Hugh Dickins | f8af4da | 2009-09-21 17:01:57 -0700 | [diff] [blame] | 1 | /* |
Izik Eidus | 31dbd01 | 2009-09-21 17:02:03 -0700 | [diff] [blame] | 2 | * Memory merging support. |
| 3 | * |
| 4 | * This code enables dynamic sharing of identical pages found in different |
| 5 | * memory areas, even if they are not shared by fork() |
| 6 | * |
Izik Eidus | 36b2528 | 2009-09-21 17:02:06 -0700 | [diff] [blame^] | 7 | * Copyright (C) 2008-2009 Red Hat, Inc. |
Izik Eidus | 31dbd01 | 2009-09-21 17:02:03 -0700 | [diff] [blame] | 8 | * Authors: |
| 9 | * Izik Eidus |
| 10 | * Andrea Arcangeli |
| 11 | * Chris Wright |
Izik Eidus | 36b2528 | 2009-09-21 17:02:06 -0700 | [diff] [blame^] | 12 | * Hugh Dickins |
Izik Eidus | 31dbd01 | 2009-09-21 17:02:03 -0700 | [diff] [blame] | 13 | * |
| 14 | * This work is licensed under the terms of the GNU GPL, version 2. |
Hugh Dickins | f8af4da | 2009-09-21 17:01:57 -0700 | [diff] [blame] | 15 | */ |
| 16 | |
| 17 | #include <linux/errno.h> |
Izik Eidus | 31dbd01 | 2009-09-21 17:02:03 -0700 | [diff] [blame] | 18 | #include <linux/mm.h> |
| 19 | #include <linux/fs.h> |
Hugh Dickins | f8af4da | 2009-09-21 17:01:57 -0700 | [diff] [blame] | 20 | #include <linux/mman.h> |
Izik Eidus | 31dbd01 | 2009-09-21 17:02:03 -0700 | [diff] [blame] | 21 | #include <linux/sched.h> |
| 22 | #include <linux/rwsem.h> |
| 23 | #include <linux/pagemap.h> |
| 24 | #include <linux/rmap.h> |
| 25 | #include <linux/spinlock.h> |
| 26 | #include <linux/jhash.h> |
| 27 | #include <linux/delay.h> |
| 28 | #include <linux/kthread.h> |
| 29 | #include <linux/wait.h> |
| 30 | #include <linux/slab.h> |
| 31 | #include <linux/rbtree.h> |
| 32 | #include <linux/mmu_notifier.h> |
Hugh Dickins | f8af4da | 2009-09-21 17:01:57 -0700 | [diff] [blame] | 33 | #include <linux/ksm.h> |
| 34 | |
Izik Eidus | 31dbd01 | 2009-09-21 17:02:03 -0700 | [diff] [blame] | 35 | #include <asm/tlbflush.h> |
| 36 | |
| 37 | /* |
| 38 | * A few notes about the KSM scanning process, |
| 39 | * to make it easier to understand the data structures below: |
| 40 | * |
| 41 | * In order to reduce excessive scanning, KSM sorts the memory pages by their |
| 42 | * contents into a data structure that holds pointers to the pages' locations. |
| 43 | * |
| 44 | * Since the contents of the pages may change at any moment, KSM cannot just |
| 45 | * insert the pages into a normal sorted tree and expect it to find anything. |
| 46 | * Therefore KSM uses two data structures - the stable and the unstable tree. |
| 47 | * |
| 48 | * The stable tree holds pointers to all the merged pages (ksm pages), sorted |
| 49 | * by their contents. Because each such page is write-protected, searching on |
| 50 | * this tree is fully assured to be working (except when pages are unmapped), |
| 51 | * and therefore this tree is called the stable tree. |
| 52 | * |
| 53 | * In addition to the stable tree, KSM uses a second data structure called the |
| 54 | * unstable tree: this tree holds pointers to pages which have been found to |
| 55 | * be "unchanged for a period of time". The unstable tree sorts these pages |
| 56 | * by their contents, but since they are not write-protected, KSM cannot rely |
| 57 | * upon the unstable tree to work correctly - the unstable tree is liable to |
| 58 | * be corrupted as its contents are modified, and so it is called unstable. |
| 59 | * |
| 60 | * KSM solves this problem by several techniques: |
| 61 | * |
| 62 | * 1) The unstable tree is flushed every time KSM completes scanning all |
| 63 | * memory areas, and then the tree is rebuilt again from the beginning. |
| 64 | * 2) KSM will only insert into the unstable tree, pages whose hash value |
| 65 | * has not changed since the previous scan of all memory areas. |
| 66 | * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the |
| 67 | * colors of the nodes and not on their contents, assuring that even when |
| 68 | * the tree gets "corrupted" it won't get out of balance, so scanning time |
| 69 | * remains the same (also, searching and inserting nodes in an rbtree uses |
| 70 | * the same algorithm, so we have no overhead when we flush and rebuild). |
| 71 | * 4) KSM never flushes the stable tree, which means that even if it were to |
| 72 | * take 10 attempts to find a page in the unstable tree, once it is found, |
| 73 | * it is secured in the stable tree. (When we scan a new page, we first |
| 74 | * compare it against the stable tree, and then against the unstable tree.) |
| 75 | */ |
| 76 | |
| 77 | /** |
| 78 | * struct mm_slot - ksm information per mm that is being scanned |
| 79 | * @link: link to the mm_slots hash list |
| 80 | * @mm_list: link into the mm_slots list, rooted in ksm_mm_head |
| 81 | * @rmap_list: head for this mm_slot's list of rmap_items |
| 82 | * @mm: the mm that this information is valid for |
| 83 | */ |
| 84 | struct mm_slot { |
| 85 | struct hlist_node link; |
| 86 | struct list_head mm_list; |
| 87 | struct list_head rmap_list; |
| 88 | struct mm_struct *mm; |
| 89 | }; |
| 90 | |
| 91 | /** |
| 92 | * struct ksm_scan - cursor for scanning |
| 93 | * @mm_slot: the current mm_slot we are scanning |
| 94 | * @address: the next address inside that to be scanned |
| 95 | * @rmap_item: the current rmap that we are scanning inside the rmap_list |
| 96 | * @seqnr: count of completed full scans (needed when removing unstable node) |
| 97 | * |
| 98 | * There is only the one ksm_scan instance of this cursor structure. |
| 99 | */ |
| 100 | struct ksm_scan { |
| 101 | struct mm_slot *mm_slot; |
| 102 | unsigned long address; |
| 103 | struct rmap_item *rmap_item; |
| 104 | unsigned long seqnr; |
| 105 | }; |
| 106 | |
| 107 | /** |
| 108 | * struct rmap_item - reverse mapping item for virtual addresses |
| 109 | * @link: link into mm_slot's rmap_list (rmap_list is per mm) |
| 110 | * @mm: the memory structure this rmap_item is pointing into |
| 111 | * @address: the virtual address this rmap_item tracks (+ flags in low bits) |
| 112 | * @oldchecksum: previous checksum of the page at that virtual address |
| 113 | * @node: rb_node of this rmap_item in either unstable or stable tree |
| 114 | * @next: next rmap_item hanging off the same node of the stable tree |
| 115 | * @prev: previous rmap_item hanging off the same node of the stable tree |
| 116 | */ |
| 117 | struct rmap_item { |
| 118 | struct list_head link; |
| 119 | struct mm_struct *mm; |
| 120 | unsigned long address; /* + low bits used for flags below */ |
| 121 | union { |
| 122 | unsigned int oldchecksum; /* when unstable */ |
| 123 | struct rmap_item *next; /* when stable */ |
| 124 | }; |
| 125 | union { |
| 126 | struct rb_node node; /* when tree node */ |
| 127 | struct rmap_item *prev; /* in stable list */ |
| 128 | }; |
| 129 | }; |
| 130 | |
| 131 | #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ |
| 132 | #define NODE_FLAG 0x100 /* is a node of unstable or stable tree */ |
