blob: f9fc07efd2da995d933fda955895175ec1e5012d [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
13#include <linux/config.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
24#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
Jens Axboeff856ba2006-01-09 16:02:34 +010029#include <linux/interrupt.h>
30#include <linux/cpu.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070031
32/*
33 * for max sense size
34 */
35#include <scsi/scsi_cmnd.h>
36
37static void blk_unplug_work(void *data);
38static void blk_unplug_timeout(unsigned long data);
Adrian Bunk93d17d32005-06-25 14:59:10 -070039static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
Tejun Heo52d9e672006-01-06 09:49:58 +010040static void init_request_from_bio(struct request *req, struct bio *bio);
41static int __make_request(request_queue_t *q, struct bio *bio);
Linus Torvalds1da177e2005-04-16 15:20:36 -070042
43/*
44 * For the allocated request tables
45 */
46static kmem_cache_t *request_cachep;
47
48/*
49 * For queue allocation
50 */
51static kmem_cache_t *requestq_cachep;
52
53/*
54 * For io context allocations
55 */
56static kmem_cache_t *iocontext_cachep;
57
58static wait_queue_head_t congestion_wqh[2] = {
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
60 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
61 };
62
63/*
64 * Controlling structure to kblockd
65 */
Jens Axboeff856ba2006-01-09 16:02:34 +010066static struct workqueue_struct *kblockd_workqueue;
Linus Torvalds1da177e2005-04-16 15:20:36 -070067
68unsigned long blk_max_low_pfn, blk_max_pfn;
69
70EXPORT_SYMBOL(blk_max_low_pfn);
71EXPORT_SYMBOL(blk_max_pfn);
72
Jens Axboeff856ba2006-01-09 16:02:34 +010073static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
74
Linus Torvalds1da177e2005-04-16 15:20:36 -070075/* Amount of time in which a process may batch requests */
76#define BLK_BATCH_TIME (HZ/50UL)
77
78/* Number of requests a "batching" process may submit */
79#define BLK_BATCH_REQ 32
80
81/*
82 * Return the threshold (number of used requests) at which the queue is
83 * considered to be congested. It include a little hysteresis to keep the
84 * context switch rate down.
85 */
86static inline int queue_congestion_on_threshold(struct request_queue *q)
87{
88 return q->nr_congestion_on;
89}
90
91/*
92 * The threshold at which a queue is considered to be uncongested
93 */
94static inline int queue_congestion_off_threshold(struct request_queue *q)
95{
96 return q->nr_congestion_off;
97}
98
99static void blk_queue_congestion_threshold(struct request_queue *q)
100{
101 int nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
107
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
112}
113
114/*
115 * A queue has just exitted congestion. Note this in the global counter of
116 * congested queues, and wake up anyone who was waiting for requests to be
117 * put back.
118 */
119static void clear_queue_congested(request_queue_t *q, int rw)
120{
121 enum bdi_state bit;
122 wait_queue_head_t *wqh = &congestion_wqh[rw];
123
124 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
125 clear_bit(bit, &q->backing_dev_info.state);
126 smp_mb__after_clear_bit();
127 if (waitqueue_active(wqh))
128 wake_up(wqh);
129}
130
131/*
132 * A queue has just entered congestion. Flag that in the queue's VM-visible
133 * state flags and increment the global gounter of congested queues.
134 */
135static void set_queue_congested(request_queue_t *q, int rw)
136{
137 enum bdi_state bit;
138
139 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
140 set_bit(bit, &q->backing_dev_info.state);
141}
142
143/**
144 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
145 * @bdev: device
146 *
147 * Locates the passed device's request queue and returns the address of its
148 * backing_dev_info
149 *
150 * Will return NULL if the request queue cannot be located.
151 */
152struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
153{
154 struct backing_dev_info *ret = NULL;
155 request_queue_t *q = bdev_get_queue(bdev);
156
157 if (q)
158 ret = &q->backing_dev_info;
159 return ret;
160}
161
162EXPORT_SYMBOL(blk_get_backing_dev_info);
163
164void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
165{
166 q->activity_fn = fn;
167 q->activity_data = data;
168}
169
170EXPORT_SYMBOL(blk_queue_activity_fn);
171
172/**
173 * blk_queue_prep_rq - set a prepare_request function for queue
174 * @q: queue
175 * @pfn: prepare_request function
176 *
177 * It's possible for a queue to register a prepare_request callback which
178 * is invoked before the request is handed to the request_fn. The goal of
179 * the function is to prepare a request for I/O, it can be used to build a
180 * cdb from the request data for instance.
181 *
182 */
183void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
184{
185 q->prep_rq_fn = pfn;
186}
187
188EXPORT_SYMBOL(blk_queue_prep_rq);
189
190/**
191 * blk_queue_merge_bvec - set a merge_bvec function for queue
192 * @q: queue
193 * @mbfn: merge_bvec_fn
194 *
195 * Usually queues have static limitations on the max sectors or segments that
196 * we can put in a request. Stacking drivers may have some settings that
197 * are dynamic, and thus we have to query the queue whether it is ok to
198 * add a new bio_vec to a bio at a given offset or not. If the block device
199 * has such limitations, it needs to register a merge_bvec_fn to control
200 * the size of bio's sent to it. Note that a block device *must* allow a
201 * single page to be added to an empty bio. The block device driver may want
202 * to use the bio_split() function to deal with these bio's. By default
203 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
204 * honored.
205 */
206void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
207{
208 q->merge_bvec_fn = mbfn;
209}
210
211EXPORT_SYMBOL(blk_queue_merge_bvec);
212
Jens Axboeff856ba2006-01-09 16:02:34 +0100213void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
214{
215 q->softirq_done_fn = fn;
216}
217
218EXPORT_SYMBOL(blk_queue_softirq_done);
219
Linus Torvalds1da177e2005-04-16 15:20:36 -0700220/**
221 * blk_queue_make_request - define an alternate make_request function for a device
222 * @q: the request queue for the device to be affected
223 * @mfn: the alternate make_request function
224 *
225 * Description:
226 * The normal way for &struct bios to be passed to a device
227 * driver is for them to be collected into requests on a request
228 * queue, and then to allow the device driver to select requests
229 * off that queue when it is ready. This works well for many block
230 * devices. However some block devices (typically virtual devices
231 * such as md or lvm) do not benefit from the processing on the
232 * request queue, and are served best by having the requests passed
233 * directly to them. This can be achieved by providing a function
234 * to blk_queue_make_request().
235 *
236 * Caveat:
237 * The driver that does this *must* be able to deal appropriately
238 * with buffers in "highmemory". This can be accomplished by either calling
239 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
240 * blk_queue_bounce() to create a buffer in normal memory.
241 **/
242void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
243{
244 /*
245 * set defaults
246 */
247 q->nr_requests = BLKDEV_MAX_RQ;
Stuart McLaren309c0a12005-09-06 15:17:47 -0700248 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
249 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700250 q->make_request_fn = mfn;
251 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
252 q->backing_dev_info.state = 0;
253 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
Mike Christiedefd94b2005-12-05 02:37:06 -0600254 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700255 blk_queue_hardsect_size(q, 512);
256 blk_queue_dma_alignment(q, 511);
257 blk_queue_congestion_threshold(q);
258 q->nr_batching = BLK_BATCH_REQ;
259
260 q->unplug_thresh = 4; /* hmm */
261 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
262 if (q->unplug_delay == 0)
263 q->unplug_delay = 1;
264
265 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
266
267 q->unplug_timer.function = blk_unplug_timeout;
268 q->unplug_timer.data = (unsigned long)q;
269
270 /*
271 * by default assume old behaviour and bounce for any highmem page
272 */
273 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
274
275 blk_queue_activity_fn(q, NULL, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700276}
277
278EXPORT_SYMBOL(blk_queue_make_request);
279
280static inline void rq_init(request_queue_t *q, struct request *rq)
281{
282 INIT_LIST_HEAD(&rq->queuelist);
Jens Axboeff856ba2006-01-09 16:02:34 +0100283 INIT_LIST_HEAD(&rq->donelist);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700284
285 rq->errors = 0;
286 rq->rq_status = RQ_ACTIVE;
287 rq->bio = rq->biotail = NULL;
Jens Axboe22e2c502005-06-27 10:55:12 +0200288 rq->ioprio = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289 rq->buffer = NULL;
290 rq->ref_count = 1;
291 rq->q = q;
292 rq->waiting = NULL;
293 rq->special = NULL;
294 rq->data_len = 0;
295 rq->data = NULL;
Mike Christie df46b9a2005-06-20 14:04:44 +0200296 rq->nr_phys_segments = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700297 rq->sense = NULL;
298 rq->end_io = NULL;
299 rq->end_io_data = NULL;
Jens Axboeff856ba2006-01-09 16:02:34 +0100300 rq->completion_data = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700301}
302
303/**
304 * blk_queue_ordered - does this queue support ordered writes
Tejun Heo797e7db2006-01-06 09:51:03 +0100305 * @q: the request queue
306 * @ordered: one of QUEUE_ORDERED_*
Jens Axboefddfdea2006-01-31 15:24:34 +0100307 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
Linus Torvalds1da177e2005-04-16 15:20:36 -0700308 *
309 * Description:
310 * For journalled file systems, doing ordered writes on a commit
311 * block instead of explicitly doing wait_on_buffer (which is bad
312 * for performance) can be a big win. Block drivers supporting this
313 * feature should call this function and indicate so.
314 *
315 **/
Tejun Heo797e7db2006-01-06 09:51:03 +0100316int blk_queue_ordered(request_queue_t *q, unsigned ordered,
317 prepare_flush_fn *prepare_flush_fn)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700318{
Tejun Heo797e7db2006-01-06 09:51:03 +0100319 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
320 prepare_flush_fn == NULL) {
321 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
322 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700323 }
Tejun Heo797e7db2006-01-06 09:51:03 +0100324
325 if (ordered != QUEUE_ORDERED_NONE &&
326 ordered != QUEUE_ORDERED_DRAIN &&
327 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
328 ordered != QUEUE_ORDERED_DRAIN_FUA &&
329 ordered != QUEUE_ORDERED_TAG &&
330 ordered != QUEUE_ORDERED_TAG_FLUSH &&
331 ordered != QUEUE_ORDERED_TAG_FUA) {
332 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
333 return -EINVAL;
334 }
335
Tetsuo Takata60481b12006-01-24 10:34:36 +0100336 q->ordered = ordered;
Tejun Heo797e7db2006-01-06 09:51:03 +0100337 q->next_ordered = ordered;
338 q->prepare_flush_fn = prepare_flush_fn;
339
340 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700341}
342
343EXPORT_SYMBOL(blk_queue_ordered);
344
345/**
346 * blk_queue_issue_flush_fn - set function for issuing a flush
347 * @q: the request queue
348 * @iff: the function to be called issuing the flush
349 *
350 * Description:
351 * If a driver supports issuing a flush command, the support is notified
352 * to the block layer by defining it through this call.
353 *
354 **/
355void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
356{
357 q->issue_flush_fn = iff;
358}
359
360EXPORT_SYMBOL(blk_queue_issue_flush_fn);
361
362/*
363 * Cache flushing for ordered writes handling
364 */
Tejun Heo797e7db2006-01-06 09:51:03 +0100365inline unsigned blk_ordered_cur_seq(request_queue_t *q)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700366{
Tejun Heo797e7db2006-01-06 09:51:03 +0100367 if (!q->ordseq)
368 return 0;
369 return 1 << ffz(q->ordseq);
370}
371
372unsigned blk_ordered_req_seq(struct request *rq)
373{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700374 request_queue_t *q = rq->q;
375
Tejun Heo797e7db2006-01-06 09:51:03 +0100376 BUG_ON(q->ordseq == 0);
Tejun Heo8922e162005-10-20 16:23:44 +0200377
Tejun Heo797e7db2006-01-06 09:51:03 +0100378 if (rq == &q->pre_flush_rq)
379 return QUEUE_ORDSEQ_PREFLUSH;
380 if (rq == &q->bar_rq)
381 return QUEUE_ORDSEQ_BAR;
382 if (rq == &q->post_flush_rq)
383 return QUEUE_ORDSEQ_POSTFLUSH;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700384
Tejun Heo797e7db2006-01-06 09:51:03 +0100385 if ((rq->flags & REQ_ORDERED_COLOR) ==
386 (q->orig_bar_rq->flags & REQ_ORDERED_COLOR))
387 return QUEUE_ORDSEQ_DRAIN;
388 else
389 return QUEUE_ORDSEQ_DONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700390}
391
Tejun Heo797e7db2006-01-06 09:51:03 +0100392void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700393{
Tejun Heo797e7db2006-01-06 09:51:03 +0100394 struct request *rq;
395 int uptodate;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700396
Tejun Heo797e7db2006-01-06 09:51:03 +0100397 if (error && !q->orderr)
398 q->orderr = error;
Tejun Heo8922e162005-10-20 16:23:44 +0200399
Tejun Heo797e7db2006-01-06 09:51:03 +0100400 BUG_ON(q->ordseq & seq);
401 q->ordseq |= seq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402
Tejun Heo797e7db2006-01-06 09:51:03 +0100403 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
404 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700405
406 /*
Tejun Heo797e7db2006-01-06 09:51:03 +0100407 * Okay, sequence complete.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700408 */
Tejun Heo797e7db2006-01-06 09:51:03 +0100409 rq = q->orig_bar_rq;
410 uptodate = q->orderr ? q->orderr : 1;
411
412 q->ordseq = 0;
413
414 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
415 end_that_request_last(rq, uptodate);
416}
417
418static void pre_flush_end_io(struct request *rq, int error)
419{
420 elv_completed_request(rq->q, rq);
421 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
422}
423
424static void bar_end_io(struct request *rq, int error)
425{
426 elv_completed_request(rq->q, rq);
427 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
428}
429
430static void post_flush_end_io(struct request *rq, int error)
431{
432 elv_completed_request(rq->q, rq);
433 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
434}
435
436static void queue_flush(request_queue_t *q, unsigned which)
437{
438 struct request *rq;
439 rq_end_io_fn *end_io;
440
441 if (which == QUEUE_ORDERED_PREFLUSH) {
442 rq = &q->pre_flush_rq;
443 end_io = pre_flush_end_io;
444 } else {
445 rq = &q->post_flush_rq;
446 end_io = post_flush_end_io;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700447 }
448
Tejun Heo797e7db2006-01-06 09:51:03 +0100449 rq_init(q, rq);
450 rq->flags = REQ_HARDBARRIER;
451 rq->elevator_private = NULL;
452 rq->rq_disk = q->bar_rq.rq_disk;
453 rq->rl = NULL;
454 rq->end_io = end_io;
455 q->prepare_flush_fn(q, rq);
456
457 __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
458}
459
460static inline struct request *start_ordered(request_queue_t *q,
461 struct request *rq)
462{
463 q->bi_size = 0;
464 q->orderr = 0;
465 q->ordered = q->next_ordered;
466 q->ordseq |= QUEUE_ORDSEQ_STARTED;
467
Linus Torvalds1da177e2005-04-16 15:20:36 -0700468 /*
Tejun Heo797e7db2006-01-06 09:51:03 +0100469 * Prep proxy barrier request.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700470 */
Tejun Heo797e7db2006-01-06 09:51:03 +0100471 blkdev_dequeue_request(rq);
472 q->orig_bar_rq = rq;
473 rq = &q->bar_rq;
474 rq_init(q, rq);
475 rq->flags = bio_data_dir(q->orig_bar_rq->bio);
476 rq->flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
477 rq->elevator_private = NULL;
478 rq->rl = NULL;
479 init_request_from_bio(rq, q->orig_bar_rq->bio);
480 rq->end_io = bar_end_io;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481
Tejun Heo797e7db2006-01-06 09:51:03 +0100482 /*
483 * Queue ordered sequence. As we stack them at the head, we
484 * need to queue in reverse order. Note that we rely on that
485 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
486 * request gets inbetween ordered sequence.
