment->mem;
630 sha_regions[j].len = ksegment->memsz;
631 j++;
632 }
633
634 if (!ret) {
635 ret = crypto_shash_final(desc, digest);
636 if (ret)
637 goto out_free_digest;
638 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
639 sha_regions, sha_region_sz, 0);
640 if (ret)
641 goto out_free_digest;
642
643 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
644 digest, SHA256_DIGEST_SIZE, 0);
645 if (ret)
646 goto out_free_digest;
647 }
648
649out_free_digest:
650 kfree(digest);
651out_free_sha_regions:
652 vfree(sha_regions);
653out_free_desc:
654 kfree(desc);
655out_free_tfm:
656 kfree(tfm);
657out:
658 return ret;
659}
660
661/* Actually load purgatory. Lot of code taken from kexec-tools */
662static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
663 unsigned long max, int top_down)
664{
665 struct purgatory_info *pi = &image->purgatory_info;
666 unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
667 unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
668 unsigned char *buf_addr, *src;
669 int i, ret = 0, entry_sidx = -1;
670 const Elf_Shdr *sechdrs_c;
671 Elf_Shdr *sechdrs = NULL;
672 void *purgatory_buf = NULL;
673
674 /*
675 * sechdrs_c points to section headers in purgatory and are read
676 * only. No modifications allowed.
677 */
678 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
679
680 /*
681 * We can not modify sechdrs_c[] and its fields. It is read only.
682 * Copy it over to a local copy where one can store some temporary
683 * data and free it at the end. We need to modify ->sh_addr and
684 * ->sh_offset fields to keep track of permanent and temporary
685 * locations of sections.
686 */
687 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
688 if (!sechdrs)
689 return -ENOMEM;
690
691 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
692
693 /*
694 * We seem to have multiple copies of sections. First copy is which
695 * is embedded in kernel in read only section. Some of these sections
696 * will be copied to a temporary buffer and relocated. And these
697 * sections will finally be copied to their final destination at
698 * segment load time.
699 *
700 * Use ->sh_offset to reflect section address in memory. It will
701 * point to original read only copy if section is not allocatable.
702 * Otherwise it will point to temporary copy which will be relocated.
703 *
704 * Use ->sh_addr to contain final address of the section where it
705 * will go during execution time.
706 */
707 for (i = 0; i < pi->ehdr->e_shnum; i++) {
708 if (sechdrs[i].sh_type == SHT_NOBITS)
709 continue;
710
711 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
712 sechdrs[i].sh_offset;
713 }
714
715 /*
716 * Identify entry point section and make entry relative to section
717 * start.
718 */
719 entry = pi->ehdr->e_entry;
720 for (i = 0; i < pi->ehdr->e_shnum; i++) {
721 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
722 continue;
723
724 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
725 continue;
726
727 /* Make entry section relative */
728 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
729 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
730 pi->ehdr->e_entry)) {
731 entry_sidx = i;
732 entry -= sechdrs[i].sh_addr;
733 break;
734 }
735 }
736
737 /* Determine how much memory is needed to load relocatable object. */
738 buf_align = 1;
739 bss_align = 1;
740 buf_sz = 0;
741 bss_sz = 0;
742
743 for (i = 0; i < pi->ehdr->e_shnum; i++) {
744 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
745 continue;
746
747 align = sechdrs[i].sh_addralign;
748 if (sechdrs[i].sh_type != SHT_NOBITS) {
749 if (buf_align < align)
750 buf_align = align;
751 buf_sz = ALIGN(buf_sz, align);