| 133 | #define STABLE_FLAG 0x200 /* is a node or list item of stable tree */ |
| 134 | |
| 135 | /* The stable and unstable tree heads */ |
| 136 | static struct rb_root root_stable_tree = RB_ROOT; |
| 137 | static struct rb_root root_unstable_tree = RB_ROOT; |
| 138 | |
| 139 | #define MM_SLOTS_HASH_HEADS 1024 |
| 140 | static struct hlist_head *mm_slots_hash; |
| 141 | |
| 142 | static struct mm_slot ksm_mm_head = { |
| 143 | .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), |
| 144 | }; |
| 145 | static struct ksm_scan ksm_scan = { |
| 146 | .mm_slot = &ksm_mm_head, |
| 147 | }; |
| 148 | |
| 149 | static struct kmem_cache *rmap_item_cache; |
| 150 | static struct kmem_cache *mm_slot_cache; |
| 151 | |
| 152 | /* The number of nodes in the stable tree */ |
| 153 | static unsigned long ksm_kernel_pages_allocated; |
| 154 | |
| 155 | /* The number of page slots sharing those nodes */ |
| 156 | static unsigned long ksm_pages_shared; |
| 157 | |
| 158 | /* Limit on the number of unswappable pages used */ |
| 159 | static unsigned long ksm_max_kernel_pages; |
| 160 | |
| 161 | /* Number of pages ksmd should scan in one batch */ |
| 162 | static unsigned int ksm_thread_pages_to_scan; |
| 163 | |
| 164 | /* Milliseconds ksmd should sleep between batches */ |
| 165 | static unsigned int ksm_thread_sleep_millisecs; |
| 166 | |
| 167 | #define KSM_RUN_STOP 0 |
| 168 | #define KSM_RUN_MERGE 1 |
| 169 | #define KSM_RUN_UNMERGE 2 |
| 170 | static unsigned int ksm_run; |
| 171 | |
| 172 | static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); |
| 173 | static DEFINE_MUTEX(ksm_thread_mutex); |
| 174 | static DEFINE_SPINLOCK(ksm_mmlist_lock); |
| 175 | |
| 176 | #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ |
| 177 | sizeof(struct __struct), __alignof__(struct __struct),\ |
| 178 | (__flags), NULL) |
| 179 | |
| 180 | static int __init ksm_slab_init(void) |
| 181 | { |
| 182 | rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); |
| 183 | if (!rmap_item_cache) |
| 184 | goto out; |
| 185 | |
| 186 | mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); |
| 187 | if (!mm_slot_cache) |
| 188 | goto out_free; |
| 189 | |
| 190 | return 0; |
| 191 | |
| 192 | out_free: |
| 193 | kmem_cache_destroy(rmap_item_cache); |
| 194 | out: |
| 195 | return -ENOMEM; |
| 196 | } |
| 197 | |
| 198 | static void __init ksm_slab_free(void) |
| 199 | { |
| 200 | kmem_cache_destroy(mm_slot_cache); |
| 201 | kmem_cache_destroy(rmap_item_cache); |
| 202 | mm_slot_cache = NULL; |
| 203 | } |
| 204 | |
| 205 | static inline struct rmap_item *alloc_rmap_item(void) |
| 206 | { |
| 207 | return kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL); |
| 208 | } |
| 209 | |
| 210 | static inline void free_rmap_item(struct rmap_item *rmap_item) |
| 211 | { |
| 212 | rmap_item->mm = NULL; /* debug safety */ |
| 213 | kmem_cache_free(rmap_item_cache, rmap_item); |
| 214 | } |
| 215 | |
| 216 | static inline struct mm_slot *alloc_mm_slot(void) |
| 217 | { |
| 218 | if (!mm_slot_cache) /* initialization failed */ |
| 219 | return NULL; |
| 220 | return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); |
| 221 | } |
| 222 | |
| 223 | static inline void free_mm_slot(struct mm_slot *mm_slot) |
| 224 | { |
| 225 | kmem_cache_free(mm_slot_cache, mm_slot); |
| 226 | } |
| 227 | |
| 228 | static int __init mm_slots_hash_init(void) |
| 229 | { |
| 230 | mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head), |
| 231 | GFP_KERNEL); |
| 232 | if (!mm_slots_hash) |
| 233 | return -ENOMEM; |
| 234 | return 0; |
| 235 | } |
| 236 | |
| 237 | static void __init mm_slots_hash_free(void) |
| 238 | { |
| 239 | kfree(mm_slots_hash); |
| 240 | } |
| 241 | |
| 242 | static struct mm_slot *get_mm_slot(struct mm_struct *mm) |
| 243 | { |
| 244 | struct mm_slot *mm_slot; |
| 245 | struct hlist_head *bucket; |
| 246 | struct hlist_node *node; |
| 247 | |
| 248 | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) |
| 249 | % MM_SLOTS_HASH_HEADS]; |
| 250 | hlist_for_each_entry(mm_slot, node, bucket, link) { |
| 251 | if (mm == mm_slot->mm) |
| 252 | return mm_slot; |
| 253 | } |
| 254 | return NULL; |
| 255 | } |
| 256 | |
| 257 | static void insert_to_mm_slots_hash(struct mm_struct *mm, |
| 258 | struct mm_slot *mm_slot) |
| 259 | { |
| 260 | struct hlist_head *bucket; |
| 261 | |
| 262 | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) |
| 263 | % MM_SLOTS_HASH_HEADS]; |
| 264 | mm_slot->mm = mm; |
| 265 | INIT_LIST_HEAD(&mm_slot->rmap_list); |
| 266 | hlist_add_head(&mm_slot->link, bucket); |
| 267 | } |
| 268 | |
| 269 | static inline int in_stable_tree(struct rmap_item *rmap_item) |
| 270 | { |
| 271 | return rmap_item->address & STABLE_FLAG; |
| 272 | } |
| 273 | |
| 274 | /* |
| 275 | * We use break_ksm to break COW on a ksm page: it's a stripped down |
| 276 | * |
| 277 | * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1) |
| 278 | * put_page(page); |
| 279 | * |
| 280 | * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, |
| 281 | * in case the application has unmapped and remapped mm,addr meanwhile. |
| 282 | * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP |
| 283 | * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. |
| 284 | */ |
| 285 | static void break_ksm(struct vm_area_struct *vma, unsigned long addr) |
| 286 | { |
| 287 | struct page *page; |
| 288 | int ret; |
| 289 | |
| 290 | do { |
| 291 | cond_resched(); |
| 292 | page = follow_page(vma, addr, FOLL_GET); |
| 293 | if (!page) |
| 294 | break; |
| 295 | if (PageKsm(page)) |
| 296 | ret = handle_mm_fault(vma->vm_mm, vma, addr, |
| 297 | FAULT_FLAG_WRITE); |
| 298 | else |
| 299 | ret = VM_FAULT_WRITE; |
| 300 | put_page(page); |
| 301 | } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS))); |
| 302 | |
| 303 | /* Which leaves us looping there if VM_FAULT_OOM: hmmm... */ |
| 304 | } |
| 305 | |
| 306 | static void __break_cow(struct mm_struct *mm, unsigned long addr) |
| 307 | { |
| 308 | struct vm_area_struct *vma; |
| 309 | |
| 310 | vma = find_vma(mm, addr); |
| 311 | if (!vma || vma->vm_start > addr) |
| 312 | return; |
| 313 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) |
| 314 | return; |
| 315 | break_ksm(vma, addr); |
| 316 | } |
| 317 | |
| 318 | static void break_cow(struct mm_struct *mm, unsigned long addr) |
| 319 | { |
| 320 | down_read(&mm->mmap_sem); |
| 321 | __break_cow(mm, addr); |
| 322 | up_read(&mm->mmap_sem); |
| 323 | } |
| 324 | |
| 325 | static struct page *get_mergeable_page(struct rmap_item *rmap_item) |
| 326 | { |
| 327 | struct mm_struct *mm = rmap_item->mm; |
| 328 | unsigned long addr = rmap_item->address; |
| 329 | struct vm_area_struct *vma; |
| 330 | struct page *page; |
| 331 | |
| 332 | down_read(&mm->mmap_sem); |
| 333 | vma = find_vma(mm, addr); |
| 334 | if (!vma || vma->vm_start > addr) |
| 335 | goto out; |
| 336 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) |
| 337 | goto out; |
| 338 | |
| 339 | page = follow_page(vma, addr, FOLL_GET); |
