blob: de594bc977428244d55310c2af8b175effd3126b [file] [log] [blame]
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +08001/*
2 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3 * All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/kernel.h>
21#include <linux/module.h>
Patrick McHardy37a80232007-11-21 12:47:13 +080022#include <linux/moduleparam.h>
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +080023#include <linux/mod_devicetable.h>
24#include <linux/interrupt.h>
25#include <linux/pci.h>
26#include <linux/slab.h>
27#include <linux/delay.h>
28#include <linux/mm.h>
Andrew Morton102d49d2007-11-13 21:55:28 +080029#include <linux/dma-mapping.h>
30#include <linux/scatterlist.h>
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +080031#include <linux/highmem.h>
Evgeniy Polyakova1e6ef22007-11-10 20:24:18 +080032#include <linux/interrupt.h>
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +080033#include <linux/crypto.h>
34
35#include <crypto/algapi.h>
Evgeniy Polyakovc3041f92007-10-11 19:58:16 +080036#include <crypto/des.h>
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +080037
38#include <asm/kmap_types.h>
39
40#undef dprintk
41
42#define HIFN_TEST
43//#define HIFN_DEBUG
44
45#ifdef HIFN_DEBUG
46#define dprintk(f, a...) printk(f, ##a)
47#else
48#define dprintk(f, a...) do {} while (0)
49#endif
50
Patrick McHardy37a80232007-11-21 12:47:13 +080051static char hifn_pll_ref[sizeof("extNNN")] = "ext";
52module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
53MODULE_PARM_DESC(hifn_pll_ref,
54 "PLL reference clock (pci[freq] or ext[freq], default ext)");
55
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +080056static atomic_t hifn_dev_number;
57
58#define ACRYPTO_OP_DECRYPT 0
59#define ACRYPTO_OP_ENCRYPT 1
60#define ACRYPTO_OP_HMAC 2
61#define ACRYPTO_OP_RNG 3
62
63#define ACRYPTO_MODE_ECB 0
64#define ACRYPTO_MODE_CBC 1
65#define ACRYPTO_MODE_CFB 2
66#define ACRYPTO_MODE_OFB 3
67
68#define ACRYPTO_TYPE_AES_128 0
69#define ACRYPTO_TYPE_AES_192 1
70#define ACRYPTO_TYPE_AES_256 2
71#define ACRYPTO_TYPE_3DES 3
72#define ACRYPTO_TYPE_DES 4
73
74#define PCI_VENDOR_ID_HIFN 0x13A3
75#define PCI_DEVICE_ID_HIFN_7955 0x0020
76#define PCI_DEVICE_ID_HIFN_7956 0x001d
77
78/* I/O region sizes */
79
80#define HIFN_BAR0_SIZE 0x1000
81#define HIFN_BAR1_SIZE 0x2000
82#define HIFN_BAR2_SIZE 0x8000
83
84/* DMA registres */
85
86#define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
87#define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
88#define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
89#define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
90#define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
91#define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
92#define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
93#define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
94#define HIFN_CHIP_ID 0x98 /* Chip ID */
95
96/*
97 * Processing Unit Registers (offset from BASEREG0)
98 */
99#define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
100#define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
101#define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
102#define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
103#define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
104#define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
105#define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
106#define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
107#define HIFN_0_SPACESIZE 0x20 /* Register space size */
108
109/* Processing Unit Control Register (HIFN_0_PUCTRL) */
110#define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
111#define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
112#define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
113#define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
114#define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
115
116/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
117#define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
118#define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
119#define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
120#define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
121#define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
122#define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
123#define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
124#define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
125#define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
126#define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
127
128/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
129#define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
130#define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
131#define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
132#define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
133#define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
134#define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
135#define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
136#define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
137#define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
138#define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
139#define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
140#define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
141#define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
142#define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
143#define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
144#define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
145#define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
146#define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
147#define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
148#define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
149#define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
150#define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
151#define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
152
153/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
154#define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
155#define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
156#define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
157#define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
158#define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
159#define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
160#define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
161#define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
162#define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
163#define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
164
165/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
166#define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
167#define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
168#define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
169#define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
170#define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
171#define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
172#define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
173#define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
174#define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
175#define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
176#define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
177#define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
178#define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
179#define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
180#define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
181#define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
182#define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
183
184/* FIFO Status Register (HIFN_0_FIFOSTAT) */
185#define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
186#define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
187
188/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
189#define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
190
191/*
192 * DMA Interface Registers (offset from BASEREG1)
193 */
194#define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
195#define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
196#define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
197#define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
198#define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
199#define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
200#define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
201#define HIFN_1_PLL 0x4c /* 795x: PLL config */
202#define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
203#define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
204#define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
205#define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
206#define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
207#define HIFN_1_REVID 0x98 /* Revision ID */
208#define HIFN_1_UNLOCK_SECRET1 0xf4
209#define HIFN_1_UNLOCK_SECRET2 0xfc
210#define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
211#define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
212#define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
213#define HIFN_1_PUB_OP 0x308 /* Public Operand */
214#define HIFN_1_PUB_STATUS 0x30c /* Public Status */
215#define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
216#define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
217#define HIFN_1_RNG_DATA 0x318 /* RNG data */
218#define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
219#define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
220
221/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
222#define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
223#define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
224#define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
225#define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
226#define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
227#define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
228#define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
229#define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
230#define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
231#define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
232#define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
233#define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
234#define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
235#define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
236#define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
237#define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
238#define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
239#define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
240#define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
241#define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
242#define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
243#define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
244#define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
245#define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
246#define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
247#define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
248#define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
249#define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
250#define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
251#define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
252#define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
253#define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
254#define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
255#define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
256#define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
257#define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
258#define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
259#define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
260
261/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
262#define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
263#define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
264#define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
265#define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
266#define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
267#define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
268#define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
269#define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
270#define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
271#define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
272#define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
273#define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
274#define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
275#define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
276#define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
277#define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
278#define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
279#define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
280#define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
281#define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
282#define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
283#define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
284
285/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
286#define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
287#define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
288#define HIFN_DMACNFG_UNLOCK 0x00000800
289#define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
290#define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
291#define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
292#define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
293#define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
294
Patrick McHardy37a80232007-11-21 12:47:13 +0800295/* PLL configuration register */
296#define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
297#define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
298#define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
299#define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
300#define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
301#define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
302#define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
303#define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
304#define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
305#define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
306#define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
307#define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
308#define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
309#define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
310#define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
311#define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
312#define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
313
314#define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +0800315
316/* Public key reset register (HIFN_1_PUB_RESET) */
317#define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
318
319/* Public base address register (HIFN_1_PUB_BASE) */
320#define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
321
322/* Public operand length register (HIFN_1_PUB_OPLEN) */
323#define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
324#define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
325#define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
326#define HIFN_PUBOPLEN_EXP_S 7 /* exponent lenght shift */
327#define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
328#define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
329
330/* Public operation register (HIFN_1_PUB_OP) */
331#define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
332#define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
333#define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
334#define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
335#define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
336#define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
337#define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
338#define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
339#define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
340#define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
341#define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
342#define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
343#define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
344#define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
345#define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
346#define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
347#define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
348#define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
349#define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
350#define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
351
352/* Public status register (HIFN_1_PUB_STATUS) */
353#define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
354#define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
355
356/* Public interrupt enable register (HIFN_1_PUB_IEN) */
357#define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
358
359/* Random number generator config register (HIFN_1_RNG_CONFIG) */
360#define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
361
362#define HIFN_NAMESIZE 32
363#define HIFN_MAX_RESULT_ORDER 5
364
365#define HIFN_D_CMD_RSIZE 24*4
366#define HIFN_D_SRC_RSIZE 80*4
367#define HIFN_D_DST_RSIZE 80*4
368#define HIFN_D_RES_RSIZE 24*4
369
370#define HIFN_QUEUE_LENGTH HIFN_D_CMD_RSIZE-5
371
372#define AES_MIN_KEY_SIZE 16
373#define AES_MAX_KEY_SIZE 32
374
375#define HIFN_DES_KEY_LENGTH 8
376#define HIFN_3DES_KEY_LENGTH 24
377#define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
378#define HIFN_IV_LENGTH 8
379#define HIFN_AES_IV_LENGTH 16
380#define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
381
382#define HIFN_MAC_KEY_LENGTH 64
383#define HIFN_MD5_LENGTH 16
384#define HIFN_SHA1_LENGTH 20
385#define HIFN_MAC_TRUNC_LENGTH 12
386
387#define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
388#define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
389#define HIFN_USED_RESULT 12
390
391struct hifn_desc
392{
393 volatile u32 l;
394 volatile u32 p;
395};
396
397struct hifn_dma {
398 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE+1];
399 struct hifn_desc srcr[HIFN_D_SRC_RSIZE+1];
400 struct hifn_desc dstr[HIFN_D_DST_RSIZE+1];
401 struct hifn_desc resr[HIFN_D_RES_RSIZE+1];
402
403 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
404 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
405
406 u64 test_src, test_dst;
407
408 /*
409 * Our current positions for insertion and removal from the descriptor
410 * rings.
