Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 1 | /* |
| 2 | * This program is free software; you can redistribute it and/or |
| 3 | * modify it under the terms of the GNU General Public License |
| 4 | * as published by the Free Software Foundation; either version |
| 5 | * 2 of the License, or (at your option) any later version. |
| 6 | * |
| 7 | * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet |
| 8 | * & Swedish University of Agricultural Sciences. |
| 9 | * |
| 10 | * Jens Laas <jens.laas@data.slu.se> Swedish University of |
| 11 | * Agricultural Sciences. |
| 12 | * |
| 13 | * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet |
| 14 | * |
| 15 | * This work is based on the LPC-trie which is originally descibed in: |
| 16 | * |
| 17 | * An experimental study of compression methods for dynamic tries |
| 18 | * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. |
| 19 | * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/ |
| 20 | * |
| 21 | * |
| 22 | * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson |
| 23 | * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 |
| 24 | * |
| 25 | * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $ |
| 26 | * |
| 27 | * |
| 28 | * Code from fib_hash has been reused which includes the following header: |
| 29 | * |
| 30 | * |
| 31 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
| 32 | * operating system. INET is implemented using the BSD Socket |
| 33 | * interface as the means of communication with the user level. |
| 34 | * |
| 35 | * IPv4 FIB: lookup engine and maintenance routines. |
| 36 | * |
| 37 | * |
| 38 | * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> |
| 39 | * |
| 40 | * This program is free software; you can redistribute it and/or |
| 41 | * modify it under the terms of the GNU General Public License |
| 42 | * as published by the Free Software Foundation; either version |
| 43 | * 2 of the License, or (at your option) any later version. |
| 44 | */ |
| 45 | |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 46 | #define VERSION "0.325" |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 47 | |
| 48 | #include <linux/config.h> |
| 49 | #include <asm/uaccess.h> |
| 50 | #include <asm/system.h> |
| 51 | #include <asm/bitops.h> |
| 52 | #include <linux/types.h> |
| 53 | #include <linux/kernel.h> |
| 54 | #include <linux/sched.h> |
| 55 | #include <linux/mm.h> |
| 56 | #include <linux/string.h> |
| 57 | #include <linux/socket.h> |
| 58 | #include <linux/sockios.h> |
| 59 | #include <linux/errno.h> |
| 60 | #include <linux/in.h> |
| 61 | #include <linux/inet.h> |
| 62 | #include <linux/netdevice.h> |
| 63 | #include <linux/if_arp.h> |
| 64 | #include <linux/proc_fs.h> |
| 65 | #include <linux/skbuff.h> |
| 66 | #include <linux/netlink.h> |
| 67 | #include <linux/init.h> |
| 68 | #include <linux/list.h> |
| 69 | #include <net/ip.h> |
| 70 | #include <net/protocol.h> |
| 71 | #include <net/route.h> |
| 72 | #include <net/tcp.h> |
| 73 | #include <net/sock.h> |
| 74 | #include <net/ip_fib.h> |
| 75 | #include "fib_lookup.h" |
| 76 | |
| 77 | #undef CONFIG_IP_FIB_TRIE_STATS |
| 78 | #define MAX_CHILDS 16384 |
| 79 | |
| 80 | #define EXTRACT(p, n, str) ((str)<<(p)>>(32-(n))) |
| 81 | #define KEYLENGTH (8*sizeof(t_key)) |
| 82 | #define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l)) |
| 83 | #define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset)) |
| 84 | |
| 85 | static DEFINE_RWLOCK(fib_lock); |
| 86 | |
| 87 | typedef unsigned int t_key; |
| 88 | |
| 89 | #define T_TNODE 0 |
| 90 | #define T_LEAF 1 |
| 91 | #define NODE_TYPE_MASK 0x1UL |
| 92 | #define NODE_PARENT(_node) \ |
| 93 | ((struct tnode *)((_node)->_parent & ~NODE_TYPE_MASK)) |
| 94 | #define NODE_SET_PARENT(_node, _ptr) \ |
| 95 | ((_node)->_parent = (((unsigned long)(_ptr)) | \ |
| 96 | ((_node)->_parent & NODE_TYPE_MASK))) |
| 97 | #define NODE_INIT_PARENT(_node, _type) \ |
| 98 | ((_node)->_parent = (_type)) |
| 99 | #define NODE_TYPE(_node) \ |
| 100 | ((_node)->_parent & NODE_TYPE_MASK) |
| 101 | |
| 102 | #define IS_TNODE(n) (!(n->_parent & T_LEAF)) |
| 103 | #define IS_LEAF(n) (n->_parent & T_LEAF) |
| 104 | |
| 105 | struct node { |
| 106 | t_key key; |
| 107 | unsigned long _parent; |
| 108 | }; |
| 109 | |
| 110 | struct leaf { |
| 111 | t_key key; |
| 112 | unsigned long _parent; |
| 113 | struct hlist_head list; |
| 114 | }; |
| 115 | |
| 116 | struct leaf_info { |
| 117 | struct hlist_node hlist; |
| 118 | int plen; |
| 119 | struct list_head falh; |
| 120 | }; |
| 121 | |
| 122 | struct tnode { |
| 123 | t_key key; |
| 124 | unsigned long _parent; |
| 125 | unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */ |
| 126 | unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */ |
| 127 | unsigned short full_children; /* KEYLENGTH bits needed */ |
| 128 | unsigned short empty_children; /* KEYLENGTH bits needed */ |
| 129 | struct node *child[0]; |
| 130 | }; |
| 131 | |
| 132 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 133 | struct trie_use_stats { |
| 134 | unsigned int gets; |
| 135 | unsigned int backtrack; |
| 136 | unsigned int semantic_match_passed; |
| 137 | unsigned int semantic_match_miss; |
| 138 | unsigned int null_node_hit; |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 139 | unsigned int resize_node_skipped; |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 140 | }; |
| 141 | #endif |
| 142 | |
| 143 | struct trie_stat { |
| 144 | unsigned int totdepth; |
| 145 | unsigned int maxdepth; |
| 146 | unsigned int tnodes; |
| 147 | unsigned int leaves; |
| 148 | unsigned int nullpointers; |
| 149 | unsigned int nodesizes[MAX_CHILDS]; |
| 150 | }; |
| 151 | |
| 152 | struct trie { |
| 153 | struct node *trie; |
| 154 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 155 | struct trie_use_stats stats; |
| 156 | #endif |
| 157 | int size; |
| 158 | unsigned int revision; |
| 159 | }; |
| 160 | |
| 161 | static int trie_debug = 0; |
| 162 | |
| 163 | static int tnode_full(struct tnode *tn, struct node *n); |
| 164 | static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n); |
| 165 | static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull); |
| 166 | static int tnode_child_length(struct tnode *tn); |
| 167 | static struct node *resize(struct trie *t, struct tnode *tn); |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 168 | static struct tnode *inflate(struct trie *t, struct tnode *tn, int *err); |
| 169 | static struct tnode *halve(struct trie *t, struct tnode *tn, int *err); |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 170 | static void tnode_free(struct tnode *tn); |
| 171 | static void trie_dump_seq(struct seq_file *seq, struct trie *t); |
| 172 | extern struct fib_alias *fib_find_alias(struct list_head *fah, u8 tos, u32 prio); |
| 173 | extern int fib_detect_death(struct fib_info *fi, int order, |