| 340 | if (!page) |
| 341 | goto out; |
| 342 | if (PageAnon(page)) { |
| 343 | flush_anon_page(vma, page, addr); |
| 344 | flush_dcache_page(page); |
| 345 | } else { |
| 346 | put_page(page); |
| 347 | out: page = NULL; |
| 348 | } |
| 349 | up_read(&mm->mmap_sem); |
| 350 | return page; |
| 351 | } |
| 352 | |
| 353 | /* |
| 354 | * get_ksm_page: checks if the page at the virtual address in rmap_item |
| 355 | * is still PageKsm, in which case we can trust the content of the page, |
| 356 | * and it returns the gotten page; but NULL if the page has been zapped. |
| 357 | */ |
| 358 | static struct page *get_ksm_page(struct rmap_item *rmap_item) |
| 359 | { |
| 360 | struct page *page; |
| 361 | |
| 362 | page = get_mergeable_page(rmap_item); |
| 363 | if (page && !PageKsm(page)) { |
| 364 | put_page(page); |
| 365 | page = NULL; |
| 366 | } |
| 367 | return page; |
| 368 | } |
| 369 | |
| 370 | /* |
| 371 | * Removing rmap_item from stable or unstable tree. |
| 372 | * This function will clean the information from the stable/unstable tree. |
| 373 | */ |
| 374 | static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) |
| 375 | { |
| 376 | if (in_stable_tree(rmap_item)) { |
| 377 | struct rmap_item *next_item = rmap_item->next; |
| 378 | |
| 379 | if (rmap_item->address & NODE_FLAG) { |
| 380 | if (next_item) { |
| 381 | rb_replace_node(&rmap_item->node, |
| 382 | &next_item->node, |
| 383 | &root_stable_tree); |
| 384 | next_item->address |= NODE_FLAG; |
| 385 | } else { |
| 386 | rb_erase(&rmap_item->node, &root_stable_tree); |
| 387 | ksm_kernel_pages_allocated--; |
| 388 | } |
| 389 | } else { |
| 390 | struct rmap_item *prev_item = rmap_item->prev; |
| 391 | |
| 392 | BUG_ON(prev_item->next != rmap_item); |
| 393 | prev_item->next = next_item; |
| 394 | if (next_item) { |
| 395 | BUG_ON(next_item->prev != rmap_item); |
| 396 | next_item->prev = rmap_item->prev; |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | rmap_item->next = NULL; |
| 401 | ksm_pages_shared--; |
| 402 | |
| 403 | } else if (rmap_item->address & NODE_FLAG) { |
| 404 | unsigned char age; |
| 405 | /* |
| 406 | * ksm_thread can and must skip the rb_erase, because |
| 407 | * root_unstable_tree was already reset to RB_ROOT. |
| 408 | * But __ksm_exit has to be careful: do the rb_erase |
| 409 | * if it's interrupting a scan, and this rmap_item was |
| 410 | * inserted by this scan rather than left from before. |
| 411 | * |
| 412 | * Because of the case in which remove_mm_from_lists |
| 413 | * increments seqnr before removing rmaps, unstable_nr |
| 414 | * may even be 2 behind seqnr, but should never be |
| 415 | * further behind. Yes, I did have trouble with this! |
| 416 | */ |
| 417 | age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); |
| 418 | BUG_ON(age > 2); |
| 419 | if (!age) |
| 420 | rb_erase(&rmap_item->node, &root_unstable_tree); |
| 421 | } |
| 422 | |
| 423 | rmap_item->address &= PAGE_MASK; |
| 424 | |
| 425 | cond_resched(); /* we're called from many long loops */ |
| 426 | } |
| 427 | |
| 428 | static void remove_all_slot_rmap_items(struct mm_slot *mm_slot) |
| 429 | { |
| 430 | struct rmap_item *rmap_item, *node; |
| 431 | |
| 432 | list_for_each_entry_safe(rmap_item, node, &mm_slot->rmap_list, link) { |
| 433 | remove_rmap_item_from_tree(rmap_item); |
| 434 | list_del(&rmap_item->link); |
| 435 | free_rmap_item(rmap_item); |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | static void remove_trailing_rmap_items(struct mm_slot *mm_slot, |
| 440 | struct list_head *cur) |
| 441 | { |
| 442 | struct rmap_item *rmap_item; |
| 443 | |
| 444 | while (cur != &mm_slot->rmap_list) { |
| 445 | rmap_item = list_entry(cur, struct rmap_item, link); |
| 446 | cur = cur->next; |
| 447 | remove_rmap_item_from_tree(rmap_item); |
| 448 | list_del(&rmap_item->link); |
| 449 | free_rmap_item(rmap_item); |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | /* |
| 454 | * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather |
| 455 | * than check every pte of a given vma, the locking doesn't quite work for |
| 456 | * that - an rmap_item is assigned to the stable tree after inserting ksm |
| 457 | * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing |
| 458 | * rmap_items from parent to child at fork time (so as not to waste time |
| 459 | * if exit comes before the next scan reaches it). |
| 460 | */ |
| 461 | static void unmerge_ksm_pages(struct vm_area_struct *vma, |
| 462 | unsigned long start, unsigned long end) |
| 463 | { |
| 464 | unsigned long addr; |
| 465 | |
| 466 | for (addr = start; addr < end; addr += PAGE_SIZE) |
| 467 | break_ksm(vma, addr); |
| 468 | } |
| 469 | |
| 470 | static void unmerge_and_remove_all_rmap_items(void) |
| 471 | { |
| 472 | struct mm_slot *mm_slot; |
| 473 | struct mm_struct *mm; |
| 474 | struct vm_area_struct *vma; |
| 475 | |
| 476 | list_for_each_entry(mm_slot, &ksm_mm_head.mm_list, mm_list) { |
| 477 | mm = mm_slot->mm; |
| 478 | down_read(&mm->mmap_sem); |
| 479 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
| 480 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) |
| 481 | continue; |
| 482 | unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end); |
| 483 | } |
| 484 | remove_all_slot_rmap_items(mm_slot); |
| 485 | up_read(&mm->mmap_sem); |
| 486 | } |
| 487 | |
| 488 | spin_lock(&ksm_mmlist_lock); |
| 489 | if (ksm_scan.mm_slot != &ksm_mm_head) { |
| 490 | ksm_scan.mm_slot = &ksm_mm_head; |
| 491 | ksm_scan.seqnr++; |
| 492 | } |
| 493 | spin_unlock(&ksm_mmlist_lock); |
| 494 | } |
| 495 | |
| 496 | static void remove_mm_from_lists(struct mm_struct *mm) |
| 497 | { |
| 498 | struct mm_slot *mm_slot; |
| 499 | |
| 500 | spin_lock(&ksm_mmlist_lock); |
| 501 | mm_slot = get_mm_slot(mm); |
| 502 | |
| 503 | /* |
| 504 | * This mm_slot is always at the scanning cursor when we're |
| 505 | * called from scan_get_next_rmap_item; but it's a special |
| 506 | * case when we're called from __ksm_exit. |
| 507 | */ |
| 508 | if (ksm_scan.mm_slot == mm_slot) { |
| 509 | ksm_scan.mm_slot = list_entry( |
| 510 | mm_slot->mm_list.next, struct mm_slot, mm_list); |
| 511 | ksm_scan.address = 0; |
| 512 | ksm_scan.rmap_item = list_entry( |
| 513 | &ksm_scan.mm_slot->rmap_list, struct rmap_item, link); |
| 514 | if (ksm_scan.mm_slot == &ksm_mm_head) |
| 515 | ksm_scan.seqnr++; |
| 516 | } |
| 517 | |
| 518 | hlist_del(&mm_slot->link); |
| 519 | list_del(&mm_slot->mm_list); |
| 520 | spin_unlock(&ksm_mmlist_lock); |
| 521 | |
| 522 | remove_all_slot_rmap_items(mm_slot); |
| 523 | free_mm_slot(mm_slot); |
| 524 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); |
| 525 | } |
| 526 | |
| 527 | static u32 calc_checksum(struct page *page) |
| 528 | { |
| 529 | u32 checksum; |
| 530 | void *addr = kmap_atomic(page, KM_USER0); |
| 531 | checksum = jhash2(addr, PAGE_SIZE / 4, 17); |
| 532 | kunmap_atomic(addr, KM_USER0); |
| 533 | return checksum; |
