Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation, version 2. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| 11 | * NON INFRINGEMENT. See the GNU General Public License for |
| 12 | * more details. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/sched.h> |
| 16 | #include <linux/kernel.h> |
| 17 | #include <linux/errno.h> |
| 18 | #include <linux/mm.h> |
| 19 | #include <linux/swap.h> |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 20 | #include <linux/highmem.h> |
| 21 | #include <linux/slab.h> |
| 22 | #include <linux/pagemap.h> |
| 23 | #include <linux/spinlock.h> |
| 24 | #include <linux/cpumask.h> |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/io.h> |
| 27 | #include <linux/vmalloc.h> |
| 28 | #include <linux/smp.h> |
| 29 | |
| 30 | #include <asm/system.h> |
| 31 | #include <asm/pgtable.h> |
| 32 | #include <asm/pgalloc.h> |
| 33 | #include <asm/fixmap.h> |
| 34 | #include <asm/tlb.h> |
| 35 | #include <asm/tlbflush.h> |
| 36 | #include <asm/homecache.h> |
| 37 | |
| 38 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
| 39 | |
| 40 | /* |
| 41 | * The normal show_free_areas() is too verbose on Tile, with dozens |
| 42 | * of processors and often four NUMA zones each with high and lowmem. |
| 43 | */ |
| 44 | void show_mem(void) |
| 45 | { |
| 46 | struct zone *zone; |
| 47 | |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 48 | pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu" |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 49 | " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu" |
| 50 | " pagecache:%lu swap:%lu\n", |
| 51 | (global_page_state(NR_ACTIVE_ANON) + |
| 52 | global_page_state(NR_ACTIVE_FILE)), |
| 53 | (global_page_state(NR_INACTIVE_ANON) + |
| 54 | global_page_state(NR_INACTIVE_FILE)), |
| 55 | global_page_state(NR_FILE_DIRTY), |
| 56 | global_page_state(NR_WRITEBACK), |
| 57 | global_page_state(NR_UNSTABLE_NFS), |
| 58 | global_page_state(NR_FREE_PAGES), |
| 59 | (global_page_state(NR_SLAB_RECLAIMABLE) + |
| 60 | global_page_state(NR_SLAB_UNRECLAIMABLE)), |
| 61 | global_page_state(NR_FILE_MAPPED), |
| 62 | global_page_state(NR_PAGETABLE), |
| 63 | global_page_state(NR_BOUNCE), |
| 64 | global_page_state(NR_FILE_PAGES), |
| 65 | nr_swap_pages); |
| 66 | |
| 67 | for_each_zone(zone) { |
| 68 | unsigned long flags, order, total = 0, largest_order = -1; |
| 69 | |
| 70 | if (!populated_zone(zone)) |
| 71 | continue; |
| 72 | |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 73 | spin_lock_irqsave(&zone->lock, flags); |
| 74 | for (order = 0; order < MAX_ORDER; order++) { |
| 75 | int nr = zone->free_area[order].nr_free; |
| 76 | total += nr << order; |
| 77 | if (nr) |
| 78 | largest_order = order; |
| 79 | } |
| 80 | spin_unlock_irqrestore(&zone->lock, flags); |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 81 | pr_err("Node %d %7s: %lukB (largest %luKb)\n", |
| 82 | zone_to_nid(zone), zone->name, |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 83 | K(total), largest_order ? K(1UL) << largest_order : 0); |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | /* |
| 88 | * Associate a virtual page frame with a given physical page frame |
| 89 | * and protection flags for that frame. |
| 90 | */ |
| 91 | static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags) |
| 92 | { |
| 93 | pgd_t *pgd; |
| 94 | pud_t *pud; |
| 95 | pmd_t *pmd; |
| 96 | pte_t *pte; |
| 97 | |
| 98 | pgd = swapper_pg_dir + pgd_index(vaddr); |
| 99 | if (pgd_none(*pgd)) { |
| 100 | BUG(); |
| 101 | return; |
| 102 | } |
| 103 | pud = pud_offset(pgd, vaddr); |
| 104 | if (pud_none(*pud)) { |
| 105 | BUG(); |
| 106 | return; |
| 107 | } |
| 108 | pmd = pmd_offset(pud, vaddr); |
| 109 | if (pmd_none(*pmd)) { |
| 110 | BUG(); |
| 111 | return; |
