Arvid Brodin | f421436 | 2013-10-30 21:10:47 +0100 | [diff] [blame] | 1 | /* Copyright 2011-2013 Autronica Fire and Security AS |
| 2 | * |
| 3 | * This program is free software; you can redistribute it and/or modify it |
| 4 | * under the terms of the GNU General Public License as published by the Free |
| 5 | * Software Foundation; either version 2 of the License, or (at your option) |
| 6 | * any later version. |
| 7 | * |
| 8 | * Author(s): |
| 9 | * 2011-2013 Arvid Brodin, arvid.brodin@xdin.com |
| 10 | * |
| 11 | * The HSR spec says never to forward the same frame twice on the same |
| 12 | * interface. A frame is identified by its source MAC address and its HSR |
| 13 | * sequence number. This code keeps track of senders and their sequence numbers |
| 14 | * to allow filtering of duplicate frames, and to detect HSR ring errors. |
| 15 | */ |
| 16 | |
| 17 | #include <linux/if_ether.h> |
| 18 | #include <linux/etherdevice.h> |
| 19 | #include <linux/slab.h> |
| 20 | #include <linux/rculist.h> |
| 21 | #include "hsr_main.h" |
| 22 | #include "hsr_framereg.h" |
| 23 | #include "hsr_netlink.h" |
| 24 | |
| 25 | |
| 26 | struct node_entry { |
| 27 | struct list_head mac_list; |
| 28 | unsigned char MacAddressA[ETH_ALEN]; |
| 29 | unsigned char MacAddressB[ETH_ALEN]; |
| 30 | enum hsr_dev_idx AddrB_if; /* The local slave through which AddrB |
| 31 | * frames are received from this node |
| 32 | */ |
| 33 | unsigned long time_in[HSR_MAX_SLAVE]; |
| 34 | bool time_in_stale[HSR_MAX_SLAVE]; |
| 35 | u16 seq_out[HSR_MAX_DEV]; |
| 36 | struct rcu_head rcu_head; |
| 37 | }; |
| 38 | |
| 39 | /* TODO: use hash lists for mac addresses (linux/jhash.h)? */ |
| 40 | |
| 41 | |
| 42 | |
| 43 | /* Search for mac entry. Caller must hold rcu read lock. |
| 44 | */ |
| 45 | static struct node_entry *find_node_by_AddrA(struct list_head *node_db, |
| 46 | const unsigned char addr[ETH_ALEN]) |
| 47 | { |
| 48 | struct node_entry *node; |
| 49 | |
| 50 | list_for_each_entry_rcu(node, node_db, mac_list) { |
| 51 | if (ether_addr_equal(node->MacAddressA, addr)) |
| 52 | return node; |
| 53 | } |
| 54 | |
| 55 | return NULL; |
| 56 | } |
| 57 | |
| 58 | |
| 59 | /* Search for mac entry. Caller must hold rcu read lock. |
| 60 | */ |
| 61 | static struct node_entry *find_node_by_AddrB(struct list_head *node_db, |
| 62 | const unsigned char addr[ETH_ALEN]) |
| 63 | { |
| 64 | struct node_entry *node; |
| 65 | |
| 66 | list_for_each_entry_rcu(node, node_db, mac_list) { |
| 67 | if (ether_addr_equal(node->MacAddressB, addr)) |
| 68 | return node; |
| 69 | } |
| 70 | |
| 71 | return NULL; |
| 72 | } |
| 73 | |
| 74 | |
| 75 | /* Search for mac entry. Caller must hold rcu read lock. |
| 76 | */ |
| 77 | struct node_entry *hsr_find_node(struct list_head *node_db, struct sk_buff *skb) |
| 78 | { |
| 79 | struct node_entry *node; |
| 80 | struct ethhdr *ethhdr; |
| 81 | |
| 82 | if (!skb_mac_header_was_set(skb)) |
| 83 | return NULL; |
| 84 | |
| 85 | ethhdr = (struct ethhdr *) skb_mac_header(skb); |
| 86 | |
| 87 | list_for_each_entry_rcu(node, node_db, mac_list) { |