| 534 | } |
| 535 | |
| 536 | static int memcmp_pages(struct page *page1, struct page *page2) |
| 537 | { |
| 538 | char *addr1, *addr2; |
| 539 | int ret; |
| 540 | |
| 541 | addr1 = kmap_atomic(page1, KM_USER0); |
| 542 | addr2 = kmap_atomic(page2, KM_USER1); |
| 543 | ret = memcmp(addr1, addr2, PAGE_SIZE); |
| 544 | kunmap_atomic(addr2, KM_USER1); |
| 545 | kunmap_atomic(addr1, KM_USER0); |
| 546 | return ret; |
| 547 | } |
| 548 | |
| 549 | static inline int pages_identical(struct page *page1, struct page *page2) |
| 550 | { |
| 551 | return !memcmp_pages(page1, page2); |
| 552 | } |
| 553 | |
| 554 | static int write_protect_page(struct vm_area_struct *vma, struct page *page, |
| 555 | pte_t *orig_pte) |
| 556 | { |
| 557 | struct mm_struct *mm = vma->vm_mm; |
| 558 | unsigned long addr; |
| 559 | pte_t *ptep; |
| 560 | spinlock_t *ptl; |
| 561 | int swapped; |
| 562 | int err = -EFAULT; |
| 563 | |
| 564 | addr = page_address_in_vma(page, vma); |
| 565 | if (addr == -EFAULT) |
| 566 | goto out; |
| 567 | |
| 568 | ptep = page_check_address(page, mm, addr, &ptl, 0); |
| 569 | if (!ptep) |
| 570 | goto out; |
| 571 | |
| 572 | if (pte_write(*ptep)) { |
| 573 | pte_t entry; |
| 574 | |
| 575 | swapped = PageSwapCache(page); |
| 576 | flush_cache_page(vma, addr, page_to_pfn(page)); |
| 577 | /* |
| 578 | * Ok this is tricky, when get_user_pages_fast() run it doesnt |
| 579 | * take any lock, therefore the check that we are going to make |
| 580 | * with the pagecount against the mapcount is racey and |
| 581 | * O_DIRECT can happen right after the check. |
| 582 | * So we clear the pte and flush the tlb before the check |
| 583 | * this assure us that no O_DIRECT can happen after the check |
| 584 | * or in the middle of the check. |
| 585 | */ |
| 586 | entry = ptep_clear_flush(vma, addr, ptep); |
| 587 | /* |
| 588 | * Check that no O_DIRECT or similar I/O is in progress on the |
| 589 | * page |
| 590 | */ |
| 591 | if ((page_mapcount(page) + 2 + swapped) != page_count(page)) { |
| 592 | set_pte_at_notify(mm, addr, ptep, entry); |
| 593 | goto out_unlock; |
| 594 | } |
| 595 | entry = pte_wrprotect(entry); |
| 596 | set_pte_at_notify(mm, addr, ptep, entry); |
| 597 | } |
| 598 | *orig_pte = *ptep; |
| 599 | err = 0; |
| 600 | |
| 601 | out_unlock: |
| 602 | pte_unmap_unlock(ptep, ptl); |
| 603 | out: |
| 604 | return err; |
| 605 | } |
| 606 | |
| 607 | /** |
| 608 | * replace_page - replace page in vma by new ksm page |
| 609 | * @vma: vma that holds the pte pointing to oldpage |
| 610 | * @oldpage: the page we are replacing by newpage |
| 611 | * @newpage: the ksm page we replace oldpage by |
| 612 | * @orig_pte: the original value of the pte |
| 613 | * |
| 614 | * Returns 0 on success, -EFAULT on failure. |
| 615 | */ |
| 616 | static int replace_page(struct vm_area_struct *vma, struct page *oldpage, |
| 617 | struct page *newpage, pte_t orig_pte) |
| 618 | { |
| 619 | struct mm_struct *mm = vma->vm_mm; |
| 620 | pgd_t *pgd; |
| 621 | pud_t *pud; |
| 622 | pmd_t *pmd; |
| 623 | pte_t *ptep; |
| 624 | spinlock_t *ptl; |
| 625 | unsigned long addr; |
| 626 | pgprot_t prot; |
| 627 | int err = -EFAULT; |
| 628 | |
| 629 | prot = vm_get_page_prot(vma->vm_flags & ~VM_WRITE); |
| 630 | |
| 631 | addr = page_address_in_vma(oldpage, vma); |
| 632 | if (addr == -EFAULT) |
| 633 | goto out; |
| 634 | |
| 635 | pgd = pgd_offset(mm, addr); |
| 636 | if (!pgd_present(*pgd)) |
| 637 | goto out; |
| 638 | |
| 639 | pud = pud_offset(pgd, addr); |
| 640 | if (!pud_present(*pud)) |
| 641 | goto out; |
| 642 | |
| 643 | pmd = pmd_offset(pud, addr); |
| 644 | if (!pmd_present(*pmd)) |
| 645 | goto out; |
| 646 | |
| 647 | ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); |
| 648 | if (!pte_same(*ptep, orig_pte)) { |
| 649 | pte_unmap_unlock(ptep, ptl); |
| 650 | goto out; |
| 651 | } |
| 652 | |
| 653 | get_page(newpage); |
| 654 | page_add_ksm_rmap(newpage); |
| 655 | |
| 656 | flush_cache_page(vma, addr, pte_pfn(*ptep)); |
| 657 | ptep_clear_flush(vma, addr, ptep); |
| 658 | set_pte_at_notify(mm, addr, ptep, mk_pte(newpage, prot)); |
| 659 | |
| 660 | page_remove_rmap(oldpage); |
| 661 | put_page(oldpage); |
| 662 | |
| 663 | pte_unmap_unlock(ptep, ptl); |
| 664 | err = 0; |
| 665 | out: |
| 666 | return err; |
| 667 | } |
| 668 | |
| 669 | /* |
| 670 | * try_to_merge_one_page - take two pages and merge them into one |
| 671 | * @vma: the vma that hold the pte pointing into oldpage |
| 672 | * @oldpage: the page that we want to replace with newpage |
| 673 | * @newpage: the page that we want to map instead of oldpage |
| 674 | * |
| 675 | * Note: |
| 676 | * oldpage should be a PageAnon page, while newpage should be a PageKsm page, |
| 677 | * or a newly allocated kernel page which page_add_ksm_rmap will make PageKsm. |
| 678 | * |
| 679 | * This function returns 0 if the pages were merged, -EFAULT otherwise. |
| 680 | */ |
| 681 | static int try_to_merge_one_page(struct vm_area_struct *vma, |
| 682 | struct page *oldpage, |
| 683 | struct page *newpage) |
| 684 | { |
| 685 | pte_t orig_pte = __pte(0); |
| 686 | int err = -EFAULT; |
| 687 | |
| 688 | if (!(vma->vm_flags & VM_MERGEABLE)) |
| 689 | goto out; |
| 690 | |
| 691 | if (!PageAnon(oldpage)) |
| 692 | goto out; |
| 693 | |
| 694 | get_page(newpage); |
| 695 | get_page(oldpage); |
| 696 | |
| 697 | /* |
| 698 | * We need the page lock to read a stable PageSwapCache in |
| 699 | * write_protect_page(). We use trylock_page() instead of |
| 700 | * lock_page() because we don't want to wait here - we |
| 701 | * prefer to continue scanning and merging different pages, |
| 702 | * then come back to this page when it is unlocked. |
| 703 | */ |
| 704 | if (!trylock_page(oldpage)) |
| 705 | goto out_putpage; |
| 706 | /* |
| 707 | * If this anonymous page is mapped only here, its pte may need |
| 708 | * to be write-protected. If it's mapped elsewhere, all of its |
| 709 | * ptes are necessarily already write-protected. But in either |
| 710 | * case, we need to lock and check page_count is not raised. |
| 711 | */ |
| 712 | if (write_protect_page(vma, oldpage, &orig_pte)) { |
| 713 | unlock_page(oldpage); |
| 714 | goto out_putpage; |
| 715 | } |
| 716 | unlock_page(oldpage); |
| 717 | |
| 718 | if (pages_identical(oldpage, newpage)) |
| 719 | err = replace_page(vma, oldpage, newpage, orig_pte); |
| 720 | |
| 721 | out_putpage: |
| 722 | put_page(oldpage); |
| 723 | put_page(newpage); |
| 724 | out: |
| 725 | return err; |
| 726 | } |
| 727 | |
| 728 | /* |
| 729 | * try_to_merge_two_pages - take two identical pages and prepare them |
| 730 | * to be merged into one page. |
| 731 | * |
| 732 | * This function returns 0 if we successfully mapped two identical pages |
| 733 | * into one page, -EFAULT otherwise. |
| 734 | * |
| 735 | * Note that this function allocates a new kernel page: if one of the pages |
| 736 | * is already a ksm page, try_to_merge_with_ksm_page should be used. |