487 */
488 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
489 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
490 else
491 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700492
Tejun Heo797e7db2006-01-06 09:51:03 +0100493 __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
494
495 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
496 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
497 rq = &q->pre_flush_rq;
498 } else
499 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
500
501 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
502 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
503 else
504 rq = NULL;
505
506 return rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700507}
508
Tejun Heo797e7db2006-01-06 09:51:03 +0100509int blk_do_ordered(request_queue_t *q, struct request **rqp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700510{
Tejun Heo797e7db2006-01-06 09:51:03 +0100511 struct request *rq = *rqp, *allowed_rq;
512 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700513
Tejun Heo797e7db2006-01-06 09:51:03 +0100514 if (!q->ordseq) {
515 if (!is_barrier)
516 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700517
Tejun Heo797e7db2006-01-06 09:51:03 +0100518 if (q->next_ordered != QUEUE_ORDERED_NONE) {
519 *rqp = start_ordered(q, rq);
520 return 1;
521 } else {
522 /*
523 * This can happen when the queue switches to
524 * ORDERED_NONE while this request is on it.
525 */
526 blkdev_dequeue_request(rq);
527 end_that_request_first(rq, -EOPNOTSUPP,
528 rq->hard_nr_sectors);
529 end_that_request_last(rq, -EOPNOTSUPP);
530 *rqp = NULL;
531 return 0;
532 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700533 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700534
Tejun Heo797e7db2006-01-06 09:51:03 +0100535 if (q->ordered & QUEUE_ORDERED_TAG) {
536 if (is_barrier && rq != &q->bar_rq)
537 *rqp = NULL;
538 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700539 }
540
Tejun Heo797e7db2006-01-06 09:51:03 +0100541 switch (blk_ordered_cur_seq(q)) {
542 case QUEUE_ORDSEQ_PREFLUSH:
543 allowed_rq = &q->pre_flush_rq;
544 break;
545 case QUEUE_ORDSEQ_BAR:
546 allowed_rq = &q->bar_rq;
547 break;
548 case QUEUE_ORDSEQ_POSTFLUSH:
549 allowed_rq = &q->post_flush_rq;
550 break;
551 default:
552 allowed_rq = NULL;
553 break;
554 }
555
556 if (rq != allowed_rq &&
557 (blk_fs_request(rq) || rq == &q->pre_flush_rq ||
558 rq == &q->post_flush_rq))
559 *rqp = NULL;
560
Linus Torvalds1da177e2005-04-16 15:20:36 -0700561 return 1;
562}
563
Tejun Heo797e7db2006-01-06 09:51:03 +0100564static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700565{
Tejun Heo797e7db2006-01-06 09:51:03 +0100566 request_queue_t *q = bio->bi_private;
567 struct bio_vec *bvec;
568 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700569
Tejun Heo797e7db2006-01-06 09:51:03 +0100570 /*
571 * This is dry run, restore bio_sector and size. We'll finish
572 * this request again with the original bi_end_io after an
573 * error occurs or post flush is complete.
574 */
575 q->bi_size += bytes;
576
577 if (bio->bi_size)
578 return 1;
579
580 /* Rewind bvec's */
581 bio->bi_idx = 0;
582 bio_for_each_segment(bvec, bio, i) {
583 bvec->bv_len += bvec->bv_offset;
584 bvec->bv_offset = 0;
585 }
586
587 /* Reset bio */
588 set_bit(BIO_UPTODATE, &bio->bi_flags);
589 bio->bi_size = q->bi_size;
590 bio->bi_sector -= (q->bi_size >> 9);
591 q->bi_size = 0;
592
593 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700594}
Tejun Heo797e7db2006-01-06 09:51:03 +0100595
596static inline int ordered_bio_endio(struct request *rq, struct bio *bio,
597 unsigned int nbytes, int error)
598{
599 request_queue_t *q = rq->q;
600 bio_end_io_t *endio;
601 void *private;
602
603 if (&q->bar_rq != rq)
604 return 0;
605
606 /*
607 * Okay, this is the barrier request in progress, dry finish it.
608 */
609 if (error && !q->orderr)
610 q->orderr = error;
611
612 endio = bio->bi_end_io;
613 private = bio->bi_private;
614 bio->bi_end_io = flush_dry_bio_endio;
615 bio->bi_private = q;
616
617 bio_endio(bio, nbytes, error);
618
619 bio->bi_end_io = endio;
620 bio->bi_private = private;
621
622 return 1;
623}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700624
625/**
626 * blk_queue_bounce_limit - set bounce buffer limit for queue
627 * @q: the request queue for the device
628 * @dma_addr: bus address limit
629 *
630 * Description:
631 * Different hardware can have different requirements as to what pages
632 * it can do I/O directly to. A low level driver can call
633 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
634 * buffers for doing I/O to pages residing above @page. By default
635 * the block layer sets this to the highest numbered "low" memory page.
636 **/
637void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
638{
639 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
640
641 /*
642 * set appropriate bounce gfp mask -- unfortunately we don't have a
643 * full 4GB zone, so we have to resort to low memory for any bounces.
644 * ISA has its own < 16MB zone.
645 */
646 if (bounce_pfn < blk_max_low_pfn) {
647 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
648 init_emergency_isa_pool();
649 q->bounce_gfp = GFP_NOIO | GFP_DMA;
650 } else
651 q->bounce_gfp = GFP_NOIO;
652
653 q->bounce_pfn = bounce_pfn;
654}
655
656EXPORT_SYMBOL(blk_queue_bounce_limit);
657
658/**
659 * blk_queue_max_sectors - set max sectors for a request for this queue
660 * @q: the request queue for the device
661 * @max_sectors: max sectors in the usual 512b unit
662 *
663 * Description:
664 * Enables a low level driver to set an upper limit on the size of
665 * received requests.
666 **/
Jens Axboe2cb2e142006-01-17 09:04:32 +0100667void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700668{
669 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
670 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
671 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
672 }
673
Mike Christiedefd94b2005-12-05 02:37:06 -0600674 if (BLK_DEF_MAX_SECTORS > max_sectors)
675 q->max_hw_sectors = q->max_sectors = max_sectors;
676 else {
677 q->max_sectors = BLK_DEF_MAX_SECTORS;
678 q->max_hw_sectors = max_sectors;
679 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700680}
681
682EXPORT_SYMBOL(blk_queue_max_sectors);
683
684/**
685 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
686 * @q: the request queue for the device
687 * @max_segments: max number of segments
688 *
689 * Description:
690 * Enables a low level driver to set an upper limit on the number of
691 * physical data segments in a request. This would be the largest sized
692 * scatter list the driver could handle.
693 **/
694void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
695{
696 if (!max_segments) {
697 max_segments = 1;
698 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
699 }
700
701 q->max_phys_segments = max_segments;
702}
703
704EXPORT_SYMBOL(blk_queue_max_phys_segments);
705
706/**
707 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
708 * @q: the request queue for the device
709 * @max_segments: max number of segments
710 *
711 * Description:
712 * Enables a low level driver to set an upper limit on the number of
713 * hw data segments in a request. This would be the largest number of
714 * address/length pairs the host adapter can actually give as once
715 * to the device.
716 **/
717void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
718{
719 if (!max_segments) {
720 max_segments = 1;
721 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
722 }
723
724 q->max_hw_segments = max_segments;
725}
726
727EXPORT_SYMBOL(blk_queue_max_hw_segments);
728
729/**
730 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
731 * @q: the request queue for the device
732 * @max_size: max size of segment in bytes
733 *
734 * Description:
735 * Enables a low level driver to set an upper limit on the size of a
736 * coalesced segment
737 **/
738void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
739{
740 if (max_size < PAGE_CACHE_SIZE) {
741 max_size = PAGE_CACHE_SIZE;
742 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
743 }
744
745 q->max_segment_size = max_size;
746}
747
748EXPORT_SYMBOL(blk_queue_max_segment_size);
749
750/**
751 * blk_queue_hardsect_size - set hardware sector size for the queue
752 * @q: the request queue for the device
753 * @size: the hardware sector size, in bytes
754 *
755 * Description:
756 * This should typically be set to the lowest possible sector size
757 * that the hardware can operate on (possible without reverting to
758 * even internal read-modify-write operations). Usually the default
759 * of 512 covers most hardware.
760 **/
761void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
762{
763 q->hardsect_size = size;
764}
765
766EXPORT_SYMBOL(blk_queue_hardsect_size);
767
768/*
769 * Returns the minimum that is _not_ zero, unless both are zero.
770 */
771#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
772
773/**
774 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
775 * @t: the stacking driver (top)
776 * @b: the underlying device (bottom)
777 **/
778void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
779{
780 /* zero is "infinity" */
Mike Christiedefd94b2005-12-05 02:37:06 -0600781 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
782 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700783
784 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
785 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
786 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
787 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
788}
789
790EXPORT_SYMBOL(blk_queue_stack_limits);
791
792/**
793 * blk_queue_segment_boundary - set boundary rules for segment merging
794 * @q: the request queue for the device
795 * @mask: the memory boundary mask
796 **/
797void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
798{
799 if (mask < PAGE_CACHE_SIZE - 1) {
800 mask = PAGE_CACHE_SIZE - 1;
801 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
802 }
803
804 q->seg_boundary_mask = mask;
805}
806
807EXPORT_SYMBOL(blk_queue_segment_boundary);
808
809/**
810 * blk_queue_dma_alignment - set dma length and memory alignment
811 * @q: the request queue for the device
812 * @mask: alignment mask
813 *
814 * description:
815 * set required memory and length aligment for direct dma transactions.
816 * this is used when buiding direct io requests for the queue.
817 *
818 **/
819void blk_queue_dma_alignment(request_queue_t *q, int mask)
820{
821 q->dma_alignment = mask;
822}
823
824EXPORT_SYMBOL(blk_queue_dma_alignment);
825
826/**
827 * blk_queue_find_tag - find a request by its tag and queue
Linus Torvalds1da177e2005-04-16 15:20:36 -0700828 * @q: The request queue for the device
829 * @tag: The tag of the request
830 *
831 * Notes:
832 * Should be used when a device returns a tag and you want to match
833 * it with a request.
834 *
835 * no locks need be held.
836 **/
837struct request *blk_queue_find_tag(request_queue_t *q, int tag)
838{
839 struct blk_queue_tag *bqt = q->queue_tags;
840
Tejun Heoba025082005-08-05 13:28:11 -0700841 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700842 return NULL;
843
844 return bqt->tag_index[tag];
845}
846
847EXPORT_SYMBOL(blk_queue_find_tag);
848
849/**
850 * __blk_queue_free_tags - release tag maintenance info
851 * @q: the request queue for the device
852 *
853 * Notes:
854 * blk_cleanup_queue() will take care of calling this function, if tagging
855 * has been used. So there's no need to call this directly.
856 **/
857static void __blk_queue_free_tags(request_queue_t *q)
858{
859 struct blk_queue_tag *bqt = q->queue_tags;
860
861 if (!bqt)
862 return;
863
864 if (atomic_dec_and_test(&bqt->refcnt)) {
865 BUG_ON(bqt->busy);
866 BUG_ON(!list_empty(&bqt->busy_list));
867
868 kfree(bqt->tag_index);
869 bqt->tag_index = NULL;
870
871 kfree(bqt->tag_map);
872 bqt->tag_map = NULL;
873
874 kfree(bqt);
875 }
876
877 q->queue_tags = NULL;
878 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
879}
880
881/**
882 * blk_queue_free_tags - release tag maintenance info
883 * @q: the request queue for the device
884 *
885 * Notes:
886 * This is used to disabled tagged queuing to a device, yet leave
887 * queue in function.
888 **/
889void blk_queue_free_tags(request_queue_t *q)
890{
891 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
892}
893
894EXPORT_SYMBOL(blk_queue_free_tags);
895
896static int
897init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
898{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700899 struct request **tag_index;
900 unsigned long *tag_map;
Tejun Heofa72b902005-06-23 00:08:49 -0700901 int nr_ulongs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700902
903 if (depth > q->nr_requests * 2) {
904 depth = q->nr_requests * 2;
905 printk(KERN_ERR "%s: adjusted depth to %d\n",
906 __FUNCTION__, depth);
907 }
908
909 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
910 if (!tag_index)
911 goto fail;
912
Tejun Heof7d37d02005-06-23 00:08:50 -0700913 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
Tejun Heofa72b902005-06-23 00:08:49 -0700914 tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700915 if (!tag_map)
916 goto fail;
917
918 memset(tag_index, 0, depth * sizeof(struct request *));
Tejun Heofa72b902005-06-23 00:08:49 -0700919 memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
Tejun Heoba025082005-08-05 13:28:11 -0700920 tags->real_max_depth = depth;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700921 tags->max_depth = depth;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700922 tags->tag_index = tag_index;
923 tags->tag_map = tag_map;
924
Linus Torvalds1da177e2005-04-16 15:20:36 -0700925 return 0;
926fail:
927 kfree(tag_index);
928 return -ENOMEM;
929}
930
931/**
932 * blk_queue_init_tags - initialize the queue tag info
933 * @q: the request queue for the device
934 * @depth: the maximum queue depth supported
935 * @tags: the tag to use
936 **/
937int blk_queue_init_tags(request_queue_t *q, int depth,
938 struct blk_queue_tag *tags)
939{
940 int rc;
941
942 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
943
944 if (!tags && !q->queue_tags) {
945 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
946 if (!tags)
947 goto fail;
948
949 if (init_tag_map(q, tags, depth))
950 goto fail;
951
952 INIT_LIST_HEAD(&tags->busy_list);
953 tags->busy = 0;
954 atomic_set(&tags->refcnt, 1);
955 } else if (q->queue_tags) {
956 if ((rc = blk_queue_resize_tags(q, depth)))
957 return rc;
958 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
959 return 0;
960 } else
961 atomic_inc(&tags->refcnt);
962
963 /*
964 * assign it, all done
965 */
966 q->queue_tags = tags;
967 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
968 return 0;
969fail:
970 kfree(tags);
971 return -ENOMEM;
972}
973
974EXPORT_SYMBOL(blk_queue_init_tags);
975
976/**
977 * blk_queue_resize_tags - change the queueing depth
978 * @q: the request queue for the device
979 * @new_depth: the new max command queueing depth
980 *
981 * Notes:
982 * Must be called with the queue lock held.
983 **/
984int blk_queue_resize_tags(request_queue_t *q, int new_depth)
985{
986 struct blk_queue_tag *bqt = q->queue_tags;
987 struct request **tag_index;
988 unsigned long *tag_map;
Tejun Heofa72b902005-06-23 00:08:49 -0700989 int max_depth, nr_ulongs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700990
991 if (!bqt)
992 return -ENXIO;
993
994 /*
Tejun Heoba025082005-08-05 13:28:11 -0700995 * if we already have large enough real_max_depth. just
996 * adjust max_depth. *NOTE* as requests with tag value
997 * between new_depth and real_max_depth can be in-flight, tag
998 * map can not be shrunk blindly here.
999 */
1000 if (new_depth <= bqt->real_max_depth) {
1001 bqt->max_depth = new_depth;
1002 return 0;
1003 }
1004
1005 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001006 * save the old state info, so we can copy it back
1007 */
1008 tag_index = bqt->tag_index;
1009 tag_map = bqt->tag_map;
Tejun Heoba025082005-08-05 13:28:11 -07001010 max_depth = bqt->real_max_depth;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001011
1012 if (init_tag_map(q, bqt, new_depth))
1013 return -ENOMEM;
1014
1015 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
Tejun Heof7d37d02005-06-23 00:08:50 -07001016 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
Tejun Heofa72b902005-06-23 00:08:49 -07001017 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001018
1019 kfree(tag_index);
1020 kfree(tag_map);
1021 return 0;
1022}
1023
1024EXPORT_SYMBOL(blk_queue_resize_tags);
1025
1026/**
1027 * blk_queue_end_tag - end tag operations for a request
1028 * @q: the request queue for the device
1029 * @rq: the request that has completed
1030 *
1031 * Description:
1032 * Typically called when end_that_request_first() returns 0, meaning
1033 * all transfers have been done for a request. It's important to call
1034 * this function before end_that_request_last(), as that will put the
1035 * request back on the free list thus corrupting the internal tag list.
1036 *
1037 * Notes:
1038 * queue lock must be held.
1039 **/
1040void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1041{
1042 struct blk_queue_tag *bqt = q->queue_tags;
1043 int tag = rq->tag;
1044
1045 BUG_ON(tag == -1);
1046
Tejun Heoba025082005-08-05 13:28:11 -07001047 if (unlikely(tag >= bqt->real_max_depth))
Tejun Heo040c9282005-06-23 00:08:51 -07001048 /*
1049 * This can happen after tag depth has been reduced.