| 112 | } |
| 113 | pte = pte_offset_kernel(pmd, vaddr); |
| 114 | /* <pfn,flags> stored as-is, to permit clearing entries */ |
| 115 | set_pte(pte, pfn_pte(pfn, flags)); |
| 116 | |
| 117 | /* |
| 118 | * It's enough to flush this one mapping. |
| 119 | * This appears conservative since it is only called |
| 120 | * from __set_fixmap. |
| 121 | */ |
| 122 | local_flush_tlb_page(NULL, vaddr, PAGE_SIZE); |
| 123 | } |
| 124 | |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 125 | void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags) |
| 126 | { |
| 127 | unsigned long address = __fix_to_virt(idx); |
| 128 | |
| 129 | if (idx >= __end_of_fixed_addresses) { |
| 130 | BUG(); |
| 131 | return; |
| 132 | } |
| 133 | set_pte_pfn(address, phys >> PAGE_SHIFT, flags); |
| 134 | } |
| 135 | |
| 136 | #if defined(CONFIG_HIGHPTE) |
Chris Metcalf | 38a6f42 | 2010-11-01 15:21:35 -0400 | [diff] [blame] | 137 | pte_t *_pte_offset_map(pmd_t *dir, unsigned long address) |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 138 | { |
Chris Metcalf | 38a6f42 | 2010-11-01 15:21:35 -0400 | [diff] [blame] | 139 | pte_t *pte = kmap_atomic(pmd_page(*dir)) + |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 140 | (pmd_ptfn(*dir) << HV_LOG2_PAGE_TABLE_ALIGN) & ~PAGE_MASK; |
| 141 | return &pte[pte_index(address)]; |
| 142 | } |
| 143 | #endif |
| 144 | |
| 145 | /* |
| 146 | * List of all pgd's needed so it can invalidate entries in both cached |
| 147 | * and uncached pgd's. This is essentially codepath-based locking |
| 148 | * against pageattr.c; it is the unique case in which a valid change |
| 149 | * of kernel pagetables can't be lazily synchronized by vmalloc faults. |
| 150 | * vmalloc faults work because attached pagetables are never freed. |
| 151 | * The locking scheme was chosen on the basis of manfred's |
| 152 | * recommendations and having no core impact whatsoever. |
| 153 | * -- wli |
| 154 | */ |
| 155 | DEFINE_SPINLOCK(pgd_lock); |
| 156 | LIST_HEAD(pgd_list); |
| 157 | |
| 158 | static inline void pgd_list_add(pgd_t *pgd) |
| 159 | { |
| 160 | list_add(pgd_to_list(pgd), &pgd_list); |
| 161 | } |
| 162 | |
| 163 | static inline void pgd_list_del(pgd_t *pgd) |
| 164 | { |
| 165 | list_del(pgd_to_list(pgd)); |
| 166 | } |
| 167 | |
| 168 | #define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET) |
| 169 | #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START) |
| 170 | |
| 171 | static void pgd_ctor(pgd_t *pgd) |
| 172 | { |
| 173 | unsigned long flags; |
| 174 | |
| 175 | memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t)); |
| 176 | spin_lock_irqsave(&pgd_lock, flags); |
| 177 | |
| 178 | #ifndef __tilegx__ |
| 179 | /* |
| 180 | * Check that the user interrupt vector has no L2. |
| 181 | * It never should for the swapper, and new page tables |
| 182 | * should always start with an empty user interrupt vector. |
| 183 | */ |
| 184 | BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0); |
| 185 | #endif |
| 186 | |
| 187 | clone_pgd_range(pgd + KERNEL_PGD_INDEX_START, |
| 188 | swapper_pg_dir + KERNEL_PGD_INDEX_START, |
| 189 | KERNEL_PGD_PTRS); |
| 190 | |
| 191 | pgd_list_add(pgd); |
| 192 | spin_unlock_irqrestore(&pgd_lock, flags); |
| 193 | } |
| 194 | |
| 195 | static void pgd_dtor(pgd_t *pgd) |
| 196 | { |
| 197 | unsigned long flags; /* can be called from interrupt context */ |
| 198 | |
| 199 | spin_lock_irqsave(&pgd_lock, flags); |
| 200 | pgd_list_del(pgd); |
| 201 | spin_unlock_irqrestore(&pgd_lock, flags); |
| 202 | } |
| 203 | |
| 204 | pgd_t *pgd_alloc(struct mm_struct *mm) |
| 205 | { |
| 206 | pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL); |
| 207 | if (pgd) |
| 208 | pgd_ctor(pgd); |
| 209 | return pgd; |
| 210 | } |
| 211 | |
| 212 | void pgd_free(struct mm_struct *mm, pgd_t *pgd) |