| 88 | if (ether_addr_equal(node->MacAddressA, ethhdr->h_source)) |
| 89 | return node; |
| 90 | if (ether_addr_equal(node->MacAddressB, ethhdr->h_source)) |
| 91 | return node; |
| 92 | } |
| 93 | |
| 94 | return NULL; |
| 95 | } |
| 96 | |
| 97 | |
| 98 | /* Helper for device init; the self_node_db is used in hsr_rcv() to recognize |
| 99 | * frames from self that's been looped over the HSR ring. |
| 100 | */ |
| 101 | int hsr_create_self_node(struct list_head *self_node_db, |
| 102 | unsigned char addr_a[ETH_ALEN], |
| 103 | unsigned char addr_b[ETH_ALEN]) |
| 104 | { |
| 105 | struct node_entry *node, *oldnode; |
| 106 | |
| 107 | node = kmalloc(sizeof(*node), GFP_KERNEL); |
| 108 | if (!node) |
| 109 | return -ENOMEM; |
| 110 | |
| 111 | memcpy(node->MacAddressA, addr_a, ETH_ALEN); |
| 112 | memcpy(node->MacAddressB, addr_b, ETH_ALEN); |
| 113 | |
| 114 | rcu_read_lock(); |
| 115 | oldnode = list_first_or_null_rcu(self_node_db, |
| 116 | struct node_entry, mac_list); |
| 117 | if (oldnode) { |
| 118 | list_replace_rcu(&oldnode->mac_list, &node->mac_list); |
| 119 | rcu_read_unlock(); |
| 120 | synchronize_rcu(); |
| 121 | kfree(oldnode); |
| 122 | } else { |
| 123 | rcu_read_unlock(); |
| 124 | list_add_tail_rcu(&node->mac_list, self_node_db); |
| 125 | } |
| 126 | |
| 127 | return 0; |
| 128 | } |
| 129 | |
| 130 | static void node_entry_reclaim(struct rcu_head *rh) |
| 131 | { |
| 132 | kfree(container_of(rh, struct node_entry, rcu_head)); |
| 133 | } |
| 134 | |
| 135 | |
| 136 | /* Add/merge node to the database of nodes. 'skb' must contain an HSR |
| 137 | * supervision frame. |
| 138 | * - If the supervision header's MacAddressA field is not yet in the database, |
| 139 | * this frame is from an hitherto unknown node - add it to the database. |
| 140 | * - If the sender's MAC address is not the same as its MacAddressA address, |
| 141 | * the node is using PICS_SUBS (address substitution). Record the sender's |
| 142 | * address as the node's MacAddressB. |
| 143 | * |
| 144 | * This function needs to work even if the sender node has changed one of its |
| 145 | * slaves' MAC addresses. In this case, there are four different cases described |
| 146 | * by (Addr-changed, received-from) pairs as follows. Note that changing the |
| 147 | * SlaveA address is equal to changing the node's own address: |
| 148 | * |
| 149 | * - (AddrB, SlaveB): The new AddrB will be recorded by PICS_SUBS code since |
| 150 | * node == NULL. |
| 151 | * - (AddrB, SlaveA): Will work as usual (the AddrB change won't be detected |
| 152 | * from this frame). |
| 153 | * |
| 154 | * - (AddrA, SlaveB): The old node will be found. We need to detect this and |
| 155 | * remove the node. |
| 156 | * - (AddrA, SlaveA): A new node will be registered (non-PICS_SUBS at first). |
| 157 | * The old one will be pruned after HSR_NODE_FORGET_TIME. |
| 158 | * |
| 159 | * We also need to detect if the sender's SlaveA and SlaveB cables have been |
| 160 | * swapped. |
| 161 | */ |
| 162 | struct node_entry *hsr_merge_node(struct hsr_priv *hsr_priv, |