1050 * FIXME: how about a warning or info message here?
1051 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001052 return;
1053
1054 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
Tejun Heo040c9282005-06-23 00:08:51 -07001055 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1056 __FUNCTION__, tag);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001057 return;
1058 }
1059
1060 list_del_init(&rq->queuelist);
1061 rq->flags &= ~REQ_QUEUED;
1062 rq->tag = -1;
1063
1064 if (unlikely(bqt->tag_index[tag] == NULL))
Tejun Heo040c9282005-06-23 00:08:51 -07001065 printk(KERN_ERR "%s: tag %d is missing\n",
1066 __FUNCTION__, tag);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001067
1068 bqt->tag_index[tag] = NULL;
1069 bqt->busy--;
1070}
1071
1072EXPORT_SYMBOL(blk_queue_end_tag);
1073
1074/**
1075 * blk_queue_start_tag - find a free tag and assign it
1076 * @q: the request queue for the device
1077 * @rq: the block request that needs tagging
1078 *
1079 * Description:
1080 * This can either be used as a stand-alone helper, or possibly be
1081 * assigned as the queue &prep_rq_fn (in which case &struct request
1082 * automagically gets a tag assigned). Note that this function
1083 * assumes that any type of request can be queued! if this is not
1084 * true for your device, you must check the request type before
1085 * calling this function. The request will also be removed from
1086 * the request queue, so it's the drivers responsibility to readd
1087 * it if it should need to be restarted for some reason.
1088 *
1089 * Notes:
1090 * queue lock must be held.
1091 **/
1092int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1093{
1094 struct blk_queue_tag *bqt = q->queue_tags;
Tejun Heo2bf0fda2005-06-23 00:08:48 -07001095 int tag;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001096
1097 if (unlikely((rq->flags & REQ_QUEUED))) {
1098 printk(KERN_ERR
Tejun Heo040c9282005-06-23 00:08:51 -07001099 "%s: request %p for device [%s] already tagged %d",
1100 __FUNCTION__, rq,
1101 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001102 BUG();
1103 }
1104
Tejun Heo2bf0fda2005-06-23 00:08:48 -07001105 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1106 if (tag >= bqt->max_depth)
1107 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001108
Linus Torvalds1da177e2005-04-16 15:20:36 -07001109 __set_bit(tag, bqt->tag_map);
1110
1111 rq->flags |= REQ_QUEUED;
1112 rq->tag = tag;
1113 bqt->tag_index[tag] = rq;
1114 blkdev_dequeue_request(rq);
1115 list_add(&rq->queuelist, &bqt->busy_list);
1116 bqt->busy++;
1117 return 0;
1118}
1119
1120EXPORT_SYMBOL(blk_queue_start_tag);
1121
1122/**
1123 * blk_queue_invalidate_tags - invalidate all pending tags
1124 * @q: the request queue for the device
1125 *
1126 * Description:
1127 * Hardware conditions may dictate a need to stop all pending requests.
1128 * In this case, we will safely clear the block side of the tag queue and
1129 * readd all requests to the request queue in the right order.
1130 *
1131 * Notes:
1132 * queue lock must be held.
1133 **/
1134void blk_queue_invalidate_tags(request_queue_t *q)
1135{
1136 struct blk_queue_tag *bqt = q->queue_tags;
1137 struct list_head *tmp, *n;
1138 struct request *rq;
1139
1140 list_for_each_safe(tmp, n, &bqt->busy_list) {
1141 rq = list_entry_rq(tmp);
1142
1143 if (rq->tag == -1) {
Tejun Heo040c9282005-06-23 00:08:51 -07001144 printk(KERN_ERR
1145 "%s: bad tag found on list\n", __FUNCTION__);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001146 list_del_init(&rq->queuelist);
1147 rq->flags &= ~REQ_QUEUED;
1148 } else
1149 blk_queue_end_tag(q, rq);
1150
1151 rq->flags &= ~REQ_STARTED;
1152 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1153 }
1154}
1155
1156EXPORT_SYMBOL(blk_queue_invalidate_tags);
1157
Arjan van de Ven64100092006-01-06 09:46:02 +01001158static const char * const rq_flags[] = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001159 "REQ_RW",
1160 "REQ_FAILFAST",
Tejun Heo8922e162005-10-20 16:23:44 +02001161 "REQ_SORTED",
Linus Torvalds1da177e2005-04-16 15:20:36 -07001162 "REQ_SOFTBARRIER",
1163 "REQ_HARDBARRIER",
Tejun Heo797e7db2006-01-06 09:51:03 +01001164 "REQ_FUA",
Linus Torvalds1da177e2005-04-16 15:20:36 -07001165 "REQ_CMD",
1166 "REQ_NOMERGE",
1167 "REQ_STARTED",
1168 "REQ_DONTPREP",
1169 "REQ_QUEUED",
Tejun Heocb98fc82005-10-28 08:29:39 +02001170 "REQ_ELVPRIV",
Linus Torvalds1da177e2005-04-16 15:20:36 -07001171 "REQ_PC",
1172 "REQ_BLOCK_PC",
1173 "REQ_SENSE",
1174 "REQ_FAILED",
1175 "REQ_QUIET",
1176 "REQ_SPECIAL",
1177 "REQ_DRIVE_CMD",
1178 "REQ_DRIVE_TASK",
1179 "REQ_DRIVE_TASKFILE",
1180 "REQ_PREEMPT",
1181 "REQ_PM_SUSPEND",
1182 "REQ_PM_RESUME",
1183 "REQ_PM_SHUTDOWN",
Tejun Heo797e7db2006-01-06 09:51:03 +01001184 "REQ_ORDERED_COLOR",
Linus Torvalds1da177e2005-04-16 15:20:36 -07001185};
1186
1187void blk_dump_rq_flags(struct request *rq, char *msg)
1188{
1189 int bit;
1190
1191 printk("%s: dev %s: flags = ", msg,
1192 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1193 bit = 0;
1194 do {
1195 if (rq->flags & (1 << bit))
1196 printk("%s ", rq_flags[bit]);
1197 bit++;
1198 } while (bit < __REQ_NR_BITS);
1199
1200 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1201 rq->nr_sectors,
1202 rq->current_nr_sectors);
1203 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1204
1205 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1206 printk("cdb: ");
1207 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1208 printk("%02x ", rq->cmd[bit]);
1209 printk("\n");
1210 }
1211}
1212
1213EXPORT_SYMBOL(blk_dump_rq_flags);
1214
1215void blk_recount_segments(request_queue_t *q, struct bio *bio)
1216{
1217 struct bio_vec *bv, *bvprv = NULL;
1218 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1219 int high, highprv = 1;
1220
1221 if (unlikely(!bio->bi_io_vec))
1222 return;
1223
1224 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1225 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1226 bio_for_each_segment(bv, bio, i) {
1227 /*
1228 * the trick here is making sure that a high page is never
1229 * considered part of another segment, since that might
1230 * change with the bounce page.
1231 */
1232 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1233 if (high || highprv)
1234 goto new_hw_segment;
1235 if (cluster) {
1236 if (seg_size + bv->bv_len > q->max_segment_size)
1237 goto new_segment;
1238 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1239 goto new_segment;
1240 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1241 goto new_segment;
1242 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1243 goto new_hw_segment;
1244
1245 seg_size += bv->bv_len;
1246 hw_seg_size += bv->bv_len;
1247 bvprv = bv;
1248 continue;
1249 }
1250new_segment:
1251 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1252 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1253 hw_seg_size += bv->bv_len;
1254 } else {
1255new_hw_segment:
1256 if (hw_seg_size > bio->bi_hw_front_size)
1257 bio->bi_hw_front_size = hw_seg_size;
1258 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1259 nr_hw_segs++;
1260 }
1261
1262 nr_phys_segs++;
1263 bvprv = bv;
1264 seg_size = bv->bv_len;
1265 highprv = high;
1266 }
1267 if (hw_seg_size > bio->bi_hw_back_size)
1268 bio->bi_hw_back_size = hw_seg_size;
1269 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1270 bio->bi_hw_front_size = hw_seg_size;
1271 bio->bi_phys_segments = nr_phys_segs;
1272 bio->bi_hw_segments = nr_hw_segs;
1273 bio->bi_flags |= (1 << BIO_SEG_VALID);
1274}
1275
1276
Adrian Bunk93d17d32005-06-25 14:59:10 -07001277static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001278 struct bio *nxt)
1279{
1280 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1281 return 0;
1282
1283 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1284 return 0;
1285 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1286 return 0;
1287
1288 /*
1289 * bio and nxt are contigous in memory, check if the queue allows
1290 * these two to be merged into one
1291 */
1292 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1293 return 1;
1294
1295 return 0;
1296}
1297
Adrian Bunk93d17d32005-06-25 14:59:10 -07001298static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001299 struct bio *nxt)
1300{
1301 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1302 blk_recount_segments(q, bio);
1303 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1304 blk_recount_segments(q, nxt);
1305 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1306 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1307 return 0;
1308 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1309 return 0;
1310
1311 return 1;
1312}
1313
Linus Torvalds1da177e2005-04-16 15:20:36 -07001314/*
1315 * map a request to scatterlist, return number of sg entries setup. Caller
1316 * must make sure sg can hold rq->nr_phys_segments entries
1317 */
1318int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1319{
1320 struct bio_vec *bvec, *bvprv;
1321 struct bio *bio;
1322 int nsegs, i, cluster;
1323
1324 nsegs = 0;
1325 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1326
1327 /*
1328 * for each bio in rq
1329 */
1330 bvprv = NULL;
1331 rq_for_each_bio(bio, rq) {
1332 /*
1333 * for each segment in bio
1334 */
1335 bio_for_each_segment(bvec, bio, i) {
1336 int nbytes = bvec->bv_len;
1337
1338 if (bvprv && cluster) {
1339 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1340 goto new_segment;
1341
1342 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1343 goto new_segment;
1344 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1345 goto new_segment;
1346
1347 sg[nsegs - 1].length += nbytes;
1348 } else {
1349new_segment:
1350 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1351 sg[nsegs].page = bvec->bv_page;
1352 sg[nsegs].length = nbytes;
1353 sg[nsegs].offset = bvec->bv_offset;
1354
1355 nsegs++;
1356 }
1357 bvprv = bvec;
1358 } /* segments in bio */
1359 } /* bios in rq */
1360
1361 return nsegs;
1362}
1363
1364EXPORT_SYMBOL(blk_rq_map_sg);
1365
1366/*
1367 * the standard queue merge functions, can be overridden with device
1368 * specific ones if so desired
1369 */
1370
1371static inline int ll_new_mergeable(request_queue_t *q,
1372 struct request *req,
1373 struct bio *bio)
1374{
1375 int nr_phys_segs = bio_phys_segments(q, bio);
1376
1377 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1378 req->flags |= REQ_NOMERGE;
1379 if (req == q->last_merge)
1380 q->last_merge = NULL;
1381 return 0;
1382 }
1383
1384 /*
1385 * A hw segment is just getting larger, bump just the phys
1386 * counter.
1387 */
1388 req->nr_phys_segments += nr_phys_segs;
1389 return 1;
1390}
1391
1392static inline int ll_new_hw_segment(request_queue_t *q,
1393 struct request *req,
1394 struct bio *bio)
1395{
1396 int nr_hw_segs = bio_hw_segments(q, bio);
1397 int nr_phys_segs = bio_phys_segments(q, bio);
1398
1399 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1400 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1401 req->flags |= REQ_NOMERGE;
1402 if (req == q->last_merge)
1403 q->last_merge = NULL;
1404 return 0;
1405 }
1406
1407 /*
1408 * This will form the start of a new hw segment. Bump both
1409 * counters.
1410 */
1411 req->nr_hw_segments += nr_hw_segs;
1412 req->nr_phys_segments += nr_phys_segs;
1413 return 1;
1414}
1415
1416static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1417 struct bio *bio)
1418{
Mike Christiedefd94b2005-12-05 02:37:06 -06001419 unsigned short max_sectors;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001420 int len;
1421
Mike Christiedefd94b2005-12-05 02:37:06 -06001422 if (unlikely(blk_pc_request(req)))
1423 max_sectors = q->max_hw_sectors;
1424 else
1425 max_sectors = q->max_sectors;
1426
1427 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001428 req->flags |= REQ_NOMERGE;
1429 if (req == q->last_merge)
1430 q->last_merge = NULL;
1431 return 0;
1432 }
1433 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1434 blk_recount_segments(q, req->biotail);
1435 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1436 blk_recount_segments(q, bio);
1437 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1438 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1439 !BIOVEC_VIRT_OVERSIZE(len)) {
1440 int mergeable = ll_new_mergeable(q, req, bio);
1441
1442 if (mergeable) {
1443 if (req->nr_hw_segments == 1)
1444 req->bio->bi_hw_front_size = len;
1445 if (bio->bi_hw_segments == 1)
1446 bio->bi_hw_back_size = len;
1447 }
1448 return mergeable;
1449 }
1450
1451 return ll_new_hw_segment(q, req, bio);
1452}
1453
1454static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1455 struct bio *bio)
1456{
Mike Christiedefd94b2005-12-05 02:37:06 -06001457 unsigned short max_sectors;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001458 int len;
1459
Mike Christiedefd94b2005-12-05 02:37:06 -06001460 if (unlikely(blk_pc_request(req)))
1461 max_sectors = q->max_hw_sectors;
1462 else
1463 max_sectors = q->max_sectors;
1464
1465
1466 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001467 req->flags |= REQ_NOMERGE;
1468 if (req == q->last_merge)
1469 q->last_merge = NULL;
1470 return 0;
1471 }
1472 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1473 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1474 blk_recount_segments(q, bio);
1475 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1476 blk_recount_segments(q, req->bio);
1477 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1478 !BIOVEC_VIRT_OVERSIZE(len)) {
1479 int mergeable = ll_new_mergeable(q, req, bio);
1480
1481 if (mergeable) {
1482 if (bio->bi_hw_segments == 1)
1483 bio->bi_hw_front_size = len;
1484 if (req->nr_hw_segments == 1)
1485 req->biotail->bi_hw_back_size = len;
1486 }
1487 return mergeable;
1488 }
1489
1490 return ll_new_hw_segment(q, req, bio);
1491}
1492
1493static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1494 struct request *next)
1495{
Nikita Danilovdfa1a552005-06-25 14:59:20 -07001496 int total_phys_segments;
1497 int total_hw_segments;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001498
1499 /*
1500 * First check if the either of the requests are re-queued
1501 * requests. Can't merge them if they are.
1502 */
1503 if (req->special || next->special)
1504 return 0;
1505
1506 /*
Nikita Danilovdfa1a552005-06-25 14:59:20 -07001507 * Will it become too large?
Linus Torvalds1da177e2005-04-16 15:20:36 -07001508 */
1509 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1510 return 0;
1511
1512 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1513 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1514 total_phys_segments--;
1515
1516 if (total_phys_segments > q->max_phys_segments)
1517 return 0;
1518
1519 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1520 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1521 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1522 /*
1523 * propagate the combined length to the end of the requests
1524 */
1525 if (req->nr_hw_segments == 1)
1526 req->bio->bi_hw_front_size = len;
1527 if (next->nr_hw_segments == 1)
1528 next->biotail->bi_hw_back_size = len;
1529 total_hw_segments--;
1530 }
1531
1532 if (total_hw_segments > q->max_hw_segments)
1533 return 0;
1534
1535 /* Merge is OK... */
1536 req->nr_phys_segments = total_phys_segments;
1537 req->nr_hw_segments = total_hw_segments;
1538 return 1;
1539}
1540
1541/*
1542 * "plug" the device if there are no outstanding requests: this will
1543 * force the transfer to start only after we have put all the requests
1544 * on the list.
1545 *
1546 * This is called with interrupts off and no requests on the queue and
1547 * with the queue lock held.
1548 */
1549void blk_plug_device(request_queue_t *q)
1550{
1551 WARN_ON(!irqs_disabled());
1552
1553 /*
1554 * don't plug a stopped queue, it must be paired with blk_start_queue()
1555 * which will restart the queueing
1556 */
1557 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1558 return;
1559
1560 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1561 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1562}
1563
1564EXPORT_SYMBOL(blk_plug_device);
1565
1566/*
1567 * remove the queue from the plugged list, if present. called with
1568 * queue lock held and interrupts disabled.