| 737 | */ |
| 738 | static int try_to_merge_two_pages(struct mm_struct *mm1, unsigned long addr1, |
| 739 | struct page *page1, struct mm_struct *mm2, |
| 740 | unsigned long addr2, struct page *page2) |
| 741 | { |
| 742 | struct vm_area_struct *vma; |
| 743 | struct page *kpage; |
| 744 | int err = -EFAULT; |
| 745 | |
| 746 | /* |
| 747 | * The number of nodes in the stable tree |
| 748 | * is the number of kernel pages that we hold. |
| 749 | */ |
| 750 | if (ksm_max_kernel_pages && |
| 751 | ksm_max_kernel_pages <= ksm_kernel_pages_allocated) |
| 752 | return err; |
| 753 | |
| 754 | kpage = alloc_page(GFP_HIGHUSER); |
| 755 | if (!kpage) |
| 756 | return err; |
| 757 | |
| 758 | down_read(&mm1->mmap_sem); |
| 759 | vma = find_vma(mm1, addr1); |
| 760 | if (!vma || vma->vm_start > addr1) { |
| 761 | put_page(kpage); |
| 762 | up_read(&mm1->mmap_sem); |
| 763 | return err; |
| 764 | } |
| 765 | |
| 766 | copy_user_highpage(kpage, page1, addr1, vma); |
| 767 | err = try_to_merge_one_page(vma, page1, kpage); |
| 768 | up_read(&mm1->mmap_sem); |
| 769 | |
| 770 | if (!err) { |
| 771 | down_read(&mm2->mmap_sem); |
| 772 | vma = find_vma(mm2, addr2); |
| 773 | if (!vma || vma->vm_start > addr2) { |
| 774 | put_page(kpage); |
| 775 | up_read(&mm2->mmap_sem); |
| 776 | break_cow(mm1, addr1); |
| 777 | return -EFAULT; |
| 778 | } |
| 779 | |
| 780 | err = try_to_merge_one_page(vma, page2, kpage); |
| 781 | up_read(&mm2->mmap_sem); |
| 782 | |
| 783 | /* |
| 784 | * If the second try_to_merge_one_page failed, we have a |
| 785 | * ksm page with just one pte pointing to it, so break it. |
| 786 | */ |
| 787 | if (err) |
| 788 | break_cow(mm1, addr1); |
| 789 | else |
| 790 | ksm_pages_shared += 2; |
| 791 | } |
| 792 | |
| 793 | put_page(kpage); |
| 794 | return err; |
| 795 | } |
| 796 | |
| 797 | /* |
| 798 | * try_to_merge_with_ksm_page - like try_to_merge_two_pages, |
| 799 | * but no new kernel page is allocated: kpage must already be a ksm page. |
| 800 | */ |
| 801 | static int try_to_merge_with_ksm_page(struct mm_struct *mm1, |
| 802 | unsigned long addr1, |
| 803 | struct page *page1, |
| 804 | struct page *kpage) |
| 805 | { |
| 806 | struct vm_area_struct *vma; |
| 807 | int err = -EFAULT; |
| 808 | |
| 809 | down_read(&mm1->mmap_sem); |
| 810 | vma = find_vma(mm1, addr1); |
| 811 | if (!vma || vma->vm_start > addr1) { |
| 812 | up_read(&mm1->mmap_sem); |
| 813 | return err; |
| 814 | } |
| 815 | |
| 816 | err = try_to_merge_one_page(vma, page1, kpage); |
| 817 | up_read(&mm1->mmap_sem); |
| 818 | |
| 819 | if (!err) |
| 820 | ksm_pages_shared++; |
| 821 | |
| 822 | return err; |
| 823 | } |
| 824 | |
| 825 | /* |
| 826 | * stable_tree_search - search page inside the stable tree |
| 827 | * @page: the page that we are searching identical pages to. |
| 828 | * @page2: pointer into identical page that we are holding inside the stable |
| 829 | * tree that we have found. |
| 830 | * @rmap_item: the reverse mapping item |
| 831 | * |
| 832 | * This function checks if there is a page inside the stable tree |
| 833 | * with identical content to the page that we are scanning right now. |
| 834 | * |
| 835 | * This function return rmap_item pointer to the identical item if found, |
| 836 | * NULL otherwise. |
| 837 | */ |
| 838 | static struct rmap_item *stable_tree_search(struct page *page, |
| 839 | struct page **page2, |
| 840 | struct rmap_item *rmap_item) |
| 841 | { |
| 842 | struct rb_node *node = root_stable_tree.rb_node; |
| 843 | |
| 844 | while (node) { |
| 845 | struct rmap_item *tree_rmap_item, *next_rmap_item; |
| 846 | int ret; |
| 847 | |
| 848 | tree_rmap_item = rb_entry(node, struct rmap_item, node); |
| 849 | while (tree_rmap_item) { |
| 850 | BUG_ON(!in_stable_tree(tree_rmap_item)); |
| 851 | cond_resched(); |
| 852 | page2[0] = get_ksm_page(tree_rmap_item); |
| 853 | if (page2[0]) |
| 854 | break; |
| 855 | next_rmap_item = tree_rmap_item->next; |
| 856 | remove_rmap_item_from_tree(tree_rmap_item); |
| 857 | tree_rmap_item = next_rmap_item; |
| 858 | } |
| 859 | if (!tree_rmap_item) |
| 860 | return NULL; |
| 861 | |
| 862 | ret = memcmp_pages(page, page2[0]); |
| 863 | |
| 864 | if (ret < 0) { |
| 865 | put_page(page2[0]); |
| 866 | node = node->rb_left; |
| 867 | } else if (ret > 0) { |
| 868 | put_page(page2[0]); |
| 869 | node = node->rb_right; |
| 870 | } else { |
| 871 | return tree_rmap_item; |
| 872 | } |
| 873 | } |
| 874 | |
| 875 | return NULL; |
| 876 | } |
| 877 | |
| 878 | /* |
| 879 | * stable_tree_insert - insert rmap_item pointing to new ksm page |
| 880 | * into the stable tree. |
| 881 | * |
| 882 | * @page: the page that we are searching identical page to inside the stable |
| 883 | * tree. |
| 884 | * @rmap_item: pointer to the reverse mapping item. |
| 885 | * |
| 886 | * This function returns rmap_item if success, NULL otherwise. |
| 887 | */ |
| 888 | static struct rmap_item *stable_tree_insert(struct page *page, |
| 889 | struct rmap_item *rmap_item) |
| 890 | { |
| 891 | struct rb_node **new = &root_stable_tree.rb_node; |
| 892 | struct rb_node *parent = NULL; |
| 893 | |
| 894 | while (*new) { |
| 895 | struct rmap_item *tree_rmap_item, *next_rmap_item; |
| 896 | struct page *tree_page; |
| 897 | int ret; |
| 898 | |
| 899 | tree_rmap_item = rb_entry(*new, struct rmap_item, node); |
| 900 | while (tree_rmap_item) { |
| 901 | BUG_ON(!in_stable_tree(tree_rmap_item)); |
| 902 | cond_resched(); |
| 903 | tree_page = get_ksm_page(tree_rmap_item); |
| 904 | if (tree_page) |
| 905 | break; |
| 906 | next_rmap_item = tree_rmap_item->next; |
| 907 | remove_rmap_item_from_tree(tree_rmap_item); |
| 908 | tree_rmap_item = next_rmap_item; |
| 909 | } |
| 910 | if (!tree_rmap_item) |
| 911 | return NULL; |
| 912 | |
| 913 | ret = memcmp_pages(page, tree_page); |
| 914 | put_page(tree_page); |
| 915 | |
| 916 | parent = *new; |
| 917 | if (ret < 0) |
| 918 | new = &parent->rb_left; |
| 919 | else if (ret > 0) |
| 920 | new = &parent->rb_right; |
| 921 | else { |
| 922 | /* |
| 923 | * It is not a bug that stable_tree_search() didn't |
| 924 | * find this node: because at that time our page was |
| 925 | * not yet write-protected, so may have changed since. |
| 926 | */ |
| 927 | return NULL; |
| 928 | } |
| 929 | } |
| 930 | |
| 931 | ksm_kernel_pages_allocated++; |
| 932 | |
| 933 | rmap_item->address |= NODE_FLAG | STABLE_FLAG; |
| 934 | rmap_item->next = NULL; |
| 935 | rb_link_node(&rmap_item->node, parent, new); |
| 936 | rb_insert_color(&rmap_item->node, &root_stable_tree); |
| 937 | |
| 938 | return rmap_item; |
| 939 | } |
| 940 | |
| 941 | /* |
| 942 | * unstable_tree_search_insert - search and insert items into the unstable tree. |
| 943 | * |
| 944 | * @page: the page that we are going to search for identical page or to insert |
| 945 | * into the unstable tree |
| 946 | * @page2: pointer into identical page that was found inside the unstable tree |
