blob: 76859ff5343717049cb407d7f8de0ac3f9d1c466 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 *
6 * Created by David Woodhouse <dwmw2@infradead.org>
7 *
8 * For licensing information, see the file 'LICENCE' in this directory.
9 *
Andrew Victor3be36672005-02-09 09:09:05 +000010 * $Id: scan.c,v 1.116 2005/02/09 09:09:02 pavlov Exp $
Linus Torvalds1da177e2005-04-16 15:20:36 -070011 *
12 */
13#include <linux/kernel.h>
14#include <linux/sched.h>
15#include <linux/slab.h>
16#include <linux/mtd/mtd.h>
17#include <linux/pagemap.h>
18#include <linux/crc32.h>
19#include <linux/compiler.h>
20#include "nodelist.h"
21
Andrew Victor3be36672005-02-09 09:09:05 +000022#define DEFAULT_EMPTY_SCAN_SIZE 1024
Linus Torvalds1da177e2005-04-16 15:20:36 -070023
24#define DIRTY_SPACE(x) do { typeof(x) _x = (x); \
25 c->free_size -= _x; c->dirty_size += _x; \
26 jeb->free_size -= _x ; jeb->dirty_size += _x; \
27 }while(0)
28#define USED_SPACE(x) do { typeof(x) _x = (x); \
29 c->free_size -= _x; c->used_size += _x; \
30 jeb->free_size -= _x ; jeb->used_size += _x; \
31 }while(0)
32#define UNCHECKED_SPACE(x) do { typeof(x) _x = (x); \
33 c->free_size -= _x; c->unchecked_size += _x; \
34 jeb->free_size -= _x ; jeb->unchecked_size += _x; \
35 }while(0)
36
37#define noisy_printk(noise, args...) do { \
38 if (*(noise)) { \
39 printk(KERN_NOTICE args); \
40 (*(noise))--; \
41 if (!(*(noise))) { \
42 printk(KERN_NOTICE "Further such events for this erase block will not be printed\n"); \
43 } \
44 } \
45} while(0)
46
47static uint32_t pseudo_random;
48
49static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
50 unsigned char *buf, uint32_t buf_size);
51
52/* These helper functions _must_ increase ofs and also do the dirty/used space accounting.
53 * Returning an error will abort the mount - bad checksums etc. should just mark the space
54 * as dirty.
55 */
56static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
57 struct jffs2_raw_inode *ri, uint32_t ofs);
58static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
59 struct jffs2_raw_dirent *rd, uint32_t ofs);
60
61#define BLK_STATE_ALLFF 0
62#define BLK_STATE_CLEAN 1
63#define BLK_STATE_PARTDIRTY 2
64#define BLK_STATE_CLEANMARKER 3
65#define BLK_STATE_ALLDIRTY 4
66#define BLK_STATE_BADBLOCK 5
67
68static inline int min_free(struct jffs2_sb_info *c)
69{
70 uint32_t min = 2 * sizeof(struct jffs2_raw_inode);
71#if defined CONFIG_JFFS2_FS_NAND || defined CONFIG_JFFS2_FS_NOR_ECC
72 if (!jffs2_can_mark_obsolete(c) && min < c->wbuf_pagesize)
73 return c->wbuf_pagesize;
74#endif
75 return min;
76
77}
Andrew Victor3be36672005-02-09 09:09:05 +000078
79static inline uint32_t EMPTY_SCAN_SIZE(uint32_t sector_size) {
80 if (sector_size < DEFAULT_EMPTY_SCAN_SIZE)
81 return sector_size;
82 else
83 return DEFAULT_EMPTY_SCAN_SIZE;
84}
85
Linus Torvalds1da177e2005-04-16 15:20:36 -070086int jffs2_scan_medium(struct jffs2_sb_info *c)
87{
88 int i, ret;
89 uint32_t empty_blocks = 0, bad_blocks = 0;
90 unsigned char *flashbuf = NULL;
91 uint32_t buf_size = 0;
92#ifndef __ECOS
93 size_t pointlen;
94
95 if (c->mtd->point) {
96 ret = c->mtd->point (c->mtd, 0, c->mtd->size, &pointlen, &flashbuf);
97 if (!ret && pointlen < c->mtd->size) {
98 /* Don't muck about if it won't let us point to the whole flash */
99 D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", pointlen));
100 c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size);
101 flashbuf = NULL;
102 }
103 if (ret)
104 D1(printk(KERN_DEBUG "MTD point failed %d\n", ret));
105 }
106#endif
107 if (!flashbuf) {
108 /* For NAND it's quicker to read a whole eraseblock at a time,
109 apparently */
110 if (jffs2_cleanmarker_oob(c))
111 buf_size = c->sector_size;
112 else
113 buf_size = PAGE_SIZE;
114
115 /* Respect kmalloc limitations */
116 if (buf_size > 128*1024)
117 buf_size = 128*1024;
118
119 D1(printk(KERN_DEBUG "Allocating readbuf of %d bytes\n", buf_size));
120 flashbuf = kmalloc(buf_size, GFP_KERNEL);
121 if (!flashbuf)
122 return -ENOMEM;
123 }
124
125 for (i=0; i<c->nr_blocks; i++) {
126 struct jffs2_eraseblock *jeb = &c->blocks[i];
127
128 ret = jffs2_scan_eraseblock(c, jeb, buf_size?flashbuf:(flashbuf+jeb->offset), buf_size);
129
130 if (ret < 0)
131 goto out;
132
133 ACCT_PARANOIA_CHECK(jeb);
134
135 /* Now decide which list to put it on */
136 switch(ret) {
137 case BLK_STATE_ALLFF:
138 /*
139 * Empty block. Since we can't be sure it
140 * was entirely erased, we just queue it for erase
141 * again. It will be marked as such when the erase
142 * is complete. Meanwhile we still count it as empty
143 * for later checks.