1569 */
1570int blk_remove_plug(request_queue_t *q)
1571{
1572 WARN_ON(!irqs_disabled());
1573
1574 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1575 return 0;
1576
1577 del_timer(&q->unplug_timer);
1578 return 1;
1579}
1580
1581EXPORT_SYMBOL(blk_remove_plug);
1582
1583/*
1584 * remove the plug and let it rip..
1585 */
1586void __generic_unplug_device(request_queue_t *q)
1587{
Nick Pigginfde6ad22005-06-23 00:08:53 -07001588 if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001589 return;
1590
1591 if (!blk_remove_plug(q))
1592 return;
1593
Jens Axboe22e2c502005-06-27 10:55:12 +02001594 q->request_fn(q);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001595}
1596EXPORT_SYMBOL(__generic_unplug_device);
1597
1598/**
1599 * generic_unplug_device - fire a request queue
1600 * @q: The &request_queue_t in question
1601 *
1602 * Description:
1603 * Linux uses plugging to build bigger requests queues before letting
1604 * the device have at them. If a queue is plugged, the I/O scheduler
1605 * is still adding and merging requests on the queue. Once the queue
1606 * gets unplugged, the request_fn defined for the queue is invoked and
1607 * transfers started.
1608 **/
1609void generic_unplug_device(request_queue_t *q)
1610{
1611 spin_lock_irq(q->queue_lock);
1612 __generic_unplug_device(q);
1613 spin_unlock_irq(q->queue_lock);
1614}
1615EXPORT_SYMBOL(generic_unplug_device);
1616
1617static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1618 struct page *page)
1619{
1620 request_queue_t *q = bdi->unplug_io_data;
1621
1622 /*
1623 * devices don't necessarily have an ->unplug_fn defined
1624 */
1625 if (q->unplug_fn)
1626 q->unplug_fn(q);
1627}
1628
1629static void blk_unplug_work(void *data)
1630{
1631 request_queue_t *q = data;
1632
1633 q->unplug_fn(q);
1634}
1635
1636static void blk_unplug_timeout(unsigned long data)
1637{
1638 request_queue_t *q = (request_queue_t *)data;
1639
1640 kblockd_schedule_work(&q->unplug_work);
1641}
1642
1643/**
1644 * blk_start_queue - restart a previously stopped queue
1645 * @q: The &request_queue_t in question
1646 *
1647 * Description:
1648 * blk_start_queue() will clear the stop flag on the queue, and call
1649 * the request_fn for the queue if it was in a stopped state when
1650 * entered. Also see blk_stop_queue(). Queue lock must be held.
1651 **/
1652void blk_start_queue(request_queue_t *q)
1653{
1654 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1655
1656 /*
1657 * one level of recursion is ok and is much faster than kicking
1658 * the unplug handling
1659 */
1660 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1661 q->request_fn(q);
1662 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1663 } else {
1664 blk_plug_device(q);
1665 kblockd_schedule_work(&q->unplug_work);
1666 }
1667}
1668
1669EXPORT_SYMBOL(blk_start_queue);
1670
1671/**
1672 * blk_stop_queue - stop a queue
1673 * @q: The &request_queue_t in question
1674 *
1675 * Description:
1676 * The Linux block layer assumes that a block driver will consume all
1677 * entries on the request queue when the request_fn strategy is called.
1678 * Often this will not happen, because of hardware limitations (queue
1679 * depth settings). If a device driver gets a 'queue full' response,
1680 * or if it simply chooses not to queue more I/O at one point, it can
1681 * call this function to prevent the request_fn from being called until
1682 * the driver has signalled it's ready to go again. This happens by calling
1683 * blk_start_queue() to restart queue operations. Queue lock must be held.
1684 **/
1685void blk_stop_queue(request_queue_t *q)
1686{
1687 blk_remove_plug(q);
1688 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1689}
1690EXPORT_SYMBOL(blk_stop_queue);
1691
1692/**
1693 * blk_sync_queue - cancel any pending callbacks on a queue
1694 * @q: the queue
1695 *
1696 * Description:
1697 * The block layer may perform asynchronous callback activity
1698 * on a queue, such as calling the unplug function after a timeout.
1699 * A block device may call blk_sync_queue to ensure that any
1700 * such activity is cancelled, thus allowing it to release resources
1701 * the the callbacks might use. The caller must already have made sure
1702 * that its ->make_request_fn will not re-add plugging prior to calling
1703 * this function.
1704 *
1705 */
1706void blk_sync_queue(struct request_queue *q)
1707{
1708 del_timer_sync(&q->unplug_timer);
1709 kblockd_flush();
1710}
1711EXPORT_SYMBOL(blk_sync_queue);
1712
1713/**
1714 * blk_run_queue - run a single device queue
1715 * @q: The queue to run
1716 */
1717void blk_run_queue(struct request_queue *q)
1718{
1719 unsigned long flags;
1720
1721 spin_lock_irqsave(q->queue_lock, flags);
1722 blk_remove_plug(q);
Ken Chena2997382005-04-16 15:25:43 -07001723 if (!elv_queue_empty(q))
1724 q->request_fn(q);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001725 spin_unlock_irqrestore(q->queue_lock, flags);
1726}
1727EXPORT_SYMBOL(blk_run_queue);
1728
1729/**
1730 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1731 * @q: the request queue to be released
1732 *
1733 * Description:
1734 * blk_cleanup_queue is the pair to blk_init_queue() or
1735 * blk_queue_make_request(). It should be called when a request queue is
1736 * being released; typically when a block device is being de-registered.
1737 * Currently, its primary task it to free all the &struct request
1738 * structures that were allocated to the queue and the queue itself.
1739 *
1740 * Caveat:
1741 * Hopefully the low level driver will have finished any
1742 * outstanding requests first...
1743 **/
1744void blk_cleanup_queue(request_queue_t * q)
1745{
1746 struct request_list *rl = &q->rq;
1747
1748 if (!atomic_dec_and_test(&q->refcnt))
1749 return;
1750
1751 if (q->elevator)
1752 elevator_exit(q->elevator);
1753
1754 blk_sync_queue(q);
1755
1756 if (rl->rq_pool)
1757 mempool_destroy(rl->rq_pool);
1758
1759 if (q->queue_tags)
1760 __blk_queue_free_tags(q);
1761
Linus Torvalds1da177e2005-04-16 15:20:36 -07001762 kmem_cache_free(requestq_cachep, q);
1763}
1764
1765EXPORT_SYMBOL(blk_cleanup_queue);
1766
1767static int blk_init_free_list(request_queue_t *q)
1768{
1769 struct request_list *rl = &q->rq;
1770
1771 rl->count[READ] = rl->count[WRITE] = 0;
1772 rl->starved[READ] = rl->starved[WRITE] = 0;
Tejun Heocb98fc82005-10-28 08:29:39 +02001773 rl->elvpriv = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001774 init_waitqueue_head(&rl->wait[READ]);
1775 init_waitqueue_head(&rl->wait[WRITE]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001776
Christoph Lameter19460892005-06-23 00:08:19 -07001777 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1778 mempool_free_slab, request_cachep, q->node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001779
1780 if (!rl->rq_pool)
1781 return -ENOMEM;
1782
1783 return 0;
1784}
1785
Al Viro8267e262005-10-21 03:20:53 -04001786request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001787{
Christoph Lameter19460892005-06-23 00:08:19 -07001788 return blk_alloc_queue_node(gfp_mask, -1);
1789}
1790EXPORT_SYMBOL(blk_alloc_queue);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001791
Al Viro8267e262005-10-21 03:20:53 -04001792request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
Christoph Lameter19460892005-06-23 00:08:19 -07001793{
1794 request_queue_t *q;
1795
1796 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001797 if (!q)
1798 return NULL;
1799
1800 memset(q, 0, sizeof(*q));
1801 init_timer(&q->unplug_timer);
1802 atomic_set(&q->refcnt, 1);
1803
1804 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1805 q->backing_dev_info.unplug_io_data = q;
1806
1807 return q;
1808}
Christoph Lameter19460892005-06-23 00:08:19 -07001809EXPORT_SYMBOL(blk_alloc_queue_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001810
1811/**
1812 * blk_init_queue - prepare a request queue for use with a block device
1813 * @rfn: The function to be called to process requests that have been
1814 * placed on the queue.
1815 * @lock: Request queue spin lock
1816 *
1817 * Description:
1818 * If a block device wishes to use the standard request handling procedures,
1819 * which sorts requests and coalesces adjacent requests, then it must
1820 * call blk_init_queue(). The function @rfn will be called when there
1821 * are requests on the queue that need to be processed. If the device
1822 * supports plugging, then @rfn may not be called immediately when requests
1823 * are available on the queue, but may be called at some time later instead.
1824 * Plugged queues are generally unplugged when a buffer belonging to one
1825 * of the requests on the queue is needed, or due to memory pressure.
1826 *
1827 * @rfn is not required, or even expected, to remove all requests off the
1828 * queue, but only as many as it can handle at a time. If it does leave
1829 * requests on the queue, it is responsible for arranging that the requests
1830 * get dealt with eventually.
1831 *
1832 * The queue spin lock must be held while manipulating the requests on the
1833 * request queue.
1834 *
1835 * Function returns a pointer to the initialized request queue, or NULL if
1836 * it didn't succeed.
1837 *
1838 * Note:
1839 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1840 * when the block device is deactivated (such as at module unload).
1841 **/
Christoph Lameter19460892005-06-23 00:08:19 -07001842
Linus Torvalds1da177e2005-04-16 15:20:36 -07001843request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1844{
Christoph Lameter19460892005-06-23 00:08:19 -07001845 return blk_init_queue_node(rfn, lock, -1);
1846}
1847EXPORT_SYMBOL(blk_init_queue);
1848
1849request_queue_t *
1850blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1851{
1852 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001853
1854 if (!q)
1855 return NULL;
1856
Christoph Lameter19460892005-06-23 00:08:19 -07001857 q->node = node_id;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001858 if (blk_init_free_list(q))
1859 goto out_init;
1860
152587d2005-04-12 16:22:06 -05001861 /*
1862 * if caller didn't supply a lock, they get per-queue locking with
1863 * our embedded lock
1864 */
1865 if (!lock) {
1866 spin_lock_init(&q->__queue_lock);
1867 lock = &q->__queue_lock;
1868 }
1869
Linus Torvalds1da177e2005-04-16 15:20:36 -07001870 q->request_fn = rfn;
1871 q->back_merge_fn = ll_back_merge_fn;
1872 q->front_merge_fn = ll_front_merge_fn;
1873 q->merge_requests_fn = ll_merge_requests_fn;
1874 q->prep_rq_fn = NULL;
1875 q->unplug_fn = generic_unplug_device;
1876 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1877 q->queue_lock = lock;
1878
1879 blk_queue_segment_boundary(q, 0xffffffff);
1880
1881 blk_queue_make_request(q, __make_request);
1882 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1883
1884 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1885 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1886
1887 /*
1888 * all done
1889 */
1890 if (!elevator_init(q, NULL)) {
1891 blk_queue_congestion_threshold(q);
1892 return q;
1893 }
1894
1895 blk_cleanup_queue(q);
1896out_init:
1897 kmem_cache_free(requestq_cachep, q);
1898 return NULL;
1899}
Christoph Lameter19460892005-06-23 00:08:19 -07001900EXPORT_SYMBOL(blk_init_queue_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001901
1902int blk_get_queue(request_queue_t *q)
1903{
Nick Pigginfde6ad22005-06-23 00:08:53 -07001904 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001905 atomic_inc(&q->refcnt);
1906 return 0;
1907 }
1908
1909 return 1;
1910}
1911
1912EXPORT_SYMBOL(blk_get_queue);
1913
1914static inline void blk_free_request(request_queue_t *q, struct request *rq)
1915{
Tejun Heocb98fc82005-10-28 08:29:39 +02001916 if (rq->flags & REQ_ELVPRIV)
1917 elv_put_request(q, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001918 mempool_free(rq, q->rq.rq_pool);
1919}
1920
Jens Axboe22e2c502005-06-27 10:55:12 +02001921static inline struct request *
Tejun Heocb98fc82005-10-28 08:29:39 +02001922blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
Linus Torvalds5dd96242005-10-28 08:56:34 -07001923 int priv, gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001924{
1925 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1926
1927 if (!rq)
1928 return NULL;
1929
1930 /*
1931 * first three bits are identical in rq->flags and bio->bi_rw,
1932 * see bio.h and blkdev.h
1933 */
1934 rq->flags = rw;
1935
Tejun Heocb98fc82005-10-28 08:29:39 +02001936 if (priv) {
1937 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
1938 mempool_free(rq, q->rq.rq_pool);
1939 return NULL;
1940 }
1941 rq->flags |= REQ_ELVPRIV;
1942 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001943
Tejun Heocb98fc82005-10-28 08:29:39 +02001944 return rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001945}
1946
1947/*
1948 * ioc_batching returns true if the ioc is a valid batching request and
1949 * should be given priority access to a request.
1950 */
1951static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1952{
1953 if (!ioc)
1954 return 0;
1955
1956 /*
1957 * Make sure the process is able to allocate at least 1 request
1958 * even if the batch times out, otherwise we could theoretically
1959 * lose wakeups.
1960 */
1961 return ioc->nr_batch_requests == q->nr_batching ||
1962 (ioc->nr_batch_requests > 0
1963 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1964}
1965
1966/*
1967 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1968 * will cause the process to be a "batcher" on all queues in the system. This
1969 * is the behaviour we want though - once it gets a wakeup it should be given
1970 * a nice run.
1971 */
Adrian Bunk93d17d32005-06-25 14:59:10 -07001972static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001973{
1974 if (!ioc || ioc_batching(q, ioc))
1975 return;
1976
1977 ioc->nr_batch_requests = q->nr_batching;
1978 ioc->last_waited = jiffies;
1979}
1980
1981static void __freed_request(request_queue_t *q, int rw)
1982{
1983 struct request_list *rl = &q->rq;
1984
1985 if (rl->count[rw] < queue_congestion_off_threshold(q))
1986 clear_queue_congested(q, rw);
1987
1988 if (rl->count[rw] + 1 <= q->nr_requests) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001989 if (waitqueue_active(&rl->wait[rw]))
1990 wake_up(&rl->wait[rw]);
1991
1992 blk_clear_queue_full(q, rw);
1993 }
1994}
1995
1996/*
1997 * A request has just been released. Account for it, update the full and
1998 * congestion status, wake up any waiters. Called under q->queue_lock.
1999 */
Tejun Heocb98fc82005-10-28 08:29:39 +02002000static void freed_request(request_queue_t *q, int rw, int priv)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002001{
2002 struct request_list *rl = &q->rq;
2003
2004 rl->count[rw]--;
Tejun Heocb98fc82005-10-28 08:29:39 +02002005 if (priv)
2006 rl->elvpriv--;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002007
2008 __freed_request(q, rw);
2009
2010 if (unlikely(rl->starved[rw ^ 1]))
2011 __freed_request(q, rw ^ 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002012}
2013
2014#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2015/*
Nick Piggind6344532005-06-28 20:45:14 -07002016 * Get a free request, queue_lock must be held.
2017 * Returns NULL on failure, with queue_lock held.
2018 * Returns !NULL on success, with queue_lock *not held*.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002019 */
Jens Axboe22e2c502005-06-27 10:55:12 +02002020static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
Al Viro8267e262005-10-21 03:20:53 -04002021 gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002022{
2023 struct request *rq = NULL;
2024 struct request_list *rl = &q->rq;
Jens Axboe88ee5ef2005-11-12 11:09:12 +01002025 struct io_context *ioc = NULL;
2026 int may_queue, priv;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002027
Jens Axboe88ee5ef2005-11-12 11:09:12 +01002028 may_queue = elv_may_queue(q, rw, bio);
2029 if (may_queue == ELV_MQUEUE_NO)
2030 goto rq_starved;
2031
2032 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2033 if (rl->count[rw]+1 >= q->nr_requests) {
2034 ioc = current_io_context(GFP_ATOMIC);
2035 /*
2036 * The queue will fill after this allocation, so set
2037 * it as full, and mark this process as "batching".