| 163 | struct node_entry *node, |
| 164 | struct sk_buff *skb, |
| 165 | enum hsr_dev_idx dev_idx) |
| 166 | { |
| 167 | struct hsr_sup_payload *hsr_sp; |
| 168 | struct hsr_ethhdr_sp *hsr_ethsup; |
| 169 | int i; |
| 170 | unsigned long now; |
| 171 | |
| 172 | hsr_ethsup = (struct hsr_ethhdr_sp *) skb_mac_header(skb); |
| 173 | hsr_sp = (struct hsr_sup_payload *) skb->data; |
| 174 | |
| 175 | if (node && !ether_addr_equal(node->MacAddressA, hsr_sp->MacAddressA)) { |
| 176 | /* Node has changed its AddrA, frame was received from SlaveB */ |
| 177 | list_del_rcu(&node->mac_list); |
| 178 | call_rcu(&node->rcu_head, node_entry_reclaim); |
| 179 | node = NULL; |
| 180 | } |
| 181 | |
| 182 | if (node && (dev_idx == node->AddrB_if) && |
| 183 | !ether_addr_equal(node->MacAddressB, hsr_ethsup->ethhdr.h_source)) { |
| 184 | /* Cables have been swapped */ |
| 185 | list_del_rcu(&node->mac_list); |
| 186 | call_rcu(&node->rcu_head, node_entry_reclaim); |
| 187 | node = NULL; |
| 188 | } |
| 189 | |
| 190 | if (node && (dev_idx != node->AddrB_if) && |
| 191 | (node->AddrB_if != HSR_DEV_NONE) && |
| 192 | !ether_addr_equal(node->MacAddressA, hsr_ethsup->ethhdr.h_source)) { |
| 193 | /* Cables have been swapped */ |
| 194 | list_del_rcu(&node->mac_list); |
| 195 | call_rcu(&node->rcu_head, node_entry_reclaim); |
| 196 | node = NULL; |
| 197 | } |
| 198 | |
| 199 | if (node) |
| 200 | return node; |
| 201 | |
| 202 | node = find_node_by_AddrA(&hsr_priv->node_db, hsr_sp->MacAddressA); |
| 203 | if (node) { |
| 204 | /* Node is known, but frame was received from an unknown |
| 205 | * address. Node is PICS_SUBS capable; merge its AddrB. |
| 206 | */ |
| 207 | memcpy(node->MacAddressB, hsr_ethsup->ethhdr.h_source, ETH_ALEN); |
| 208 | node->AddrB_if = dev_idx; |
| 209 | return node; |
| 210 | } |
| 211 | |
| 212 | node = kzalloc(sizeof(*node), GFP_ATOMIC); |
| 213 | if (!node) |
| 214 | return NULL; |
| 215 | |
| 216 | memcpy(node->MacAddressA, hsr_sp->MacAddressA, ETH_ALEN); |
| 217 | memcpy(node->MacAddressB, hsr_ethsup->ethhdr.h_source, ETH_ALEN); |
| 218 | if (!ether_addr_equal(hsr_sp->MacAddressA, hsr_ethsup->ethhdr.h_source)) |
| 219 | node->AddrB_if = dev_idx; |
| 220 | else |
| 221 | node->AddrB_if = HSR_DEV_NONE; |
| 222 | |
| 223 | /* We are only interested in time diffs here, so use current jiffies |
| 224 | * as initialization. (0 could trigger an spurious ring error warning). |
| 225 | */ |
| 226 | now = jiffies; |
| 227 | for (i = 0; i < HSR_MAX_SLAVE; i++) |
| 228 | node->time_in[i] = now; |
| 229 | for (i = 0; i < HSR_MAX_DEV; i++) |
| 230 | node->seq_out[i] = ntohs(hsr_ethsup->hsr_sup.sequence_nr) - 1; |
| 231 | |
| 232 | list_add_tail_rcu(&node->mac_list, &hsr_priv->node_db); |
| 233 | |
| 234 | return node; |
| 235 | } |
| 236 | |
| 237 | |
| 238 | /* 'skb' is a frame meant for this host, that is to be passed to upper layers. |
| 239 | * |
| 240 | * If the frame was sent by a node's B interface, replace the sender |
| 241 | * address with that node's "official" address (MacAddressA) so that upper |