144 */
145 empty_blocks++;
146 list_add(&jeb->list, &c->erase_pending_list);
147 c->nr_erasing_blocks++;
148 break;
149
150 case BLK_STATE_CLEANMARKER:
151 /* Only a CLEANMARKER node is valid */
152 if (!jeb->dirty_size) {
153 /* It's actually free */
154 list_add(&jeb->list, &c->free_list);
155 c->nr_free_blocks++;
156 } else {
157 /* Dirt */
158 D1(printk(KERN_DEBUG "Adding all-dirty block at 0x%08x to erase_pending_list\n", jeb->offset));
159 list_add(&jeb->list, &c->erase_pending_list);
160 c->nr_erasing_blocks++;
161 }
162 break;
163
164 case BLK_STATE_CLEAN:
165 /* Full (or almost full) of clean data. Clean list */
166 list_add(&jeb->list, &c->clean_list);
167 break;
168
169 case BLK_STATE_PARTDIRTY:
170 /* Some data, but not full. Dirty list. */
171 /* We want to remember the block with most free space
172 and stick it in the 'nextblock' position to start writing to it. */
173 if (jeb->free_size > min_free(c) &&
174 (!c->nextblock || c->nextblock->free_size < jeb->free_size)) {
175 /* Better candidate for the next writes to go to */
176 if (c->nextblock) {
177 c->nextblock->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size;
178 c->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size;
179 c->free_size -= c->nextblock->free_size;
180 c->wasted_size -= c->nextblock->wasted_size;
181 c->nextblock->free_size = c->nextblock->wasted_size = 0;
182 if (VERYDIRTY(c, c->nextblock->dirty_size)) {
183 list_add(&c->nextblock->list, &c->very_dirty_list);
184 } else {
185 list_add(&c->nextblock->list, &c->dirty_list);
186 }
187 }
188 c->nextblock = jeb;
189 } else {
190 jeb->dirty_size += jeb->free_size + jeb->wasted_size;
191 c->dirty_size += jeb->free_size + jeb->wasted_size;
192 c->free_size -= jeb->free_size;
193 c->wasted_size -= jeb->wasted_size;
194 jeb->free_size = jeb->wasted_size = 0;
195 if (VERYDIRTY(c, jeb->dirty_size)) {
196 list_add(&jeb->list, &c->very_dirty_list);
197 } else {
198 list_add(&jeb->list, &c->dirty_list);
199 }
200 }
201 break;
202
203 case BLK_STATE_ALLDIRTY:
204 /* Nothing valid - not even a clean marker. Needs erasing. */
205 /* For now we just put it on the erasing list. We'll start the erases later */
206 D1(printk(KERN_NOTICE "JFFS2: Erase block at 0x%08x is not formatted. It will be erased\n", jeb->offset));
207 list_add(&jeb->list, &c->erase_pending_list);
208 c->nr_erasing_blocks++;
209 break;
210
211 case BLK_STATE_BADBLOCK:
212 D1(printk(KERN_NOTICE "JFFS2: Block at 0x%08x is bad\n", jeb->offset));
213 list_add(&jeb->list, &c->bad_list);
214 c->bad_size += c->sector_size;
215 c->free_size -= c->sector_size;
216 bad_blocks++;
217 break;
218 default:
219 printk(KERN_WARNING "jffs2_scan_medium(): unknown block state\n");
220 BUG();
221 }
222 }
223
224 /* Nextblock dirty is always seen as wasted, because we cannot recycle it now */
225 if (c->nextblock && (c->nextblock->dirty_size)) {
226 c->nextblock->wasted_size += c->nextblock->dirty_size;
227 c->wasted_size += c->nextblock->dirty_size;
228 c->dirty_size -= c->nextblock->dirty_size;
229 c->nextblock->dirty_size = 0;
230 }
231#if defined CONFIG_JFFS2_FS_NAND || defined CONFIG_JFFS2_FS_NOR_ECC
232 if (!jffs2_can_mark_obsolete(c) && c->nextblock && (c->nextblock->free_size & (c->wbuf_pagesize-1))) {
233 /* If we're going to start writing into a block which already
234 contains data, and the end of the data isn't page-aligned,
235 skip a little and align it. */
236
237 uint32_t skip = c->nextblock->free_size & (c->wbuf_pagesize-1);
238
239 D1(printk(KERN_DEBUG "jffs2_scan_medium(): Skipping %d bytes in nextblock to ensure page alignment\n",
240 skip));
241 c->nextblock->wasted_size += skip;
242 c->wasted_size += skip;
243
244 c->nextblock->free_size -= skip;
245 c->free_size -= skip;
246 }
247#endif
248 if (c->nr_erasing_blocks) {