411 */
412 volatile int cmdi, srci, dsti, resi;
413 volatile int cmdu, srcu, dstu, resu;
414 int cmdk, srck, dstk, resk;
415};
416
417#define HIFN_FLAG_CMD_BUSY (1<<0)
418#define HIFN_FLAG_SRC_BUSY (1<<1)
419#define HIFN_FLAG_DST_BUSY (1<<2)
420#define HIFN_FLAG_RES_BUSY (1<<3)
421#define HIFN_FLAG_OLD_KEY (1<<4)
422
423#define HIFN_DEFAULT_ACTIVE_NUM 5
424
425struct hifn_device
426{
427 char name[HIFN_NAMESIZE];
428
429 int irq;
430
431 struct pci_dev *pdev;
432 void __iomem *bar[3];
433
434 unsigned long result_mem;
435 dma_addr_t dst;
436
437 void *desc_virt;
438 dma_addr_t desc_dma;
439
440 u32 dmareg;
441
442 void *sa[HIFN_D_RES_RSIZE];
443
444 spinlock_t lock;
445
446 void *priv;
447
448 u32 flags;
449 int active, started;
450 struct delayed_work work;
451 unsigned long reset;
452 unsigned long success;
453 unsigned long prev_success;
454
455 u8 snum;
456
Evgeniy Polyakova1e6ef22007-11-10 20:24:18 +0800457 struct tasklet_struct tasklet;
458
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +0800459 struct crypto_queue queue;
460 struct list_head alg_list;
461};
462
463#define HIFN_D_LENGTH 0x0000ffff
464#define HIFN_D_NOINVALID 0x01000000
465#define HIFN_D_MASKDONEIRQ 0x02000000
466#define HIFN_D_DESTOVER 0x04000000
467#define HIFN_D_OVER 0x08000000
468#define HIFN_D_LAST 0x20000000
469#define HIFN_D_JUMP 0x40000000
470#define HIFN_D_VALID 0x80000000
471
472struct hifn_base_command
473{
474 volatile u16 masks;
475 volatile u16 session_num;
476 volatile u16 total_source_count;
477 volatile u16 total_dest_count;
478};
479
480#define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
481#define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
482#define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
483#define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
484#define HIFN_BASE_CMD_DECODE 0x2000
485#define HIFN_BASE_CMD_SRCLEN_M 0xc000
486#define HIFN_BASE_CMD_SRCLEN_S 14
487#define HIFN_BASE_CMD_DSTLEN_M 0x3000
488#define HIFN_BASE_CMD_DSTLEN_S 12
489#define HIFN_BASE_CMD_LENMASK_HI 0x30000
490#define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
491
492/*
493 * Structure to help build up the command data structure.
494 */
495struct hifn_crypt_command
496{
497 volatile u16 masks;
498 volatile u16 header_skip;
499 volatile u16 source_count;
500 volatile u16 reserved;
501};
502
503#define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
504#define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
505#define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
506#define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
507#define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
508#define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
509#define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
510#define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
511#define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
512#define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
513#define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
514#define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
515#define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
516#define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
517#define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
518#define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
519#define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
520#define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
521#define HIFN_CRYPT_CMD_SRCLEN_S 14
522
523/*
524 * Structure to help build up the command data structure.
525 */
526struct hifn_mac_command
527{
528 volatile u16 masks;
529 volatile u16 header_skip;
530 volatile u16 source_count;
531 volatile u16 reserved;
532};
533
534#define HIFN_MAC_CMD_ALG_MASK 0x0001
535#define HIFN_MAC_CMD_ALG_SHA1 0x0000
536#define HIFN_MAC_CMD_ALG_MD5 0x0001
537#define HIFN_MAC_CMD_MODE_MASK 0x000c
538#define HIFN_MAC_CMD_MODE_HMAC 0x0000
539#define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
540#define HIFN_MAC_CMD_MODE_HASH 0x0008
541#define HIFN_MAC_CMD_MODE_FULL 0x0004
542#define HIFN_MAC_CMD_TRUNC 0x0010
543#define HIFN_MAC_CMD_RESULT 0x0020
544#define HIFN_MAC_CMD_APPEND 0x0040
545#define HIFN_MAC_CMD_SRCLEN_M 0xc000
546#define HIFN_MAC_CMD_SRCLEN_S 14
547
548/*
549 * MAC POS IPsec initiates authentication after encryption on encodes
550 * and before decryption on decodes.
551 */
552#define HIFN_MAC_CMD_POS_IPSEC 0x0200
553#define HIFN_MAC_CMD_NEW_KEY 0x0800
554
555struct hifn_comp_command
556{
557 volatile u16 masks;
558 volatile u16 header_skip;
559 volatile u16 source_count;
560 volatile u16 reserved;
561};
562
563#define HIFN_COMP_CMD_SRCLEN_M 0xc000
564#define HIFN_COMP_CMD_SRCLEN_S 14
565#define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
566#define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
567#define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
568#define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
569#define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
570#define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
571#define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
572#define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
573
574struct hifn_base_result
575{
576 volatile u16 flags;
577 volatile u16 session;
578 volatile u16 src_cnt; /* 15:0 of source count */
579 volatile u16 dst_cnt; /* 15:0 of dest count */
580};
581
582#define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
583#define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
584#define HIFN_BASE_RES_SRCLEN_S 14
585#define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
586#define HIFN_BASE_RES_DSTLEN_S 12
587
588struct hifn_comp_result
589{
590 volatile u16 flags;
591 volatile u16 crc;
592};
593
594#define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
595#define HIFN_COMP_RES_LCB_S 8
596#define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
597#define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
598#define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
599
600struct hifn_mac_result
601{
602 volatile u16 flags;
603 volatile u16 reserved;
604 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
605};
606
607#define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
608#define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
609
610struct hifn_crypt_result
611{
612 volatile u16 flags;
613 volatile u16 reserved;
614};
615
616#define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
617
618#ifndef HIFN_POLL_FREQUENCY
619#define HIFN_POLL_FREQUENCY 0x1
620#endif
621
622#ifndef HIFN_POLL_SCALAR
623#define HIFN_POLL_SCALAR 0x0
624#endif
625
626#define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
627#define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
628
629struct hifn_crypto_alg
630{
631 struct list_head entry;
632 struct crypto_alg alg;
633 struct hifn_device *dev;
634};
635
636#define ASYNC_SCATTERLIST_CACHE 16
637
638#define ASYNC_FLAGS_MISALIGNED (1<<0)
639
640struct ablkcipher_walk
641{
642 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
643 u32 flags;
644 int num;
645};
646
647struct hifn_context
648{
649 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH], *iv;
650 struct hifn_device *dev;
651 unsigned int keysize, ivsize;
652 u8 op, type, mode, unused;
653 struct ablkcipher_walk walk;
654 atomic_t sg_num;
655};
656
657#define crypto_alg_to_hifn(alg) container_of(alg, struct hifn_crypto_alg, alg)
658
659static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
660{
661 u32 ret;
662
663 ret = readl((char *)(dev->bar[0]) + reg);
664
665 return ret;
666}
667
668static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
669{
670 u32 ret;
671
672 ret = readl((char *)(dev->bar[1]) + reg);
673
674 return ret;
675}
676
677static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
678{
679 writel(val, (char *)(dev->bar[0]) + reg);
680}
681
682static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
683{
684 writel(val, (char *)(dev->bar[1]) + reg);
685}
686
687static void hifn_wait_puc(struct hifn_device *dev)
688{
689 int i;
690 u32 ret;
691
692 for (i=10000; i > 0; --i) {
693 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
694 if (!(ret & HIFN_PUCTRL_RESET))
695 break;
696
697 udelay(1);
698 }
699
700 if (!i)
701 dprintk("%s: Failed to reset PUC unit.\n", dev->name);
702}
703
704static void hifn_reset_puc(struct hifn_device *dev)
705{
706 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
707 hifn_wait_puc(dev);
708}
709
710static void hifn_stop_device(struct hifn_device *dev)
711{
712 hifn_write_1(dev, HIFN_1_DMA_CSR,
713 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
714 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
715 hifn_write_0(dev, HIFN_0_PUIER, 0);
716 hifn_write_1(dev, HIFN_1_DMA_IER, 0);
717}
718
719static void hifn_reset_dma(struct hifn_device *dev, int full)
720{
721 hifn_stop_device(dev);
722
723 /*
724 * Setting poll frequency and others to 0.
725 */
726 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
727 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
728 mdelay(1);
729
730 /*
731 * Reset DMA.
732 */
733 if (full) {
734 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
735 mdelay(1);
736 } else {
737 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
738 HIFN_DMACNFG_MSTRESET);
739 hifn_reset_puc(dev);
740 }
741
742 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
743 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
744
745 hifn_reset_puc(dev);
746}
747
748static u32 hifn_next_signature(u_int32_t a, u_int cnt)
749{
750 int i;
751 u32 v;
752
753 for (i = 0; i < cnt; i++) {
754
755 /* get the parity */
756 v = a & 0x80080125;
757 v ^= v >> 16;
758 v ^= v >> 8;
759 v ^= v >> 4;
760 v ^= v >> 2;
761 v ^= v >> 1;
762
763 a = (v & 1) ^ (a << 1);
764 }
765
766 return a;
767}
768
769static struct pci2id {
770 u_short pci_vendor;
771 u_short pci_prod;
772 char card_id[13];
773} pci2id[] = {
774 {
775 PCI_VENDOR_ID_HIFN,
776 PCI_DEVICE_ID_HIFN_7955,
777 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
778 0x00, 0x00, 0x00, 0x00, 0x00 }
779 },
780 {
781 PCI_VENDOR_ID_HIFN,
782 PCI_DEVICE_ID_HIFN_7956,
783 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
784 0x00, 0x00, 0x00, 0x00, 0x00 }
785 }
786};
787
788static int hifn_init_pubrng(struct hifn_device *dev)
789{
790 int i;
791
792 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
793 HIFN_PUBRST_RESET);
794
795 for (i=100; i > 0; --i) {
796 mdelay(1);
797
798 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
799 break;
800 }
801
802 if (!i)
803 dprintk("Chip %s: Failed to initialise public key engine.\n",
804 dev->name);
805 else {
806 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
807 dev->dmareg |= HIFN_DMAIER_PUBDONE;
808 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
809
810 dprintk("Chip %s: Public key engine has been sucessfully "
811 "initialised.\n", dev->name);
812 }
813
814 /*
815 * Enable RNG engine.