2038 * This process will be allowed to complete a batch of
2039 * requests, others will be blocked.
2040 */
2041 if (!blk_queue_full(q, rw)) {
2042 ioc_set_batching(q, ioc);
2043 blk_set_queue_full(q, rw);
2044 } else {
2045 if (may_queue != ELV_MQUEUE_MUST
2046 && !ioc_batching(q, ioc)) {
2047 /*
2048 * The queue is full and the allocating
2049 * process is not a "batcher", and not
2050 * exempted by the IO scheduler
2051 */
2052 goto out;
2053 }
2054 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002055 }
Jens Axboe88ee5ef2005-11-12 11:09:12 +01002056 set_queue_congested(q, rw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002057 }
2058
Jens Axboe082cf692005-06-28 16:35:11 +02002059 /*
2060 * Only allow batching queuers to allocate up to 50% over the defined
2061 * limit of requests, otherwise we could have thousands of requests
2062 * allocated with any setting of ->nr_requests
2063 */
Hugh Dickinsfd782a42005-06-29 15:15:40 +01002064 if (rl->count[rw] >= (3 * q->nr_requests / 2))
Jens Axboe082cf692005-06-28 16:35:11 +02002065 goto out;
Hugh Dickinsfd782a42005-06-29 15:15:40 +01002066
Linus Torvalds1da177e2005-04-16 15:20:36 -07002067 rl->count[rw]++;
2068 rl->starved[rw] = 0;
Tejun Heocb98fc82005-10-28 08:29:39 +02002069
Jens Axboe64521d12005-10-28 08:30:39 +02002070 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
Tejun Heocb98fc82005-10-28 08:29:39 +02002071 if (priv)
2072 rl->elvpriv++;
2073
Linus Torvalds1da177e2005-04-16 15:20:36 -07002074 spin_unlock_irq(q->queue_lock);
2075
Tejun Heocb98fc82005-10-28 08:29:39 +02002076 rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
Jens Axboe88ee5ef2005-11-12 11:09:12 +01002077 if (unlikely(!rq)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002078 /*
2079 * Allocation failed presumably due to memory. Undo anything
2080 * we might have messed up.
2081 *
2082 * Allocating task should really be put onto the front of the
2083 * wait queue, but this is pretty rare.
2084 */
2085 spin_lock_irq(q->queue_lock);
Tejun Heocb98fc82005-10-28 08:29:39 +02002086 freed_request(q, rw, priv);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002087
2088 /*
2089 * in the very unlikely event that allocation failed and no
2090 * requests for this direction was pending, mark us starved
2091 * so that freeing of a request in the other direction will
2092 * notice us. another possible fix would be to split the
2093 * rq mempool into READ and WRITE
2094 */
2095rq_starved:
2096 if (unlikely(rl->count[rw] == 0))
2097 rl->starved[rw] = 1;
2098
Linus Torvalds1da177e2005-04-16 15:20:36 -07002099 goto out;
2100 }
2101
Jens Axboe88ee5ef2005-11-12 11:09:12 +01002102 /*
2103 * ioc may be NULL here, and ioc_batching will be false. That's
2104 * OK, if the queue is under the request limit then requests need
2105 * not count toward the nr_batch_requests limit. There will always
2106 * be some limit enforced by BLK_BATCH_TIME.
2107 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002108 if (ioc_batching(q, ioc))
2109 ioc->nr_batch_requests--;
2110
2111 rq_init(q, rq);
2112 rq->rl = rl;
2113out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002114 return rq;
2115}
2116
2117/*
2118 * No available requests for this queue, unplug the device and wait for some
2119 * requests to become available.
Nick Piggind6344532005-06-28 20:45:14 -07002120 *
2121 * Called with q->queue_lock held, and returns with it unlocked.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002122 */
Jens Axboe22e2c502005-06-27 10:55:12 +02002123static struct request *get_request_wait(request_queue_t *q, int rw,
2124 struct bio *bio)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002125{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002126 struct request *rq;
2127
Nick Piggin450991b2005-06-28 20:45:13 -07002128 rq = get_request(q, rw, bio, GFP_NOIO);
2129 while (!rq) {
2130 DEFINE_WAIT(wait);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002131 struct request_list *rl = &q->rq;
2132
2133 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2134 TASK_UNINTERRUPTIBLE);
2135
Jens Axboe22e2c502005-06-27 10:55:12 +02002136 rq = get_request(q, rw, bio, GFP_NOIO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002137
2138 if (!rq) {
2139 struct io_context *ioc;
2140
Nick Piggind6344532005-06-28 20:45:14 -07002141 __generic_unplug_device(q);
2142 spin_unlock_irq(q->queue_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002143 io_schedule();
2144
2145 /*
2146 * After sleeping, we become a "batching" process and
2147 * will be able to allocate at least one request, and
2148 * up to a big batch of them for a small period time.
2149 * See ioc_batching, ioc_set_batching
2150 */
Nick Pigginfb3cc432005-06-28 20:45:15 -07002151 ioc = current_io_context(GFP_NOIO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002152 ioc_set_batching(q, ioc);
Nick Piggind6344532005-06-28 20:45:14 -07002153
2154 spin_lock_irq(q->queue_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002155 }
2156 finish_wait(&rl->wait[rw], &wait);
Nick Piggin450991b2005-06-28 20:45:13 -07002157 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002158
2159 return rq;
2160}
2161
Al Viro8267e262005-10-21 03:20:53 -04002162struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002163{
2164 struct request *rq;
2165
2166 BUG_ON(rw != READ && rw != WRITE);
2167
Nick Piggind6344532005-06-28 20:45:14 -07002168 spin_lock_irq(q->queue_lock);
2169 if (gfp_mask & __GFP_WAIT) {
Jens Axboe22e2c502005-06-27 10:55:12 +02002170 rq = get_request_wait(q, rw, NULL);
Nick Piggind6344532005-06-28 20:45:14 -07002171 } else {
Jens Axboe22e2c502005-06-27 10:55:12 +02002172 rq = get_request(q, rw, NULL, gfp_mask);
Nick Piggind6344532005-06-28 20:45:14 -07002173 if (!rq)
2174 spin_unlock_irq(q->queue_lock);
2175 }
2176 /* q->queue_lock is unlocked at this point */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002177
2178 return rq;
2179}
Linus Torvalds1da177e2005-04-16 15:20:36 -07002180EXPORT_SYMBOL(blk_get_request);
2181
2182/**
2183 * blk_requeue_request - put a request back on queue
2184 * @q: request queue where request should be inserted
2185 * @rq: request to be inserted
2186 *
2187 * Description:
2188 * Drivers often keep queueing requests until the hardware cannot accept
2189 * more, when that condition happens we need to put the request back
2190 * on the queue. Must be called with queue lock held.
2191 */
2192void blk_requeue_request(request_queue_t *q, struct request *rq)
2193{
2194 if (blk_rq_tagged(rq))
2195 blk_queue_end_tag(q, rq);
2196
2197 elv_requeue_request(q, rq);
2198}
2199
2200EXPORT_SYMBOL(blk_requeue_request);
2201
2202/**
2203 * blk_insert_request - insert a special request in to a request queue
2204 * @q: request queue where request should be inserted
2205 * @rq: request to be inserted
2206 * @at_head: insert request at head or tail of queue
2207 * @data: private data
Linus Torvalds1da177e2005-04-16 15:20:36 -07002208 *
2209 * Description:
2210 * Many block devices need to execute commands asynchronously, so they don't
2211 * block the whole kernel from preemption during request execution. This is
2212 * accomplished normally by inserting aritficial requests tagged as
2213 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2214 * scheduled for actual execution by the request queue.
2215 *
2216 * We have the option of inserting the head or the tail of the queue.
2217 * Typically we use the tail for new ioctls and so forth. We use the head
2218 * of the queue for things like a QUEUE_FULL message from a device, or a
2219 * host that is unable to accept a particular command.
2220 */
2221void blk_insert_request(request_queue_t *q, struct request *rq,
Tejun Heo 867d1192005-04-24 02:06:05 -05002222 int at_head, void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002223{
Tejun Heo 867d1192005-04-24 02:06:05 -05002224 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002225 unsigned long flags;
2226
2227 /*
2228 * tell I/O scheduler that this isn't a regular read/write (ie it
2229 * must not attempt merges on this) and that it acts as a soft
2230 * barrier
2231 */
2232 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2233
2234 rq->special = data;
2235
2236 spin_lock_irqsave(q->queue_lock, flags);
2237
2238 /*
2239 * If command is tagged, release the tag
2240 */
Tejun Heo 867d1192005-04-24 02:06:05 -05002241 if (blk_rq_tagged(rq))
2242 blk_queue_end_tag(q, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002243
Tejun Heo 867d1192005-04-24 02:06:05 -05002244 drive_stat_acct(rq, rq->nr_sectors, 1);
2245 __elv_add_request(q, rq, where, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002246
Linus Torvalds1da177e2005-04-16 15:20:36 -07002247 if (blk_queue_plugged(q))
2248 __generic_unplug_device(q);
2249 else
2250 q->request_fn(q);
2251 spin_unlock_irqrestore(q->queue_lock, flags);
2252}
2253
2254EXPORT_SYMBOL(blk_insert_request);
2255
2256/**
2257 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2258 * @q: request queue where request should be inserted
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002259 * @rq: request structure to fill
Linus Torvalds1da177e2005-04-16 15:20:36 -07002260 * @ubuf: the user buffer
2261 * @len: length of user data
2262 *
2263 * Description:
2264 * Data will be mapped directly for zero copy io, if possible. Otherwise
2265 * a kernel bounce buffer is used.
2266 *
2267 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2268 * still in process context.
2269 *
2270 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2271 * before being submitted to the device, as pages mapped may be out of
2272 * reach. It's the callers responsibility to make sure this happens. The
2273 * original bio must be passed back in to blk_rq_unmap_user() for proper
2274 * unmapping.
2275 */
Jens Axboedd1cab92005-06-20 14:06:01 +02002276int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2277 unsigned int len)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002278{
2279 unsigned long uaddr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002280 struct bio *bio;
Jens Axboedd1cab92005-06-20 14:06:01 +02002281 int reading;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002282
Mike Christiedefd94b2005-12-05 02:37:06 -06002283 if (len > (q->max_hw_sectors << 9))
Jens Axboedd1cab92005-06-20 14:06:01 +02002284 return -EINVAL;
2285 if (!len || !ubuf)
2286 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002287
Jens Axboedd1cab92005-06-20 14:06:01 +02002288 reading = rq_data_dir(rq) == READ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002289
2290 /*
2291 * if alignment requirement is satisfied, map in user pages for
2292 * direct dma. else, set up kernel bounce buffers
2293 */
2294 uaddr = (unsigned long) ubuf;
2295 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
Jens Axboedd1cab92005-06-20 14:06:01 +02002296 bio = bio_map_user(q, NULL, uaddr, len, reading);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002297 else
Jens Axboedd1cab92005-06-20 14:06:01 +02002298 bio = bio_copy_user(q, uaddr, len, reading);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002299
2300 if (!IS_ERR(bio)) {
2301 rq->bio = rq->biotail = bio;
2302 blk_rq_bio_prep(q, rq, bio);
2303
2304 rq->buffer = rq->data = NULL;
2305 rq->data_len = len;
Jens Axboedd1cab92005-06-20 14:06:01 +02002306 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002307 }
2308
2309 /*
2310 * bio is the err-ptr
2311 */
Jens Axboedd1cab92005-06-20 14:06:01 +02002312 return PTR_ERR(bio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002313}
2314
2315EXPORT_SYMBOL(blk_rq_map_user);
2316
2317/**
James Bottomley f1970ba2005-06-20 14:06:52 +02002318 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2319 * @q: request queue where request should be inserted
2320 * @rq: request to map data to
2321 * @iov: pointer to the iovec
2322 * @iov_count: number of elements in the iovec
2323 *
2324 * Description:
2325 * Data will be mapped directly for zero copy io, if possible. Otherwise
2326 * a kernel bounce buffer is used.
2327 *
2328 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2329 * still in process context.
2330 *
2331 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2332 * before being submitted to the device, as pages mapped may be out of
2333 * reach. It's the callers responsibility to make sure this happens. The
2334 * original bio must be passed back in to blk_rq_unmap_user() for proper
2335 * unmapping.
2336 */
2337int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2338 struct sg_iovec *iov, int iov_count)
2339{
2340 struct bio *bio;
2341
2342 if (!iov || iov_count <= 0)
2343 return -EINVAL;
2344
2345 /* we don't allow misaligned data like bio_map_user() does. If the
2346 * user is using sg, they're expected to know the alignment constraints
2347 * and respect them accordingly */
2348 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2349 if (IS_ERR(bio))
2350 return PTR_ERR(bio);
2351
2352 rq->bio = rq->biotail = bio;
2353 blk_rq_bio_prep(q, rq, bio);
2354 rq->buffer = rq->data = NULL;
2355 rq->data_len = bio->bi_size;
2356 return 0;
2357}
2358
2359EXPORT_SYMBOL(blk_rq_map_user_iov);
2360
2361/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07002362 * blk_rq_unmap_user - unmap a request with user data
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002363 * @bio: bio to be unmapped
Linus Torvalds1da177e2005-04-16 15:20:36 -07002364 * @ulen: length of user buffer
2365 *
2366 * Description:
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002367 * Unmap a bio previously mapped by blk_rq_map_user().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002368 */
Jens Axboedd1cab92005-06-20 14:06:01 +02002369int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002370{
2371 int ret = 0;
2372
2373 if (bio) {
2374 if (bio_flagged(bio, BIO_USER_MAPPED))
2375 bio_unmap_user(bio);
2376 else
2377 ret = bio_uncopy_user(bio);
2378 }
2379
Jens Axboedd1cab92005-06-20 14:06:01 +02002380 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002381}
2382
2383EXPORT_SYMBOL(blk_rq_unmap_user);
2384
2385/**
Mike Christie df46b9a2005-06-20 14:04:44 +02002386 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2387 * @q: request queue where request should be inserted
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002388 * @rq: request to fill
Mike Christie df46b9a2005-06-20 14:04:44 +02002389 * @kbuf: the kernel buffer
2390 * @len: length of user data
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002391 * @gfp_mask: memory allocation flags
Mike Christie df46b9a2005-06-20 14:04:44 +02002392 */
Jens Axboedd1cab92005-06-20 14:06:01 +02002393int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
Al Viro8267e262005-10-21 03:20:53 -04002394 unsigned int len, gfp_t gfp_mask)
Mike Christie df46b9a2005-06-20 14:04:44 +02002395{
Mike Christie df46b9a2005-06-20 14:04:44 +02002396 struct bio *bio;
2397
Mike Christiedefd94b2005-12-05 02:37:06 -06002398 if (len > (q->max_hw_sectors << 9))
Jens Axboedd1cab92005-06-20 14:06:01 +02002399 return -EINVAL;
2400 if (!len || !kbuf)
2401 return -EINVAL;
Mike Christie df46b9a2005-06-20 14:04:44 +02002402
2403 bio = bio_map_kern(q, kbuf, len, gfp_mask);
Jens Axboedd1cab92005-06-20 14:06:01 +02002404 if (IS_ERR(bio))
2405 return PTR_ERR(bio);
Mike Christie df46b9a2005-06-20 14:04:44 +02002406
Jens Axboedd1cab92005-06-20 14:06:01 +02002407 if (rq_data_dir(rq) == WRITE)
2408 bio->bi_rw |= (1 << BIO_RW);
Mike Christie df46b9a2005-06-20 14:04:44 +02002409
Jens Axboedd1cab92005-06-20 14:06:01 +02002410 rq->bio = rq->biotail = bio;
2411 blk_rq_bio_prep(q, rq, bio);
Mike Christie df46b9a2005-06-20 14:04:44 +02002412
Jens Axboedd1cab92005-06-20 14:06:01 +02002413 rq->buffer = rq->data = NULL;
2414 rq->data_len = len;
2415 return 0;
Mike Christie df46b9a2005-06-20 14:04:44 +02002416}
2417
2418EXPORT_SYMBOL(blk_rq_map_kern);
2419
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002420/**
2421 * blk_execute_rq_nowait - insert a request into queue for execution
2422 * @q: queue to insert the request in
2423 * @bd_disk: matching gendisk
2424 * @rq: request to insert
2425 * @at_head: insert request at head or tail of queue
2426 * @done: I/O completion handler
2427 *
2428 * Description:
2429 * Insert a fully prepared request at the back of the io scheduler queue
2430 * for execution. Don't wait for completion.