| 174 | struct fib_info **last_resort, int *last_idx, int *dflt); |
| 175 | |
| 176 | extern void rtmsg_fib(int event, u32 key, struct fib_alias *fa, int z, int tb_id, |
| 177 | struct nlmsghdr *n, struct netlink_skb_parms *req); |
| 178 | |
| 179 | static kmem_cache_t *fn_alias_kmem; |
| 180 | static struct trie *trie_local = NULL, *trie_main = NULL; |
| 181 | |
| 182 | static void trie_bug(char *err) |
| 183 | { |
| 184 | printk("Trie Bug: %s\n", err); |
| 185 | BUG(); |
| 186 | } |
| 187 | |
| 188 | static inline struct node *tnode_get_child(struct tnode *tn, int i) |
| 189 | { |
| 190 | if (i >= 1<<tn->bits) |
| 191 | trie_bug("tnode_get_child"); |
| 192 | |
| 193 | return tn->child[i]; |
| 194 | } |
| 195 | |
| 196 | static inline int tnode_child_length(struct tnode *tn) |
| 197 | { |
| 198 | return 1<<tn->bits; |
| 199 | } |
| 200 | |
| 201 | /* |
| 202 | _________________________________________________________________ |
| 203 | | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | |
| 204 | ---------------------------------------------------------------- |
| 205 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
| 206 | |
| 207 | _________________________________________________________________ |
| 208 | | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | |
| 209 | ----------------------------------------------------------------- |
| 210 | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
| 211 | |
| 212 | tp->pos = 7 |
| 213 | tp->bits = 3 |
| 214 | n->pos = 15 |
| 215 | n->bits=4 |
| 216 | KEYLENGTH=32 |
| 217 | */ |
| 218 | |
| 219 | static inline t_key tkey_extract_bits(t_key a, int offset, int bits) |
| 220 | { |
| 221 | if (offset < KEYLENGTH) |
| 222 | return ((t_key)(a << offset)) >> (KEYLENGTH - bits); |
| 223 | else |
| 224 | return 0; |
| 225 | } |
| 226 | |
| 227 | static inline int tkey_equals(t_key a, t_key b) |
| 228 | { |
| 229 | return a == b; |
| 230 | } |
| 231 | |
| 232 | static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) |
| 233 | { |
| 234 | if (bits == 0 || offset >= KEYLENGTH) |
| 235 | return 1; |
| 236 | bits = bits > KEYLENGTH ? KEYLENGTH : bits; |
| 237 | return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; |
| 238 | } |
| 239 | |
| 240 | static inline int tkey_mismatch(t_key a, int offset, t_key b) |
| 241 | { |
| 242 | t_key diff = a ^ b; |
| 243 | int i = offset; |
| 244 | |
| 245 | if(!diff) |
| 246 | return 0; |
| 247 | while((diff << i) >> (KEYLENGTH-1) == 0) |
| 248 | i++; |
| 249 | return i; |
| 250 | } |
| 251 | |
| 252 | /* Candiate for fib_semantics */ |
| 253 | |
| 254 | static void fn_free_alias(struct fib_alias *fa) |
| 255 | { |
| 256 | fib_release_info(fa->fa_info); |
| 257 | kmem_cache_free(fn_alias_kmem, fa); |
| 258 | } |
| 259 | |
| 260 | /* |
| 261 | To understand this stuff, an understanding of keys and all their bits is |
| 262 | necessary. Every node in the trie has a key associated with it, but not |
| 263 | all of the bits in that key are significant. |
| 264 | |
| 265 | Consider a node 'n' and its parent 'tp'. |
| 266 | |
| 267 | If n is a leaf, every bit in its key is significant. Its presence is |
| 268 | necessitaded by path compression, since during a tree traversal (when |
| 269 | searching for a leaf - unless we are doing an insertion) we will completely |
| 270 | ignore all skipped bits we encounter. Thus we need to verify, at the end of |
| 271 | a potentially successful search, that we have indeed been walking the |
| 272 | correct key path. |
| 273 | |
| 274 | Note that we can never "miss" the correct key in the tree if present by |
| 275 | following the wrong path. Path compression ensures that segments of the key |
| 276 | that are the same for all keys with a given prefix are skipped, but the |
| 277 | skipped part *is* identical for each node in the subtrie below the skipped |
| 278 | bit! trie_insert() in this implementation takes care of that - note the |
| 279 | call to tkey_sub_equals() in trie_insert(). |
| 280 | |
| 281 | if n is an internal node - a 'tnode' here, the various parts of its key |
| 282 | have many different meanings. |
| 283 | |
| 284 | Example: |
| 285 | _________________________________________________________________ |
| 286 | | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | |
| 287 | ----------------------------------------------------------------- |
| 288 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
| 289 | |
| 290 | _________________________________________________________________ |
| 291 | | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | |
| 292 | ----------------------------------------------------------------- |
| 293 | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
| 294 | |
| 295 | tp->pos = 7 |
| 296 | tp->bits = 3 |
| 297 | n->pos = 15 |
| 298 | n->bits=4 |
| 299 | |
| 300 | First, let's just ignore the bits that come before the parent tp, that is |
| 301 | the bits from 0 to (tp->pos-1). They are *known* but at this point we do |
| 302 | not use them for anything. |
| 303 | |
| 304 | The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the |
| 305 | index into the parent's child array. That is, they will be used to find |
| 306 | 'n' among tp's children. |
| 307 | |
| 308 | The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits |
| 309 | for the node n. |
| 310 | |
| 311 | All the bits we have seen so far are significant to the node n. The rest |
| 312 | of the bits are really not needed or indeed known in n->key. |
| 313 | |
| 314 | The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into |
| 315 | n's child array, and will of course be different for each child. |
| 316 | |
| 317 | The rest of the bits, from (n->pos + n->bits) onward, are completely unknown |
| 318 | at this point. |
| 319 | |
| 320 | */ |
| 321 | |
| 322 | static void check_tnode(struct tnode *tn) |
| 323 | { |
| 324 | if(tn && tn->pos+tn->bits > 32) { |
| 325 | printk("TNODE ERROR tn=%p, pos=%d, bits=%d\n", tn, tn->pos, tn->bits); |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | static int halve_threshold = 25; |
| 330 | static int inflate_threshold = 50; |
| 331 | |
| 332 | static struct leaf *leaf_new(void) |
| 333 | { |
| 334 | struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL); |
| 335 | if(l) { |
| 336 | NODE_INIT_PARENT(l, T_LEAF); |
| 337 | INIT_HLIST_HEAD(&l->list); |
| 338 | } |
| 339 | return l; |
| 340 | } |
| 341 | |
| 342 | static struct leaf_info *leaf_info_new(int plen) |
| 343 | { |
| 344 | struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); |
Robert Olsson | f835e47 | 2005-06-28 15:00:39 -0700 | [diff] [blame] | 345 | if(li) { |
| 346 | li->plen = plen; |
| 347 | INIT_LIST_HEAD(&li->falh); |
| 348 | } |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 349 | return li; |
| 350 | } |
| 351 | |