752 buf_sz += sechdrs[i].sh_size;
753 } else {
754 /* bss section */
755 if (bss_align < align)
756 bss_align = align;
757 bss_sz = ALIGN(bss_sz, align);
758 bss_sz += sechdrs[i].sh_size;
759 }
760 }
761
762 /* Determine the bss padding required to align bss properly */
763 bss_pad = 0;
764 if (buf_sz & (bss_align - 1))
765 bss_pad = bss_align - (buf_sz & (bss_align - 1));
766
767 memsz = buf_sz + bss_pad + bss_sz;
768
769 /* Allocate buffer for purgatory */
770 purgatory_buf = vzalloc(buf_sz);
771 if (!purgatory_buf) {
772 ret = -ENOMEM;
773 goto out;
774 }
775
776 if (buf_align < bss_align)
777 buf_align = bss_align;
778
779 /* Add buffer to segment list */
780 ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
781 buf_align, min, max, top_down,
782 &pi->purgatory_load_addr);
783 if (ret)
784 goto out;
785
786 /* Load SHF_ALLOC sections */
787 buf_addr = purgatory_buf;
788 load_addr = curr_load_addr = pi->purgatory_load_addr;
789 bss_addr = load_addr + buf_sz + bss_pad;
790
791 for (i = 0; i < pi->ehdr->e_shnum; i++) {
792 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
793 continue;
794
795 align = sechdrs[i].sh_addralign;
796 if (sechdrs[i].sh_type != SHT_NOBITS) {
797 curr_load_addr = ALIGN(curr_load_addr, align);
798 offset = curr_load_addr - load_addr;
799 /* We already modifed ->sh_offset to keep src addr */
800 src = (char *) sechdrs[i].sh_offset;
801 memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
802
803 /* Store load address and source address of section */
804 sechdrs[i].sh_addr = curr_load_addr;
805
806 /*
807 * This section got copied to temporary buffer. Update
808 * ->sh_offset accordingly.
809 */
810 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
811
812 /* Advance to the next address */
813 curr_load_addr += sechdrs[i].sh_size;
814 } else {
815 bss_addr = ALIGN(bss_addr, align);
816 sechdrs[i].sh_addr = bss_addr;
817 bss_addr += sechdrs[i].sh_size;
818 }
819 }
820
821 /* Update entry point based on load address of text section */
822 if (entry_sidx >= 0)
823 entry += sechdrs[entry_sidx].sh_addr;
824
825 /* Make kernel jump to purgatory after shutdown */
826 image->start = entry;
827
828 /* Used later to get/set symbol values */
829 pi->sechdrs = sechdrs;
830
831 /*
832 * Used later to identify which section is purgatory and skip it
833 * from checksumming.
834 */
835 pi->purgatory_buf = purgatory_buf;
836 return ret;
837out:
838 vfree(sechdrs);
839 vfree(purgatory_buf);
840 return ret;
841}
842
843static int kexec_apply_relocations(struct kimage *image)
844{
845 int i, ret;
846 struct purgatory_info *pi = &image->purgatory_info;
847 Elf_Shdr *sechdrs = pi->sechdrs;
848
849 /* Apply relocations */
850 for (i = 0; i < pi->ehdr->e_shnum; i++) {
851 Elf_Shdr *section, *symtab;
852
853 if (sechdrs[i].sh_type != SHT_RELA &&
854 sechdrs[i].sh_type != SHT_REL)
855 continue;
856
857 /*
858 * For section of type SHT_RELA/SHT_REL,
859 * ->sh_link contains section header index of associated
860 * symbol table. And ->sh_info contains section header
861 * index of section to which relocations apply.
862 */
863 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
864 sechdrs[i].sh_link >= pi->ehdr->e_shnum)
865 return -ENOEXEC;
866
867 section = &sechdrs[sechdrs[i].sh_info];
868 symtab = &sechdrs[sechdrs[i].sh_link];
869
870 if (!(section->sh_flags & SHF_ALLOC))
871 continue;
872
873 /*
874 * symtab->sh_link contain section header index of associated
875 * string table.
876 */
877 if (symtab->sh_link >= pi->ehdr->e_shnum)
878 /* Invalid section number? */
879 continue;
880
881 /*
882 * Respective architecture needs to provide support for applying
883 * relocations of type SHT_RELA/SHT_REL.