| 213 | { |
| 214 | pgd_dtor(pgd); |
| 215 | kmem_cache_free(pgd_cache, pgd); |
| 216 | } |
| 217 | |
| 218 | |
| 219 | #define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER) |
| 220 | |
| 221 | struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address) |
| 222 | { |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 223 | gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO|__GFP_COMP; |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 224 | struct page *p; |
| 225 | |
| 226 | #ifdef CONFIG_HIGHPTE |
| 227 | flags |= __GFP_HIGHMEM; |
| 228 | #endif |
| 229 | |
| 230 | p = alloc_pages(flags, L2_USER_PGTABLE_ORDER); |
| 231 | if (p == NULL) |
| 232 | return NULL; |
| 233 | |
| 234 | pgtable_page_ctor(p); |
| 235 | return p; |
| 236 | } |
| 237 | |
| 238 | /* |
| 239 | * Free page immediately (used in __pte_alloc if we raced with another |
| 240 | * process). We have to correct whatever pte_alloc_one() did before |
| 241 | * returning the pages to the allocator. |
| 242 | */ |
| 243 | void pte_free(struct mm_struct *mm, struct page *p) |
| 244 | { |
| 245 | pgtable_page_dtor(p); |
| 246 | __free_pages(p, L2_USER_PGTABLE_ORDER); |
| 247 | } |
| 248 | |
| 249 | void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte, |
| 250 | unsigned long address) |
| 251 | { |
| 252 | int i; |
| 253 | |
| 254 | pgtable_page_dtor(pte); |
Peter Zijlstra | 342d87e | 2011-01-25 18:31:12 +0100 | [diff] [blame^] | 255 | for (i = 0; i < L2_USER_PGTABLE_PAGES; ++i) |
| 256 | tlb_remove_page(tlb, pte + i); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 257 | } |
| 258 | |
| 259 | #ifndef __tilegx__ |
| 260 | |
| 261 | /* |
| 262 | * FIXME: needs to be atomic vs hypervisor writes. For now we make the |
| 263 | * window of vulnerability a bit smaller by doing an unlocked 8-bit update. |
| 264 | */ |
| 265 | int ptep_test_and_clear_young(struct vm_area_struct *vma, |
| 266 | unsigned long addr, pte_t *ptep) |
| 267 | { |
| 268 | #if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16 |
| 269 | # error Code assumes HV_PTE "accessed" bit in second byte |
| 270 | #endif |
| 271 | u8 *tmp = (u8 *)ptep; |
| 272 | u8 second_byte = tmp[1]; |
| 273 | if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8)))) |
| 274 | return 0; |
| 275 | tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8)); |
| 276 | return 1; |
| 277 | } |
| 278 | |
| 279 | /* |
| 280 | * This implementation is atomic vs hypervisor writes, since the hypervisor |
| 281 | * always writes the low word (where "accessed" and "dirty" are) and this |
| 282 | * routine only writes the high word. |
| 283 | */ |
| 284 | void ptep_set_wrprotect(struct mm_struct *mm, |
| 285 | unsigned long addr, pte_t *ptep) |
| 286 | { |
| 287 | #if HV_PTE_INDEX_WRITABLE < 32 |
| 288 | # error Code assumes HV_PTE "writable" bit in high word |
| 289 | #endif |
| 290 | u32 *tmp = (u32 *)ptep; |
| 291 | tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32)); |
| 292 | } |
| 293 | |
| 294 | #endif |
| 295 | |
| 296 | pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr) |
| 297 | { |
| 298 | pgd_t *pgd; |
| 299 | pud_t *pud; |
| 300 | pmd_t *pmd; |
| 301 | |
| 302 | if (pgd_addr_invalid(addr)) |
| 303 | return NULL; |
| 304 | |
| 305 | pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr); |
| 306 | pud = pud_offset(pgd, addr); |
| 307 | if (!pud_present(*pud)) |
| 308 | return NULL; |
| 309 | pmd = pmd_offset(pud, addr); |
| 310 | if (pmd_huge_page(*pmd)) |
| 311 | return (pte_t *)pmd; |
| 312 | if (!pmd_present(*pmd)) |
| 313 | return NULL; |
| 314 | return pte_offset_kernel(pmd, addr); |
| 315 | } |
| 316 | |
| 317 | pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu) |
| 318 | { |
| 319 | unsigned int width = smp_width; |
| 320 | int x = cpu % width; |