2431 */
James Bottomley f1970ba2005-06-20 14:06:52 +02002432void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2433 struct request *rq, int at_head,
Tejun Heo8ffdc652006-01-06 09:49:03 +01002434 rq_end_io_fn *done)
James Bottomley f1970ba2005-06-20 14:06:52 +02002435{
2436 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2437
2438 rq->rq_disk = bd_disk;
2439 rq->flags |= REQ_NOMERGE;
2440 rq->end_io = done;
2441 elv_add_request(q, rq, where, 1);
2442 generic_unplug_device(q);
2443}
2444
Mike Christie6e39b692005-11-11 05:30:24 -06002445EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2446
Linus Torvalds1da177e2005-04-16 15:20:36 -07002447/**
2448 * blk_execute_rq - insert a request into queue for execution
2449 * @q: queue to insert the request in
2450 * @bd_disk: matching gendisk
2451 * @rq: request to insert
James Bottomley 994ca9a2005-06-20 14:11:09 +02002452 * @at_head: insert request at head or tail of queue
Linus Torvalds1da177e2005-04-16 15:20:36 -07002453 *
2454 * Description:
2455 * Insert a fully prepared request at the back of the io scheduler queue
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002456 * for execution and wait for completion.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002457 */
2458int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
James Bottomley 994ca9a2005-06-20 14:11:09 +02002459 struct request *rq, int at_head)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002460{
2461 DECLARE_COMPLETION(wait);
2462 char sense[SCSI_SENSE_BUFFERSIZE];
2463 int err = 0;
2464
Linus Torvalds1da177e2005-04-16 15:20:36 -07002465 /*
2466 * we need an extra reference to the request, so we can look at
2467 * it after io completion
2468 */
2469 rq->ref_count++;
2470
2471 if (!rq->sense) {
2472 memset(sense, 0, sizeof(sense));
2473 rq->sense = sense;
2474 rq->sense_len = 0;
2475 }
2476
Linus Torvalds1da177e2005-04-16 15:20:36 -07002477 rq->waiting = &wait;
James Bottomley 994ca9a2005-06-20 14:11:09 +02002478 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002479 wait_for_completion(&wait);
2480 rq->waiting = NULL;
2481
2482 if (rq->errors)
2483 err = -EIO;
2484
2485 return err;
2486}
2487
2488EXPORT_SYMBOL(blk_execute_rq);
2489
2490/**
2491 * blkdev_issue_flush - queue a flush
2492 * @bdev: blockdev to issue flush for
2493 * @error_sector: error sector
2494 *
2495 * Description:
2496 * Issue a flush for the block device in question. Caller can supply
2497 * room for storing the error offset in case of a flush error, if they
2498 * wish to. Caller must run wait_for_completion() on its own.
2499 */
2500int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2501{
2502 request_queue_t *q;
2503
2504 if (bdev->bd_disk == NULL)
2505 return -ENXIO;
2506
2507 q = bdev_get_queue(bdev);
2508 if (!q)
2509 return -ENXIO;
2510 if (!q->issue_flush_fn)
2511 return -EOPNOTSUPP;
2512
2513 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2514}
2515
2516EXPORT_SYMBOL(blkdev_issue_flush);
2517
Adrian Bunk93d17d32005-06-25 14:59:10 -07002518static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002519{
2520 int rw = rq_data_dir(rq);
2521
2522 if (!blk_fs_request(rq) || !rq->rq_disk)
2523 return;
2524
Jens Axboed72d9042005-11-01 08:35:42 +01002525 if (!new_io) {
Jens Axboea3623572005-11-01 09:26:16 +01002526 __disk_stat_inc(rq->rq_disk, merges[rw]);
Jens Axboed72d9042005-11-01 08:35:42 +01002527 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002528 disk_round_stats(rq->rq_disk);
2529 rq->rq_disk->in_flight++;
2530 }
2531}
2532
2533/*
2534 * add-request adds a request to the linked list.
2535 * queue lock is held and interrupts disabled, as we muck with the
2536 * request queue list.
2537 */
2538static inline void add_request(request_queue_t * q, struct request * req)
2539{
2540 drive_stat_acct(req, req->nr_sectors, 1);
2541
2542 if (q->activity_fn)
2543 q->activity_fn(q->activity_data, rq_data_dir(req));
2544
2545 /*
2546 * elevator indicated where it wants this request to be
2547 * inserted at elevator_merge time
2548 */
2549 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2550}
2551
2552/*
2553 * disk_round_stats() - Round off the performance stats on a struct
2554 * disk_stats.
2555 *
2556 * The average IO queue length and utilisation statistics are maintained
2557 * by observing the current state of the queue length and the amount of
2558 * time it has been in this state for.
2559 *
2560 * Normally, that accounting is done on IO completion, but that can result
2561 * in more than a second's worth of IO being accounted for within any one
2562 * second, leading to >100% utilisation. To deal with that, we call this
2563 * function to do a round-off before returning the results when reading
2564 * /proc/diskstats. This accounts immediately for all queue usage up to
2565 * the current jiffies and restarts the counters again.
2566 */
2567void disk_round_stats(struct gendisk *disk)
2568{
2569 unsigned long now = jiffies;
2570
Chen, Kenneth Wb2982642005-10-13 21:49:29 +02002571 if (now == disk->stamp)
2572 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002573
Chen, Kenneth W20e5c812005-10-13 21:48:42 +02002574 if (disk->in_flight) {
2575 __disk_stat_add(disk, time_in_queue,
2576 disk->in_flight * (now - disk->stamp));
2577 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2578 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002579 disk->stamp = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002580}
2581
Jun'ichi "Nick" Nomura3eaf8402006-02-01 03:04:53 -08002582EXPORT_SYMBOL_GPL(disk_round_stats);
2583
Linus Torvalds1da177e2005-04-16 15:20:36 -07002584/*
2585 * queue lock must be held
2586 */
Mike Christie6e39b692005-11-11 05:30:24 -06002587void __blk_put_request(request_queue_t *q, struct request *req)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002588{
2589 struct request_list *rl = req->rl;
2590
2591 if (unlikely(!q))
2592 return;
2593 if (unlikely(--req->ref_count))
2594 return;
2595
Tejun Heo8922e162005-10-20 16:23:44 +02002596 elv_completed_request(q, req);
2597
Linus Torvalds1da177e2005-04-16 15:20:36 -07002598 req->rq_status = RQ_INACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002599 req->rl = NULL;
2600
2601 /*
2602 * Request may not have originated from ll_rw_blk. if not,
2603 * it didn't come out of our reserved rq pools
2604 */
2605 if (rl) {
2606 int rw = rq_data_dir(req);
Tejun Heocb98fc82005-10-28 08:29:39 +02002607 int priv = req->flags & REQ_ELVPRIV;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002608
Linus Torvalds1da177e2005-04-16 15:20:36 -07002609 BUG_ON(!list_empty(&req->queuelist));
2610
2611 blk_free_request(q, req);
Tejun Heocb98fc82005-10-28 08:29:39 +02002612 freed_request(q, rw, priv);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002613 }
2614}
2615
Mike Christie6e39b692005-11-11 05:30:24 -06002616EXPORT_SYMBOL_GPL(__blk_put_request);
2617
Linus Torvalds1da177e2005-04-16 15:20:36 -07002618void blk_put_request(struct request *req)
2619{
Tejun Heo8922e162005-10-20 16:23:44 +02002620 unsigned long flags;
2621 request_queue_t *q = req->q;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002622
Tejun Heo8922e162005-10-20 16:23:44 +02002623 /*
2624 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2625 * following if (q) test.
2626 */
2627 if (q) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002628 spin_lock_irqsave(q->queue_lock, flags);
2629 __blk_put_request(q, req);
2630 spin_unlock_irqrestore(q->queue_lock, flags);
2631 }
2632}
2633
2634EXPORT_SYMBOL(blk_put_request);
2635
2636/**
2637 * blk_end_sync_rq - executes a completion event on a request
2638 * @rq: request to complete
Jens Axboefddfdea2006-01-31 15:24:34 +01002639 * @error: end io status of the request
Linus Torvalds1da177e2005-04-16 15:20:36 -07002640 */
Tejun Heo8ffdc652006-01-06 09:49:03 +01002641void blk_end_sync_rq(struct request *rq, int error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002642{
2643 struct completion *waiting = rq->waiting;
2644
2645 rq->waiting = NULL;
2646 __blk_put_request(rq->q, rq);
2647
2648 /*
2649 * complete last, if this is a stack request the process (and thus
2650 * the rq pointer) could be invalid right after this complete()
2651 */
2652 complete(waiting);
2653}
2654EXPORT_SYMBOL(blk_end_sync_rq);
2655
2656/**
2657 * blk_congestion_wait - wait for a queue to become uncongested
2658 * @rw: READ or WRITE
2659 * @timeout: timeout in jiffies
2660 *
2661 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2662 * If no queues are congested then just wait for the next request to be
2663 * returned.
2664 */
2665long blk_congestion_wait(int rw, long timeout)
2666{
2667 long ret;
2668 DEFINE_WAIT(wait);
2669 wait_queue_head_t *wqh = &congestion_wqh[rw];
2670
2671 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2672 ret = io_schedule_timeout(timeout);
2673 finish_wait(wqh, &wait);
2674 return ret;
2675}
2676
2677EXPORT_SYMBOL(blk_congestion_wait);
2678
2679/*
2680 * Has to be called with the request spinlock acquired
2681 */
2682static int attempt_merge(request_queue_t *q, struct request *req,
2683 struct request *next)
2684{
2685 if (!rq_mergeable(req) || !rq_mergeable(next))
2686 return 0;
2687
2688 /*
2689 * not contigious
2690 */
2691 if (req->sector + req->nr_sectors != next->sector)
2692 return 0;
2693
2694 if (rq_data_dir(req) != rq_data_dir(next)
2695 || req->rq_disk != next->rq_disk
2696 || next->waiting || next->special)
2697 return 0;
2698
2699 /*
2700 * If we are allowed to merge, then append bio list
2701 * from next to rq and release next. merge_requests_fn
2702 * will have updated segment counts, update sector
2703 * counts here.
2704 */
2705 if (!q->merge_requests_fn(q, req, next))
2706 return 0;
2707
2708 /*
2709 * At this point we have either done a back merge
2710 * or front merge. We need the smaller start_time of
2711 * the merged requests to be the current request
2712 * for accounting purposes.
2713 */
2714 if (time_after(req->start_time, next->start_time))
2715 req->start_time = next->start_time;
2716
2717 req->biotail->bi_next = next->bio;
2718 req->biotail = next->biotail;
2719
2720 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2721
2722 elv_merge_requests(q, req, next);
2723
2724 if (req->rq_disk) {
2725 disk_round_stats(req->rq_disk);
2726 req->rq_disk->in_flight--;
2727 }
2728
Jens Axboe22e2c502005-06-27 10:55:12 +02002729 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2730
Linus Torvalds1da177e2005-04-16 15:20:36 -07002731 __blk_put_request(q, next);
2732 return 1;
2733}
2734
2735static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2736{
2737 struct request *next = elv_latter_request(q, rq);
2738
2739 if (next)
2740 return attempt_merge(q, rq, next);
2741
2742 return 0;
2743}
2744
2745static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2746{
2747 struct request *prev = elv_former_request(q, rq);
2748
2749 if (prev)
2750 return attempt_merge(q, prev, rq);
2751
2752 return 0;
2753}
2754
Tejun Heo52d9e672006-01-06 09:49:58 +01002755static void init_request_from_bio(struct request *req, struct bio *bio)
2756{
2757 req->flags |= REQ_CMD;
2758
2759 /*
2760 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2761 */
2762 if (bio_rw_ahead(bio) || bio_failfast(bio))
2763 req->flags |= REQ_FAILFAST;
2764
2765 /*
2766 * REQ_BARRIER implies no merging, but lets make it explicit
2767 */
2768 if (unlikely(bio_barrier(bio)))
2769 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2770
2771 req->errors = 0;
2772 req->hard_sector = req->sector = bio->bi_sector;
2773 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2774 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2775 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2776 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2777 req->buffer = bio_data(bio); /* see ->buffer comment above */
2778 req->waiting = NULL;
2779 req->bio = req->biotail = bio;
2780 req->ioprio = bio_prio(bio);
2781 req->rq_disk = bio->bi_bdev->bd_disk;
2782 req->start_time = jiffies;
2783}
2784
Linus Torvalds1da177e2005-04-16 15:20:36 -07002785static int __make_request(request_queue_t *q, struct bio *bio)
2786{
Nick Piggin450991b2005-06-28 20:45:13 -07002787 struct request *req;
Jens Axboe4a534f92005-04-16 15:25:40 -07002788 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
Jens Axboe22e2c502005-06-27 10:55:12 +02002789 unsigned short prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002790 sector_t sector;
2791
2792 sector = bio->bi_sector;
2793 nr_sectors = bio_sectors(bio);
2794 cur_nr_sectors = bio_cur_sectors(bio);
Jens Axboe22e2c502005-06-27 10:55:12 +02002795 prio = bio_prio(bio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002796
2797 rw = bio_data_dir(bio);
Jens Axboe4a534f92005-04-16 15:25:40 -07002798 sync = bio_sync(bio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002799
2800 /*
2801 * low level driver can indicate that it wants pages above a
2802 * certain limit bounced to low memory (ie for highmem, or even
2803 * ISA dma in theory)
2804 */
2805 blk_queue_bounce(q, &bio);
2806
2807 spin_lock_prefetch(q->queue_lock);
2808
2809 barrier = bio_barrier(bio);
Tejun Heo797e7db2006-01-06 09:51:03 +01002810 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002811 err = -EOPNOTSUPP;
2812 goto end_io;
2813 }
2814
Linus Torvalds1da177e2005-04-16 15:20:36 -07002815 spin_lock_irq(q->queue_lock);
2816
Nick Piggin450991b2005-06-28 20:45:13 -07002817 if (unlikely(barrier) || elv_queue_empty(q))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002818 goto get_rq;
2819
2820 el_ret = elv_merge(q, &req, bio);
2821 switch (el_ret) {
2822 case ELEVATOR_BACK_MERGE:
2823 BUG_ON(!rq_mergeable(req));
2824
2825 if (!q->back_merge_fn(q, req, bio))
2826 break;
2827
2828 req->biotail->bi_next = bio;
2829 req->biotail = bio;
2830 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
Jens Axboe22e2c502005-06-27 10:55:12 +02002831 req->ioprio = ioprio_best(req->ioprio, prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002832 drive_stat_acct(req, nr_sectors, 0);
2833 if (!attempt_back_merge(q, req))
2834 elv_merged_request(q, req);
2835 goto out;
2836
2837 case ELEVATOR_FRONT_MERGE:
2838 BUG_ON(!rq_mergeable(req));
2839
2840 if (!q->front_merge_fn(q, req, bio))
2841 break;
2842
2843 bio->bi_next = req->bio;
2844 req->bio = bio;
2845
2846 /*
2847 * may not be valid. if the low level driver said
2848 * it didn't need a bounce buffer then it better
2849 * not touch req->buffer either...
2850 */
2851 req->buffer = bio_data(bio);
2852 req->current_nr_sectors = cur_nr_sectors;
2853 req->hard_cur_sectors = cur_nr_sectors;
2854 req->sector = req->hard_sector = sector;
2855 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
Jens Axboe22e2c502005-06-27 10:55:12 +02002856 req->ioprio = ioprio_best(req->ioprio, prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002857 drive_stat_acct(req, nr_sectors, 0);
2858 if (!attempt_front_merge(q, req))
2859 elv_merged_request(q, req);
2860 goto out;
2861
Nick Piggin450991b2005-06-28 20:45:13 -07002862 /* ELV_NO_MERGE: elevator says don't/can't merge. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002863 default:
Nick Piggin450991b2005-06-28 20:45:13 -07002864 ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002865 }
2866
Linus Torvalds1da177e2005-04-16 15:20:36 -07002867get_rq:
Nick Piggin450991b2005-06-28 20:45:13 -07002868 /*
2869 * Grab a free request. This is might sleep but can not fail.