816 */
817
818 hifn_write_1(dev, HIFN_1_RNG_CONFIG,
819 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
820 dprintk("Chip %s: RNG engine has been successfully initialised.\n",
821 dev->name);
822
823 return 0;
824}
825
826static int hifn_enable_crypto(struct hifn_device *dev)
827{
828 u32 dmacfg, addr;
829 char *offtbl = NULL;
830 int i;
831
832 for (i = 0; i < sizeof(pci2id)/sizeof(pci2id[0]); i++) {
833 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
834 pci2id[i].pci_prod == dev->pdev->device) {
835 offtbl = pci2id[i].card_id;
836 break;
837 }
838 }
839
840 if (offtbl == NULL) {
841 dprintk("Chip %s: Unknown card!\n", dev->name);
842 return -ENODEV;
843 }
844
845 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
846
847 hifn_write_1(dev, HIFN_1_DMA_CNFG,
848 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
849 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
850 mdelay(1);
851 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
852 mdelay(1);
853 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
854 mdelay(1);
855
856 for (i=0; i<12; ++i) {
857 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
858 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
859
860 mdelay(1);
861 }
862 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
863
864 dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
865
866 return 0;
867}
868
869static void hifn_init_dma(struct hifn_device *dev)
870{
871 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
872 u32 dptr = dev->desc_dma;
873 int i;
874
875 for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
876 dma->cmdr[i].p = __cpu_to_le32(dptr +
877 offsetof(struct hifn_dma, command_bufs[i][0]));
878 for (i=0; i<HIFN_D_RES_RSIZE; ++i)
879 dma->resr[i].p = __cpu_to_le32(dptr +
880 offsetof(struct hifn_dma, result_bufs[i][0]));
881
882 /*
883 * Setup LAST descriptors.
884 */
885 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
886 offsetof(struct hifn_dma, cmdr[0]));
887 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
888 offsetof(struct hifn_dma, srcr[0]));
889 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
890 offsetof(struct hifn_dma, dstr[0]));
891 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
892 offsetof(struct hifn_dma, resr[0]));
893
894 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
895 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
896 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
897}
898
Patrick McHardy37a80232007-11-21 12:47:13 +0800899/*
900 * Initialize the PLL. We need to know the frequency of the reference clock
901 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
902 * allows us to operate without the risk of overclocking the chip. If it
903 * actually uses 33MHz, the chip will operate at half the speed, this can be
904 * overriden by specifying the frequency as module parameter (pci33).
905 *
906 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
907 * stable clock and the PCI clock frequency may vary, so the default is the
908 * external clock. There is no way to find out its frequency, we default to
909 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
910 * has an external crystal populated at 66MHz.
911 */
912static void hifn_init_pll(struct hifn_device *dev)
913{
914 unsigned int freq, m;
915 u32 pllcfg;
916
917 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
918
919 if (strncmp(hifn_pll_ref, "ext", 3) == 0)
920 pllcfg |= HIFN_PLL_REF_CLK_PLL;
921 else
922 pllcfg |= HIFN_PLL_REF_CLK_HBI;
923
924 if (hifn_pll_ref[3] != '\0')
925 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
926 else {
927 freq = 66;
928 printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
929 "override with hifn_pll_ref=%.3s<frequency>\n",
930 freq, hifn_pll_ref);
931 }
932
933 m = HIFN_PLL_FCK_MAX / freq;
934
935 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
936 if (m <= 8)
937 pllcfg |= HIFN_PLL_IS_1_8;
938 else
939 pllcfg |= HIFN_PLL_IS_9_12;
940
941 /* Select clock source and enable clock bypass */
942 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
943 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
944
945 /* Let the chip lock to the input clock */
946 mdelay(10);
947
948 /* Disable clock bypass */
949 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
950 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
951
952 /* Switch the engines to the PLL */
953 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
954 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
955}
956
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +0800957static void hifn_init_registers(struct hifn_device *dev)
958{
959 u32 dptr = dev->desc_dma;
960
961 /* Initialization magic... */
962 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
963 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
964 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
965
966 /* write all 4 ring address registers */
967 hifn_write_1(dev, HIFN_1_DMA_CRAR, __cpu_to_le32(dptr +
968 offsetof(struct hifn_dma, cmdr[0])));
969 hifn_write_1(dev, HIFN_1_DMA_SRAR, __cpu_to_le32(dptr +
970 offsetof(struct hifn_dma, srcr[0])));
971 hifn_write_1(dev, HIFN_1_DMA_DRAR, __cpu_to_le32(dptr +
972 offsetof(struct hifn_dma, dstr[0])));
973 hifn_write_1(dev, HIFN_1_DMA_RRAR, __cpu_to_le32(dptr +
974 offsetof(struct hifn_dma, resr[0])));
975
976 mdelay(2);
977#if 0
978 hifn_write_1(dev, HIFN_1_DMA_CSR,
979 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
980 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
981 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
982 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
983 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
984 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
985 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
986 HIFN_DMACSR_S_WAIT |
987 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
988 HIFN_DMACSR_C_WAIT |
989 HIFN_DMACSR_ENGINE |
990 HIFN_DMACSR_PUBDONE);
991#else
992 hifn_write_1(dev, HIFN_1_DMA_CSR,
993 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
994 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
995 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
996 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
997 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
998 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
999 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1000 HIFN_DMACSR_S_WAIT |
1001 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1002 HIFN_DMACSR_C_WAIT |
1003 HIFN_DMACSR_ENGINE |
1004 HIFN_DMACSR_PUBDONE);
1005#endif
1006 hifn_read_1(dev, HIFN_1_DMA_CSR);
1007
1008 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1009 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1010 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1011 HIFN_DMAIER_ENGINE;
1012 dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1013
1014 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1015 hifn_read_1(dev, HIFN_1_DMA_IER);
1016#if 0
1017 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1018 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1019 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1020 HIFN_PUCNFG_DRAM);
1021#else
1022 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1023#endif
Patrick McHardy37a80232007-11-21 12:47:13 +08001024 hifn_init_pll(dev);
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +08001025
1026 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1027 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1028 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1029 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1030 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1031}
1032
1033static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1034 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1035{
1036 struct hifn_base_command *base_cmd;
1037 u8 *buf_pos = buf;
1038
1039 base_cmd = (struct hifn_base_command *)buf_pos;
1040 base_cmd->masks = __cpu_to_le16(mask);
1041 base_cmd->total_source_count =
1042 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1043 base_cmd->total_dest_count =
1044 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1045
1046 dlen >>= 16;
1047 slen >>= 16;
1048 base_cmd->session_num = __cpu_to_le16(snum |
1049 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1050 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1051
1052 return sizeof(struct hifn_base_command);
1053}
1054
1055static int hifn_setup_crypto_command(struct hifn_device *dev,
1056 u8 *buf, unsigned dlen, unsigned slen,
1057 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1058{
1059 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1060 struct hifn_crypt_command *cry_cmd;
1061 u8 *buf_pos = buf;
1062 u16 cmd_len;
1063
1064 cry_cmd = (struct hifn_crypt_command *)buf_pos;
1065
1066 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1067 dlen >>= 16;
1068 cry_cmd->masks = __cpu_to_le16(mode |
1069 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1070 HIFN_CRYPT_CMD_SRCLEN_M));
1071 cry_cmd->header_skip = 0;
1072 cry_cmd->reserved = 0;
1073
1074 buf_pos += sizeof(struct hifn_crypt_command);
1075
1076 dma->cmdu++;
1077 if (dma->cmdu > 1) {
1078 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1079 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1080 }
1081
1082 if (keylen) {
1083 memcpy(buf_pos, key, keylen);
1084 buf_pos += keylen;
1085 }
1086 if (ivsize) {
1087 memcpy(buf_pos, iv, ivsize);