| 242 | * layers recognize where it came from. |
| 243 | */ |
| 244 | void hsr_addr_subst_source(struct hsr_priv *hsr_priv, struct sk_buff *skb) |
| 245 | { |
| 246 | struct ethhdr *ethhdr; |
| 247 | struct node_entry *node; |
| 248 | |
| 249 | if (!skb_mac_header_was_set(skb)) { |
| 250 | WARN_ONCE(1, "%s: Mac header not set\n", __func__); |
| 251 | return; |
| 252 | } |
| 253 | ethhdr = (struct ethhdr *) skb_mac_header(skb); |
| 254 | |
| 255 | rcu_read_lock(); |
| 256 | node = find_node_by_AddrB(&hsr_priv->node_db, ethhdr->h_source); |
| 257 | if (node) |
| 258 | memcpy(ethhdr->h_source, node->MacAddressA, ETH_ALEN); |
| 259 | rcu_read_unlock(); |
| 260 | } |
| 261 | |
| 262 | |
| 263 | /* 'skb' is a frame meant for another host. |
| 264 | * 'hsr_dev_idx' is the HSR index of the outgoing device |
| 265 | * |
| 266 | * Substitute the target (dest) MAC address if necessary, so the it matches the |
| 267 | * recipient interface MAC address, regardless of whether that is the |
| 268 | * recipient's A or B interface. |
| 269 | * This is needed to keep the packets flowing through switches that learn on |
| 270 | * which "side" the different interfaces are. |
| 271 | */ |
| 272 | void hsr_addr_subst_dest(struct hsr_priv *hsr_priv, struct ethhdr *ethhdr, |
| 273 | enum hsr_dev_idx dev_idx) |
| 274 | { |
| 275 | struct node_entry *node; |
| 276 | |
| 277 | rcu_read_lock(); |
| 278 | node = find_node_by_AddrA(&hsr_priv->node_db, ethhdr->h_dest); |
| 279 | if (node && (node->AddrB_if == dev_idx)) |
| 280 | memcpy(ethhdr->h_dest, node->MacAddressB, ETH_ALEN); |
| 281 | rcu_read_unlock(); |
| 282 | } |
| 283 | |
| 284 | |
| 285 | /* seq_nr_after(a, b) - return true if a is after (higher in sequence than) b, |
| 286 | * false otherwise. |
| 287 | */ |
| 288 | static bool seq_nr_after(u16 a, u16 b) |
| 289 | { |
| 290 | /* Remove inconsistency where |
| 291 | * seq_nr_after(a, b) == seq_nr_before(a, b) */ |
| 292 | if ((int) b - a == 32768) |
| 293 | return false; |
| 294 | |
| 295 | return (((s16) (b - a)) < 0); |
| 296 | } |
| 297 | #define seq_nr_before(a, b) seq_nr_after((b), (a)) |
| 298 | #define seq_nr_after_or_eq(a, b) (!seq_nr_before((a), (b))) |
| 299 | #define seq_nr_before_or_eq(a, b) (!seq_nr_after((a), (b))) |
| 300 | |
| 301 | |
| 302 | void hsr_register_frame_in(struct node_entry *node, enum hsr_dev_idx dev_idx) |
| 303 | { |
| 304 | if ((dev_idx < 0) || (dev_idx >= HSR_MAX_DEV)) { |
| 305 | WARN_ONCE(1, "%s: Invalid dev_idx (%d)\n", __func__, dev_idx); |
| 306 | return; |
| 307 | } |
| 308 | node->time_in[dev_idx] = jiffies; |
| 309 | node->time_in_stale[dev_idx] = false; |
| 310 | } |
| 311 | |
| 312 | |
| 313 | /* 'skb' is a HSR Ethernet frame (with a HSR tag inserted), with a valid |
| 314 | * ethhdr->h_source address and skb->mac_header set. |
| 315 | * |
| 316 | * Return: |
| 317 | * 1 if frame can be shown to have been sent recently on this interface, |
| 318 | * 0 otherwise, or |
| 319 | * negative error code on error |
| 320 | */ |