Nick Piggind6344532005-06-28 20:45:14 -07002870 * Returns with the queue unlocked.
Nick Piggin450991b2005-06-28 20:45:13 -07002871 */
Nick Piggin450991b2005-06-28 20:45:13 -07002872 req = get_request_wait(q, rw, bio);
Nick Piggind6344532005-06-28 20:45:14 -07002873
Nick Piggin450991b2005-06-28 20:45:13 -07002874 /*
2875 * After dropping the lock and possibly sleeping here, our request
2876 * may now be mergeable after it had proven unmergeable (above).
2877 * We don't worry about that case for efficiency. It won't happen
2878 * often, and the elevators are able to handle it.
2879 */
Tejun Heo52d9e672006-01-06 09:49:58 +01002880 init_request_from_bio(req, bio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002881
Nick Piggin450991b2005-06-28 20:45:13 -07002882 spin_lock_irq(q->queue_lock);
2883 if (elv_queue_empty(q))
2884 blk_plug_device(q);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002885 add_request(q, req);
2886out:
Jens Axboe4a534f92005-04-16 15:25:40 -07002887 if (sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002888 __generic_unplug_device(q);
2889
2890 spin_unlock_irq(q->queue_lock);
2891 return 0;
2892
2893end_io:
2894 bio_endio(bio, nr_sectors << 9, err);
2895 return 0;
2896}
2897
2898/*
2899 * If bio->bi_dev is a partition, remap the location
2900 */
2901static inline void blk_partition_remap(struct bio *bio)
2902{
2903 struct block_device *bdev = bio->bi_bdev;
2904
2905 if (bdev != bdev->bd_contains) {
2906 struct hd_struct *p = bdev->bd_part;
Jens Axboea3623572005-11-01 09:26:16 +01002907 const int rw = bio_data_dir(bio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002908
Jens Axboea3623572005-11-01 09:26:16 +01002909 p->sectors[rw] += bio_sectors(bio);
2910 p->ios[rw]++;
2911
Linus Torvalds1da177e2005-04-16 15:20:36 -07002912 bio->bi_sector += p->start_sect;
2913 bio->bi_bdev = bdev->bd_contains;
2914 }
2915}
2916
Linus Torvalds1da177e2005-04-16 15:20:36 -07002917static void handle_bad_sector(struct bio *bio)
2918{
2919 char b[BDEVNAME_SIZE];
2920
2921 printk(KERN_INFO "attempt to access beyond end of device\n");
2922 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2923 bdevname(bio->bi_bdev, b),
2924 bio->bi_rw,
2925 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2926 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2927
2928 set_bit(BIO_EOF, &bio->bi_flags);
2929}
2930
2931/**
2932 * generic_make_request: hand a buffer to its device driver for I/O
2933 * @bio: The bio describing the location in memory and on the device.
2934 *
2935 * generic_make_request() is used to make I/O requests of block
2936 * devices. It is passed a &struct bio, which describes the I/O that needs
2937 * to be done.
2938 *
2939 * generic_make_request() does not return any status. The
2940 * success/failure status of the request, along with notification of
2941 * completion, is delivered asynchronously through the bio->bi_end_io
2942 * function described (one day) else where.
2943 *
2944 * The caller of generic_make_request must make sure that bi_io_vec
2945 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2946 * set to describe the device address, and the
2947 * bi_end_io and optionally bi_private are set to describe how
2948 * completion notification should be signaled.
2949 *
2950 * generic_make_request and the drivers it calls may use bi_next if this
2951 * bio happens to be merged with someone else, and may change bi_dev and
2952 * bi_sector for remaps as it sees fit. So the values of these fields
2953 * should NOT be depended on after the call to generic_make_request.
2954 */
2955void generic_make_request(struct bio *bio)
2956{
2957 request_queue_t *q;
2958 sector_t maxsector;
2959 int ret, nr_sectors = bio_sectors(bio);
2960
2961 might_sleep();
2962 /* Test device or partition size, when known. */
2963 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2964 if (maxsector) {
2965 sector_t sector = bio->bi_sector;
2966
2967 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2968 /*
2969 * This may well happen - the kernel calls bread()
2970 * without checking the size of the device, e.g., when
2971 * mounting a device.
2972 */
2973 handle_bad_sector(bio);
2974 goto end_io;
2975 }
2976 }
2977
2978 /*
2979 * Resolve the mapping until finished. (drivers are
2980 * still free to implement/resolve their own stacking
2981 * by explicitly returning 0)
2982 *
2983 * NOTE: we don't repeat the blk_size check for each new device.
2984 * Stacking drivers are expected to know what they are doing.
2985 */
2986 do {
2987 char b[BDEVNAME_SIZE];
2988
2989 q = bdev_get_queue(bio->bi_bdev);
2990 if (!q) {
2991 printk(KERN_ERR
2992 "generic_make_request: Trying to access "
2993 "nonexistent block-device %s (%Lu)\n",
2994 bdevname(bio->bi_bdev, b),
2995 (long long) bio->bi_sector);
2996end_io:
2997 bio_endio(bio, bio->bi_size, -EIO);
2998 break;
2999 }
3000
3001 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3002 printk("bio too big device %s (%u > %u)\n",
3003 bdevname(bio->bi_bdev, b),
3004 bio_sectors(bio),
3005 q->max_hw_sectors);
3006 goto end_io;
3007 }
3008
Nick Pigginfde6ad22005-06-23 00:08:53 -07003009 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003010 goto end_io;
3011
Linus Torvalds1da177e2005-04-16 15:20:36 -07003012 /*
3013 * If this device has partitions, remap block n
3014 * of partition p to block n+start(p) of the disk.
3015 */
3016 blk_partition_remap(bio);
3017
3018 ret = q->make_request_fn(q, bio);
3019 } while (ret);
3020}
3021
3022EXPORT_SYMBOL(generic_make_request);
3023
3024/**
3025 * submit_bio: submit a bio to the block device layer for I/O
3026 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3027 * @bio: The &struct bio which describes the I/O
3028 *
3029 * submit_bio() is very similar in purpose to generic_make_request(), and
3030 * uses that function to do most of the work. Both are fairly rough
3031 * interfaces, @bio must be presetup and ready for I/O.
3032 *
3033 */
3034void submit_bio(int rw, struct bio *bio)
3035{
3036 int count = bio_sectors(bio);
3037
3038 BIO_BUG_ON(!bio->bi_size);
3039 BIO_BUG_ON(!bio->bi_io_vec);
Jens Axboe22e2c502005-06-27 10:55:12 +02003040 bio->bi_rw |= rw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003041 if (rw & WRITE)
3042 mod_page_state(pgpgout, count);
3043 else
3044 mod_page_state(pgpgin, count);
3045
3046 if (unlikely(block_dump)) {
3047 char b[BDEVNAME_SIZE];
3048 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3049 current->comm, current->pid,
3050 (rw & WRITE) ? "WRITE" : "READ",
3051 (unsigned long long)bio->bi_sector,
3052 bdevname(bio->bi_bdev,b));
3053 }
3054
3055 generic_make_request(bio);
3056}
3057
3058EXPORT_SYMBOL(submit_bio);
3059
Adrian Bunk93d17d32005-06-25 14:59:10 -07003060static void blk_recalc_rq_segments(struct request *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003061{
3062 struct bio *bio, *prevbio = NULL;
3063 int nr_phys_segs, nr_hw_segs;
3064 unsigned int phys_size, hw_size;
3065 request_queue_t *q = rq->q;
3066
3067 if (!rq->bio)
3068 return;
3069
3070 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3071 rq_for_each_bio(bio, rq) {
3072 /* Force bio hw/phys segs to be recalculated. */
3073 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3074
3075 nr_phys_segs += bio_phys_segments(q, bio);
3076 nr_hw_segs += bio_hw_segments(q, bio);
3077 if (prevbio) {
3078 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3079 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3080
3081 if (blk_phys_contig_segment(q, prevbio, bio) &&
3082 pseg <= q->max_segment_size) {
3083 nr_phys_segs--;
3084 phys_size += prevbio->bi_size + bio->bi_size;
3085 } else
3086 phys_size = 0;
3087
3088 if (blk_hw_contig_segment(q, prevbio, bio) &&
3089 hseg <= q->max_segment_size) {
3090 nr_hw_segs--;
3091 hw_size += prevbio->bi_size + bio->bi_size;
3092 } else
3093 hw_size = 0;
3094 }
3095 prevbio = bio;
3096 }
3097
3098 rq->nr_phys_segments = nr_phys_segs;
3099 rq->nr_hw_segments = nr_hw_segs;
3100}
3101
Adrian Bunk93d17d32005-06-25 14:59:10 -07003102static void blk_recalc_rq_sectors(struct request *rq, int nsect)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003103{
3104 if (blk_fs_request(rq)) {
3105 rq->hard_sector += nsect;
3106 rq->hard_nr_sectors -= nsect;
3107
3108 /*
3109 * Move the I/O submission pointers ahead if required.
3110 */
3111 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3112 (rq->sector <= rq->hard_sector)) {
3113 rq->sector = rq->hard_sector;
3114 rq->nr_sectors = rq->hard_nr_sectors;
3115 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3116 rq->current_nr_sectors = rq->hard_cur_sectors;
3117 rq->buffer = bio_data(rq->bio);
3118 }
3119
3120 /*
3121 * if total number of sectors is less than the first segment
3122 * size, something has gone terribly wrong
3123 */
3124 if (rq->nr_sectors < rq->current_nr_sectors) {
3125 printk("blk: request botched\n");
3126 rq->nr_sectors = rq->current_nr_sectors;
3127 }
3128 }
3129}
3130
3131static int __end_that_request_first(struct request *req, int uptodate,
3132 int nr_bytes)
3133{
3134 int total_bytes, bio_nbytes, error, next_idx = 0;
3135 struct bio *bio;
3136
3137 /*
3138 * extend uptodate bool to allow < 0 value to be direct io error
3139 */
3140 error = 0;
3141 if (end_io_error(uptodate))
3142 error = !uptodate ? -EIO : uptodate;
3143
3144 /*
3145 * for a REQ_BLOCK_PC request, we want to carry any eventual
3146 * sense key with us all the way through
3147 */
3148 if (!blk_pc_request(req))
3149 req->errors = 0;
3150
3151 if (!uptodate) {
3152 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3153 printk("end_request: I/O error, dev %s, sector %llu\n",
3154 req->rq_disk ? req->rq_disk->disk_name : "?",
3155 (unsigned long long)req->sector);
3156 }
3157
Jens Axboed72d9042005-11-01 08:35:42 +01003158 if (blk_fs_request(req) && req->rq_disk) {
Jens Axboea3623572005-11-01 09:26:16 +01003159 const int rw = rq_data_dir(req);
3160
Jens Axboe53e86062006-01-17 11:09:27 +01003161 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
Jens Axboed72d9042005-11-01 08:35:42 +01003162 }
3163
Linus Torvalds1da177e2005-04-16 15:20:36 -07003164 total_bytes = bio_nbytes = 0;
3165 while ((bio = req->bio) != NULL) {
3166 int nbytes;
3167
3168 if (nr_bytes >= bio->bi_size) {
3169 req->bio = bio->bi_next;
3170 nbytes = bio->bi_size;
Tejun Heo797e7db2006-01-06 09:51:03 +01003171 if (!ordered_bio_endio(req, bio, nbytes, error))
3172 bio_endio(bio, nbytes, error);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003173 next_idx = 0;
3174 bio_nbytes = 0;
3175 } else {
3176 int idx = bio->bi_idx + next_idx;
3177
3178 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3179 blk_dump_rq_flags(req, "__end_that");
3180 printk("%s: bio idx %d >= vcnt %d\n",
3181 __FUNCTION__,
3182 bio->bi_idx, bio->bi_vcnt);
3183 break;
3184 }
3185
3186 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3187 BIO_BUG_ON(nbytes > bio->bi_size);
3188
3189 /*
3190 * not a complete bvec done
3191 */
3192 if (unlikely(nbytes > nr_bytes)) {
3193 bio_nbytes += nr_bytes;
3194 total_bytes += nr_bytes;
3195 break;
3196 }
3197
3198 /*
3199 * advance to the next vector
3200 */
3201 next_idx++;
3202 bio_nbytes += nbytes;
3203 }
3204
3205 total_bytes += nbytes;
3206 nr_bytes -= nbytes;
3207
3208 if ((bio = req->bio)) {
3209 /*
3210 * end more in this run, or just return 'not-done'
3211 */
3212 if (unlikely(nr_bytes <= 0))
3213 break;
3214 }
3215 }
3216
3217 /*
3218 * completely done
3219 */
3220 if (!req->bio)
3221 return 0;
3222
3223 /*
3224 * if the request wasn't completed, update state
3225 */
3226 if (bio_nbytes) {
Tejun Heo797e7db2006-01-06 09:51:03 +01003227 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3228 bio_endio(bio, bio_nbytes, error);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003229 bio->bi_idx += next_idx;
3230 bio_iovec(bio)->bv_offset += nr_bytes;
3231 bio_iovec(bio)->bv_len -= nr_bytes;
3232 }
3233
3234 blk_recalc_rq_sectors(req, total_bytes >> 9);
3235 blk_recalc_rq_segments(req);
3236 return 1;
3237}
3238
3239/**
3240 * end_that_request_first - end I/O on a request
3241 * @req: the request being processed
3242 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3243 * @nr_sectors: number of sectors to end I/O on
3244 *
3245 * Description:
3246 * Ends I/O on a number of sectors attached to @req, and sets it up
3247 * for the next range of segments (if any) in the cluster.
3248 *
3249 * Return:
3250 * 0 - we are done with this request, call end_that_request_last()
3251 * 1 - still buffers pending for this request
3252 **/
3253int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3254{
3255 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3256}
3257
3258EXPORT_SYMBOL(end_that_request_first);
3259
3260/**
3261 * end_that_request_chunk - end I/O on a request
3262 * @req: the request being processed
3263 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3264 * @nr_bytes: number of bytes to complete
3265 *
3266 * Description:
3267 * Ends I/O on a number of bytes attached to @req, and sets it up
3268 * for the next range of segments (if any). Like end_that_request_first(),
3269 * but deals with bytes instead of sectors.
3270 *
3271 * Return:
3272 * 0 - we are done with this request, call end_that_request_last()
3273 * 1 - still buffers pending for this request
3274 **/
3275int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3276{
3277 return __end_that_request_first(req, uptodate, nr_bytes);
3278}
3279
3280EXPORT_SYMBOL(end_that_request_chunk);
3281
3282/*
Jens Axboeff856ba2006-01-09 16:02:34 +01003283 * splice the completion data to a local structure and hand off to
3284 * process_completion_queue() to complete the requests
3285 */
3286static void blk_done_softirq(struct softirq_action *h)
3287{
3288 struct list_head *cpu_list;
3289 LIST_HEAD(local_list);
3290
3291 local_irq_disable();
3292 cpu_list = &__get_cpu_var(blk_cpu_done);
3293 list_splice_init(cpu_list, &local_list);
3294 local_irq_enable();
3295
3296 while (!list_empty(&local_list)) {
3297 struct request *rq = list_entry(local_list.next, struct request, donelist);
3298
3299 list_del_init(&rq->donelist);
3300 rq->q->softirq_done_fn(rq);
3301 }
3302}
3303
3304#ifdef CONFIG_HOTPLUG_CPU
3305
3306static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3307 void *hcpu)
3308{
3309 /*
3310 * If a CPU goes away, splice its entries to the current CPU
3311 * and trigger a run of the softirq
3312 */
3313 if (action == CPU_DEAD) {
3314 int cpu = (unsigned long) hcpu;
3315
3316 local_irq_disable();
3317 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3318 &__get_cpu_var(blk_cpu_done));
3319 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3320 local_irq_enable();
3321 }
3322
3323 return NOTIFY_OK;
3324}
3325
3326
3327static struct notifier_block __devinitdata blk_cpu_notifier = {
3328 .notifier_call = blk_cpu_notify,
3329};
3330
3331#endif /* CONFIG_HOTPLUG_CPU */
3332
3333/**
3334 * blk_complete_request - end I/O on a request
3335 * @req: the request being processed
3336 *
3337 * Description:
3338 * Ends all I/O on a request. It does not handle partial completions,
3339 * unless the driver actually implements this in its completionc callback
3340 * through requeueing. Theh actual completion happens out-of-order,
3341 * through a softirq handler. The user must have registered a completion
3342 * callback through blk_queue_softirq_done().