| 947 | * @rmap_item: the reverse mapping item of page |
| 948 | * |
| 949 | * This function searches for a page in the unstable tree identical to the |
| 950 | * page currently being scanned; and if no identical page is found in the |
| 951 | * tree, we insert rmap_item as a new object into the unstable tree. |
| 952 | * |
| 953 | * This function returns pointer to rmap_item found to be identical |
| 954 | * to the currently scanned page, NULL otherwise. |
| 955 | * |
| 956 | * This function does both searching and inserting, because they share |
| 957 | * the same walking algorithm in an rbtree. |
| 958 | */ |
| 959 | static struct rmap_item *unstable_tree_search_insert(struct page *page, |
| 960 | struct page **page2, |
| 961 | struct rmap_item *rmap_item) |
| 962 | { |
| 963 | struct rb_node **new = &root_unstable_tree.rb_node; |
| 964 | struct rb_node *parent = NULL; |
| 965 | |
| 966 | while (*new) { |
| 967 | struct rmap_item *tree_rmap_item; |
| 968 | int ret; |
| 969 | |
| 970 | tree_rmap_item = rb_entry(*new, struct rmap_item, node); |
| 971 | page2[0] = get_mergeable_page(tree_rmap_item); |
| 972 | if (!page2[0]) |
| 973 | return NULL; |
| 974 | |
| 975 | /* |
| 976 | * Don't substitute an unswappable ksm page |
| 977 | * just for one good swappable forked page. |
| 978 | */ |
| 979 | if (page == page2[0]) { |
| 980 | put_page(page2[0]); |
| 981 | return NULL; |
| 982 | } |
| 983 | |
| 984 | ret = memcmp_pages(page, page2[0]); |
| 985 | |
| 986 | parent = *new; |
| 987 | if (ret < 0) { |
| 988 | put_page(page2[0]); |
| 989 | new = &parent->rb_left; |
| 990 | } else if (ret > 0) { |
| 991 | put_page(page2[0]); |
| 992 | new = &parent->rb_right; |
| 993 | } else { |
| 994 | return tree_rmap_item; |
| 995 | } |
| 996 | } |
| 997 | |
| 998 | rmap_item->address |= NODE_FLAG; |
| 999 | rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); |
| 1000 | rb_link_node(&rmap_item->node, parent, new); |
| 1001 | rb_insert_color(&rmap_item->node, &root_unstable_tree); |
| 1002 | |
| 1003 | return NULL; |
| 1004 | } |
| 1005 | |
| 1006 | /* |
| 1007 | * stable_tree_append - add another rmap_item to the linked list of |
| 1008 | * rmap_items hanging off a given node of the stable tree, all sharing |
| 1009 | * the same ksm page. |
| 1010 | */ |
| 1011 | static void stable_tree_append(struct rmap_item *rmap_item, |
| 1012 | struct rmap_item *tree_rmap_item) |
| 1013 | { |
| 1014 | rmap_item->next = tree_rmap_item->next; |
| 1015 | rmap_item->prev = tree_rmap_item; |
| 1016 | |
| 1017 | if (tree_rmap_item->next) |
| 1018 | tree_rmap_item->next->prev = rmap_item; |
| 1019 | |
| 1020 | tree_rmap_item->next = rmap_item; |
| 1021 | rmap_item->address |= STABLE_FLAG; |
| 1022 | } |
| 1023 | |
| 1024 | /* |
| 1025 | * cmp_and_merge_page - take a page computes its hash value and check if there |
| 1026 | * is similar hash value to different page, |
| 1027 | * in case we find that there is similar hash to different page we call to |
| 1028 | * try_to_merge_two_pages(). |
| 1029 | * |
| 1030 | * @page: the page that we are searching identical page to. |
| 1031 | * @rmap_item: the reverse mapping into the virtual address of this page |
| 1032 | */ |
| 1033 | static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) |
| 1034 | { |
| 1035 | struct page *page2[1]; |
| 1036 | struct rmap_item *tree_rmap_item; |
| 1037 | unsigned int checksum; |
| 1038 | int err; |
| 1039 | |
| 1040 | if (in_stable_tree(rmap_item)) |
| 1041 | remove_rmap_item_from_tree(rmap_item); |
| 1042 | |
| 1043 | /* We first start with searching the page inside the stable tree */ |
| 1044 | tree_rmap_item = stable_tree_search(page, page2, rmap_item); |
| 1045 | if (tree_rmap_item) { |
| 1046 | if (page == page2[0]) { /* forked */ |
| 1047 | ksm_pages_shared++; |
| 1048 | err = 0; |
| 1049 | } else |
| 1050 | err = try_to_merge_with_ksm_page(rmap_item->mm, |
| 1051 | rmap_item->address, |
| 1052 | page, page2[0]); |
| 1053 | put_page(page2[0]); |
| 1054 | |
| 1055 | if (!err) { |
| 1056 | /* |
| 1057 | * The page was successfully merged: |
| 1058 | * add its rmap_item to the stable tree. |
| 1059 | */ |
| 1060 | stable_tree_append(rmap_item, tree_rmap_item); |
| 1061 | } |
| 1062 | return; |
| 1063 | } |
| 1064 | |
| 1065 | /* |
| 1066 | * A ksm page might have got here by fork, but its other |
| 1067 | * references have already been removed from the stable tree. |
| 1068 | */ |
| 1069 | if (PageKsm(page)) |
| 1070 | break_cow(rmap_item->mm, rmap_item->address); |
| 1071 | |
| 1072 | /* |
| 1073 | * In case the hash value of the page was changed from the last time we |
| 1074 | * have calculated it, this page to be changed frequely, therefore we |
| 1075 | * don't want to insert it to the unstable tree, and we don't want to |
| 1076 | * waste our time to search if there is something identical to it there. |
| 1077 | */ |
| 1078 | checksum = calc_checksum(page); |
| 1079 | if (rmap_item->oldchecksum != checksum) { |
| 1080 | rmap_item->oldchecksum = checksum; |
| 1081 | return; |
| 1082 | } |
| 1083 | |
| 1084 | tree_rmap_item = unstable_tree_search_insert(page, page2, rmap_item); |
| 1085 | if (tree_rmap_item) { |
| 1086 | err = try_to_merge_two_pages(rmap_item->mm, |
| 1087 | rmap_item->address, page, |
| 1088 | tree_rmap_item->mm, |
| 1089 | tree_rmap_item->address, page2[0]); |
| 1090 | /* |
| 1091 | * As soon as we merge this page, we want to remove the |
| 1092 | * rmap_item of the page we have merged with from the unstable |
| 1093 | * tree, and insert it instead as new node in the stable tree. |
| 1094 | */ |
| 1095 | if (!err) { |
| 1096 | rb_erase(&tree_rmap_item->node, &root_unstable_tree); |
| 1097 | tree_rmap_item->address &= ~NODE_FLAG; |
| 1098 | /* |
| 1099 | * If we fail to insert the page into the stable tree, |
| 1100 | * we will have 2 virtual addresses that are pointing |
| 1101 | * to a ksm page left outside the stable tree, |
| 1102 | * in which case we need to break_cow on both. |
| 1103 | */ |
| 1104 | if (stable_tree_insert(page2[0], tree_rmap_item)) |
| 1105 | stable_tree_append(rmap_item, tree_rmap_item); |
| 1106 | else { |
| 1107 | break_cow(tree_rmap_item->mm, |
| 1108 | tree_rmap_item->address); |
| 1109 | break_cow(rmap_item->mm, rmap_item->address); |
| 1110 | ksm_pages_shared -= 2; |
| 1111 | } |
| 1112 | } |
| 1113 | |
| 1114 | put_page(page2[0]); |
| 1115 | } |
| 1116 | } |
| 1117 | |
| 1118 | static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, |
| 1119 | struct list_head *cur, |
| 1120 | unsigned long addr) |
| 1121 | { |
| 1122 | struct rmap_item *rmap_item; |
| 1123 | |
| 1124 | while (cur != &mm_slot->rmap_list) { |
| 1125 | rmap_item = list_entry(cur, struct rmap_item, link); |
| 1126 | if ((rmap_item->address & PAGE_MASK) == addr) { |
| 1127 | if (!in_stable_tree(rmap_item)) |
| 1128 | remove_rmap_item_from_tree(rmap_item); |
| 1129 | return rmap_item; |
| 1130 | } |
| 1131 | if (rmap_item->address > addr) |
| 1132 | break; |
| 1133 | cur = cur->next; |