884 */
885 if (sechdrs[i].sh_type == SHT_RELA)
886 ret = arch_kexec_apply_relocations_add(pi->ehdr,
887 sechdrs, i);
888 else if (sechdrs[i].sh_type == SHT_REL)
889 ret = arch_kexec_apply_relocations(pi->ehdr,
890 sechdrs, i);
891 if (ret)
892 return ret;
893 }
894
895 return 0;
896}
897
898/* Load relocatable purgatory object and relocate it appropriately */
899int kexec_load_purgatory(struct kimage *image, unsigned long min,
900 unsigned long max, int top_down,
901 unsigned long *load_addr)
902{
903 struct purgatory_info *pi = &image->purgatory_info;
904 int ret;
905
906 if (kexec_purgatory_size <= 0)
907 return -EINVAL;
908
909 if (kexec_purgatory_size < sizeof(Elf_Ehdr))
910 return -ENOEXEC;
911
912 pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
913
914 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
915 || pi->ehdr->e_type != ET_REL
916 || !elf_check_arch(pi->ehdr)
917 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
918 return -ENOEXEC;
919
920 if (pi->ehdr->e_shoff >= kexec_purgatory_size
921 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
922 kexec_purgatory_size - pi->ehdr->e_shoff))
923 return -ENOEXEC;
924
925 ret = __kexec_load_purgatory(image, min, max, top_down);
926 if (ret)
927 return ret;
928
929 ret = kexec_apply_relocations(image);
930 if (ret)
931 goto out;
932
933 *load_addr = pi->purgatory_load_addr;
934 return 0;
935out:
936 vfree(pi->sechdrs);
937 vfree(pi->purgatory_buf);
938 return ret;
939}
940
941static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
942 const char *name)
943{
944 Elf_Sym *syms;
945 Elf_Shdr *sechdrs;
946 Elf_Ehdr *ehdr;
947 int i, k;
948 const char *strtab;
949
950 if (!pi->sechdrs || !pi->ehdr)
951 return NULL;
952
953 sechdrs = pi->sechdrs;
954 ehdr = pi->ehdr;
955
956 for (i = 0; i < ehdr->e_shnum; i++) {
957 if (sechdrs[i].sh_type != SHT_SYMTAB)
958 continue;
959
960 if (sechdrs[i].sh_link >= ehdr->e_shnum)
961 /* Invalid strtab section number */
962 continue;
963 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
964 syms = (Elf_Sym *)sechdrs[i].sh_offset;
965
966 /* Go through symbols for a match */
967 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
968 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
969 continue;
970
971 if (strcmp(strtab + syms[k].st_name, name) != 0)
972 continue;
973
974 if (syms[k].st_shndx == SHN_UNDEF ||
975 syms[k].st_shndx >= ehdr->e_shnum) {
976 pr_debug("Symbol: %s has bad section index %d.\n",
977 name, syms[k].st_shndx);
978 return NULL;
979 }
980
981 /* Found the symbol we are looking for */
982 return &syms[k];
983 }
984 }
985
986 return NULL;
987}
988
989void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
990{
991 struct purgatory_info *pi = &image->purgatory_info;
992 Elf_Sym *sym;
993 Elf_Shdr *sechdr;
994
995 sym = kexec_purgatory_find_symbol(pi, name);
996 if (!sym)
997 return ERR_PTR(-EINVAL);
998
999 sechdr = &pi->sechdrs[sym->st_shndx];
1000
1001 /*
1002 * Returns the address where symbol will finally be loaded after
1003 * kexec_load_segment()
1004 */
1005 return (void *)(sechdr->sh_addr + sym->st_value);
1006}
1007
1008/*
1009 * Get or set value of a symbol. If "get_value" is true, symbol value is
1010 * returned in buf otherwise symbol value is set based on value in buf.
1011 */
1012int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1013 void *buf, unsigned int size, bool get_value)
1014{
1015 Elf_Sym *sym;
1016 Elf_Shdr *sechdrs;
1017 struct purgatory_info *pi = &image->purgatory_info;
1018 char *sym_buf;
1019
1020 sym = kexec_purgatory_find_symbol(pi, name);
1021 if (!sym)
1022 return -EINVAL;
1023
1024 if (sym->st_size != size) {
1025 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1026 name, (unsigned long)sym->st_size, size);
1027 return -EINVAL;
1028 }
1029
1030 sechdrs = pi->sechdrs;
1031
1032 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1033 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1034 get_value ? "get" : "set");
1035 return -EINVAL;
1036 }
1037
1038 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1039 sym->st_value;
1040
1041 if (get_value)
1042 memcpy((void *)buf, sym_buf, size);
1043 else
1044 memcpy((void *)sym_buf, buf, size);
1045
1046 return 0;
1047}