3343 **/
3344
3345void blk_complete_request(struct request *req)
3346{
3347 struct list_head *cpu_list;
3348 unsigned long flags;
3349
3350 BUG_ON(!req->q->softirq_done_fn);
3351
3352 local_irq_save(flags);
3353
3354 cpu_list = &__get_cpu_var(blk_cpu_done);
3355 list_add_tail(&req->donelist, cpu_list);
3356 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3357
3358 local_irq_restore(flags);
3359}
3360
3361EXPORT_SYMBOL(blk_complete_request);
3362
3363/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07003364 * queue lock must be held
3365 */
Tejun Heo8ffdc652006-01-06 09:49:03 +01003366void end_that_request_last(struct request *req, int uptodate)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003367{
3368 struct gendisk *disk = req->rq_disk;
Tejun Heo8ffdc652006-01-06 09:49:03 +01003369 int error;
3370
3371 /*
3372 * extend uptodate bool to allow < 0 value to be direct io error
3373 */
3374 error = 0;
3375 if (end_io_error(uptodate))
3376 error = !uptodate ? -EIO : uptodate;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003377
3378 if (unlikely(laptop_mode) && blk_fs_request(req))
3379 laptop_io_completion();
3380
3381 if (disk && blk_fs_request(req)) {
3382 unsigned long duration = jiffies - req->start_time;
Jens Axboea3623572005-11-01 09:26:16 +01003383 const int rw = rq_data_dir(req);
3384
3385 __disk_stat_inc(disk, ios[rw]);
3386 __disk_stat_add(disk, ticks[rw], duration);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003387 disk_round_stats(disk);
3388 disk->in_flight--;
3389 }
3390 if (req->end_io)
Tejun Heo8ffdc652006-01-06 09:49:03 +01003391 req->end_io(req, error);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003392 else
3393 __blk_put_request(req->q, req);
3394}
3395
3396EXPORT_SYMBOL(end_that_request_last);
3397
3398void end_request(struct request *req, int uptodate)
3399{
3400 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3401 add_disk_randomness(req->rq_disk);
3402 blkdev_dequeue_request(req);
Tejun Heo8ffdc652006-01-06 09:49:03 +01003403 end_that_request_last(req, uptodate);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003404 }
3405}
3406
3407EXPORT_SYMBOL(end_request);
3408
3409void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3410{
3411 /* first three bits are identical in rq->flags and bio->bi_rw */
3412 rq->flags |= (bio->bi_rw & 7);
3413
3414 rq->nr_phys_segments = bio_phys_segments(q, bio);
3415 rq->nr_hw_segments = bio_hw_segments(q, bio);
3416 rq->current_nr_sectors = bio_cur_sectors(bio);
3417 rq->hard_cur_sectors = rq->current_nr_sectors;
3418 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3419 rq->buffer = bio_data(bio);
3420
3421 rq->bio = rq->biotail = bio;
3422}
3423
3424EXPORT_SYMBOL(blk_rq_bio_prep);
3425
3426int kblockd_schedule_work(struct work_struct *work)
3427{
3428 return queue_work(kblockd_workqueue, work);
3429}
3430
3431EXPORT_SYMBOL(kblockd_schedule_work);
3432
3433void kblockd_flush(void)
3434{
3435 flush_workqueue(kblockd_workqueue);
3436}
3437EXPORT_SYMBOL(kblockd_flush);
3438
3439int __init blk_dev_init(void)
3440{
Jens Axboeff856ba2006-01-09 16:02:34 +01003441 int i;
3442
Linus Torvalds1da177e2005-04-16 15:20:36 -07003443 kblockd_workqueue = create_workqueue("kblockd");
3444 if (!kblockd_workqueue)
3445 panic("Failed to create kblockd\n");
3446
3447 request_cachep = kmem_cache_create("blkdev_requests",
3448 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3449
3450 requestq_cachep = kmem_cache_create("blkdev_queue",
3451 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3452
3453 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3454 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3455
Jens Axboeff856ba2006-01-09 16:02:34 +01003456 for (i = 0; i < NR_CPUS; i++)
3457 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3458
3459 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3460#ifdef CONFIG_HOTPLUG_CPU
3461 register_cpu_notifier(&blk_cpu_notifier);
3462#endif
3463
Linus Torvalds1da177e2005-04-16 15:20:36 -07003464 blk_max_low_pfn = max_low_pfn;
3465 blk_max_pfn = max_pfn;
3466
3467 return 0;
3468}
3469
3470/*
3471 * IO Context helper functions
3472 */
3473void put_io_context(struct io_context *ioc)
3474{
3475 if (ioc == NULL)
3476 return;
3477
3478 BUG_ON(atomic_read(&ioc->refcount) == 0);
3479
3480 if (atomic_dec_and_test(&ioc->refcount)) {
3481 if (ioc->aic && ioc->aic->dtor)
3482 ioc->aic->dtor(ioc->aic);
3483 if (ioc->cic && ioc->cic->dtor)
3484 ioc->cic->dtor(ioc->cic);
3485
3486 kmem_cache_free(iocontext_cachep, ioc);
3487 }
3488}
3489EXPORT_SYMBOL(put_io_context);
3490
3491/* Called by the exitting task */
3492void exit_io_context(void)
3493{
3494 unsigned long flags;
3495 struct io_context *ioc;
3496
3497 local_irq_save(flags);
Jens Axboe22e2c502005-06-27 10:55:12 +02003498 task_lock(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003499 ioc = current->io_context;
3500 current->io_context = NULL;
Jens Axboe22e2c502005-06-27 10:55:12 +02003501 ioc->task = NULL;
3502 task_unlock(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003503 local_irq_restore(flags);
3504
3505 if (ioc->aic && ioc->aic->exit)
3506 ioc->aic->exit(ioc->aic);
3507 if (ioc->cic && ioc->cic->exit)
3508 ioc->cic->exit(ioc->cic);
3509
3510 put_io_context(ioc);
3511}
3512
3513/*
3514 * If the current task has no IO context then create one and initialise it.
Nick Pigginfb3cc432005-06-28 20:45:15 -07003515 * Otherwise, return its existing IO context.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003516 *
Nick Pigginfb3cc432005-06-28 20:45:15 -07003517 * This returned IO context doesn't have a specifically elevated refcount,
3518 * but since the current task itself holds a reference, the context can be
3519 * used in general code, so long as it stays within `current` context.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003520 */
Al Viro8267e262005-10-21 03:20:53 -04003521struct io_context *current_io_context(gfp_t gfp_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003522{
3523 struct task_struct *tsk = current;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003524 struct io_context *ret;
3525
Linus Torvalds1da177e2005-04-16 15:20:36 -07003526 ret = tsk->io_context;
Nick Pigginfb3cc432005-06-28 20:45:15 -07003527 if (likely(ret))
3528 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003529
3530 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3531 if (ret) {
3532 atomic_set(&ret->refcount, 1);
Jens Axboe22e2c502005-06-27 10:55:12 +02003533 ret->task = current;
3534 ret->set_ioprio = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003535 ret->last_waited = jiffies; /* doesn't matter... */
3536 ret->nr_batch_requests = 0; /* because this is 0 */
3537 ret->aic = NULL;
3538 ret->cic = NULL;
Nick Pigginfb3cc432005-06-28 20:45:15 -07003539 tsk->io_context = ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003540 }
3541
3542 return ret;
3543}
Nick Pigginfb3cc432005-06-28 20:45:15 -07003544EXPORT_SYMBOL(current_io_context);
3545
3546/*
3547 * If the current task has no IO context then create one and initialise it.
3548 * If it does have a context, take a ref on it.
3549 *
3550 * This is always called in the context of the task which submitted the I/O.
3551 */
Al Viro8267e262005-10-21 03:20:53 -04003552struct io_context *get_io_context(gfp_t gfp_flags)
Nick Pigginfb3cc432005-06-28 20:45:15 -07003553{
3554 struct io_context *ret;
3555 ret = current_io_context(gfp_flags);
3556 if (likely(ret))
3557 atomic_inc(&ret->refcount);
3558 return ret;
3559}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003560EXPORT_SYMBOL(get_io_context);
3561
3562void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3563{
3564 struct io_context *src = *psrc;
3565 struct io_context *dst = *pdst;
3566
3567 if (src) {
3568 BUG_ON(atomic_read(&src->refcount) == 0);
3569 atomic_inc(&src->refcount);
3570 put_io_context(dst);
3571 *pdst = src;
3572 }
3573}
3574EXPORT_SYMBOL(copy_io_context);
3575
3576void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3577{
3578 struct io_context *temp;
3579 temp = *ioc1;
3580 *ioc1 = *ioc2;
3581 *ioc2 = temp;
3582}
3583EXPORT_SYMBOL(swap_io_context);
3584
3585/*
3586 * sysfs parts below
3587 */
3588struct queue_sysfs_entry {
3589 struct attribute attr;
3590 ssize_t (*show)(struct request_queue *, char *);
3591 ssize_t (*store)(struct request_queue *, const char *, size_t);
3592};
3593
3594static ssize_t
3595queue_var_show(unsigned int var, char *page)
3596{
3597 return sprintf(page, "%d\n", var);
3598}
3599
3600static ssize_t
3601queue_var_store(unsigned long *var, const char *page, size_t count)
3602{
3603 char *p = (char *) page;
3604
3605 *var = simple_strtoul(p, &p, 10);
3606 return count;
3607}
3608
3609static ssize_t queue_requests_show(struct request_queue *q, char *page)
3610{
3611 return queue_var_show(q->nr_requests, (page));
3612}
3613
3614static ssize_t
3615queue_requests_store(struct request_queue *q, const char *page, size_t count)
3616{
3617 struct request_list *rl = &q->rq;
3618
3619 int ret = queue_var_store(&q->nr_requests, page, count);
3620 if (q->nr_requests < BLKDEV_MIN_RQ)
3621 q->nr_requests = BLKDEV_MIN_RQ;
3622 blk_queue_congestion_threshold(q);
3623
3624 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3625 set_queue_congested(q, READ);
3626 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3627 clear_queue_congested(q, READ);
3628
3629 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3630 set_queue_congested(q, WRITE);
3631 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3632 clear_queue_congested(q, WRITE);
3633
3634 if (rl->count[READ] >= q->nr_requests) {
3635 blk_set_queue_full(q, READ);
3636 } else if (rl->count[READ]+1 <= q->nr_requests) {
3637 blk_clear_queue_full(q, READ);
3638 wake_up(&rl->wait[READ]);
3639 }
3640
3641 if (rl->count[WRITE] >= q->nr_requests) {
3642 blk_set_queue_full(q, WRITE);
3643 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3644 blk_clear_queue_full(q, WRITE);
3645 wake_up(&rl->wait[WRITE]);
3646 }
3647 return ret;
3648}
3649
3650static ssize_t queue_ra_show(struct request_queue *q, char *page)
3651{
3652 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3653
3654 return queue_var_show(ra_kb, (page));
3655}
3656
3657static ssize_t
3658queue_ra_store(struct request_queue *q, const char *page, size_t count)
3659{
3660 unsigned long ra_kb;
3661 ssize_t ret = queue_var_store(&ra_kb, page, count);
3662
3663 spin_lock_irq(q->queue_lock);
3664 if (ra_kb > (q->max_sectors >> 1))
3665 ra_kb = (q->max_sectors >> 1);
3666
3667 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3668 spin_unlock_irq(q->queue_lock);
3669
3670 return ret;
3671}
3672
3673static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3674{
3675 int max_sectors_kb = q->max_sectors >> 1;
3676
3677 return queue_var_show(max_sectors_kb, (page));
3678}
3679
3680static ssize_t
3681queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3682{
3683 unsigned long max_sectors_kb,
3684 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3685 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3686 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3687 int ra_kb;
3688
3689 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3690 return -EINVAL;
3691 /*
3692 * Take the queue lock to update the readahead and max_sectors
3693 * values synchronously:
3694 */
3695 spin_lock_irq(q->queue_lock);
3696 /*
3697 * Trim readahead window as well, if necessary:
3698 */
3699 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3700 if (ra_kb > max_sectors_kb)
3701 q->backing_dev_info.ra_pages =
3702 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3703
3704 q->max_sectors = max_sectors_kb << 1;
3705 spin_unlock_irq(q->queue_lock);
3706
3707 return ret;
3708}
3709
3710static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3711{
3712 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3713
3714 return queue_var_show(max_hw_sectors_kb, (page));
3715}
3716
3717
3718static struct queue_sysfs_entry queue_requests_entry = {
3719 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3720 .show = queue_requests_show,
3721 .store = queue_requests_store,
3722};
3723
3724static struct queue_sysfs_entry queue_ra_entry = {
3725 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3726 .show = queue_ra_show,
3727 .store = queue_ra_store,
3728};
3729
3730static struct queue_sysfs_entry queue_max_sectors_entry = {
3731 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3732 .show = queue_max_sectors_show,
3733 .store = queue_max_sectors_store,
3734};
3735
3736static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3737 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3738 .show = queue_max_hw_sectors_show,
3739};
3740
3741static struct queue_sysfs_entry queue_iosched_entry = {
3742 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3743 .show = elv_iosched_show,
3744 .store = elv_iosched_store,
3745};
3746
3747static struct attribute *default_attrs[] = {
3748 &queue_requests_entry.attr,
3749 &queue_ra_entry.attr,
3750 &queue_max_hw_sectors_entry.attr,
3751 &queue_max_sectors_entry.attr,
3752 &queue_iosched_entry.attr,
3753 NULL,
3754};
3755
3756#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3757
3758static ssize_t
3759queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3760{
3761 struct queue_sysfs_entry *entry = to_queue(attr);
3762 struct request_queue *q;
3763
3764 q = container_of(kobj, struct request_queue, kobj);
3765 if (!entry->show)
Dmitry Torokhov6c1852a2005-04-29 01:26:06 -05003766 return -EIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003767
3768 return entry->show(q, page);
3769}
3770
3771static ssize_t
3772queue_attr_store(struct kobject *kobj, struct attribute *attr,
3773 const char *page, size_t length)
3774{
3775 struct queue_sysfs_entry *entry = to_queue(attr);
3776 struct request_queue *q;
3777
3778 q = container_of(kobj, struct request_queue, kobj);
3779 if (!entry->store)
Dmitry Torokhov6c1852a2005-04-29 01:26:06 -05003780 return -EIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003781
3782 return entry->store(q, page, length);
3783}
3784
3785static struct sysfs_ops queue_sysfs_ops = {
3786 .show = queue_attr_show,
3787 .store = queue_attr_store,
3788};
3789
Adrian Bunk93d17d32005-06-25 14:59:10 -07003790static struct kobj_type queue_ktype = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003791 .sysfs_ops = &queue_sysfs_ops,
3792 .default_attrs = default_attrs,
3793};
3794
3795int blk_register_queue(struct gendisk *disk)
3796{
3797 int ret;
3798
3799 request_queue_t *q = disk->queue;
3800
3801 if (!q || !q->request_fn)
3802 return -ENXIO;
3803
3804 q->kobj.parent = kobject_get(&disk->kobj);
3805 if (!q->kobj.parent)
3806 return -EBUSY;
3807
3808 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3809 q->kobj.ktype = &queue_ktype;
3810
3811 ret = kobject_register(&q->kobj);
3812 if (ret < 0)
3813 return ret;
3814
3815 ret = elv_register_queue(q);
3816 if (ret) {
3817 kobject_unregister(&q->kobj);
3818 return ret;
3819 }
3820
3821 return 0;
3822}
3823
3824void blk_unregister_queue(struct gendisk *disk)
3825{
3826 request_queue_t *q = disk->queue;
3827
3828 if (q && q->request_fn) {
3829 elv_unregister_queue(q);
3830
3831 kobject_unregister(&q->kobj);
3832 kobject_put(&disk->kobj);
3833 }
3834}