249 if ( !c->used_size && ((c->nr_free_blocks+empty_blocks+bad_blocks)!= c->nr_blocks || bad_blocks == c->nr_blocks) ) {
250 printk(KERN_NOTICE "Cowardly refusing to erase blocks on filesystem with no valid JFFS2 nodes\n");
251 printk(KERN_NOTICE "empty_blocks %d, bad_blocks %d, c->nr_blocks %d\n",empty_blocks,bad_blocks,c->nr_blocks);
252 ret = -EIO;
253 goto out;
254 }
255 jffs2_erase_pending_trigger(c);
256 }
257 ret = 0;
258 out:
259 if (buf_size)
260 kfree(flashbuf);
261#ifndef __ECOS
262 else
263 c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size);
264#endif
265 return ret;
266}
267
268static int jffs2_fill_scan_buf (struct jffs2_sb_info *c, unsigned char *buf,
269 uint32_t ofs, uint32_t len)
270{
271 int ret;
272 size_t retlen;
273
274 ret = jffs2_flash_read(c, ofs, len, &retlen, buf);
275 if (ret) {
276 D1(printk(KERN_WARNING "mtd->read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret));
277 return ret;
278 }
279 if (retlen < len) {
280 D1(printk(KERN_WARNING "Read at 0x%x gave only 0x%zx bytes\n", ofs, retlen));
281 return -EIO;
282 }
283 D2(printk(KERN_DEBUG "Read 0x%x bytes from 0x%08x into buf\n", len, ofs));
284 D2(printk(KERN_DEBUG "000: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
285 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13], buf[14], buf[15]));
286 return 0;
287}
288
289static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
290 unsigned char *buf, uint32_t buf_size) {
291 struct jffs2_unknown_node *node;
292 struct jffs2_unknown_node crcnode;
293 uint32_t ofs, prevofs;
294 uint32_t hdr_crc, buf_ofs, buf_len;
295 int err;
296 int noise = 0;
297#ifdef CONFIG_JFFS2_FS_NAND
298 int cleanmarkerfound = 0;
299#endif
300
301 ofs = jeb->offset;
302 prevofs = jeb->offset - 1;
303
304 D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs));
305
306#ifdef CONFIG_JFFS2_FS_NAND
307 if (jffs2_cleanmarker_oob(c)) {
308 int ret = jffs2_check_nand_cleanmarker(c, jeb);
309 D2(printk(KERN_NOTICE "jffs_check_nand_cleanmarker returned %d\n",ret));
310 /* Even if it's not found, we still scan to see
311 if the block is empty. We use this information
312 to decide whether to erase it or not. */
313 switch (ret) {
314 case 0: cleanmarkerfound = 1; break;
315 case 1: break;
316 case 2: return BLK_STATE_BADBLOCK;
317 case 3: return BLK_STATE_ALLDIRTY; /* Block has failed to erase min. once */
318 default: return ret;
319 }
320 }
321#endif
322 buf_ofs = jeb->offset;
323
324 if (!buf_size) {
325 buf_len = c->sector_size;
326 } else {
Andrew Victor3be36672005-02-09 09:09:05 +0000327 buf_len = EMPTY_SCAN_SIZE(c->sector_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700328 err = jffs2_fill_scan_buf(c, buf, buf_ofs, buf_len);
329 if (err)
330 return err;
331 }
332
333 /* We temporarily use 'ofs' as a pointer into the buffer/jeb */
334 ofs = 0;
335
336 /* Scan only 4KiB of 0xFF before declaring it's empty */
Andrew Victor3be36672005-02-09 09:09:05 +0000337 while(ofs < EMPTY_SCAN_SIZE(c->sector_size) && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700338 ofs += 4;
339
Andrew Victor3be36672005-02-09 09:09:05 +0000340 if (ofs == EMPTY_SCAN_SIZE(c->sector_size)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700341#ifdef CONFIG_JFFS2_FS_NAND
342 if (jffs2_cleanmarker_oob(c)) {
343 /* scan oob, take care of cleanmarker */
344 int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound);
345 D2(printk(KERN_NOTICE "jffs2_check_oob_empty returned %d\n",ret));
346 switch (ret) {
347 case 0: return cleanmarkerfound ? BLK_STATE_CLEANMARKER : BLK_STATE_ALLFF;
348 case 1: return BLK_STATE_ALLDIRTY;
349 default: return ret;
350 }
351 }
352#endif
353 D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset));
354 return BLK_STATE_ALLFF; /* OK to erase if all blocks are like this */
355 }
356 if (ofs) {