| 1134 | remove_rmap_item_from_tree(rmap_item); |
| 1135 | list_del(&rmap_item->link); |
| 1136 | free_rmap_item(rmap_item); |
| 1137 | } |
| 1138 | |
| 1139 | rmap_item = alloc_rmap_item(); |
| 1140 | if (rmap_item) { |
| 1141 | /* It has already been zeroed */ |
| 1142 | rmap_item->mm = mm_slot->mm; |
| 1143 | rmap_item->address = addr; |
| 1144 | list_add_tail(&rmap_item->link, cur); |
| 1145 | } |
| 1146 | return rmap_item; |
| 1147 | } |
| 1148 | |
| 1149 | static struct rmap_item *scan_get_next_rmap_item(struct page **page) |
| 1150 | { |
| 1151 | struct mm_struct *mm; |
| 1152 | struct mm_slot *slot; |
| 1153 | struct vm_area_struct *vma; |
| 1154 | struct rmap_item *rmap_item; |
| 1155 | |
| 1156 | if (list_empty(&ksm_mm_head.mm_list)) |
| 1157 | return NULL; |
| 1158 | |
| 1159 | slot = ksm_scan.mm_slot; |
| 1160 | if (slot == &ksm_mm_head) { |
| 1161 | root_unstable_tree = RB_ROOT; |
| 1162 | |
| 1163 | spin_lock(&ksm_mmlist_lock); |
| 1164 | slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); |
| 1165 | ksm_scan.mm_slot = slot; |
| 1166 | spin_unlock(&ksm_mmlist_lock); |
| 1167 | next_mm: |
| 1168 | ksm_scan.address = 0; |
| 1169 | ksm_scan.rmap_item = list_entry(&slot->rmap_list, |
| 1170 | struct rmap_item, link); |
| 1171 | } |
| 1172 | |
| 1173 | mm = slot->mm; |
| 1174 | down_read(&mm->mmap_sem); |
| 1175 | for (vma = find_vma(mm, ksm_scan.address); vma; vma = vma->vm_next) { |
| 1176 | if (!(vma->vm_flags & VM_MERGEABLE)) |
| 1177 | continue; |
| 1178 | if (ksm_scan.address < vma->vm_start) |
| 1179 | ksm_scan.address = vma->vm_start; |
| 1180 | if (!vma->anon_vma) |
| 1181 | ksm_scan.address = vma->vm_end; |
| 1182 | |
| 1183 | while (ksm_scan.address < vma->vm_end) { |
| 1184 | *page = follow_page(vma, ksm_scan.address, FOLL_GET); |
| 1185 | if (*page && PageAnon(*page)) { |
| 1186 | flush_anon_page(vma, *page, ksm_scan.address); |
| 1187 | flush_dcache_page(*page); |
| 1188 | rmap_item = get_next_rmap_item(slot, |
| 1189 | ksm_scan.rmap_item->link.next, |
| 1190 | ksm_scan.address); |
| 1191 | if (rmap_item) { |
| 1192 | ksm_scan.rmap_item = rmap_item; |
| 1193 | ksm_scan.address += PAGE_SIZE; |
| 1194 | } else |
| 1195 | put_page(*page); |
| 1196 | up_read(&mm->mmap_sem); |
| 1197 | return rmap_item; |
| 1198 | } |
| 1199 | if (*page) |
| 1200 | put_page(*page); |
| 1201 | ksm_scan.address += PAGE_SIZE; |
| 1202 | cond_resched(); |
| 1203 | } |
| 1204 | } |
| 1205 | |
| 1206 | if (!ksm_scan.address) { |
| 1207 | /* |
| 1208 | * We've completed a full scan of all vmas, holding mmap_sem |
| 1209 | * throughout, and found no VM_MERGEABLE: so do the same as |
| 1210 | * __ksm_exit does to remove this mm from all our lists now. |
| 1211 | */ |
| 1212 | remove_mm_from_lists(mm); |
| 1213 | up_read(&mm->mmap_sem); |
| 1214 | slot = ksm_scan.mm_slot; |
| 1215 | if (slot != &ksm_mm_head) |
| 1216 | goto next_mm; |
| 1217 | return NULL; |
| 1218 | } |
| 1219 | |
| 1220 | /* |
| 1221 | * Nuke all the rmap_items that are above this current rmap: |
| 1222 | * because there were no VM_MERGEABLE vmas with such addresses. |
| 1223 | */ |
| 1224 | remove_trailing_rmap_items(slot, ksm_scan.rmap_item->link.next); |
| 1225 | up_read(&mm->mmap_sem); |
| 1226 | |
| 1227 | spin_lock(&ksm_mmlist_lock); |
| 1228 | slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); |
| 1229 | ksm_scan.mm_slot = slot; |
| 1230 | spin_unlock(&ksm_mmlist_lock); |
| 1231 | |
| 1232 | /* Repeat until we've completed scanning the whole list */ |
| 1233 | if (slot != &ksm_mm_head) |
| 1234 | goto next_mm; |
| 1235 | |
| 1236 | /* |
| 1237 | * Bump seqnr here rather than at top, so that __ksm_exit |
| 1238 | * can skip rb_erase on unstable tree until we run again. |
| 1239 | */ |
| 1240 | ksm_scan.seqnr++; |
| 1241 | return NULL; |
| 1242 | } |
| 1243 | |
| 1244 | /** |
| 1245 | * ksm_do_scan - the ksm scanner main worker function. |
| 1246 | * @scan_npages - number of pages we want to scan before we return. |
| 1247 | */ |
| 1248 | static void ksm_do_scan(unsigned int scan_npages) |
| 1249 | { |
| 1250 | struct rmap_item *rmap_item; |
| 1251 | struct page *page; |
| 1252 | |
| 1253 | while (scan_npages--) { |
| 1254 | cond_resched(); |
| 1255 | rmap_item = scan_get_next_rmap_item(&page); |
| 1256 | if (!rmap_item) |
| 1257 | return; |
| 1258 | if (!PageKsm(page) || !in_stable_tree(rmap_item)) |
| 1259 | cmp_and_merge_page(page, rmap_item); |
| 1260 | put_page(page); |
| 1261 | } |
| 1262 | } |
| 1263 | |
| 1264 | static int ksm_scan_thread(void *nothing) |
| 1265 | { |
| 1266 | set_user_nice(current, 0); |
| 1267 | |
| 1268 | while (!kthread_should_stop()) { |
| 1269 | if (ksm_run & KSM_RUN_MERGE) { |
| 1270 | mutex_lock(&ksm_thread_mutex); |
| 1271 | ksm_do_scan(ksm_thread_pages_to_scan); |
| 1272 | mutex_unlock(&ksm_thread_mutex); |
| 1273 | schedule_timeout_interruptible( |
| 1274 | msecs_to_jiffies(ksm_thread_sleep_millisecs)); |
| 1275 | } else { |
| 1276 | wait_event_interruptible(ksm_thread_wait, |
| 1277 | (ksm_run & KSM_RUN_MERGE) || |
| 1278 | kthread_should_stop()); |
| 1279 | } |
| 1280 | } |
| 1281 | return 0; |
| 1282 | } |
| 1283 | |
Hugh Dickins | f8af4da | 2009-09-21 17:01:57 -0700 | [diff] [blame] | 1284 | int ksm_madvise(struct vm_area_struct *vma, unsigned long start, |
| 1285 | unsigned long end, int advice, unsigned long *vm_flags) |
| 1286 | { |
| 1287 | struct mm_struct *mm = vma->vm_mm; |
| 1288 | |
| 1289 | switch (advice) { |
| 1290 | case MADV_MERGEABLE: |
| 1291 | /* |
| 1292 | * Be somewhat over-protective for now! |
| 1293 | */ |
| 1294 | if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | |
| 1295 | VM_PFNMAP | VM_IO | VM_DONTEXPAND | |
| 1296 | VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE | |
| 1297 | VM_MIXEDMAP | VM_SAO)) |
| 1298 | return 0; /* just ignore the advice */ |
| 1299 | |
| 1300 | if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) |
| 1301 | if (__ksm_enter(mm) < 0) |
| 1302 | return -EAGAIN; |
| 1303 | |
| 1304 | *vm_flags |= VM_MERGEABLE; |
| 1305 | break; |
| 1306 | |
| 1307 | case MADV_UNMERGEABLE: |
| 1308 | if (!(*vm_flags & VM_MERGEABLE)) |
| 1309 | return 0; /* just ignore the advice */ |
| 1310 | |
Izik Eidus | 31dbd01 | 2009-09-21 17:02:03 -0700 | [diff] [blame] | 1311 | if (vma->anon_vma) |
| 1312 | unmerge_ksm_pages(vma, start, end); |
Hugh Dickins | f8af4da | 2009-09-21 17:01:57 -0700 | [diff] [blame] | 1313 | |
| 1314 | *vm_flags &= ~VM_MERGEABLE; |
| 1315 | break; |
| 1316 | } |
| 1317 | |
| 1318 | return 0; |
| 1319 | } |
| 1320 | |
| 1321 | int __ksm_enter(struct mm_struct *mm) |
| 1322 | { |
Izik Eidus | 31dbd01 | 2009-09-21 17:02:03 -0700 | [diff] [blame] | 1323 | struct mm_slot *mm_slot = alloc_mm_slot(); |
| 1324 | if (!mm_slot) |
| 1325 | return -ENOMEM; |
| 1326 | |
| 1327 | spin_lock(&ksm_mmlist_lock); |
| 1328 | insert_to_mm_slots_hash(mm, mm_slot); |
| 1329 | /* |
| 1330 | * Insert just behind the scanning cursor, to let the area settle |