| 321 | int y = cpu / width; |
| 322 | BUG_ON(y >= smp_height); |
| 323 | BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3); |
| 324 | BUG_ON(cpu < 0 || cpu >= NR_CPUS); |
| 325 | BUG_ON(!cpu_is_valid_lotar(cpu)); |
| 326 | return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y)); |
| 327 | } |
| 328 | |
| 329 | int get_remote_cache_cpu(pgprot_t prot) |
| 330 | { |
| 331 | HV_LOTAR lotar = hv_pte_get_lotar(prot); |
| 332 | int x = HV_LOTAR_X(lotar); |
| 333 | int y = HV_LOTAR_Y(lotar); |
| 334 | BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3); |
| 335 | return x + y * smp_width; |
| 336 | } |
| 337 | |
| 338 | void set_pte_order(pte_t *ptep, pte_t pte, int order) |
| 339 | { |
| 340 | unsigned long pfn = pte_pfn(pte); |
| 341 | struct page *page = pfn_to_page(pfn); |
| 342 | |
| 343 | /* Update the home of a PTE if necessary */ |
| 344 | pte = pte_set_home(pte, page_home(page)); |
| 345 | |
| 346 | #ifdef __tilegx__ |
| 347 | *ptep = pte; |
| 348 | #else |
| 349 | /* |
| 350 | * When setting a PTE, write the high bits first, then write |
| 351 | * the low bits. This sets the "present" bit only after the |
| 352 | * other bits are in place. If a particular PTE update |
| 353 | * involves transitioning from one valid PTE to another, it |
| 354 | * may be necessary to call set_pte_order() more than once, |
| 355 | * transitioning via a suitable intermediate state. |
| 356 | * Note that this sequence also means that if we are transitioning |
| 357 | * from any migrating PTE to a non-migrating one, we will not |
| 358 | * see a half-updated PTE with the migrating bit off. |
| 359 | */ |
| 360 | #if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32 |
| 361 | # error Must write the present and migrating bits last |
| 362 | #endif |
| 363 | ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32); |
| 364 | barrier(); |
| 365 | ((u32 *)ptep)[0] = (u32)(pte_val(pte)); |
| 366 | #endif |
| 367 | } |
| 368 | |
| 369 | /* Can this mm load a PTE with cached_priority set? */ |
| 370 | static inline int mm_is_priority_cached(struct mm_struct *mm) |
| 371 | { |
| 372 | return mm->context.priority_cached; |
| 373 | } |
| 374 | |
| 375 | /* |
| 376 | * Add a priority mapping to an mm_context and |
| 377 | * notify the hypervisor if this is the first one. |
| 378 | */ |
| 379 | void start_mm_caching(struct mm_struct *mm) |
| 380 | { |
| 381 | if (!mm_is_priority_cached(mm)) { |
| 382 | mm->context.priority_cached = -1U; |
| 383 | hv_set_caching(-1U); |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | /* |
| 388 | * Validate and return the priority_cached flag. We know if it's zero |
| 389 | * that we don't need to scan, since we immediately set it non-zero |
| 390 | * when we first consider a MAP_CACHE_PRIORITY mapping. |
| 391 | * |
| 392 | * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it, |
| 393 | * since we're in an interrupt context (servicing switch_mm) we don't |
| 394 | * worry about it and don't unset the "priority_cached" field. |
| 395 | * Presumably we'll come back later and have more luck and clear |
| 396 | * the value then; for now we'll just keep the cache marked for priority. |
| 397 | */ |
| 398 | static unsigned int update_priority_cached(struct mm_struct *mm) |
| 399 | { |
| 400 | if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) { |
| 401 | struct vm_area_struct *vm; |
| 402 | for (vm = mm->mmap; vm; vm = vm->vm_next) { |
| 403 | if (hv_pte_get_cached_priority(vm->vm_page_prot)) |
| 404 | break; |
| 405 | } |
| 406 | if (vm == NULL) |
| 407 | mm->context.priority_cached = 0; |
| 408 | up_write(&mm->mmap_sem); |
| 409 | } |
| 410 | return mm->context.priority_cached; |
| 411 | } |
| 412 | |
| 413 | /* Set caching correctly for an mm that we are switching to. */ |