357 D1(printk(KERN_DEBUG "Free space at %08x ends at %08x\n", jeb->offset,
358 jeb->offset + ofs));
359 DIRTY_SPACE(ofs);
360 }
361
362 /* Now ofs is a complete physical flash offset as it always was... */
363 ofs += jeb->offset;
364
365 noise = 10;
366
367scan_more:
368 while(ofs < jeb->offset + c->sector_size) {
369
370 D1(ACCT_PARANOIA_CHECK(jeb));
371
372 cond_resched();
373
374 if (ofs & 3) {
375 printk(KERN_WARNING "Eep. ofs 0x%08x not word-aligned!\n", ofs);
376 ofs = PAD(ofs);
377 continue;
378 }
379 if (ofs == prevofs) {
380 printk(KERN_WARNING "ofs 0x%08x has already been seen. Skipping\n", ofs);
381 DIRTY_SPACE(4);
382 ofs += 4;
383 continue;
384 }
385 prevofs = ofs;
386
387 if (jeb->offset + c->sector_size < ofs + sizeof(*node)) {
388 D1(printk(KERN_DEBUG "Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n", sizeof(struct jffs2_unknown_node),
389 jeb->offset, c->sector_size, ofs, sizeof(*node)));
390 DIRTY_SPACE((jeb->offset + c->sector_size)-ofs);
391 break;
392 }
393
394 if (buf_ofs + buf_len < ofs + sizeof(*node)) {
395 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
396 D1(printk(KERN_DEBUG "Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n",
397 sizeof(struct jffs2_unknown_node), buf_len, ofs));
398 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
399 if (err)
400 return err;
401 buf_ofs = ofs;
402 }
403
404 node = (struct jffs2_unknown_node *)&buf[ofs-buf_ofs];
405
406 if (*(uint32_t *)(&buf[ofs-buf_ofs]) == 0xffffffff) {
407 uint32_t inbuf_ofs;
408 uint32_t empty_start;
409
410 empty_start = ofs;
411 ofs += 4;
412
413 D1(printk(KERN_DEBUG "Found empty flash at 0x%08x\n", ofs));
414 more_empty:
415 inbuf_ofs = ofs - buf_ofs;
416 while (inbuf_ofs < buf_len) {
417 if (*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff) {
418 printk(KERN_WARNING "Empty flash at 0x%08x ends at 0x%08x\n",
419 empty_start, ofs);
420 DIRTY_SPACE(ofs-empty_start);
421 goto scan_more;
422 }
423
424 inbuf_ofs+=4;
425 ofs += 4;
426 }
427 /* Ran off end. */
428 D1(printk(KERN_DEBUG "Empty flash to end of buffer at 0x%08x\n", ofs));
429
430 /* If we're only checking the beginning of a block with a cleanmarker,
431 bail now */
432 if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) &&
433 c->cleanmarker_size && !jeb->dirty_size && !jeb->first_node->next_in_ino) {
Andrew Victor3be36672005-02-09 09:09:05 +0000434 D1(printk(KERN_DEBUG "%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE(c->sector_size)));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700435 return BLK_STATE_CLEANMARKER;
436 }
437
438 /* See how much more there is to read in this eraseblock... */
439 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
440 if (!buf_len) {
441 /* No more to read. Break out of main loop without marking
442 this range of empty space as dirty (because it's not) */
443 D1(printk(KERN_DEBUG "Empty flash at %08x runs to end of block. Treating as free_space\n",
444 empty_start));
445 break;
446 }
447 D1(printk(KERN_DEBUG "Reading another 0x%x at 0x%08x\n", buf_len, ofs));
448 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
449 if (err)
450 return err;
451 buf_ofs = ofs;
452 goto more_empty;
453 }
454
455 if (ofs == jeb->offset && je16_to_cpu(node->magic) == KSAMTIB_CIGAM_2SFFJ) {
456 printk(KERN_WARNING "Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs);
457 DIRTY_SPACE(4);
458 ofs += 4;
459 continue;
460 }
461 if (je16_to_cpu(node->magic) == JFFS2_DIRTY_BITMASK) {
462 D1(printk(KERN_DEBUG "Dirty bitmask at 0x%08x\n", ofs));
463 DIRTY_SPACE(4);
464 ofs += 4;
465 continue;
466 }
467 if (je16_to_cpu(node->magic) == JFFS2_OLD_MAGIC_BITMASK) {
468 printk(KERN_WARNING "Old JFFS2 bitmask found at 0x%08x\n", ofs);
469 printk(KERN_WARNING "You cannot use older JFFS2 filesystems with newer kernels\n");
470 DIRTY_SPACE(4);
471 ofs += 4;