| 1331 | * down a little; when fork is followed by immediate exec, we don't |
| 1332 | * want ksmd to waste time setting up and tearing down an rmap_list. |
| 1333 | */ |
| 1334 | list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); |
| 1335 | spin_unlock(&ksm_mmlist_lock); |
| 1336 | |
Hugh Dickins | f8af4da | 2009-09-21 17:01:57 -0700 | [diff] [blame] | 1337 | set_bit(MMF_VM_MERGEABLE, &mm->flags); |
| 1338 | return 0; |
| 1339 | } |
| 1340 | |
| 1341 | void __ksm_exit(struct mm_struct *mm) |
| 1342 | { |
Izik Eidus | 31dbd01 | 2009-09-21 17:02:03 -0700 | [diff] [blame] | 1343 | /* |
| 1344 | * This process is exiting: doesn't hold and doesn't need mmap_sem; |
| 1345 | * but we do need to exclude ksmd and other exiters while we modify |
| 1346 | * the various lists and trees. |
| 1347 | */ |
| 1348 | mutex_lock(&ksm_thread_mutex); |
| 1349 | remove_mm_from_lists(mm); |
| 1350 | mutex_unlock(&ksm_thread_mutex); |
Hugh Dickins | f8af4da | 2009-09-21 17:01:57 -0700 | [diff] [blame] | 1351 | } |
Izik Eidus | 31dbd01 | 2009-09-21 17:02:03 -0700 | [diff] [blame] | 1352 | |
| 1353 | #define KSM_ATTR_RO(_name) \ |
| 1354 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) |
| 1355 | #define KSM_ATTR(_name) \ |
| 1356 | static struct kobj_attribute _name##_attr = \ |
| 1357 | __ATTR(_name, 0644, _name##_show, _name##_store) |
| 1358 | |
| 1359 | static ssize_t sleep_millisecs_show(struct kobject *kobj, |
| 1360 | struct kobj_attribute *attr, char *buf) |
| 1361 | { |
| 1362 | return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); |
| 1363 | } |
| 1364 | |
| 1365 | static ssize_t sleep_millisecs_store(struct kobject *kobj, |
| 1366 | struct kobj_attribute *attr, |
| 1367 | const char *buf, size_t count) |
| 1368 | { |
| 1369 | unsigned long msecs; |
| 1370 | int err; |
| 1371 | |
| 1372 | err = strict_strtoul(buf, 10, &msecs); |
| 1373 | if (err || msecs > UINT_MAX) |
| 1374 | return -EINVAL; |
| 1375 | |
| 1376 | ksm_thread_sleep_millisecs = msecs; |
| 1377 | |
| 1378 | return count; |
| 1379 | } |
| 1380 | KSM_ATTR(sleep_millisecs); |
| 1381 | |
| 1382 | static ssize_t pages_to_scan_show(struct kobject *kobj, |
| 1383 | struct kobj_attribute *attr, char *buf) |
| 1384 | { |
| 1385 | return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); |
| 1386 | } |
| 1387 | |
| 1388 | static ssize_t pages_to_scan_store(struct kobject *kobj, |
| 1389 | struct kobj_attribute *attr, |
| 1390 | const char *buf, size_t count) |
| 1391 | { |
| 1392 | int err; |
| 1393 | unsigned long nr_pages; |
| 1394 | |
| 1395 | err = strict_strtoul(buf, 10, &nr_pages); |
| 1396 | if (err || nr_pages > UINT_MAX) |
| 1397 | return -EINVAL; |
| 1398 | |
| 1399 | ksm_thread_pages_to_scan = nr_pages; |
| 1400 | |
| 1401 | return count; |
| 1402 | } |
| 1403 | KSM_ATTR(pages_to_scan); |
| 1404 | |
| 1405 | static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, |
| 1406 | char *buf) |
| 1407 | { |
| 1408 | return sprintf(buf, "%u\n", ksm_run); |
| 1409 | } |
| 1410 | |
| 1411 | static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, |
| 1412 | const char *buf, size_t count) |
| 1413 | { |
| 1414 | int err; |
| 1415 | unsigned long flags; |
| 1416 | |
| 1417 | err = strict_strtoul(buf, 10, &flags); |
| 1418 | if (err || flags > UINT_MAX) |
| 1419 | return -EINVAL; |
| 1420 | if (flags > KSM_RUN_UNMERGE) |
| 1421 | return -EINVAL; |
| 1422 | |
| 1423 | /* |
| 1424 | * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. |
| 1425 | * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, |
| 1426 | * breaking COW to free the kernel_pages_allocated (but leaves |
| 1427 | * mm_slots on the list for when ksmd may be set running again). |
| 1428 | */ |
| 1429 | |
| 1430 | mutex_lock(&ksm_thread_mutex); |
| 1431 | if (ksm_run != flags) { |
| 1432 | ksm_run = flags; |
| 1433 | if (flags & KSM_RUN_UNMERGE) |
| 1434 | unmerge_and_remove_all_rmap_items(); |
| 1435 | } |
| 1436 | mutex_unlock(&ksm_thread_mutex); |
| 1437 | |
| 1438 | if (flags & KSM_RUN_MERGE) |
| 1439 | wake_up_interruptible(&ksm_thread_wait); |
| 1440 | |
| 1441 | return count; |
| 1442 | } |
| 1443 | KSM_ATTR(run); |
| 1444 | |
| 1445 | static ssize_t pages_shared_show(struct kobject *kobj, |
| 1446 | struct kobj_attribute *attr, char *buf) |
| 1447 | { |
| 1448 | return sprintf(buf, "%lu\n", |
| 1449 | ksm_pages_shared - ksm_kernel_pages_allocated); |
| 1450 | } |
| 1451 | KSM_ATTR_RO(pages_shared); |
| 1452 | |
| 1453 | static ssize_t kernel_pages_allocated_show(struct kobject *kobj, |
| 1454 | struct kobj_attribute *attr, |
| 1455 | char *buf) |
| 1456 | { |
| 1457 | return sprintf(buf, "%lu\n", ksm_kernel_pages_allocated); |
| 1458 | } |
| 1459 | KSM_ATTR_RO(kernel_pages_allocated); |
| 1460 | |
| 1461 | static ssize_t max_kernel_pages_store(struct kobject *kobj, |
| 1462 | struct kobj_attribute *attr, |
| 1463 | const char *buf, size_t count) |
| 1464 | { |
| 1465 | int err; |
| 1466 | unsigned long nr_pages; |
| 1467 | |
| 1468 | err = strict_strtoul(buf, 10, &nr_pages); |
| 1469 | if (err) |
| 1470 | return -EINVAL; |
| 1471 | |
| 1472 | ksm_max_kernel_pages = nr_pages; |
| 1473 | |
| 1474 | return count; |
| 1475 | } |
| 1476 | |
| 1477 | static ssize_t max_kernel_pages_show(struct kobject *kobj, |
| 1478 | struct kobj_attribute *attr, char *buf) |
| 1479 | { |
| 1480 | return sprintf(buf, "%lu\n", ksm_max_kernel_pages); |
| 1481 | } |
| 1482 | KSM_ATTR(max_kernel_pages); |
| 1483 | |
| 1484 | static struct attribute *ksm_attrs[] = { |
| 1485 | &sleep_millisecs_attr.attr, |
| 1486 | &pages_to_scan_attr.attr, |
| 1487 | &run_attr.attr, |
| 1488 | &pages_shared_attr.attr, |
| 1489 | &kernel_pages_allocated_attr.attr, |
| 1490 | &max_kernel_pages_attr.attr, |
| 1491 | NULL, |
| 1492 | }; |
| 1493 | |
| 1494 | static struct attribute_group ksm_attr_group = { |
| 1495 | .attrs = ksm_attrs, |
| 1496 | .name = "ksm", |
| 1497 | }; |
| 1498 | |
| 1499 | static int __init ksm_init(void) |
| 1500 | { |
| 1501 | struct task_struct *ksm_thread; |
| 1502 | int err; |
| 1503 | |
| 1504 | err = ksm_slab_init(); |
| 1505 | if (err) |
| 1506 | goto out; |
| 1507 | |
| 1508 | err = mm_slots_hash_init(); |
| 1509 | if (err) |
| 1510 | goto out_free1; |
| 1511 | |
| 1512 | ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); |
| 1513 | if (IS_ERR(ksm_thread)) { |
| 1514 | printk(KERN_ERR "ksm: creating kthread failed\n"); |
| 1515 | err = PTR_ERR(ksm_thread); |
| 1516 | goto out_free2; |
| 1517 | } |
| 1518 | |
| 1519 | err = sysfs_create_group(mm_kobj, &ksm_attr_group); |
| 1520 | if (err) { |
| 1521 | printk(KERN_ERR "ksm: register sysfs failed\n"); |
| 1522 | goto out_free3; |
| 1523 | } |
| 1524 | |
| 1525 | return 0; |
| 1526 | |
| 1527 | out_free3: |
| 1528 | kthread_stop(ksm_thread); |
| 1529 | out_free2: |
| 1530 | mm_slots_hash_free(); |
| 1531 | out_free1: |
| 1532 | ksm_slab_free(); |
| 1533 | out: |
| 1534 | return err; |
| 1535 | } |
| 1536 | module_init(ksm_init) |