1088 buf_pos += ivsize;
1089 }
1090
1091 cmd_len = buf_pos - buf;
1092
1093 return cmd_len;
1094}
1095
1096static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1097 unsigned int offset, unsigned int size)
1098{
1099 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1100 int idx;
1101 dma_addr_t addr;
1102
1103 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1104
1105 idx = dma->srci;
1106
1107 dma->srcr[idx].p = __cpu_to_le32(addr);
1108 dma->srcr[idx].l = __cpu_to_le32(size) | HIFN_D_VALID |
1109 HIFN_D_MASKDONEIRQ | HIFN_D_NOINVALID | HIFN_D_LAST;
1110
1111 if (++idx == HIFN_D_SRC_RSIZE) {
1112 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1113 HIFN_D_JUMP |
1114 HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1115 idx = 0;
1116 }
1117
1118 dma->srci = idx;
1119 dma->srcu++;
1120
1121 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1122 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1123 dev->flags |= HIFN_FLAG_SRC_BUSY;
1124 }
1125
1126 return size;
1127}
1128
1129static void hifn_setup_res_desc(struct hifn_device *dev)
1130{
1131 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1132
1133 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1134 HIFN_D_VALID | HIFN_D_LAST);
1135 /*
1136 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1137 * HIFN_D_LAST | HIFN_D_NOINVALID);
1138 */
1139
1140 if (++dma->resi == HIFN_D_RES_RSIZE) {
1141 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1142 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1143 dma->resi = 0;
1144 }
1145
1146 dma->resu++;
1147
1148 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1149 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1150 dev->flags |= HIFN_FLAG_RES_BUSY;
1151 }
1152}
1153
1154static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1155 unsigned offset, unsigned size)
1156{
1157 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1158 int idx;
1159 dma_addr_t addr;
1160
1161 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1162
1163 idx = dma->dsti;
1164 dma->dstr[idx].p = __cpu_to_le32(addr);
1165 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1166 HIFN_D_MASKDONEIRQ | HIFN_D_NOINVALID | HIFN_D_LAST);
1167
1168 if (++idx == HIFN_D_DST_RSIZE) {
1169 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1170 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1171 HIFN_D_LAST | HIFN_D_NOINVALID);
1172 idx = 0;
1173 }
1174 dma->dsti = idx;
1175 dma->dstu++;
1176
1177 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1178 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1179 dev->flags |= HIFN_FLAG_DST_BUSY;
1180 }
1181}
1182
1183static int hifn_setup_dma(struct hifn_device *dev, struct page *spage, unsigned int soff,
1184 struct page *dpage, unsigned int doff, unsigned int nbytes, void *priv,
1185 struct hifn_context *ctx)
1186{
1187 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1188 int cmd_len, sa_idx;
1189 u8 *buf, *buf_pos;
1190 u16 mask;
1191
1192 dprintk("%s: spage: %p, soffset: %u, dpage: %p, doffset: %u, nbytes: %u, priv: %p, ctx: %p.\n",
1193 dev->name, spage, soff, dpage, doff, nbytes, priv, ctx);
1194
1195 sa_idx = dma->resi;
1196
1197 hifn_setup_src_desc(dev, spage, soff, nbytes);
1198
1199 buf_pos = buf = dma->command_bufs[dma->cmdi];
1200
1201 mask = 0;
1202 switch (ctx->op) {
1203 case ACRYPTO_OP_DECRYPT:
1204 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1205 break;
1206 case ACRYPTO_OP_ENCRYPT:
1207 mask = HIFN_BASE_CMD_CRYPT;
1208 break;
1209 case ACRYPTO_OP_HMAC:
1210 mask = HIFN_BASE_CMD_MAC;
1211 break;
1212 default:
1213 goto err_out;
1214 }
1215
1216 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1217 nbytes, mask, dev->snum);
1218
1219 if (ctx->op == ACRYPTO_OP_ENCRYPT || ctx->op == ACRYPTO_OP_DECRYPT) {
1220 u16 md = 0;
1221
1222 if (ctx->keysize)
1223 md |= HIFN_CRYPT_CMD_NEW_KEY;
1224 if (ctx->iv && ctx->mode != ACRYPTO_MODE_ECB)
1225 md |= HIFN_CRYPT_CMD_NEW_IV;
1226
1227 switch (ctx->mode) {
1228 case ACRYPTO_MODE_ECB:
1229 md |= HIFN_CRYPT_CMD_MODE_ECB;
1230 break;
1231 case ACRYPTO_MODE_CBC:
1232 md |= HIFN_CRYPT_CMD_MODE_CBC;
1233 break;
1234 case ACRYPTO_MODE_CFB:
1235 md |= HIFN_CRYPT_CMD_MODE_CFB;
1236 break;
1237 case ACRYPTO_MODE_OFB:
1238 md |= HIFN_CRYPT_CMD_MODE_OFB;
1239 break;
1240 default:
1241 goto err_out;
1242 }
1243
1244 switch (ctx->type) {
1245 case ACRYPTO_TYPE_AES_128:
1246 if (ctx->keysize != 16)
1247 goto err_out;
1248 md |= HIFN_CRYPT_CMD_KSZ_128 |
1249 HIFN_CRYPT_CMD_ALG_AES;
1250 break;
1251 case ACRYPTO_TYPE_AES_192:
1252 if (ctx->keysize != 24)
1253 goto err_out;
1254 md |= HIFN_CRYPT_CMD_KSZ_192 |
1255 HIFN_CRYPT_CMD_ALG_AES;
1256 break;
1257 case ACRYPTO_TYPE_AES_256:
1258 if (ctx->keysize != 32)
1259 goto err_out;
1260 md |= HIFN_CRYPT_CMD_KSZ_256 |
1261 HIFN_CRYPT_CMD_ALG_AES;
1262 break;
1263 case ACRYPTO_TYPE_3DES:
1264 if (ctx->keysize != 24)
1265 goto err_out;
1266 md |= HIFN_CRYPT_CMD_ALG_3DES;
1267 break;
1268 case ACRYPTO_TYPE_DES:
1269 if (ctx->keysize != 8)
1270 goto err_out;
1271 md |= HIFN_CRYPT_CMD_ALG_DES;
1272 break;
1273 default:
1274 goto err_out;
1275 }
1276
1277 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1278 nbytes, nbytes, ctx->key, ctx->keysize,
1279 ctx->iv, ctx->ivsize, md);
1280 }
1281
1282 dev->sa[sa_idx] = priv;
1283
1284 cmd_len = buf_pos - buf;
1285 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1286 HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1287
1288 if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1289 dma->cmdr[dma->cmdi].l = __cpu_to_le32(HIFN_MAX_COMMAND |
1290 HIFN_D_VALID | HIFN_D_LAST |
1291 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1292 dma->cmdi = 0;
1293 } else
1294 dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
1295
1296 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1297 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1298 dev->flags |= HIFN_FLAG_CMD_BUSY;
1299 }
1300
1301 hifn_setup_dst_desc(dev, dpage, doff, nbytes);
1302 hifn_setup_res_desc(dev);
1303
1304 return 0;
1305
1306err_out:
1307 return -EINVAL;
1308}
1309
1310static int ablkcipher_walk_init(struct ablkcipher_walk *w,
1311 int num, gfp_t gfp_flags)
1312{
1313 int i;
1314
1315 num = min(ASYNC_SCATTERLIST_CACHE, num);
1316 sg_init_table(w->cache, num);
1317
1318 w->num = 0;
1319 for (i=0; i<num; ++i) {
1320 struct page *page = alloc_page(gfp_flags);
1321 struct scatterlist *s;
1322
1323 if (!page)
1324 break;
1325
1326 s = &w->cache[i];
1327
1328 sg_set_page(s, page, PAGE_SIZE, 0);
1329 w->num++;
1330 }
1331
1332 return i;
1333}
1334
1335static void ablkcipher_walk_exit(struct ablkcipher_walk *w)
1336{
1337 int i;
1338
1339 for (i=0; i<w->num; ++i) {
1340 struct scatterlist *s = &w->cache[i];
1341
1342 __free_page(sg_page(s));
1343
1344 s->length = 0;
1345 }
1346
1347 w->num = 0;
1348}
1349
1350static int ablkcipher_add(void *daddr, unsigned int *drestp, struct scatterlist *src,
1351 unsigned int size, unsigned int *nbytesp)
1352{
1353 unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1354 int idx = 0;
1355 void *saddr;
1356
1357 if (drest < size || size > nbytes)
1358 return -EINVAL;
1359
1360 while (size) {
1361 copy = min(drest, src->length);
1362
1363 saddr = kmap_atomic(sg_page(src), KM_SOFTIRQ1);
1364 memcpy(daddr, saddr + src->offset, copy);
1365 kunmap_atomic(saddr, KM_SOFTIRQ1);
1366
1367 size -= copy;
1368 drest -= copy;
1369 nbytes -= copy;
1370 daddr += copy;
1371
1372 dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1373 __func__, copy, size, drest, nbytes);
1374
1375 src++;
1376 idx++;
1377 }
1378
1379 *nbytesp = nbytes;
1380 *drestp = drest;
1381
1382 return idx;
1383}
1384
1385static int ablkcipher_walk(struct ablkcipher_request *req,
1386 struct ablkcipher_walk *w)
1387{
1388 unsigned blocksize =
1389 crypto_ablkcipher_blocksize(crypto_ablkcipher_reqtfm(req));
1390 unsigned alignmask =
1391 crypto_ablkcipher_alignmask(crypto_ablkcipher_reqtfm(req));
1392 struct scatterlist *src, *dst, *t;
1393 void *daddr;
1394 unsigned int nbytes = req->nbytes, offset, copy, diff;
1395 int idx, tidx, err;
1396
1397 tidx = idx = 0;
1398 offset = 0;
1399 while (nbytes) {
1400 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1401 return -EINVAL;
1402
1403 src = &req->src[idx];
1404 dst = &req->dst[idx];
1405
1406 dprintk("\n%s: slen: %u, dlen: %u, soff: %u, doff: %u, offset: %u, "
1407 "blocksize: %u, nbytes: %u.\n",
1408 __func__, src->length, dst->length, src->offset,
1409 dst->offset, offset, blocksize, nbytes);
1410
1411 if (src->length & (blocksize - 1) ||
1412 src->offset & (alignmask - 1) ||
1413 dst->length & (blocksize - 1) ||
1414 dst->offset & (alignmask - 1) ||
1415 offset) {
1416 unsigned slen = src->length - offset;
1417 unsigned dlen = PAGE_SIZE;
1418
1419 t = &w->cache[idx];
1420
1421 daddr = kmap_atomic(sg_page(t), KM_SOFTIRQ0);
1422 err = ablkcipher_add(daddr, &dlen, src, slen, &nbytes);
1423 if (err < 0)
1424 goto err_out_unmap;
1425
1426 idx += err;
1427
1428 copy = slen & ~(blocksize - 1);
1429 diff = slen & (blocksize - 1);
1430
1431 if (dlen < nbytes) {
1432 /*
1433 * Destination page does not have enough space
1434 * to put there additional blocksized chunk,
1435 * so we mark that page as containing only
1436 * blocksize aligned chunks:
1437 * t->length = (slen & ~(blocksize - 1));
1438 * and increase number of bytes to be processed
1439 * in next chunk:
1440 * nbytes += diff;
1441 */
1442 nbytes += diff;
1443
1444 /*
1445 * Temporary of course...