472 continue;
473 }
474 if (je16_to_cpu(node->magic) != JFFS2_MAGIC_BITMASK) {
475 /* OK. We're out of possibilities. Whinge and move on */
476 noisy_printk(&noise, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n",
477 JFFS2_MAGIC_BITMASK, ofs,
478 je16_to_cpu(node->magic));
479 DIRTY_SPACE(4);
480 ofs += 4;
481 continue;
482 }
483 /* We seem to have a node of sorts. Check the CRC */
484 crcnode.magic = node->magic;
485 crcnode.nodetype = cpu_to_je16( je16_to_cpu(node->nodetype) | JFFS2_NODE_ACCURATE);
486 crcnode.totlen = node->totlen;
487 hdr_crc = crc32(0, &crcnode, sizeof(crcnode)-4);
488
489 if (hdr_crc != je32_to_cpu(node->hdr_crc)) {
490 noisy_printk(&noise, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n",
491 ofs, je16_to_cpu(node->magic),
492 je16_to_cpu(node->nodetype),
493 je32_to_cpu(node->totlen),
494 je32_to_cpu(node->hdr_crc),
495 hdr_crc);
496 DIRTY_SPACE(4);
497 ofs += 4;
498 continue;
499 }
500
501 if (ofs + je32_to_cpu(node->totlen) >
502 jeb->offset + c->sector_size) {
503 /* Eep. Node goes over the end of the erase block. */
504 printk(KERN_WARNING "Node at 0x%08x with length 0x%08x would run over the end of the erase block\n",
505 ofs, je32_to_cpu(node->totlen));
506 printk(KERN_WARNING "Perhaps the file system was created with the wrong erase size?\n");
507 DIRTY_SPACE(4);
508 ofs += 4;
509 continue;
510 }
511
512 if (!(je16_to_cpu(node->nodetype) & JFFS2_NODE_ACCURATE)) {
513 /* Wheee. This is an obsoleted node */
514 D2(printk(KERN_DEBUG "Node at 0x%08x is obsolete. Skipping\n", ofs));
515 DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
516 ofs += PAD(je32_to_cpu(node->totlen));
517 continue;
518 }
519
520 switch(je16_to_cpu(node->nodetype)) {
521 case JFFS2_NODETYPE_INODE:
522 if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) {
523 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
524 D1(printk(KERN_DEBUG "Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n",
525 sizeof(struct jffs2_raw_inode), buf_len, ofs));
526 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
527 if (err)
528 return err;
529 buf_ofs = ofs;
530 node = (void *)buf;
531 }
532 err = jffs2_scan_inode_node(c, jeb, (void *)node, ofs);
533 if (err) return err;
534 ofs += PAD(je32_to_cpu(node->totlen));
535 break;
536
537 case JFFS2_NODETYPE_DIRENT:
538 if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) {
539 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
540 D1(printk(KERN_DEBUG "Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n",
541 je32_to_cpu(node->totlen), buf_len, ofs));
542 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
543 if (err)
544 return err;
545 buf_ofs = ofs;
546 node = (void *)buf;
547 }
548 err = jffs2_scan_dirent_node(c, jeb, (void *)node, ofs);
549 if (err) return err;
550 ofs += PAD(je32_to_cpu(node->totlen));
551 break;
552
553 case JFFS2_NODETYPE_CLEANMARKER:
554 D1(printk(KERN_DEBUG "CLEANMARKER node found at 0x%08x\n", ofs));
555 if (je32_to_cpu(node->totlen) != c->cleanmarker_size) {
556 printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n",
557 ofs, je32_to_cpu(node->totlen), c->cleanmarker_size);
558 DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
559 ofs += PAD(sizeof(struct jffs2_unknown_node));
560 } else if (jeb->first_node) {
561 printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs, jeb->offset);
562 DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
563 ofs += PAD(sizeof(struct jffs2_unknown_node));
564 } else {
565 struct jffs2_raw_node_ref *marker_ref = jffs2_alloc_raw_node_ref();
566 if (!marker_ref) {
567 printk(KERN_NOTICE "Failed to allocate node ref for clean marker\n");
568 return -ENOMEM;
569 }
570 marker_ref->next_in_ino = NULL;
571 marker_ref->next_phys = NULL;
572 marker_ref->flash_offset = ofs | REF_NORMAL;