| 352 | static inline void free_leaf(struct leaf *l) |
| 353 | { |
| 354 | kfree(l); |
| 355 | } |
| 356 | |
| 357 | static inline void free_leaf_info(struct leaf_info *li) |
| 358 | { |
| 359 | kfree(li); |
| 360 | } |
| 361 | |
Patrick McHardy | f0e36f8 | 2005-07-05 14:44:55 -0700 | [diff] [blame] | 362 | static struct tnode *tnode_alloc(unsigned int size) |
| 363 | { |
| 364 | if (size <= PAGE_SIZE) { |
| 365 | return kmalloc(size, GFP_KERNEL); |
| 366 | } else { |
| 367 | return (struct tnode *) |
| 368 | __get_free_pages(GFP_KERNEL, get_order(size)); |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | static void __tnode_free(struct tnode *tn) |
| 373 | { |
| 374 | unsigned int size = sizeof(struct tnode) + |
| 375 | (1<<tn->bits) * sizeof(struct node *); |
| 376 | |
| 377 | if (size <= PAGE_SIZE) |
| 378 | kfree(tn); |
| 379 | else |
| 380 | free_pages((unsigned long)tn, get_order(size)); |
| 381 | } |
| 382 | |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 383 | static struct tnode* tnode_new(t_key key, int pos, int bits) |
| 384 | { |
| 385 | int nchildren = 1<<bits; |
| 386 | int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *); |
Patrick McHardy | f0e36f8 | 2005-07-05 14:44:55 -0700 | [diff] [blame] | 387 | struct tnode *tn = tnode_alloc(sz); |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 388 | |
| 389 | if(tn) { |
| 390 | memset(tn, 0, sz); |
| 391 | NODE_INIT_PARENT(tn, T_TNODE); |
| 392 | tn->pos = pos; |
| 393 | tn->bits = bits; |
| 394 | tn->key = key; |
| 395 | tn->full_children = 0; |
| 396 | tn->empty_children = 1<<bits; |
| 397 | } |
| 398 | if(trie_debug > 0) |
| 399 | printk("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode), |
| 400 | (unsigned int) (sizeof(struct node) * 1<<bits)); |
| 401 | return tn; |
| 402 | } |
| 403 | |
| 404 | static void tnode_free(struct tnode *tn) |
| 405 | { |
| 406 | if(!tn) { |
| 407 | trie_bug("tnode_free\n"); |
| 408 | } |
| 409 | if(IS_LEAF(tn)) { |
| 410 | free_leaf((struct leaf *)tn); |
| 411 | if(trie_debug > 0 ) |
| 412 | printk("FL %p \n", tn); |
| 413 | } |
| 414 | else if(IS_TNODE(tn)) { |
Patrick McHardy | f0e36f8 | 2005-07-05 14:44:55 -0700 | [diff] [blame] | 415 | __tnode_free(tn); |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 416 | if(trie_debug > 0 ) |
| 417 | printk("FT %p \n", tn); |
| 418 | } |
| 419 | else { |
| 420 | trie_bug("tnode_free\n"); |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | /* |
| 425 | * Check whether a tnode 'n' is "full", i.e. it is an internal node |
| 426 | * and no bits are skipped. See discussion in dyntree paper p. 6 |
| 427 | */ |
| 428 | |
| 429 | static inline int tnode_full(struct tnode *tn, struct node *n) |
| 430 | { |
| 431 | if(n == NULL || IS_LEAF(n)) |
| 432 | return 0; |
| 433 | |
| 434 | return ((struct tnode *) n)->pos == tn->pos + tn->bits; |
| 435 | } |
| 436 | |
| 437 | static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n) |
| 438 | { |
| 439 | tnode_put_child_reorg(tn, i, n, -1); |
| 440 | } |
| 441 | |
| 442 | /* |
| 443 | * Add a child at position i overwriting the old value. |
| 444 | * Update the value of full_children and empty_children. |
| 445 | */ |
| 446 | |
| 447 | static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull) |
| 448 | { |
| 449 | struct node *chi; |
| 450 | int isfull; |
| 451 | |
| 452 | if(i >= 1<<tn->bits) { |
| 453 | printk("bits=%d, i=%d\n", tn->bits, i); |
| 454 | trie_bug("tnode_put_child_reorg bits"); |
| 455 | } |
| 456 | write_lock_bh(&fib_lock); |
| 457 | chi = tn->child[i]; |
| 458 | |
| 459 | /* update emptyChildren */ |
| 460 | if (n == NULL && chi != NULL) |
| 461 | tn->empty_children++; |
| 462 | else if (n != NULL && chi == NULL) |
| 463 | tn->empty_children--; |
| 464 | |
| 465 | /* update fullChildren */ |
| 466 | if (wasfull == -1) |
| 467 | wasfull = tnode_full(tn, chi); |
| 468 | |
| 469 | isfull = tnode_full(tn, n); |
| 470 | if (wasfull && !isfull) |
| 471 | tn->full_children--; |
| 472 | |
| 473 | else if (!wasfull && isfull) |
| 474 | tn->full_children++; |
| 475 | if(n) |
| 476 | NODE_SET_PARENT(n, tn); |
| 477 | |
| 478 | tn->child[i] = n; |
| 479 | write_unlock_bh(&fib_lock); |
| 480 | } |
| 481 | |
| 482 | static struct node *resize(struct trie *t, struct tnode *tn) |
| 483 | { |
| 484 | int i; |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 485 | int err = 0; |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 486 | |
| 487 | if (!tn) |
| 488 | return NULL; |
| 489 | |
| 490 | if(trie_debug) |
| 491 | printk("In tnode_resize %p inflate_threshold=%d threshold=%d\n", |
| 492 | tn, inflate_threshold, halve_threshold); |
| 493 | |
| 494 | /* No children */ |
| 495 | if (tn->empty_children == tnode_child_length(tn)) { |
| 496 | tnode_free(tn); |
| 497 | return NULL; |
| 498 | } |
| 499 | /* One child */ |
| 500 | if (tn->empty_children == tnode_child_length(tn) - 1) |
| 501 | for (i = 0; i < tnode_child_length(tn); i++) { |
| 502 | |
| 503 | write_lock_bh(&fib_lock); |
| 504 | if (tn->child[i] != NULL) { |
| 505 | |
| 506 | /* compress one level */ |
| 507 | struct node *n = tn->child[i]; |
| 508 | if(n) |
| 509 | NODE_INIT_PARENT(n, NODE_TYPE(n)); |
| 510 | |
| 511 | write_unlock_bh(&fib_lock); |
| 512 | tnode_free(tn); |
| 513 | return n; |
| 514 | } |
| 515 | write_unlock_bh(&fib_lock); |
| 516 | } |
| 517 | /* |
| 518 | * Double as long as the resulting node has a number of |
| 519 | * nonempty nodes that are above the threshold. |
| 520 | */ |
| 521 | |
| 522 | /* |
| 523 | * From "Implementing a dynamic compressed trie" by Stefan Nilsson of |
| 524 | * the Helsinki University of Technology and Matti Tikkanen of Nokia |
| 525 | * Telecommunications, page 6: |
| 526 | * "A node is doubled if the ratio of non-empty children to all |
| 527 | * children in the *doubled* node is at least 'high'." |
| 528 | * |
| 529 | * 'high' in this instance is the variable 'inflate_threshold'. It |
| 530 | * is expressed as a percentage, so we multiply it with |
| 531 | * tnode_child_length() and instead of multiplying by 2 (since the |
| 532 | * child array will be doubled by inflate()) and multiplying |
| 533 | * the left-hand side by 100 (to handle the percentage thing) we |
| 534 | * multiply the left-hand side by 50. |
| 535 | * |
| 536 | * The left-hand side may look a bit weird: tnode_child_length(tn) |
| 537 | * - tn->empty_children is of course the number of non-null children |
| 538 | * in the current node. tn->full_children is the number of "full" |
| 539 | * children, that is non-null tnodes with a skip value of 0. |
| 540 | * All of those will be doubled in the resulting inflated tnode, so |
| 541 | * we just count them one extra time here. |
| 542 | * |
| 543 | * A clearer way to write this would be: |
| 544 | * |
| 545 | * to_be_doubled = tn->full_children; |
| 546 | * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - |
| 547 | * tn->full_children; |
| 548 | * |
| 549 | * new_child_length = tnode_child_length(tn) * 2; |
| 550 | * |
| 551 | * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / |
| 552 | * new_child_length; |
| 553 | * if (new_fill_factor >= inflate_threshold) |
| 554 | * |
| 555 | * ...and so on, tho it would mess up the while() loop. |
| 556 | * |
| 557 | * anyway, |
| 558 | * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= |
| 559 | * inflate_threshold |
| 560 | * |
| 561 | * avoid a division: |
| 562 | * 100 * (not_to_be_doubled + 2*to_be_doubled) >= |
| 563 | * inflate_threshold * new_child_length |
| 564 | * |
| 565 | * expand not_to_be_doubled and to_be_doubled, and shorten: |
| 566 | * 100 * (tnode_child_length(tn) - tn->empty_children + |
| 567 | * tn->full_children ) >= inflate_threshold * new_child_length |
| 568 | * |
| 569 | * expand new_child_length: |
| 570 | * 100 * (tnode_child_length(tn) - tn->empty_children + |
| 571 | * tn->full_children ) >= |
| 572 | * inflate_threshold * tnode_child_length(tn) * 2 |
| 573 | * |
| 574 | * shorten again: |
| 575 | * 50 * (tn->full_children + tnode_child_length(tn) - |
| 576 | * tn->empty_children ) >= inflate_threshold * |
| 577 | * tnode_child_length(tn) |
| 578 | * |
| 579 | */ |
| 580 | |
| 581 | check_tnode(tn); |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 582 | |
| 583 | err = 0; |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 584 | while ((tn->full_children > 0 && |
| 585 | 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >= |
| 586 | inflate_threshold * tnode_child_length(tn))) { |
| 587 | |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 588 | tn = inflate(t, tn, &err); |
| 589 | |
| 590 | if(err) { |
| 591 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 592 | t->stats.resize_node_skipped++; |
| 593 | #endif |
| 594 | break; |
| 595 | } |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 596 | } |
| 597 | |
| 598 | check_tnode(tn); |
| 599 | |
| 600 | /* |
| 601 | * Halve as long as the number of empty children in this |
| 602 | * node is above threshold. |
| 603 | */ |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 604 | |
| 605 | err = 0; |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 606 | while (tn->bits > 1 && |
| 607 | 100 * (tnode_child_length(tn) - tn->empty_children) < |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 608 | halve_threshold * tnode_child_length(tn)) { |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 609 | |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 610 | tn = halve(t, tn, &err); |
| 611 | |
| 612 | if(err) { |
| 613 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 614 | t->stats.resize_node_skipped++; |
| 615 | #endif |
| 616 | break; |
| 617 | } |
| 618 | } |
| 619 | |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 620 | |
| 621 | /* Only one child remains */ |
| 622 | |
| 623 | if (tn->empty_children == tnode_child_length(tn) - 1) |
| 624 | for (i = 0; i < tnode_child_length(tn); i++) { |
| 625 | |
| 626 | write_lock_bh(&fib_lock); |
| 627 | if (tn->child[i] != NULL) { |
| 628 | /* compress one level */ |
| 629 | struct node *n = tn->child[i]; |
| 630 | |
| 631 | if(n) |
| 632 | NODE_INIT_PARENT(n, NODE_TYPE(n)); |
| 633 | |
| 634 | write_unlock_bh(&fib_lock); |
| 635 | tnode_free(tn); |
| 636 | return n; |
| 637 | } |
| 638 | write_unlock_bh(&fib_lock); |
| 639 | } |
| 640 | |
| 641 | return (struct node *) tn; |
| 642 | } |
| 643 | |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 644 | static struct tnode *inflate(struct trie *t, struct tnode *tn, int *err) |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 645 | { |
| 646 | struct tnode *inode; |
| 647 | struct tnode *oldtnode = tn; |
| 648 | int olen = tnode_child_length(tn); |
| 649 | int i; |
| 650 | |
| 651 | if(trie_debug) |
| 652 | printk("In inflate\n"); |
| 653 | |
| 654 | tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); |
| 655 | |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 656 | if (!tn) { |
| 657 | *err = -ENOMEM; |
| 658 | return oldtnode; |
| 659 | } |
| 660 | |
| 661 | /* |
| 662 | * Preallocate and store tnodes before the actual work so we |
| 663 | * don't get into an inconsistent state if memory allocation |
| 664 | * fails. In case of failure we return the oldnode and inflate |
| 665 | * of tnode is ignored. |
| 666 | */ |
| 667 | |
| 668 | for(i = 0; i < olen; i++) { |
| 669 | struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i); |
| 670 | |
| 671 | if (inode && |
| 672 | IS_TNODE(inode) && |
| 673 | inode->pos == oldtnode->pos + oldtnode->bits && |
| 674 | inode->bits > 1) { |
| 675 | struct tnode *left, *right; |
| 676 | |
| 677 | t_key m = TKEY_GET_MASK(inode->pos, 1); |
| 678 | |
| 679 | left = tnode_new(inode->key&(~m), inode->pos + 1, |
| 680 | inode->bits - 1); |
| 681 | |
| 682 | if(!left) { |
| 683 | *err = -ENOMEM; |
| 684 | break; |
| 685 | } |
| 686 | |
| 687 | right = tnode_new(inode->key|m, inode->pos + 1, |
| 688 | inode->bits - 1); |
| 689 | |
| 690 | if(!right) { |
| 691 | *err = -ENOMEM; |
| 692 | break; |
| 693 | } |
| 694 | |
| 695 | put_child(t, tn, 2*i, (struct node *) left); |
| 696 | put_child(t, tn, 2*i+1, (struct node *) right); |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | if(*err) { |
| 701 | int size = tnode_child_length(tn); |
| 702 | int j; |
| 703 | |
| 704 | for(j = 0; j < size; j++) |
| 705 | if( tn->child[j]) |
| 706 | tnode_free((struct tnode *)tn->child[j]); |
| 707 | |
| 708 | tnode_free(tn); |
| 709 | |
| 710 | *err = -ENOMEM; |
| 711 | return oldtnode; |
| 712 | } |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 713 | |
| 714 | for(i = 0; i < olen; i++) { |
| 715 | struct node *node = tnode_get_child(oldtnode, i); |
| 716 | |
| 717 | /* An empty child */ |
| 718 | if (node == NULL) |
| 719 | continue; |
| 720 | |
| 721 | /* A leaf or an internal node with skipped bits */ |
| 722 | |
| 723 | if(IS_LEAF(node) || ((struct tnode *) node)->pos > |
| 724 | tn->pos + tn->bits - 1) { |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 725 | if(tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits, |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 726 | 1) == 0) |
| 727 | put_child(t, tn, 2*i, node); |
| 728 | else |
| 729 | put_child(t, tn, 2*i+1, node); |
| 730 | continue; |
| 731 | } |
| 732 | |
| 733 | /* An internal node with two children */ |
| 734 | inode = (struct tnode *) node; |
| 735 | |
| 736 | if (inode->bits == 1) { |
| 737 | put_child(t, tn, 2*i, inode->child[0]); |
| 738 | put_child(t, tn, 2*i+1, inode->child[1]); |
| 739 | |
| 740 | tnode_free(inode); |
| 741 | } |
| 742 | |
| 743 | /* An internal node with more than two children */ |
| 744 | else { |
| 745 | struct tnode *left, *right; |
| 746 | int size, j; |
| 747 | |