1446 * Kick author if you will catch this one.
1447 */
1448 printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
1449 "slen: %u, offset: %u.\n",
1450 __func__, dlen, nbytes, slen, offset);
1451 printk(KERN_ERR "%s: please contact author to fix this "
1452 "issue, generally you should not catch "
1453 "this path under any condition but who "
1454 "knows how did you use crypto code.\n"
1455 "Thank you.\n", __func__);
1456 BUG();
1457 } else {
1458 copy += diff + nbytes;
1459
1460 src = &req->src[idx];
1461
1462 err = ablkcipher_add(daddr + slen, &dlen, src, nbytes, &nbytes);
1463 if (err < 0)
1464 goto err_out_unmap;
1465
1466 idx += err;
1467 }
1468
1469 t->length = copy;
1470 t->offset = offset;
1471
1472 kunmap_atomic(daddr, KM_SOFTIRQ0);
1473 } else {
1474 nbytes -= src->length;
1475 idx++;
1476 }
1477
1478 tidx++;
1479 }
1480
1481 return tidx;
1482
1483err_out_unmap:
1484 kunmap_atomic(daddr, KM_SOFTIRQ0);
1485 return err;
1486}
1487
1488static int hifn_setup_session(struct ablkcipher_request *req)
1489{
1490 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1491 struct hifn_device *dev = ctx->dev;
1492 struct page *spage, *dpage;
1493 unsigned long soff, doff, flags;
1494 unsigned int nbytes = req->nbytes, idx = 0, len;
1495 int err = -EINVAL, sg_num;
1496 struct scatterlist *src, *dst, *t;
1497 unsigned blocksize =
1498 crypto_ablkcipher_blocksize(crypto_ablkcipher_reqtfm(req));
1499 unsigned alignmask =
1500 crypto_ablkcipher_alignmask(crypto_ablkcipher_reqtfm(req));
1501
1502 if (ctx->iv && !ctx->ivsize && ctx->mode != ACRYPTO_MODE_ECB)
1503 goto err_out_exit;
1504
1505 ctx->walk.flags = 0;
1506
1507 while (nbytes) {
1508 src = &req->src[idx];
1509 dst = &req->dst[idx];
1510
1511 if (src->length & (blocksize - 1) ||
1512 src->offset & (alignmask - 1) ||
1513 dst->length & (blocksize - 1) ||
1514 dst->offset & (alignmask - 1)) {
1515 ctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1516 }
1517
1518 nbytes -= src->length;
1519 idx++;
1520 }
1521
1522 if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1523 err = ablkcipher_walk_init(&ctx->walk, idx, GFP_ATOMIC);
1524 if (err < 0)
1525 return err;
1526 }
1527
1528 nbytes = req->nbytes;
1529 idx = 0;
1530
1531 sg_num = ablkcipher_walk(req, &ctx->walk);
1532
1533 atomic_set(&ctx->sg_num, sg_num);
1534
1535 spin_lock_irqsave(&dev->lock, flags);
1536 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1537 err = -EAGAIN;
1538 goto err_out;
1539 }
1540
1541 dev->snum++;
1542 dev->started += sg_num;
1543
1544 while (nbytes) {
1545 src = &req->src[idx];
1546 dst = &req->dst[idx];
1547 t = &ctx->walk.cache[idx];
1548
1549 if (t->length) {
1550 spage = dpage = sg_page(t);
1551 soff = doff = 0;
1552 len = t->length;
1553 } else {
1554 spage = sg_page(src);
1555 soff = src->offset;
1556
1557 dpage = sg_page(dst);
1558 doff = dst->offset;
1559
1560 len = dst->length;
1561 }
1562
1563 idx++;
1564
1565 err = hifn_setup_dma(dev, spage, soff, dpage, doff, nbytes,
1566 req, ctx);
1567 if (err)
1568 goto err_out;
1569
1570 nbytes -= len;
1571 }
1572
1573 dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1574 spin_unlock_irqrestore(&dev->lock, flags);
1575
1576 return 0;
1577
1578err_out:
1579 spin_unlock_irqrestore(&dev->lock, flags);
1580err_out_exit:
1581 if (err && printk_ratelimit())
1582 dprintk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1583 "type: %u, err: %d.\n",
1584 dev->name, ctx->iv, ctx->ivsize,
1585 ctx->key, ctx->keysize,
1586 ctx->mode, ctx->op, ctx->type, err);
1587
1588 return err;
1589}
1590
1591static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
1592{
1593 int n, err;
1594 u8 src[16];
1595 struct hifn_context ctx;
1596 u8 fips_aes_ecb_from_zero[16] = {
1597 0x66, 0xE9, 0x4B, 0xD4,
1598 0xEF, 0x8A, 0x2C, 0x3B,
1599 0x88, 0x4C, 0xFA, 0x59,
1600 0xCA, 0x34, 0x2B, 0x2E};
1601
1602 memset(src, 0, sizeof(src));
1603 memset(ctx.key, 0, sizeof(ctx.key));
1604
1605 ctx.dev = dev;
1606 ctx.keysize = 16;
1607 ctx.ivsize = 0;
1608 ctx.iv = NULL;
1609 ctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
1610 ctx.mode = ACRYPTO_MODE_ECB;
1611 ctx.type = ACRYPTO_TYPE_AES_128;
1612 atomic_set(&ctx.sg_num, 1);
1613
1614 err = hifn_setup_dma(dev,
1615 virt_to_page(src), offset_in_page(src),
1616 virt_to_page(src), offset_in_page(src),
1617 sizeof(src), NULL, &ctx);
1618 if (err)
1619 goto err_out;
1620
1621 msleep(200);
1622
1623 dprintk("%s: decoded: ", dev->name);
1624 for (n=0; n<sizeof(src); ++n)
1625 dprintk("%02x ", src[n]);
1626 dprintk("\n");
1627 dprintk("%s: FIPS : ", dev->name);
1628 for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
1629 dprintk("%02x ", fips_aes_ecb_from_zero[n]);
1630 dprintk("\n");
1631
1632 if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
1633 printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
1634 "passed.\n", dev->name);
1635 return 0;
1636 }
1637
1638err_out:
1639 printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
1640 return -1;
1641}
1642
1643static int hifn_start_device(struct hifn_device *dev)
1644{
1645 int err;
1646
1647 hifn_reset_dma(dev, 1);
1648
1649 err = hifn_enable_crypto(dev);
1650 if (err)
1651 return err;
1652
1653 hifn_reset_puc(dev);
1654
1655 hifn_init_dma(dev);
1656
1657 hifn_init_registers(dev);
1658
1659 hifn_init_pubrng(dev);
1660
1661 return 0;
1662}
1663
1664static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1665 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1666{
1667 unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1668 void *daddr;
1669 int idx = 0;
1670
1671 if (srest < size || size > nbytes)
1672 return -EINVAL;
1673
1674 while (size) {
1675
1676 copy = min(dst->length, srest);
1677
1678 daddr = kmap_atomic(sg_page(dst), KM_IRQ0);
1679 memcpy(daddr + dst->offset + offset, saddr, copy);
1680 kunmap_atomic(daddr, KM_IRQ0);
1681
1682 nbytes -= copy;
1683 size -= copy;
1684 srest -= copy;
1685 saddr += copy;
1686 offset = 0;
1687
1688 dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1689 __func__, copy, size, srest, nbytes);
1690
1691 dst++;
1692 idx++;
1693 }
1694
1695 *nbytesp = nbytes;
1696 *srestp = srest;
1697
1698 return idx;
1699}
1700
1701static void hifn_process_ready(struct ablkcipher_request *req, int error)
1702{
1703 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1704 struct hifn_device *dev;
1705
1706 dprintk("%s: req: %p, ctx: %p.\n", __func__, req, ctx);
1707
1708 dev = ctx->dev;
1709 dprintk("%s: req: %p, started: %d, sg_num: %d.\n",
1710 __func__, req, dev->started, atomic_read(&ctx->sg_num));
1711
1712 if (--dev->started < 0)
1713 BUG();
1714
1715 if (atomic_dec_and_test(&ctx->sg_num)) {
1716 unsigned int nbytes = req->nbytes;
1717 int idx = 0, err;
1718 struct scatterlist *dst, *t;
1719 void *saddr;
1720
1721 if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1722 while (nbytes) {
1723 t = &ctx->walk.cache[idx];
1724 dst = &req->dst[idx];
1725
1726 dprintk("\n%s: sg_page(t): %p, t->length: %u, "
1727 "sg_page(dst): %p, dst->length: %u, "
1728 "nbytes: %u.\n",
1729 __func__, sg_page(t), t->length,
1730 sg_page(dst), dst->length, nbytes);
1731
1732 if (!t->length) {
1733 nbytes -= dst->length;
1734 idx++;
1735 continue;
1736 }
1737
1738 saddr = kmap_atomic(sg_page(t), KM_IRQ1);
1739
1740 err = ablkcipher_get(saddr, &t->length, t->offset,
1741 dst, nbytes, &nbytes);
1742 if (err < 0) {
1743 kunmap_atomic(saddr, KM_IRQ1);
1744 break;
1745 }
1746
1747 idx += err;
1748 kunmap_atomic(saddr, KM_IRQ1);
1749 }
1750
1751 ablkcipher_walk_exit(&ctx->walk);
1752 }
1753
1754 req->base.complete(&req->base, error);
1755 }
1756}
1757
1758static void hifn_check_for_completion(struct hifn_device *dev, int error)
1759{
1760 int i;
1761 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1762
1763 for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1764 struct hifn_desc *d = &dma->resr[i];
1765
1766 if (!(d->l & __cpu_to_le32(HIFN_D_VALID)) && dev->sa[i]) {
1767 dev->success++;
1768 dev->reset = 0;
1769 hifn_process_ready(dev->sa[i], error);
1770 dev->sa[i] = NULL;
1771 }
1772
1773 if (d->l & __cpu_to_le32(HIFN_D_DESTOVER | HIFN_D_OVER))
1774 if (printk_ratelimit())
1775 printk("%s: overflow detected [d: %u, o: %u] "
1776 "at %d resr: l: %08x, p: %08x.\n",
1777 dev->name,
1778 !!(d->l & __cpu_to_le32(HIFN_D_DESTOVER)),
1779 !!(d->l & __cpu_to_le32(HIFN_D_OVER)),
1780 i, d->l, d->p);
1781 }
1782}
1783
1784static void hifn_clear_rings(struct hifn_device *dev)
1785{
1786 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1787 int i, u;
1788
1789 dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1790 "k: %d.%d.%d.%d.\n",
1791 dev->name,
1792 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1793 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1794 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1795
1796 i = dma->resk; u = dma->resu;
1797 while (u != 0) {
1798 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1799 break;
1800
1801 if (i != HIFN_D_RES_RSIZE)
1802 u--;
1803
1804 if (++i == (HIFN_D_RES_RSIZE + 1))
1805 i = 0;
1806 }
1807 dma->resk = i; dma->resu = u;
1808
1809 i = dma->srck; u = dma->srcu;
1810 while (u != 0) {
1811 if (i == HIFN_D_SRC_RSIZE)
1812 i = 0;
1813 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1814 break;
1815 i++, u--;
1816 }
1817 dma->srck = i; dma->srcu = u;
1818
1819 i = dma->cmdk; u = dma->cmdu;
1820 while (u != 0) {
1821 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1822 break;
1823 if (i != HIFN_D_CMD_RSIZE)
1824 u--;
1825 if (++i == (HIFN_D_CMD_RSIZE + 1))
1826 i = 0;
1827 }