573 marker_ref->__totlen = c->cleanmarker_size;
574 jeb->first_node = jeb->last_node = marker_ref;
575
576 USED_SPACE(PAD(c->cleanmarker_size));
577 ofs += PAD(c->cleanmarker_size);
578 }
579 break;
580
581 case JFFS2_NODETYPE_PADDING:
582 DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
583 ofs += PAD(je32_to_cpu(node->totlen));
584 break;
585
586 default:
587 switch (je16_to_cpu(node->nodetype) & JFFS2_COMPAT_MASK) {
588 case JFFS2_FEATURE_ROCOMPAT:
589 printk(KERN_NOTICE "Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
590 c->flags |= JFFS2_SB_FLAG_RO;
591 if (!(jffs2_is_readonly(c)))
592 return -EROFS;
593 DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
594 ofs += PAD(je32_to_cpu(node->totlen));
595 break;
596
597 case JFFS2_FEATURE_INCOMPAT:
598 printk(KERN_NOTICE "Incompatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
599 return -EINVAL;
600
601 case JFFS2_FEATURE_RWCOMPAT_DELETE:
602 D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
603 DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
604 ofs += PAD(je32_to_cpu(node->totlen));
605 break;
606
607 case JFFS2_FEATURE_RWCOMPAT_COPY:
608 D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
609 USED_SPACE(PAD(je32_to_cpu(node->totlen)));
610 ofs += PAD(je32_to_cpu(node->totlen));
611 break;
612 }
613 }
614 }
615
616
617 D1(printk(KERN_DEBUG "Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x\n", jeb->offset,
618 jeb->free_size, jeb->dirty_size, jeb->unchecked_size, jeb->used_size));
619
620 /* mark_node_obsolete can add to wasted !! */
621 if (jeb->wasted_size) {
622 jeb->dirty_size += jeb->wasted_size;
623 c->dirty_size += jeb->wasted_size;
624 c->wasted_size -= jeb->wasted_size;
625 jeb->wasted_size = 0;
626 }
627
628 if ((jeb->used_size + jeb->unchecked_size) == PAD(c->cleanmarker_size) && !jeb->dirty_size
629 && (!jeb->first_node || !jeb->first_node->next_in_ino) )
630 return BLK_STATE_CLEANMARKER;
631
632 /* move blocks with max 4 byte dirty space to cleanlist */
633 else if (!ISDIRTY(c->sector_size - (jeb->used_size + jeb->unchecked_size))) {
634 c->dirty_size -= jeb->dirty_size;
635 c->wasted_size += jeb->dirty_size;
636 jeb->wasted_size += jeb->dirty_size;
637 jeb->dirty_size = 0;
638 return BLK_STATE_CLEAN;
639 } else if (jeb->used_size || jeb->unchecked_size)
640 return BLK_STATE_PARTDIRTY;
641 else
642 return BLK_STATE_ALLDIRTY;
643}
644
645static struct jffs2_inode_cache *jffs2_scan_make_ino_cache(struct jffs2_sb_info *c, uint32_t ino)
646{
647 struct jffs2_inode_cache *ic;
648
649 ic = jffs2_get_ino_cache(c, ino);
650 if (ic)
651 return ic;
652
653 if (ino > c->highest_ino)
654 c->highest_ino = ino;
655
656 ic = jffs2_alloc_inode_cache();
657 if (!ic) {
658 printk(KERN_NOTICE "jffs2_scan_make_inode_cache(): allocation of inode cache failed\n");
659 return NULL;
660 }
661 memset(ic, 0, sizeof(*ic));
662
663 ic->ino = ino;
664 ic->nodes = (void *)ic;
665 jffs2_add_ino_cache(c, ic);
666 if (ino == 1)
667 ic->nlink = 1;
668 return ic;
669}
670
671static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
672 struct jffs2_raw_inode *ri, uint32_t ofs)
673{
674 struct jffs2_raw_node_ref *raw;
675 struct jffs2_inode_cache *ic;
676 uint32_t ino = je32_to_cpu(ri->ino);
677
678 D1(printk(KERN_DEBUG "jffs2_scan_inode_node(): Node at 0x%08x\n", ofs));
679
680 /* We do very little here now. Just check the ino# to which we should attribute
681 this node; we can do all the CRC checking etc. later. There's a tradeoff here --
682 we used to scan the flash once only, reading everything we want from it into
683 memory, then building all our in-core data structures and freeing the extra
684 information. Now we allow the first part of the mount to complete a lot quicker,
685 but we have to go _back_ to the flash in order to finish the CRC checking, etc.