| 748 | /* We will replace this node 'inode' with two new |
| 749 | * ones, 'left' and 'right', each with half of the |
| 750 | * original children. The two new nodes will have |
| 751 | * a position one bit further down the key and this |
| 752 | * means that the "significant" part of their keys |
| 753 | * (see the discussion near the top of this file) |
| 754 | * will differ by one bit, which will be "0" in |
| 755 | * left's key and "1" in right's key. Since we are |
| 756 | * moving the key position by one step, the bit that |
| 757 | * we are moving away from - the bit at position |
| 758 | * (inode->pos) - is the one that will differ between |
| 759 | * left and right. So... we synthesize that bit in the |
| 760 | * two new keys. |
| 761 | * The mask 'm' below will be a single "one" bit at |
| 762 | * the position (inode->pos) |
| 763 | */ |
| 764 | |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 765 | /* Use the old key, but set the new significant |
| 766 | * bit to zero. |
| 767 | */ |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 768 | |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 769 | left = (struct tnode *) tnode_get_child(tn, 2*i); |
| 770 | put_child(t, tn, 2*i, NULL); |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 771 | |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 772 | if(!left) |
| 773 | BUG(); |
| 774 | |
| 775 | right = (struct tnode *) tnode_get_child(tn, 2*i+1); |
| 776 | put_child(t, tn, 2*i+1, NULL); |
| 777 | |
| 778 | if(!right) |
| 779 | BUG(); |
| 780 | |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 781 | size = tnode_child_length(left); |
| 782 | for(j = 0; j < size; j++) { |
| 783 | put_child(t, left, j, inode->child[j]); |
| 784 | put_child(t, right, j, inode->child[j + size]); |
| 785 | } |
| 786 | put_child(t, tn, 2*i, resize(t, left)); |
| 787 | put_child(t, tn, 2*i+1, resize(t, right)); |
| 788 | |
| 789 | tnode_free(inode); |
| 790 | } |
| 791 | } |
| 792 | tnode_free(oldtnode); |
| 793 | return tn; |
| 794 | } |
| 795 | |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 796 | static struct tnode *halve(struct trie *t, struct tnode *tn, int *err) |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 797 | { |
| 798 | struct tnode *oldtnode = tn; |
| 799 | struct node *left, *right; |
| 800 | int i; |
| 801 | int olen = tnode_child_length(tn); |
| 802 | |
| 803 | if(trie_debug) printk("In halve\n"); |
| 804 | |
| 805 | tn=tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); |
| 806 | |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 807 | if (!tn) { |
| 808 | *err = -ENOMEM; |
| 809 | return oldtnode; |
| 810 | } |
| 811 | |
| 812 | /* |
| 813 | * Preallocate and store tnodes before the actual work so we |
| 814 | * don't get into an inconsistent state if memory allocation |
| 815 | * fails. In case of failure we return the oldnode and halve |
| 816 | * of tnode is ignored. |
| 817 | */ |
| 818 | |
| 819 | for(i = 0; i < olen; i += 2) { |
| 820 | left = tnode_get_child(oldtnode, i); |
| 821 | right = tnode_get_child(oldtnode, i+1); |
| 822 | |
| 823 | /* Two nonempty children */ |
| 824 | if( left && right) { |
| 825 | struct tnode *newBinNode = |
| 826 | tnode_new(left->key, tn->pos + tn->bits, 1); |
| 827 | |
| 828 | if(!newBinNode) { |
| 829 | *err = -ENOMEM; |
| 830 | break; |
| 831 | } |
| 832 | put_child(t, tn, i/2, (struct node *)newBinNode); |
| 833 | } |
| 834 | } |
| 835 | |
| 836 | if(*err) { |
| 837 | int size = tnode_child_length(tn); |
| 838 | int j; |
| 839 | |
| 840 | for(j = 0; j < size; j++) |
| 841 | if( tn->child[j]) |
| 842 | tnode_free((struct tnode *)tn->child[j]); |
| 843 | |
| 844 | tnode_free(tn); |
| 845 | |
| 846 | *err = -ENOMEM; |
| 847 | return oldtnode; |
| 848 | } |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 849 | |
| 850 | for(i = 0; i < olen; i += 2) { |
| 851 | left = tnode_get_child(oldtnode, i); |
| 852 | right = tnode_get_child(oldtnode, i+1); |
| 853 | |
| 854 | /* At least one of the children is empty */ |
| 855 | if (left == NULL) { |
| 856 | if (right == NULL) /* Both are empty */ |
| 857 | continue; |
| 858 | put_child(t, tn, i/2, right); |
| 859 | } else if (right == NULL) |
| 860 | put_child(t, tn, i/2, left); |
| 861 | |
| 862 | /* Two nonempty children */ |
| 863 | else { |
| 864 | struct tnode *newBinNode = |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 865 | (struct tnode *) tnode_get_child(tn, i/2); |
| 866 | put_child(t, tn, i/2, NULL); |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 867 | |
| 868 | if(!newBinNode) |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 869 | BUG(); |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 870 | |
| 871 | put_child(t, newBinNode, 0, left); |
| 872 | put_child(t, newBinNode, 1, right); |
| 873 | put_child(t, tn, i/2, resize(t, newBinNode)); |
| 874 | } |
| 875 | } |
| 876 | tnode_free(oldtnode); |
| 877 | return tn; |
| 878 | } |
| 879 | |
| 880 | static void *trie_init(struct trie *t) |
| 881 | { |
| 882 | if(t) { |
| 883 | t->size = 0; |
| 884 | t->trie = NULL; |
| 885 | t->revision = 0; |
| 886 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 887 | memset(&t->stats, 0, sizeof(struct trie_use_stats)); |
| 888 | #endif |
| 889 | } |
| 890 | return t; |
| 891 | } |
| 892 | |
| 893 | static struct leaf_info *find_leaf_info(struct hlist_head *head, int plen) |
| 894 | { |
| 895 | struct hlist_node *node; |
| 896 | struct leaf_info *li; |
| 897 | |
| 898 | hlist_for_each_entry(li, node, head, hlist) { |
| 899 | |
| 900 | if ( li->plen == plen ) |
| 901 | return li; |
| 902 | } |
| 903 | return NULL; |
| 904 | } |
| 905 | |
| 906 | static inline struct list_head * get_fa_head(struct leaf *l, int plen) |
| 907 | { |
| 908 | struct list_head *fa_head=NULL; |
| 909 | struct leaf_info *li = find_leaf_info(&l->list, plen); |
| 910 | |
| 911 | if(li) |
| 912 | fa_head = &li->falh; |
| 913 | |
| 914 | return fa_head; |
| 915 | } |
| 916 | |
| 917 | static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) |
| 918 | { |
| 919 | struct leaf_info *li=NULL, *last=NULL; |
| 920 | struct hlist_node *node, *tmp; |
| 921 | |
| 922 | write_lock_bh(&fib_lock); |
| 923 | |
| 924 | if(hlist_empty(head)) |
| 925 | hlist_add_head(&new->hlist, head); |
| 926 | else { |
| 927 | hlist_for_each_entry_safe(li, node, tmp, head, hlist) { |
| 928 | |
| 929 | if (new->plen > li->plen) |
| 930 | break; |
| 931 | |
| 932 | last = li; |
| 933 | } |
| 934 | if(last) |
| 935 | hlist_add_after(&last->hlist, &new->hlist); |
| 936 | else |
| 937 | hlist_add_before(&new->hlist, &li->hlist); |
| 938 | } |
| 939 | write_unlock_bh(&fib_lock); |
| 940 | } |
| 941 | |
| 942 | static struct leaf * |
| 943 | fib_find_node(struct trie *t, u32 key) |
| 944 | { |
| 945 | int pos; |
| 946 | struct tnode *tn; |
| 947 | struct node *n; |
| 948 | |
| 949 | pos = 0; |