1828 dma->cmdk = i; dma->cmdu = u;
1829
1830 i = dma->dstk; u = dma->dstu;
1831 while (u != 0) {
1832 if (i == HIFN_D_DST_RSIZE)
1833 i = 0;
1834 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1835 break;
1836 i++, u--;
1837 }
1838 dma->dstk = i; dma->dstu = u;
1839
1840 dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1841 "k: %d.%d.%d.%d.\n",
1842 dev->name,
1843 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1844 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1845 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1846}
1847
1848static void hifn_work(struct work_struct *work)
1849{
1850 struct delayed_work *dw = container_of(work, struct delayed_work, work);
1851 struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1852 unsigned long flags;
1853 int reset = 0;
1854 u32 r = 0;
1855
1856 spin_lock_irqsave(&dev->lock, flags);
1857 if (dev->active == 0) {
1858 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1859
1860 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1861 dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1862 r |= HIFN_DMACSR_C_CTRL_DIS;
1863 }
1864 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1865 dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1866 r |= HIFN_DMACSR_S_CTRL_DIS;
1867 }
1868 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1869 dev->flags &= ~HIFN_FLAG_DST_BUSY;
1870 r |= HIFN_DMACSR_D_CTRL_DIS;
1871 }
1872 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1873 dev->flags &= ~HIFN_FLAG_RES_BUSY;
1874 r |= HIFN_DMACSR_R_CTRL_DIS;
1875 }
1876 if (r)
1877 hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1878 } else
1879 dev->active--;
1880
1881 if (dev->prev_success == dev->success && dev->started)
1882 reset = 1;
1883 dev->prev_success = dev->success;
1884 spin_unlock_irqrestore(&dev->lock, flags);
1885
1886 if (reset) {
1887 dprintk("%s: r: %08x, active: %d, started: %d, "
1888 "success: %lu: reset: %d.\n",
1889 dev->name, r, dev->active, dev->started,
1890 dev->success, reset);
1891
1892 if (++dev->reset >= 5) {
1893 dprintk("%s: really hard reset.\n", dev->name);
1894 hifn_reset_dma(dev, 1);
1895 hifn_stop_device(dev);
1896 hifn_start_device(dev);
1897 dev->reset = 0;
1898 }
1899
1900 spin_lock_irqsave(&dev->lock, flags);
1901 hifn_check_for_completion(dev, -EBUSY);
1902 hifn_clear_rings(dev);
1903 dev->started = 0;
1904 spin_unlock_irqrestore(&dev->lock, flags);
1905 }
1906
1907 schedule_delayed_work(&dev->work, HZ);
1908}
1909
1910static irqreturn_t hifn_interrupt(int irq, void *data)
1911{
1912 struct hifn_device *dev = (struct hifn_device *)data;
1913 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1914 u32 dmacsr, restart;
1915
1916 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1917
1918 dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1919 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1920 dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1921 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1922 dma->cmdi, dma->srci, dma->dsti, dma->resi);
1923
1924 if ((dmacsr & dev->dmareg) == 0)
1925 return IRQ_NONE;
1926
1927 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1928
1929 if (dmacsr & HIFN_DMACSR_ENGINE)
1930 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1931 if (dmacsr & HIFN_DMACSR_PUBDONE)
1932 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1933 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1934
1935 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1936 if (restart) {
1937 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1938
1939 if (printk_ratelimit())
1940 printk("%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1941 dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
1942 !!(dmacsr & HIFN_DMACSR_D_OVER),
1943 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1944 if (!!(puisr & HIFN_PUISR_DSTOVER))
1945 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1946 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1947 HIFN_DMACSR_D_OVER));
1948 }
1949
1950 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1951 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1952 if (restart) {
1953 if (printk_ratelimit())
1954 printk("%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
1955 dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
1956 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1957 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1958 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1959 hifn_reset_dma(dev, 1);
1960 hifn_init_dma(dev);
1961 hifn_init_registers(dev);
1962 }
1963
1964 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1965 dprintk("%s: wait on command.\n", dev->name);
1966 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1967 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1968 }
1969
Evgeniy Polyakova1e6ef22007-11-10 20:24:18 +08001970 tasklet_schedule(&dev->tasklet);
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +08001971 hifn_clear_rings(dev);
1972
1973 return IRQ_HANDLED;
1974}
1975
1976static void hifn_flush(struct hifn_device *dev)
1977{
1978 unsigned long flags;
1979 struct crypto_async_request *async_req;
1980 struct hifn_context *ctx;
1981 struct ablkcipher_request *req;
1982 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1983 int i;
1984
1985 spin_lock_irqsave(&dev->lock, flags);
1986 for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1987 struct hifn_desc *d = &dma->resr[i];
1988
1989 if (dev->sa[i]) {
1990 hifn_process_ready(dev->sa[i],
1991 (d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
1992 }
1993 }
1994
1995 while ((async_req = crypto_dequeue_request(&dev->queue))) {
1996 ctx = crypto_tfm_ctx(async_req->tfm);
1997 req = container_of(async_req, struct ablkcipher_request, base);
1998
1999 hifn_process_ready(req, -ENODEV);
2000 }
2001 spin_unlock_irqrestore(&dev->lock, flags);
2002}
2003
2004static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
2005 unsigned int len)
2006{
2007 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2008 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2009 struct hifn_device *dev = ctx->dev;
2010
2011 if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
2012 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2013 return -1;
2014 }
2015
Evgeniy Polyakovc3041f92007-10-11 19:58:16 +08002016 if (len == HIFN_DES_KEY_LENGTH) {
2017 u32 tmp[DES_EXPKEY_WORDS];
2018 int ret = des_ekey(tmp, key);
2019
2020 if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
2021 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
2022 return -EINVAL;
2023 }
2024 }
2025
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +08002026 dev->flags &= ~HIFN_FLAG_OLD_KEY;
2027
2028 memcpy(ctx->key, key, len);
2029 ctx->keysize = len;
2030
2031 return 0;
2032}
2033
2034static int hifn_handle_req(struct ablkcipher_request *req)
2035{
2036 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2037 struct hifn_device *dev = ctx->dev;
2038 int err = -EAGAIN;
2039
2040 if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2041 err = hifn_setup_session(req);
2042
2043 if (err == -EAGAIN) {
2044 unsigned long flags;
2045
2046 spin_lock_irqsave(&dev->lock, flags);
2047 err = ablkcipher_enqueue_request(&dev->queue, req);
2048 spin_unlock_irqrestore(&dev->lock, flags);
2049 }
2050
2051 return err;
2052}
2053
2054static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2055 u8 type, u8 mode)
2056{
2057 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2058 unsigned ivsize;
2059
2060 ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2061
2062 if (req->info && mode != ACRYPTO_MODE_ECB) {
2063 if (type == ACRYPTO_TYPE_AES_128)
2064 ivsize = HIFN_AES_IV_LENGTH;
2065 else if (type == ACRYPTO_TYPE_DES)
2066 ivsize = HIFN_DES_KEY_LENGTH;
2067 else if (type == ACRYPTO_TYPE_3DES)
2068 ivsize = HIFN_3DES_KEY_LENGTH;
2069 }
2070
2071 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2072 if (ctx->keysize == 24)
2073 type = ACRYPTO_TYPE_AES_192;
2074 else if (ctx->keysize == 32)
2075 type = ACRYPTO_TYPE_AES_256;
2076 }
2077
2078 ctx->op = op;
2079 ctx->mode = mode;
2080 ctx->type = type;
2081 ctx->iv = req->info;
2082 ctx->ivsize = ivsize;
2083
2084 /*
2085 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2086 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2087 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2088 */
2089
2090 return hifn_handle_req(req);
2091}
2092
2093static int hifn_process_queue(struct hifn_device *dev)
2094{
2095 struct crypto_async_request *async_req;
2096 struct hifn_context *ctx;
2097 struct ablkcipher_request *req;
2098 unsigned long flags;
2099 int err = 0;
2100
2101 while (dev->started < HIFN_QUEUE_LENGTH) {
2102 spin_lock_irqsave(&dev->lock, flags);
2103 async_req = crypto_dequeue_request(&dev->queue);
2104 spin_unlock_irqrestore(&dev->lock, flags);
2105
2106 if (!async_req)
2107 break;
2108
2109 ctx = crypto_tfm_ctx(async_req->tfm);
2110 req = container_of(async_req, struct ablkcipher_request, base);
2111
2112 err = hifn_handle_req(req);
2113 if (err)
2114 break;
2115 }
2116
2117 return err;
2118}
2119
2120static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2121 u8 type, u8 mode)
2122{
2123 int err;
2124 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2125 struct hifn_device *dev = ctx->dev;
2126
2127 err = hifn_setup_crypto_req(req, op, type, mode);
2128 if (err)
2129 return err;
2130
2131 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2132 err = hifn_process_queue(dev);
2133
2134 return err;
2135}
2136
2137/*
2138 * AES ecryption functions.