686 Which means that the _full_ amount of time to get to proper write mode with GC
687 operational may actually be _longer_ than before. Sucks to be me. */
688
689 raw = jffs2_alloc_raw_node_ref();
690 if (!raw) {
691 printk(KERN_NOTICE "jffs2_scan_inode_node(): allocation of node reference failed\n");
692 return -ENOMEM;
693 }
694
695 ic = jffs2_get_ino_cache(c, ino);
696 if (!ic) {
697 /* Inocache get failed. Either we read a bogus ino# or it's just genuinely the
698 first node we found for this inode. Do a CRC check to protect against the former
699 case */
700 uint32_t crc = crc32(0, ri, sizeof(*ri)-8);
701
702 if (crc != je32_to_cpu(ri->node_crc)) {
703 printk(KERN_NOTICE "jffs2_scan_inode_node(): CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
704 ofs, je32_to_cpu(ri->node_crc), crc);
705 /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
706 DIRTY_SPACE(PAD(je32_to_cpu(ri->totlen)));
707 jffs2_free_raw_node_ref(raw);
708 return 0;
709 }
710 ic = jffs2_scan_make_ino_cache(c, ino);
711 if (!ic) {
712 jffs2_free_raw_node_ref(raw);
713 return -ENOMEM;
714 }
715 }
716
717 /* Wheee. It worked */
718
719 raw->flash_offset = ofs | REF_UNCHECKED;
720 raw->__totlen = PAD(je32_to_cpu(ri->totlen));
721 raw->next_phys = NULL;
722 raw->next_in_ino = ic->nodes;
723
724 ic->nodes = raw;
725 if (!jeb->first_node)
726 jeb->first_node = raw;
727 if (jeb->last_node)
728 jeb->last_node->next_phys = raw;
729 jeb->last_node = raw;
730
731 D1(printk(KERN_DEBUG "Node is ino #%u, version %d. Range 0x%x-0x%x\n",
732 je32_to_cpu(ri->ino), je32_to_cpu(ri->version),
733 je32_to_cpu(ri->offset),
734 je32_to_cpu(ri->offset)+je32_to_cpu(ri->dsize)));
735
736 pseudo_random += je32_to_cpu(ri->version);
737
738 UNCHECKED_SPACE(PAD(je32_to_cpu(ri->totlen)));
739 return 0;
740}
741
742static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
743 struct jffs2_raw_dirent *rd, uint32_t ofs)
744{
745 struct jffs2_raw_node_ref *raw;
746 struct jffs2_full_dirent *fd;
747 struct jffs2_inode_cache *ic;
748 uint32_t crc;
749
750 D1(printk(KERN_DEBUG "jffs2_scan_dirent_node(): Node at 0x%08x\n", ofs));
751
752 /* We don't get here unless the node is still valid, so we don't have to
753 mask in the ACCURATE bit any more. */
754 crc = crc32(0, rd, sizeof(*rd)-8);
755
756 if (crc != je32_to_cpu(rd->node_crc)) {
757 printk(KERN_NOTICE "jffs2_scan_dirent_node(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
758 ofs, je32_to_cpu(rd->node_crc), crc);
759 /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
760 DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen)));
761 return 0;
762 }
763
764 pseudo_random += je32_to_cpu(rd->version);
765
766 fd = jffs2_alloc_full_dirent(rd->nsize+1);
767 if (!fd) {
768 return -ENOMEM;
769 }
770 memcpy(&fd->name, rd->name, rd->nsize);
771 fd->name[rd->nsize] = 0;
772
773 crc = crc32(0, fd->name, rd->nsize);
774 if (crc != je32_to_cpu(rd->name_crc)) {
775 printk(KERN_NOTICE "jffs2_scan_dirent_node(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
776 ofs, je32_to_cpu(rd->name_crc), crc);
777 D1(printk(KERN_NOTICE "Name for which CRC failed is (now) '%s', ino #%d\n", fd->name, je32_to_cpu(rd->ino)));
778 jffs2_free_full_dirent(fd);
779 /* FIXME: Why do we believe totlen? */
780 /* We believe totlen because the CRC on the node _header_ was OK, just the name failed. */
781 DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen)));
782 return 0;
783 }
784 raw = jffs2_alloc_raw_node_ref();
785 if (!raw) {
786 jffs2_free_full_dirent(fd);
787 printk(KERN_NOTICE "jffs2_scan_dirent_node(): allocation of node reference failed\n");
788 return -ENOMEM;
789 }
790 ic = jffs2_scan_make_ino_cache(c, je32_to_cpu(rd->pino));
791 if (!ic) {
792 jffs2_free_full_dirent(fd);
793 jffs2_free_raw_node_ref(raw);
794 return -ENOMEM;
795 }
796
797 raw->__totlen = PAD(je32_to_cpu(rd->totlen));
798 raw->flash_offset = ofs | REF_PRISTINE;