| 950 | n=t->trie; |
| 951 | |
| 952 | while (n != NULL && NODE_TYPE(n) == T_TNODE) { |
| 953 | tn = (struct tnode *) n; |
| 954 | |
| 955 | check_tnode(tn); |
| 956 | |
| 957 | if(tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { |
| 958 | pos=tn->pos + tn->bits; |
| 959 | n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits)); |
| 960 | } |
| 961 | else |
| 962 | break; |
| 963 | } |
| 964 | /* Case we have found a leaf. Compare prefixes */ |
| 965 | |
| 966 | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { |
| 967 | struct leaf *l = (struct leaf *) n; |
| 968 | return l; |
| 969 | } |
| 970 | return NULL; |
| 971 | } |
| 972 | |
| 973 | static struct node *trie_rebalance(struct trie *t, struct tnode *tn) |
| 974 | { |
| 975 | int i = 0; |
| 976 | int wasfull; |
| 977 | t_key cindex, key; |
| 978 | struct tnode *tp = NULL; |
| 979 | |
| 980 | if(!tn) |
| 981 | BUG(); |
| 982 | |
| 983 | key = tn->key; |
| 984 | i = 0; |
| 985 | |
| 986 | while (tn != NULL && NODE_PARENT(tn) != NULL) { |
| 987 | |
| 988 | if( i > 10 ) { |
| 989 | printk("Rebalance tn=%p \n", tn); |
| 990 | if(tn) printk("tn->parent=%p \n", NODE_PARENT(tn)); |
| 991 | |
| 992 | printk("Rebalance tp=%p \n", tp); |
| 993 | if(tp) printk("tp->parent=%p \n", NODE_PARENT(tp)); |
| 994 | } |
| 995 | |
| 996 | if( i > 12 ) BUG(); |
| 997 | i++; |
| 998 | |
| 999 | tp = NODE_PARENT(tn); |
| 1000 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
| 1001 | wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); |
| 1002 | tn = (struct tnode *) resize (t, (struct tnode *)tn); |
| 1003 | tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull); |
| 1004 | |
| 1005 | if(!NODE_PARENT(tn)) |
| 1006 | break; |
| 1007 | |
| 1008 | tn = NODE_PARENT(tn); |
| 1009 | } |
| 1010 | /* Handle last (top) tnode */ |
| 1011 | if (IS_TNODE(tn)) |
| 1012 | tn = (struct tnode*) resize(t, (struct tnode *)tn); |
| 1013 | |
| 1014 | return (struct node*) tn; |
| 1015 | } |
| 1016 | |
Robert Olsson | f835e47 | 2005-06-28 15:00:39 -0700 | [diff] [blame] | 1017 | static struct list_head * |
| 1018 | fib_insert_node(struct trie *t, int *err, u32 key, int plen) |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 1019 | { |
| 1020 | int pos, newpos; |
| 1021 | struct tnode *tp = NULL, *tn = NULL; |
| 1022 | struct node *n; |
| 1023 | struct leaf *l; |
| 1024 | int missbit; |
| 1025 | struct list_head *fa_head=NULL; |
| 1026 | struct leaf_info *li; |
| 1027 | t_key cindex; |
| 1028 | |
| 1029 | pos = 0; |
| 1030 | n=t->trie; |
| 1031 | |
| 1032 | /* If we point to NULL, stop. Either the tree is empty and we should |
| 1033 | * just put a new leaf in if, or we have reached an empty child slot, |
| 1034 | * and we should just put our new leaf in that. |
| 1035 | * If we point to a T_TNODE, check if it matches our key. Note that |
| 1036 | * a T_TNODE might be skipping any number of bits - its 'pos' need |
| 1037 | * not be the parent's 'pos'+'bits'! |
| 1038 | * |
| 1039 | * If it does match the current key, get pos/bits from it, extract |
| 1040 | * the index from our key, push the T_TNODE and walk the tree. |
| 1041 | * |
| 1042 | * If it doesn't, we have to replace it with a new T_TNODE. |
| 1043 | * |
| 1044 | * If we point to a T_LEAF, it might or might not have the same key |
| 1045 | * as we do. If it does, just change the value, update the T_LEAF's |
| 1046 | * value, and return it. |
| 1047 | * If it doesn't, we need to replace it with a T_TNODE. |
| 1048 | */ |
| 1049 | |
| 1050 | while (n != NULL && NODE_TYPE(n) == T_TNODE) { |
| 1051 | tn = (struct tnode *) n; |
| 1052 | |
| 1053 | check_tnode(tn); |
| 1054 | |
| 1055 | if(tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { |
| 1056 | tp = tn; |
| 1057 | pos=tn->pos + tn->bits; |
| 1058 | n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits)); |
| 1059 | |
| 1060 | if(n && NODE_PARENT(n) != tn) { |
| 1061 | printk("BUG tn=%p, n->parent=%p\n", tn, NODE_PARENT(n)); |
| 1062 | BUG(); |
| 1063 | } |
| 1064 | } |
| 1065 | else |
| 1066 | break; |
| 1067 | } |
| 1068 | |
| 1069 | /* |
| 1070 | * n ----> NULL, LEAF or TNODE |
| 1071 | * |
| 1072 | * tp is n's (parent) ----> NULL or TNODE |
| 1073 | */ |
| 1074 | |
| 1075 | if(tp && IS_LEAF(tp)) |
| 1076 | BUG(); |
| 1077 | |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 1078 | |
| 1079 | /* Case 1: n is a leaf. Compare prefixes */ |
| 1080 | |
| 1081 | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { |
| 1082 | struct leaf *l = ( struct leaf *) n; |
| 1083 | |
| 1084 | li = leaf_info_new(plen); |
| 1085 | |
Robert Olsson | f835e47 | 2005-06-28 15:00:39 -0700 | [diff] [blame] | 1086 | if(! li) { |
| 1087 | *err = -ENOMEM; |
| 1088 | goto err; |
| 1089 | } |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 1090 | |
| 1091 | fa_head = &li->falh; |
| 1092 | insert_leaf_info(&l->list, li); |
| 1093 | goto done; |
| 1094 | } |
| 1095 | t->size++; |
| 1096 | l = leaf_new(); |
| 1097 | |
Robert Olsson | f835e47 | 2005-06-28 15:00:39 -0700 | [diff] [blame] | 1098 | if(! l) { |
| 1099 | *err = -ENOMEM; |
| 1100 | goto err; |
| 1101 | } |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 1102 | |
| 1103 | l->key = key; |
| 1104 | li = leaf_info_new(plen); |
| 1105 | |
Robert Olsson | f835e47 | 2005-06-28 15:00:39 -0700 | [diff] [blame] | 1106 | if(! li) { |
| 1107 | tnode_free((struct tnode *) l); |
| 1108 | *err = -ENOMEM; |
| 1109 | goto err; |
| 1110 | } |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 1111 | |
| 1112 | fa_head = &li->falh; |
| 1113 | insert_leaf_info(&l->list, li); |
| 1114 | |
| 1115 | /* Case 2: n is NULL, and will just insert a new leaf */ |
| 1116 | if (t->trie && n == NULL) { |
| 1117 | |
| 1118 | NODE_SET_PARENT(l, tp); |
| 1119 | |
| 1120 | if (!tp) |
| 1121 | BUG(); |
| 1122 | |
| 1123 | else { |
| 1124 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
| 1125 | put_child(t, (struct tnode *)tp, cindex, (struct node *)l); |
| 1126 | } |
| 1127 | } |
| 1128 | /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ |
| 1129 | else { |
| 1130 | /* |
| 1131 | * Add a new tnode here |
| 1132 | * first tnode need some special handling |
| 1133 | */ |
| 1134 | |
| 1135 | if (tp) |
| 1136 | pos=tp->pos+tp->bits; |
| 1137 | else |
| 1138 | pos=0; |
| 1139 | if(n) { |
| 1140 | newpos = tkey_mismatch(key, pos, n->key); |
| 1141 | tn = tnode_new(n->key, newpos, 1); |
| 1142 | } |
| 1143 | else { |
| 1144 | newpos = 0; |
| 1145 | tn = tnode_new(key, newpos, 1); /* First tnode */ |
| 1146 | } |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 1147 | |
Robert Olsson | f835e47 | 2005-06-28 15:00:39 -0700 | [diff] [blame] | 1148 | if(!tn) { |
| 1149 | free_leaf_info(li); |
| 1150 | tnode_free((struct tnode *) l); |
| 1151 | *err = -ENOMEM; |
| 1152 | goto err; |
| 1153 | } |
| 1154 | |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 1155 | NODE_SET_PARENT(tn, tp); |