2139 */
2140static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2141{
2142 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2143 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2144}
2145static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2146{
2147 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2148 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2149}
2150static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2151{
2152 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2153 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2154}
2155static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2156{
2157 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2158 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2159}
2160
2161/*
2162 * AES decryption functions.
2163 */
2164static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2165{
2166 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2167 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2168}
2169static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2170{
2171 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2172 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2173}
2174static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2175{
2176 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2177 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2178}
2179static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2180{
2181 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2182 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2183}
2184
2185/*
2186 * DES ecryption functions.
2187 */
2188static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2189{
2190 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2191 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2192}
2193static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2194{
2195 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2196 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2197}
2198static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2199{
2200 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2201 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2202}
2203static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2204{
2205 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2206 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2207}
2208
2209/*
2210 * DES decryption functions.
2211 */
2212static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2213{
2214 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2215 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2216}
2217static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2218{
2219 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2220 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2221}
2222static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2223{
2224 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2225 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2226}
2227static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2228{
2229 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2230 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2231}
2232
2233/*
2234 * 3DES ecryption functions.
2235 */
2236static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2237{
2238 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2239 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2240}
2241static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2242{
2243 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2244 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2245}
2246static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2247{
2248 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2249 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2250}
2251static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2252{
2253 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2254 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2255}
2256
2257/*
2258 * 3DES decryption functions.
2259 */
2260static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2261{
2262 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2263 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2264}
2265static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2266{
2267 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2268 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2269}
2270static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2271{
2272 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2273 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2274}
2275static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2276{
2277 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2278 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2279}
2280
2281struct hifn_alg_template
2282{
2283 char name[CRYPTO_MAX_ALG_NAME];
2284 char drv_name[CRYPTO_MAX_ALG_NAME];
2285 unsigned int bsize;
2286 struct ablkcipher_alg ablkcipher;
2287};
2288
2289static struct hifn_alg_template hifn_alg_templates[] = {
2290 /*
2291 * 3DES ECB, CBC, CFB and OFB modes.
2292 */
2293 {
2294 .name = "cfb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
2295 .ablkcipher = {
2296 .min_keysize = HIFN_3DES_KEY_LENGTH,
2297 .max_keysize = HIFN_3DES_KEY_LENGTH,
2298 .setkey = hifn_setkey,
2299 .encrypt = hifn_encrypt_3des_cfb,
2300 .decrypt = hifn_decrypt_3des_cfb,
2301 },
2302 },
2303 {
2304 .name = "ofb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
2305 .ablkcipher = {
2306 .min_keysize = HIFN_3DES_KEY_LENGTH,
2307 .max_keysize = HIFN_3DES_KEY_LENGTH,
2308 .setkey = hifn_setkey,
2309 .encrypt = hifn_encrypt_3des_ofb,
2310 .decrypt = hifn_decrypt_3des_ofb,
2311 },
2312 },
2313 {
2314 .name = "cbc(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
2315 .ablkcipher = {
2316 .min_keysize = HIFN_3DES_KEY_LENGTH,
2317 .max_keysize = HIFN_3DES_KEY_LENGTH,
2318 .setkey = hifn_setkey,
2319 .encrypt = hifn_encrypt_3des_cbc,
2320 .decrypt = hifn_decrypt_3des_cbc,
2321 },
2322 },
2323 {
2324 .name = "ecb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
2325 .ablkcipher = {
2326 .min_keysize = HIFN_3DES_KEY_LENGTH,
2327 .max_keysize = HIFN_3DES_KEY_LENGTH,
2328 .setkey = hifn_setkey,
2329 .encrypt = hifn_encrypt_3des_ecb,
2330 .decrypt = hifn_decrypt_3des_ecb,
2331 },
2332 },
2333
2334 /*
2335 * DES ECB, CBC, CFB and OFB modes.
2336 */
2337 {
2338 .name = "cfb(des)", .drv_name = "hifn-des", .bsize = 8,
2339 .ablkcipher = {
2340 .min_keysize = HIFN_DES_KEY_LENGTH,
2341 .max_keysize = HIFN_DES_KEY_LENGTH,
2342 .setkey = hifn_setkey,
2343 .encrypt = hifn_encrypt_des_cfb,
2344 .decrypt = hifn_decrypt_des_cfb,
2345 },
2346 },
2347 {
2348 .name = "ofb(des)", .drv_name = "hifn-des", .bsize = 8,
2349 .ablkcipher = {
2350 .min_keysize = HIFN_DES_KEY_LENGTH,
2351 .max_keysize = HIFN_DES_KEY_LENGTH,
2352 .setkey = hifn_setkey,
2353 .encrypt = hifn_encrypt_des_ofb,
2354 .decrypt = hifn_decrypt_des_ofb,
2355 },
2356 },
2357 {
2358 .name = "cbc(des)", .drv_name = "hifn-des", .bsize = 8,
2359 .ablkcipher = {
2360 .min_keysize = HIFN_DES_KEY_LENGTH,
2361 .max_keysize = HIFN_DES_KEY_LENGTH,
2362 .setkey = hifn_setkey,
2363 .encrypt = hifn_encrypt_des_cbc,
2364 .decrypt = hifn_decrypt_des_cbc,
2365 },
2366 },
2367 {
2368 .name = "ecb(des)", .drv_name = "hifn-des", .bsize = 8,
2369 .ablkcipher = {
2370 .min_keysize = HIFN_DES_KEY_LENGTH,
2371 .max_keysize = HIFN_DES_KEY_LENGTH,
2372 .setkey = hifn_setkey,
2373 .encrypt = hifn_encrypt_des_ecb,
2374 .decrypt = hifn_decrypt_des_ecb,
2375 },
2376 },
2377
2378 /*
2379 * AES ECB, CBC, CFB and OFB modes.
2380 */
2381 {
2382 .name = "ecb(aes)", .drv_name = "hifn-aes", .bsize = 16,
2383 .ablkcipher = {
2384 .min_keysize = AES_MIN_KEY_SIZE,
2385 .max_keysize = AES_MAX_KEY_SIZE,
2386 .setkey = hifn_setkey,
2387 .encrypt = hifn_encrypt_aes_ecb,
2388 .decrypt = hifn_decrypt_aes_ecb,
2389 },
2390 },
2391 {
2392 .name = "cbc(aes)", .drv_name = "hifn-aes", .bsize = 16,
2393 .ablkcipher = {
2394 .min_keysize = AES_MIN_KEY_SIZE,
2395 .max_keysize = AES_MAX_KEY_SIZE,
2396 .setkey = hifn_setkey,
2397 .encrypt = hifn_encrypt_aes_cbc,
2398 .decrypt = hifn_decrypt_aes_cbc,
2399 },
2400 },
2401 {
2402 .name = "cfb(aes)", .drv_name = "hifn-aes", .bsize = 16,
2403 .ablkcipher = {
2404 .min_keysize = AES_MIN_KEY_SIZE,
2405 .max_keysize = AES_MAX_KEY_SIZE,
2406 .setkey = hifn_setkey,
2407 .encrypt = hifn_encrypt_aes_cfb,
2408 .decrypt = hifn_decrypt_aes_cfb,
2409 },
2410 },
2411 {
2412 .name = "ofb(aes)", .drv_name = "hifn-aes", .bsize = 16,
2413 .ablkcipher = {
2414 .min_keysize = AES_MIN_KEY_SIZE,
2415 .max_keysize = AES_MAX_KEY_SIZE,
2416 .setkey = hifn_setkey,
2417 .encrypt = hifn_encrypt_aes_ofb,
2418 .decrypt = hifn_decrypt_aes_ofb,
2419 },
2420 },
2421};
2422
2423static int hifn_cra_init(struct crypto_tfm *tfm)
2424{
2425 struct crypto_alg *alg = tfm->__crt_alg;
2426 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2427 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2428
2429 ctx->dev = ha->dev;
2430
2431 return 0;
2432}
2433
2434static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2435{
2436 struct hifn_crypto_alg *alg;
2437 int err;
2438
2439 alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
2440 if (!alg)
2441 return -ENOMEM;
2442
2443 snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2444 snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", t->drv_name);
2445
2446 alg->alg.cra_priority = 300;
Herbert Xu332f88402007-11-15 22:36:07 +08002447 alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +08002448 alg->alg.cra_blocksize = t->bsize;
2449 alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2450 alg->alg.cra_alignmask = 15;
2451 if (t->bsize == 8)
2452 alg->alg.cra_alignmask = 3;
2453 alg->alg.cra_type = &crypto_ablkcipher_type;
2454 alg->alg.cra_module = THIS_MODULE;
2455 alg->alg.cra_u.ablkcipher = t->ablkcipher;
2456 alg->alg.cra_init = hifn_cra_init;
2457
2458 alg->dev = dev;
2459
2460 list_add_tail(&alg->entry, &dev->alg_list);
2461
2462 err = crypto_register_alg(&alg->alg);
2463 if (err) {
2464 list_del(&alg->entry);
2465 kfree(alg);
2466 }
2467
2468 return err;
2469}
2470
2471static void hifn_unregister_alg(struct hifn_device *dev)
2472{
2473 struct hifn_crypto_alg *a, *n;
2474
2475 list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2476 list_del(&a->entry);
2477 crypto_unregister_alg(&a->alg);
2478 kfree(a);
2479 }
2480}
2481
2482static int hifn_register_alg(struct hifn_device *dev)
2483{
2484 int i, err;
2485
2486 for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
2487 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2488 if (err)
2489 goto err_out_exit;
2490 }
2491
2492 return 0;
2493
2494err_out_exit:
2495 hifn_unregister_alg(dev);
2496 return err;
2497}
2498
Evgeniy Polyakova1e6ef22007-11-10 20:24:18 +08002499static void hifn_tasklet_callback(unsigned long data)
2500{
2501 struct hifn_device *dev = (struct hifn_device *)data;
2502
2503 /*
2504 * This is ok to call this without lock being held,
2505 * althogh it modifies some parameters used in parallel,
2506 * (like dev->success), but they are used in process
2507 * context or update is atomic (like setting dev->sa[i] to NULL).