| 321 | int hsr_register_frame_out(struct node_entry *node, enum hsr_dev_idx dev_idx, |
| 322 | struct sk_buff *skb) |
| 323 | { |
| 324 | struct hsr_ethhdr *hsr_ethhdr; |
| 325 | u16 sequence_nr; |
| 326 | |
| 327 | if ((dev_idx < 0) || (dev_idx >= HSR_MAX_DEV)) { |
| 328 | WARN_ONCE(1, "%s: Invalid dev_idx (%d)\n", __func__, dev_idx); |
| 329 | return -EINVAL; |
| 330 | } |
| 331 | if (!skb_mac_header_was_set(skb)) { |
| 332 | WARN_ONCE(1, "%s: Mac header not set\n", __func__); |
| 333 | return -EINVAL; |
| 334 | } |
| 335 | hsr_ethhdr = (struct hsr_ethhdr *) skb_mac_header(skb); |
| 336 | |
| 337 | sequence_nr = ntohs(hsr_ethhdr->hsr_tag.sequence_nr); |
| 338 | if (seq_nr_before_or_eq(sequence_nr, node->seq_out[dev_idx])) |
| 339 | return 1; |
| 340 | |
| 341 | node->seq_out[dev_idx] = sequence_nr; |
| 342 | return 0; |
| 343 | } |
| 344 | |
| 345 | |
| 346 | |
| 347 | static bool is_late(struct node_entry *node, enum hsr_dev_idx dev_idx) |
| 348 | { |
| 349 | enum hsr_dev_idx other; |
| 350 | |
| 351 | if (node->time_in_stale[dev_idx]) |
| 352 | return true; |
| 353 | |
| 354 | if (dev_idx == HSR_DEV_SLAVE_A) |
| 355 | other = HSR_DEV_SLAVE_B; |
| 356 | else |
| 357 | other = HSR_DEV_SLAVE_A; |
| 358 | |
| 359 | if (node->time_in_stale[other]) |
| 360 | return false; |
| 361 | |
| 362 | if (time_after(node->time_in[other], node->time_in[dev_idx] + |
| 363 | msecs_to_jiffies(MAX_SLAVE_DIFF))) |
| 364 | return true; |
| 365 | |
| 366 | return false; |
| 367 | } |
| 368 | |
| 369 | |
| 370 | /* Remove stale sequence_nr records. Called by timer every |
| 371 | * HSR_LIFE_CHECK_INTERVAL (two seconds or so). |
| 372 | */ |
| 373 | void hsr_prune_nodes(struct hsr_priv *hsr_priv) |
| 374 | { |
| 375 | struct node_entry *node; |
| 376 | unsigned long timestamp; |
| 377 | unsigned long time_a, time_b; |
| 378 | |
| 379 | rcu_read_lock(); |
| 380 | list_for_each_entry_rcu(node, &hsr_priv->node_db, mac_list) { |
| 381 | /* Shorthand */ |
| 382 | time_a = node->time_in[HSR_DEV_SLAVE_A]; |
| 383 | time_b = node->time_in[HSR_DEV_SLAVE_B]; |
| 384 | |
| 385 | /* Check for timestamps old enough to risk wrap-around */ |
| 386 | if (time_after(jiffies, time_a + MAX_JIFFY_OFFSET/2)) |
| 387 | node->time_in_stale[HSR_DEV_SLAVE_A] = true; |
| 388 | if (time_after(jiffies, time_b + MAX_JIFFY_OFFSET/2)) |
| 389 | node->time_in_stale[HSR_DEV_SLAVE_B] = true; |
| 390 | |
| 391 | /* Get age of newest frame from node. |
| 392 | * At least one time_in is OK here; nodes get pruned long |
| 393 | * before both time_ins can get stale |
| 394 | */ |
| 395 | timestamp = time_a; |
| 396 | if (node->time_in_stale[HSR_DEV_SLAVE_A] || |
| 397 | (!node->time_in_stale[HSR_DEV_SLAVE_B] && |
| 398 | time_after(time_b, time_a))) |
| 399 | timestamp = time_b; |
| 400 | |
| 401 | /* Warn of ring error only as long as we get frames at all */ |
| 402 | if (time_is_after_jiffies(timestamp + |
| 403 | msecs_to_jiffies(1.5*MAX_SLAVE_DIFF))) { |
| 404 | |
| 405 | if (is_late(node, HSR_DEV_SLAVE_A)) |
| 406 | hsr_nl_ringerror(hsr_priv, node->MacAddressA, |
| 407 | HSR_DEV_SLAVE_A); |