| 414 | void check_mm_caching(struct mm_struct *prev, struct mm_struct *next) |
| 415 | { |
| 416 | if (!mm_is_priority_cached(next)) { |
| 417 | /* |
| 418 | * If the new mm doesn't use priority caching, just see if we |
| 419 | * need the hv_set_caching(), or can assume it's already zero. |
| 420 | */ |
| 421 | if (mm_is_priority_cached(prev)) |
| 422 | hv_set_caching(0); |
| 423 | } else { |
| 424 | hv_set_caching(update_priority_cached(next)); |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | #if CHIP_HAS_MMIO() |
| 429 | |
| 430 | /* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */ |
| 431 | void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, |
| 432 | pgprot_t home) |
| 433 | { |
| 434 | void *addr; |
| 435 | struct vm_struct *area; |
| 436 | unsigned long offset, last_addr; |
| 437 | pgprot_t pgprot; |
| 438 | |
| 439 | /* Don't allow wraparound or zero size */ |
| 440 | last_addr = phys_addr + size - 1; |
| 441 | if (!size || last_addr < phys_addr) |
| 442 | return NULL; |
| 443 | |
| 444 | /* Create a read/write, MMIO VA mapping homed at the requested shim. */ |
| 445 | pgprot = PAGE_KERNEL; |
| 446 | pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO); |
| 447 | pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home)); |
| 448 | |
| 449 | /* |
| 450 | * Mappings have to be page-aligned |
| 451 | */ |
| 452 | offset = phys_addr & ~PAGE_MASK; |
| 453 | phys_addr &= PAGE_MASK; |
| 454 | size = PAGE_ALIGN(last_addr+1) - phys_addr; |
| 455 | |
| 456 | /* |
| 457 | * Ok, go for it.. |
| 458 | */ |
| 459 | area = get_vm_area(size, VM_IOREMAP /* | other flags? */); |
| 460 | if (!area) |
| 461 | return NULL; |
| 462 | area->phys_addr = phys_addr; |
| 463 | addr = area->addr; |
| 464 | if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size, |
| 465 | phys_addr, pgprot)) { |
| 466 | remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr)); |
| 467 | return NULL; |
| 468 | } |
| 469 | return (__force void __iomem *) (offset + (char *)addr); |
| 470 | } |
| 471 | EXPORT_SYMBOL(ioremap_prot); |
| 472 | |
| 473 | /* Map a PCI MMIO bus address into VA space. */ |
| 474 | void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) |
| 475 | { |
| 476 | panic("ioremap for PCI MMIO is not supported"); |
| 477 | } |
| 478 | EXPORT_SYMBOL(ioremap); |
| 479 | |
| 480 | /* Unmap an MMIO VA mapping. */ |
| 481 | void iounmap(volatile void __iomem *addr_in) |
| 482 | { |
| 483 | volatile void __iomem *addr = (volatile void __iomem *) |
| 484 | (PAGE_MASK & (unsigned long __force)addr_in); |
| 485 | #if 1 |
| 486 | vunmap((void * __force)addr); |
| 487 | #else |
| 488 | /* x86 uses this complicated flow instead of vunmap(). Is |
| 489 | * there any particular reason we should do the same? */ |
| 490 | struct vm_struct *p, *o; |
| 491 | |
| 492 | /* Use the vm area unlocked, assuming the caller |
| 493 | ensures there isn't another iounmap for the same address |
| 494 | in parallel. Reuse of the virtual address is prevented by |
| 495 | leaving it in the global lists until we're done with it. |
| 496 | cpa takes care of the direct mappings. */ |
| 497 | read_lock(&vmlist_lock); |
| 498 | for (p = vmlist; p; p = p->next) { |
| 499 | if (p->addr == addr) |
| 500 | break; |
| 501 | } |
| 502 | read_unlock(&vmlist_lock); |
| 503 | |
| 504 | if (!p) { |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 505 | pr_err("iounmap: bad address %p\n", addr); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 506 | dump_stack(); |
| 507 | return; |
| 508 | } |
| 509 | |
| 510 | /* Finally remove it */ |
| 511 | o = remove_vm_area((void *)addr); |
| 512 | BUG_ON(p != o || o == NULL); |
| 513 | kfree(p); |
| 514 | #endif |
| 515 | } |
| 516 | EXPORT_SYMBOL(iounmap); |
| 517 | |
| 518 | #endif /* CHIP_HAS_MMIO() */ |