2508 */
2509 hifn_check_for_completion(dev, 0);
2510}
2511
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +08002512static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2513{
2514 int err, i;
2515 struct hifn_device *dev;
2516 char name[8];
2517
2518 err = pci_enable_device(pdev);
2519 if (err)
2520 return err;
2521 pci_set_master(pdev);
2522
2523 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2524 if (err)
2525 goto err_out_disable_pci_device;
2526
2527 snprintf(name, sizeof(name), "hifn%d",
2528 atomic_inc_return(&hifn_dev_number)-1);
2529
2530 err = pci_request_regions(pdev, name);
2531 if (err)
2532 goto err_out_disable_pci_device;
2533
2534 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2535 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2536 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2537 dprintk("%s: Broken hardware - I/O regions are too small.\n",
2538 pci_name(pdev));
2539 err = -ENODEV;
2540 goto err_out_free_regions;
2541 }
2542
2543 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2544 GFP_KERNEL);
2545 if (!dev) {
2546 err = -ENOMEM;
2547 goto err_out_free_regions;
2548 }
2549
2550 INIT_LIST_HEAD(&dev->alg_list);
2551
2552 snprintf(dev->name, sizeof(dev->name), "%s", name);
2553 spin_lock_init(&dev->lock);
2554
2555 for (i=0; i<3; ++i) {
2556 unsigned long addr, size;
2557
2558 addr = pci_resource_start(pdev, i);
2559 size = pci_resource_len(pdev, i);
2560
2561 dev->bar[i] = ioremap_nocache(addr, size);
2562 if (!dev->bar[i])
2563 goto err_out_unmap_bars;
2564 }
2565
2566 dev->result_mem = __get_free_pages(GFP_KERNEL, HIFN_MAX_RESULT_ORDER);
2567 if (!dev->result_mem) {
2568 dprintk("Failed to allocate %d pages for result_mem.\n",
2569 HIFN_MAX_RESULT_ORDER);
2570 goto err_out_unmap_bars;
2571 }
2572 memset((void *)dev->result_mem, 0, PAGE_SIZE*(1<<HIFN_MAX_RESULT_ORDER));
2573
2574 dev->dst = pci_map_single(pdev, (void *)dev->result_mem,
2575 PAGE_SIZE << HIFN_MAX_RESULT_ORDER, PCI_DMA_FROMDEVICE);
2576
2577 dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma),
2578 &dev->desc_dma);
2579 if (!dev->desc_virt) {
2580 dprintk("Failed to allocate descriptor rings.\n");
2581 goto err_out_free_result_pages;
2582 }
2583 memset(dev->desc_virt, 0, sizeof(struct hifn_dma));
2584
2585 dev->pdev = pdev;
2586 dev->irq = pdev->irq;
2587
2588 for (i=0; i<HIFN_D_RES_RSIZE; ++i)
2589 dev->sa[i] = NULL;
2590
2591 pci_set_drvdata(pdev, dev);
2592
Evgeniy Polyakova1e6ef22007-11-10 20:24:18 +08002593 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2594
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +08002595 crypto_init_queue(&dev->queue, 1);
2596
2597 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2598 if (err) {
2599 dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
2600 dev->irq = 0;
2601 goto err_out_free_desc;
2602 }
2603
2604 err = hifn_start_device(dev);
2605 if (err)
2606 goto err_out_free_irq;
2607
2608 err = hifn_test(dev, 1, 0);
2609 if (err)
2610 goto err_out_stop_device;
2611
2612 err = hifn_register_alg(dev);
2613 if (err)
2614 goto err_out_stop_device;
2615
2616 INIT_DELAYED_WORK(&dev->work, hifn_work);
2617 schedule_delayed_work(&dev->work, HZ);
2618
2619 dprintk("HIFN crypto accelerator card at %s has been "
2620 "successfully registered as %s.\n",
2621 pci_name(pdev), dev->name);
2622
2623 return 0;
2624
2625err_out_stop_device:
2626 hifn_reset_dma(dev, 1);
2627 hifn_stop_device(dev);
2628err_out_free_irq:
2629 free_irq(dev->irq, dev->name);
Evgeniy Polyakova1e6ef22007-11-10 20:24:18 +08002630 tasklet_kill(&dev->tasklet);
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +08002631err_out_free_desc:
2632 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2633 dev->desc_virt, dev->desc_dma);
2634
2635err_out_free_result_pages:
2636 pci_unmap_single(pdev, dev->dst, PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2637 PCI_DMA_FROMDEVICE);
2638 free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2639
2640err_out_unmap_bars:
2641 for (i=0; i<3; ++i)
2642 if (dev->bar[i])
2643 iounmap(dev->bar[i]);
2644
2645err_out_free_regions:
2646 pci_release_regions(pdev);
2647
2648err_out_disable_pci_device:
2649 pci_disable_device(pdev);
2650
2651 return err;
2652}
2653
2654static void hifn_remove(struct pci_dev *pdev)
2655{
2656 int i;
2657 struct hifn_device *dev;
2658
2659 dev = pci_get_drvdata(pdev);
2660
2661 if (dev) {
2662 cancel_delayed_work(&dev->work);
2663 flush_scheduled_work();
2664
2665 hifn_unregister_alg(dev);
2666 hifn_reset_dma(dev, 1);
2667 hifn_stop_device(dev);
2668
2669 free_irq(dev->irq, dev->name);
Evgeniy Polyakova1e6ef22007-11-10 20:24:18 +08002670 tasklet_kill(&dev->tasklet);
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +08002671
2672 hifn_flush(dev);
2673
2674 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2675 dev->desc_virt, dev->desc_dma);
2676 pci_unmap_single(pdev, dev->dst,
2677 PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2678 PCI_DMA_FROMDEVICE);
2679 free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2680 for (i=0; i<3; ++i)
2681 if (dev->bar[i])
2682 iounmap(dev->bar[i]);
2683
2684 kfree(dev);
2685 }
2686
2687 pci_release_regions(pdev);
2688 pci_disable_device(pdev);
2689}
2690
2691static struct pci_device_id hifn_pci_tbl[] = {
2692 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2693 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2694 { 0 }
2695};
2696MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2697
2698static struct pci_driver hifn_pci_driver = {
2699 .name = "hifn795x",
2700 .id_table = hifn_pci_tbl,
2701 .probe = hifn_probe,
2702 .remove = __devexit_p(hifn_remove),
2703};
2704
2705static int __devinit hifn_init(void)
2706{
Patrick McHardy37a80232007-11-21 12:47:13 +08002707 unsigned int freq;
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +08002708 int err;
2709
Patrick McHardy37a80232007-11-21 12:47:13 +08002710 if (strncmp(hifn_pll_ref, "ext", 3) &&
2711 strncmp(hifn_pll_ref, "pci", 3)) {
2712 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
2713 "must be pci or ext");
2714 return -EINVAL;
2715 }
2716
2717 /*
2718 * For the 7955/7956 the reference clock frequency must be in the
2719 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2720 * but this chip is currently not supported.
2721 */
2722 if (hifn_pll_ref[3] != '\0') {
2723 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2724 if (freq < 20 || freq > 100) {
2725 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
2726 "frequency, must be in the range "
2727 "of 20-100");
2728 return -EINVAL;
2729 }
2730 }
2731
Evgeniy Polyakovf7d05612007-10-26 21:31:14 +08002732 err = pci_register_driver(&hifn_pci_driver);
2733 if (err < 0) {
2734 dprintk("Failed to register PCI driver for %s device.\n",
2735 hifn_pci_driver.name);
2736 return -ENODEV;
2737 }
2738
2739 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2740 "has been successfully registered.\n");
2741
2742 return 0;
2743}
2744
2745static void __devexit hifn_fini(void)
2746{
2747 pci_unregister_driver(&hifn_pci_driver);
2748
2749 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2750 "has been successfully unregistered.\n");
2751}
2752
2753module_init(hifn_init);
2754module_exit(hifn_fini);
2755
2756MODULE_LICENSE("GPL");
2757MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2758MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");