| 1156 | |
| 1157 | missbit=tkey_extract_bits(key, newpos, 1); |
| 1158 | put_child(t, tn, missbit, (struct node *)l); |
| 1159 | put_child(t, tn, 1-missbit, n); |
| 1160 | |
| 1161 | if(tp) { |
| 1162 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
| 1163 | put_child(t, (struct tnode *)tp, cindex, (struct node *)tn); |
| 1164 | } |
| 1165 | else { |
| 1166 | t->trie = (struct node*) tn; /* First tnode */ |
| 1167 | tp = tn; |
| 1168 | } |
| 1169 | } |
| 1170 | if(tp && tp->pos+tp->bits > 32) { |
| 1171 | printk("ERROR tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", |
| 1172 | tp, tp->pos, tp->bits, key, plen); |
| 1173 | } |
| 1174 | /* Rebalance the trie */ |
| 1175 | t->trie = trie_rebalance(t, tp); |
Robert Olsson | f835e47 | 2005-06-28 15:00:39 -0700 | [diff] [blame] | 1176 | done: |
| 1177 | t->revision++; |
| 1178 | err:; |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 1179 | return fa_head; |
| 1180 | } |
| 1181 | |
| 1182 | static int |
| 1183 | fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta, |
| 1184 | struct nlmsghdr *nlhdr, struct netlink_skb_parms *req) |
| 1185 | { |
| 1186 | struct trie *t = (struct trie *) tb->tb_data; |
| 1187 | struct fib_alias *fa, *new_fa; |
| 1188 | struct list_head *fa_head=NULL; |
| 1189 | struct fib_info *fi; |
| 1190 | int plen = r->rtm_dst_len; |
| 1191 | int type = r->rtm_type; |
| 1192 | u8 tos = r->rtm_tos; |
| 1193 | u32 key, mask; |
| 1194 | int err; |
| 1195 | struct leaf *l; |
| 1196 | |
| 1197 | if (plen > 32) |
| 1198 | return -EINVAL; |
| 1199 | |
| 1200 | key = 0; |
| 1201 | if (rta->rta_dst) |
| 1202 | memcpy(&key, rta->rta_dst, 4); |
| 1203 | |
| 1204 | key = ntohl(key); |
| 1205 | |
| 1206 | if(trie_debug) |
| 1207 | printk("Insert table=%d %08x/%d\n", tb->tb_id, key, plen); |
| 1208 | |
| 1209 | mask = ntohl( inet_make_mask(plen) ); |
| 1210 | |
| 1211 | if(key & ~mask) |
| 1212 | return -EINVAL; |
| 1213 | |
| 1214 | key = key & mask; |
| 1215 | |
| 1216 | if ((fi = fib_create_info(r, rta, nlhdr, &err)) == NULL) |
| 1217 | goto err; |
| 1218 | |
| 1219 | l = fib_find_node(t, key); |
| 1220 | fa = NULL; |
| 1221 | |
| 1222 | if(l) { |
| 1223 | fa_head = get_fa_head(l, plen); |
| 1224 | fa = fib_find_alias(fa_head, tos, fi->fib_priority); |
| 1225 | } |
| 1226 | |
| 1227 | /* Now fa, if non-NULL, points to the first fib alias |
| 1228 | * with the same keys [prefix,tos,priority], if such key already |
| 1229 | * exists or to the node before which we will insert new one. |
| 1230 | * |
| 1231 | * If fa is NULL, we will need to allocate a new one and |
| 1232 | * insert to the head of f. |
| 1233 | * |
| 1234 | * If f is NULL, no fib node matched the destination key |
| 1235 | * and we need to allocate a new one of those as well. |
| 1236 | */ |
| 1237 | |
| 1238 | if (fa && |
| 1239 | fa->fa_info->fib_priority == fi->fib_priority) { |
| 1240 | struct fib_alias *fa_orig; |
| 1241 | |
| 1242 | err = -EEXIST; |
| 1243 | if (nlhdr->nlmsg_flags & NLM_F_EXCL) |
| 1244 | goto out; |
| 1245 | |
| 1246 | if (nlhdr->nlmsg_flags & NLM_F_REPLACE) { |
| 1247 | struct fib_info *fi_drop; |
| 1248 | u8 state; |
| 1249 | |
| 1250 | write_lock_bh(&fib_lock); |
| 1251 | |
| 1252 | fi_drop = fa->fa_info; |
| 1253 | fa->fa_info = fi; |
| 1254 | fa->fa_type = type; |
| 1255 | fa->fa_scope = r->rtm_scope; |
| 1256 | state = fa->fa_state; |
| 1257 | fa->fa_state &= ~FA_S_ACCESSED; |
| 1258 | |
| 1259 | write_unlock_bh(&fib_lock); |
| 1260 | |
| 1261 | fib_release_info(fi_drop); |
| 1262 | if (state & FA_S_ACCESSED) |
| 1263 | rt_cache_flush(-1); |
| 1264 | |
| 1265 | goto succeeded; |
| 1266 | } |
| 1267 | /* Error if we find a perfect match which |
| 1268 | * uses the same scope, type, and nexthop |
| 1269 | * information. |
| 1270 | */ |
| 1271 | fa_orig = fa; |
| 1272 | list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) { |
| 1273 | if (fa->fa_tos != tos) |
| 1274 | break; |
| 1275 | if (fa->fa_info->fib_priority != fi->fib_priority) |
| 1276 | break; |
| 1277 | if (fa->fa_type == type && |
| 1278 | fa->fa_scope == r->rtm_scope && |
| 1279 | fa->fa_info == fi) { |
| 1280 | goto out; |
| 1281 | } |
| 1282 | } |
| 1283 | if (!(nlhdr->nlmsg_flags & NLM_F_APPEND)) |
| 1284 | fa = fa_orig; |
| 1285 | } |
| 1286 | err = -ENOENT; |
| 1287 | if (!(nlhdr->nlmsg_flags&NLM_F_CREATE)) |
| 1288 | goto out; |
| 1289 | |
| 1290 | err = -ENOBUFS; |
| 1291 | new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL); |
| 1292 | if (new_fa == NULL) |
| 1293 | goto out; |
| 1294 | |
| 1295 | new_fa->fa_info = fi; |
| 1296 | new_fa->fa_tos = tos; |
| 1297 | new_fa->fa_type = type; |
| 1298 | new_fa->fa_scope = r->rtm_scope; |
| 1299 | new_fa->fa_state = 0; |
| 1300 | #if 0 |
| 1301 | new_fa->dst = NULL; |
| 1302 | #endif |
| 1303 | /* |
| 1304 | * Insert new entry to the list. |
| 1305 | */ |
| 1306 | |
Robert Olsson | f835e47 | 2005-06-28 15:00:39 -0700 | [diff] [blame] | 1307 | if(!fa_head) { |
| 1308 | fa_head = fib_insert_node(t, &err, key, plen); |
| 1309 | err = 0; |
| 1310 | if(err) |
| 1311 | goto out_free_new_fa; |
| 1312 | } |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 1313 | |
| 1314 | write_lock_bh(&fib_lock); |
| 1315 | |
| 1316 | list_add_tail(&new_fa->fa_list, |
| 1317 | (fa ? &fa->fa_list : fa_head)); |
| 1318 | |
| 1319 | write_unlock_bh(&fib_lock); |
| 1320 | |
| 1321 | rt_cache_flush(-1); |
| 1322 | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req); |
| 1323 | succeeded: |
| 1324 | return 0; |
Robert Olsson | f835e47 | 2005-06-28 15:00:39 -0700 | [diff] [blame] | 1325 | |
| 1326 | out_free_new_fa: |
| 1327 | kmem_cache_free(fn_alias_kmem, new_fa); |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 1328 | out: |
| 1329 | fib_release_info(fi); |
| 1330 | err:; |
| 1331 | return err; |
| 1332 | } |
| 1333 | |
| 1334 | static inline int check_leaf(struct trie *t, struct leaf *l, t_key key, int *plen, const struct flowi *flp, |
| 1335 | struct fib_result *res, int *err) |
| 1336 | { |
| 1337 | int i; |
| 1338 | t_key mask; |
| 1339 | struct leaf_info *li; |
| 1340 | struct hlist_head *hhead = &l->list; |
| 1341 | struct hlist_node *node; |
| 1342 | |
| 1343 | hlist_for_each_entry(li, node, hhead, hlist) { |
| 1344 | |
| 1345 | i = li->plen; |
| 1346 | mask = ntohl(inet_make_mask(i)); |
| 1347 | if (l->key != (key & mask)) |
| 1348 | continue; |
| 1349 | |
| 1350 | if (((*err) = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) == 0) { |
| 1351 | *plen = i; |
| 1352 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 1353 | t->stats.semantic_match_passed++; |
| 1354 | #endif |
| 1355 | return 1; |
| 1356 | } |
| 1357 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 1358 | t->stats.semantic_match_miss++; |
| 1359 | #endif |
| 1360 | } |
| 1361 | return 0; |
| 1362 | } |
| 1363 | |