| 408 | else if (is_late(node, HSR_DEV_SLAVE_B)) |
| 409 | hsr_nl_ringerror(hsr_priv, node->MacAddressA, |
| 410 | HSR_DEV_SLAVE_B); |
| 411 | } |
| 412 | |
| 413 | /* Prune old entries */ |
| 414 | if (time_is_before_jiffies(timestamp + |
| 415 | msecs_to_jiffies(HSR_NODE_FORGET_TIME))) { |
| 416 | hsr_nl_nodedown(hsr_priv, node->MacAddressA); |
| 417 | list_del_rcu(&node->mac_list); |
| 418 | /* Note that we need to free this entry later: */ |
| 419 | call_rcu(&node->rcu_head, node_entry_reclaim); |
| 420 | } |
| 421 | } |
| 422 | rcu_read_unlock(); |
| 423 | } |
| 424 | |
| 425 | |
| 426 | void *hsr_get_next_node(struct hsr_priv *hsr_priv, void *_pos, |
| 427 | unsigned char addr[ETH_ALEN]) |
| 428 | { |
| 429 | struct node_entry *node; |
| 430 | |
| 431 | if (!_pos) { |
| 432 | node = list_first_or_null_rcu(&hsr_priv->node_db, |
| 433 | struct node_entry, mac_list); |
| 434 | if (node) |
| 435 | memcpy(addr, node->MacAddressA, ETH_ALEN); |
| 436 | return node; |
| 437 | } |
| 438 | |
| 439 | node = _pos; |
| 440 | list_for_each_entry_continue_rcu(node, &hsr_priv->node_db, mac_list) { |
| 441 | memcpy(addr, node->MacAddressA, ETH_ALEN); |
| 442 | return node; |
| 443 | } |
| 444 | |
| 445 | return NULL; |
| 446 | } |
| 447 | |
| 448 | |
| 449 | int hsr_get_node_data(struct hsr_priv *hsr_priv, |
| 450 | const unsigned char *addr, |
| 451 | unsigned char addr_b[ETH_ALEN], |
| 452 | unsigned int *addr_b_ifindex, |
| 453 | int *if1_age, |
| 454 | u16 *if1_seq, |
| 455 | int *if2_age, |
| 456 | u16 *if2_seq) |
| 457 | { |
| 458 | struct node_entry *node; |
| 459 | unsigned long tdiff; |
| 460 | |
| 461 | |
| 462 | rcu_read_lock(); |
| 463 | node = find_node_by_AddrA(&hsr_priv->node_db, addr); |
| 464 | if (!node) { |
| 465 | rcu_read_unlock(); |
| 466 | return -ENOENT; /* No such entry */ |
| 467 | } |
| 468 | |
| 469 | memcpy(addr_b, node->MacAddressB, ETH_ALEN); |
| 470 | |
| 471 | tdiff = jiffies - node->time_in[HSR_DEV_SLAVE_A]; |
| 472 | if (node->time_in_stale[HSR_DEV_SLAVE_A]) |
| 473 | *if1_age = INT_MAX; |
| 474 | #if HZ <= MSEC_PER_SEC |
| 475 | else if (tdiff > msecs_to_jiffies(INT_MAX)) |
| 476 | *if1_age = INT_MAX; |
| 477 | #endif |
| 478 | else |
| 479 | *if1_age = jiffies_to_msecs(tdiff); |
| 480 | |
| 481 | tdiff = jiffies - node->time_in[HSR_DEV_SLAVE_B]; |
| 482 | if (node->time_in_stale[HSR_DEV_SLAVE_B]) |
| 483 | *if2_age = INT_MAX; |
| 484 | #if HZ <= MSEC_PER_SEC |
| 485 | else if (tdiff > msecs_to_jiffies(INT_MAX)) |
| 486 | *if2_age = INT_MAX; |
| 487 | #endif |
| 488 | else |
| 489 | *if2_age = jiffies_to_msecs(tdiff); |
| 490 | |
| 491 | /* Present sequence numbers as if they were incoming on interface */ |
| 492 | *if1_seq = node->seq_out[HSR_DEV_SLAVE_B]; |
| 493 | *if2_seq = node->seq_out[HSR_DEV_SLAVE_A]; |
| 494 | |
| 495 | if ((node->AddrB_if != HSR_DEV_NONE) && hsr_priv->slave[node->AddrB_if]) |
| 496 | *addr_b_ifindex = hsr_priv->slave[node->AddrB_if]->ifindex; |
| 497 | else |
| 498 | *addr_b_ifindex = -1; |
| 499 | |
| 500 | rcu_read_unlock(); |
| 501 | |
| 502 | return 0; |
| 503 | } |