799 raw->next_phys = NULL;
800 raw->next_in_ino = ic->nodes;
801 ic->nodes = raw;
802 if (!jeb->first_node)
803 jeb->first_node = raw;
804 if (jeb->last_node)
805 jeb->last_node->next_phys = raw;
806 jeb->last_node = raw;
807
808 fd->raw = raw;
809 fd->next = NULL;
810 fd->version = je32_to_cpu(rd->version);
811 fd->ino = je32_to_cpu(rd->ino);
812 fd->nhash = full_name_hash(fd->name, rd->nsize);
813 fd->type = rd->type;
814 USED_SPACE(PAD(je32_to_cpu(rd->totlen)));
815 jffs2_add_fd_to_list(c, fd, &ic->scan_dents);
816
817 return 0;
818}
819
820static int count_list(struct list_head *l)
821{
822 uint32_t count = 0;
823 struct list_head *tmp;
824
825 list_for_each(tmp, l) {
826 count++;
827 }
828 return count;
829}
830
831/* Note: This breaks if list_empty(head). I don't care. You
832 might, if you copy this code and use it elsewhere :) */
833static void rotate_list(struct list_head *head, uint32_t count)
834{
835 struct list_head *n = head->next;
836
837 list_del(head);
838 while(count--) {
839 n = n->next;
840 }
841 list_add(head, n);
842}
843
844void jffs2_rotate_lists(struct jffs2_sb_info *c)
845{
846 uint32_t x;
847 uint32_t rotateby;
848
849 x = count_list(&c->clean_list);
850 if (x) {
851 rotateby = pseudo_random % x;
852 D1(printk(KERN_DEBUG "Rotating clean_list by %d\n", rotateby));
853
854 rotate_list((&c->clean_list), rotateby);
855
856 D1(printk(KERN_DEBUG "Erase block at front of clean_list is at %08x\n",
857 list_entry(c->clean_list.next, struct jffs2_eraseblock, list)->offset));
858 } else {
859 D1(printk(KERN_DEBUG "Not rotating empty clean_list\n"));
860 }
861
862 x = count_list(&c->very_dirty_list);
863 if (x) {
864 rotateby = pseudo_random % x;
865 D1(printk(KERN_DEBUG "Rotating very_dirty_list by %d\n", rotateby));
866
867 rotate_list((&c->very_dirty_list), rotateby);
868
869 D1(printk(KERN_DEBUG "Erase block at front of very_dirty_list is at %08x\n",
870 list_entry(c->very_dirty_list.next, struct jffs2_eraseblock, list)->offset));
871 } else {
872 D1(printk(KERN_DEBUG "Not rotating empty very_dirty_list\n"));
873 }
874
875 x = count_list(&c->dirty_list);
876 if (x) {
877 rotateby = pseudo_random % x;
878 D1(printk(KERN_DEBUG "Rotating dirty_list by %d\n", rotateby));
879
880 rotate_list((&c->dirty_list), rotateby);
881
882 D1(printk(KERN_DEBUG "Erase block at front of dirty_list is at %08x\n",
883 list_entry(c->dirty_list.next, struct jffs2_eraseblock, list)->offset));
884 } else {
885 D1(printk(KERN_DEBUG "Not rotating empty dirty_list\n"));
886 }
887
888 x = count_list(&c->erasable_list);
889 if (x) {
890 rotateby = pseudo_random % x;
891 D1(printk(KERN_DEBUG "Rotating erasable_list by %d\n", rotateby));
892
893 rotate_list((&c->erasable_list), rotateby);
894
895 D1(printk(KERN_DEBUG "Erase block at front of erasable_list is at %08x\n",
896 list_entry(c->erasable_list.next, struct jffs2_eraseblock, list)->offset));
897 } else {
898 D1(printk(KERN_DEBUG "Not rotating empty erasable_list\n"));
899 }
900
901 if (c->nr_erasing_blocks) {
902 rotateby = pseudo_random % c->nr_erasing_blocks;
903 D1(printk(KERN_DEBUG "Rotating erase_pending_list by %d\n", rotateby));
904
905 rotate_list((&c->erase_pending_list), rotateby);
906
907 D1(printk(KERN_DEBUG "Erase block at front of erase_pending_list is at %08x\n",
908 list_entry(c->erase_pending_list.next, struct jffs2_eraseblock, list)->offset));
909 } else {
910 D1(printk(KERN_DEBUG "Not rotating empty erase_pending_list\n"));
911 }
912
913 if (c->nr_free_blocks) {
914 rotateby = pseudo_random % c->nr_free_blocks;
915 D1(printk(KERN_DEBUG "Rotating free_list by %d\n", rotateby));
916
917 rotate_list((&c->free_list), rotateby);
918
919 D1(printk(KERN_DEBUG "Erase block at front of free_list is at %08x\n",
920 list_entry(c->free_list.next, struct jffs2_eraseblock, list)->offset));
921 } else {
922 D1(printk(KERN_DEBUG "Not rotating empty free_list\n"));
923 }
924}