| 1364 | static int |
| 1365 | fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res) |
| 1366 | { |
| 1367 | struct trie *t = (struct trie *) tb->tb_data; |
| 1368 | int plen, ret = 0; |
| 1369 | struct node *n; |
| 1370 | struct tnode *pn; |
| 1371 | int pos, bits; |
| 1372 | t_key key=ntohl(flp->fl4_dst); |
| 1373 | int chopped_off; |
| 1374 | t_key cindex = 0; |
| 1375 | int current_prefix_length = KEYLENGTH; |
| 1376 | n = t->trie; |
| 1377 | |
| 1378 | read_lock(&fib_lock); |
| 1379 | if(!n) |
| 1380 | goto failed; |
| 1381 | |
| 1382 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 1383 | t->stats.gets++; |
| 1384 | #endif |
| 1385 | |
| 1386 | /* Just a leaf? */ |
| 1387 | if (IS_LEAF(n)) { |
| 1388 | if( check_leaf(t, (struct leaf *)n, key, &plen, flp, res, &ret) ) |
| 1389 | goto found; |
| 1390 | goto failed; |
| 1391 | } |
| 1392 | pn = (struct tnode *) n; |
| 1393 | chopped_off = 0; |
| 1394 | |
| 1395 | while (pn) { |
| 1396 | |
| 1397 | pos = pn->pos; |
| 1398 | bits = pn->bits; |
| 1399 | |
| 1400 | if(!chopped_off) |
| 1401 | cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits); |
| 1402 | |
| 1403 | n = tnode_get_child(pn, cindex); |
| 1404 | |
| 1405 | if (n == NULL) { |
| 1406 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 1407 | t->stats.null_node_hit++; |
| 1408 | #endif |
| 1409 | goto backtrace; |
| 1410 | } |
| 1411 | |
| 1412 | if (IS_TNODE(n)) { |
| 1413 | #define HL_OPTIMIZE |
| 1414 | #ifdef HL_OPTIMIZE |
| 1415 | struct tnode *cn = (struct tnode *)n; |
| 1416 | t_key node_prefix, key_prefix, pref_mismatch; |
| 1417 | int mp; |
| 1418 | |
| 1419 | /* |
| 1420 | * It's a tnode, and we can do some extra checks here if we |
| 1421 | * like, to avoid descending into a dead-end branch. |
| 1422 | * This tnode is in the parent's child array at index |
| 1423 | * key[p_pos..p_pos+p_bits] but potentially with some bits |
| 1424 | * chopped off, so in reality the index may be just a |
| 1425 | * subprefix, padded with zero at the end. |
| 1426 | * We can also take a look at any skipped bits in this |
| 1427 | * tnode - everything up to p_pos is supposed to be ok, |
| 1428 | * and the non-chopped bits of the index (se previous |
| 1429 | * paragraph) are also guaranteed ok, but the rest is |
| 1430 | * considered unknown. |
| 1431 | * |
| 1432 | * The skipped bits are key[pos+bits..cn->pos]. |
| 1433 | */ |
| 1434 | |
| 1435 | /* If current_prefix_length < pos+bits, we are already doing |
| 1436 | * actual prefix matching, which means everything from |
| 1437 | * pos+(bits-chopped_off) onward must be zero along some |
| 1438 | * branch of this subtree - otherwise there is *no* valid |
| 1439 | * prefix present. Here we can only check the skipped |
| 1440 | * bits. Remember, since we have already indexed into the |
| 1441 | * parent's child array, we know that the bits we chopped of |
| 1442 | * *are* zero. |
| 1443 | */ |
| 1444 | |
| 1445 | /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */ |
| 1446 | |
| 1447 | if (current_prefix_length < pos+bits) { |
| 1448 | if (tkey_extract_bits(cn->key, current_prefix_length, |
| 1449 | cn->pos - current_prefix_length) != 0 || |
| 1450 | !(cn->child[0])) |
| 1451 | goto backtrace; |
| 1452 | } |
| 1453 | |
| 1454 | /* |
| 1455 | * If chopped_off=0, the index is fully validated and we |
| 1456 | * only need to look at the skipped bits for this, the new, |
| 1457 | * tnode. What we actually want to do is to find out if |
| 1458 | * these skipped bits match our key perfectly, or if we will |
| 1459 | * have to count on finding a matching prefix further down, |
| 1460 | * because if we do, we would like to have some way of |
| 1461 | * verifying the existence of such a prefix at this point. |
| 1462 | */ |
| 1463 | |
| 1464 | /* The only thing we can do at this point is to verify that |
| 1465 | * any such matching prefix can indeed be a prefix to our |
| 1466 | * key, and if the bits in the node we are inspecting that |
| 1467 | * do not match our key are not ZERO, this cannot be true. |
| 1468 | * Thus, find out where there is a mismatch (before cn->pos) |
| 1469 | * and verify that all the mismatching bits are zero in the |
| 1470 | * new tnode's key. |
| 1471 | */ |
| 1472 | |
| 1473 | /* Note: We aren't very concerned about the piece of the key |
| 1474 | * that precede pn->pos+pn->bits, since these have already been |
| 1475 | * checked. The bits after cn->pos aren't checked since these are |
| 1476 | * by definition "unknown" at this point. Thus, what we want to |
| 1477 | * see is if we are about to enter the "prefix matching" state, |
| 1478 | * and in that case verify that the skipped bits that will prevail |
| 1479 | * throughout this subtree are zero, as they have to be if we are |
| 1480 | * to find a matching prefix. |
| 1481 | */ |
| 1482 | |
| 1483 | node_prefix = MASK_PFX(cn->key, cn->pos); |
| 1484 | key_prefix = MASK_PFX(key, cn->pos); |
| 1485 | pref_mismatch = key_prefix^node_prefix; |
| 1486 | mp = 0; |
| 1487 | |
| 1488 | /* In short: If skipped bits in this node do not match the search |
| 1489 | * key, enter the "prefix matching" state.directly. |
| 1490 | */ |
| 1491 | if (pref_mismatch) { |
| 1492 | while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) { |
| 1493 | mp++; |
| 1494 | pref_mismatch = pref_mismatch <<1; |
| 1495 | } |
| 1496 | key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp); |
| 1497 | |
| 1498 | if (key_prefix != 0) |
| 1499 | goto backtrace; |
| 1500 | |
| 1501 | if (current_prefix_length >= cn->pos) |
| 1502 | current_prefix_length=mp; |
| 1503 | } |
| 1504 | #endif |
| 1505 | pn = (struct tnode *)n; /* Descend */ |
| 1506 | chopped_off = 0; |
| 1507 | continue; |
| 1508 | } |
| 1509 | if (IS_LEAF(n)) { |
| 1510 | if( check_leaf(t, (struct leaf *)n, key, &plen, flp, res, &ret)) |
| 1511 | goto found; |
| 1512 | } |
| 1513 | backtrace: |
| 1514 | chopped_off++; |
| 1515 | |
| 1516 | /* As zero don't change the child key (cindex) */ |
| 1517 | while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1)))) { |
| 1518 | chopped_off++; |
| 1519 | } |
| 1520 | |
| 1521 | /* Decrease current_... with bits chopped off */ |
| 1522 | if (current_prefix_length > pn->pos + pn->bits - chopped_off) |
| 1523 | current_prefix_length = pn->pos + pn->bits - chopped_off; |
| 1524 | |
| 1525 | /* |
| 1526 | * Either we do the actual chop off according or if we have |
| 1527 | * chopped off all bits in this tnode walk up to our parent. |
| 1528 | */ |
| 1529 | |
| 1530 | if(chopped_off <= pn->bits) |
| 1531 | cindex &= ~(1 << (chopped_off-1)); |
| 1532 | else { |
| 1533 | if( NODE_PARENT(pn) == NULL) |
| 1534 | goto failed; |
| 1535 | |
| 1536 | /* Get Child's index */ |
| 1537 | cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits); |
| 1538 | pn = NODE_PARENT(pn); |
| 1539 | chopped_off = 0; |
| 1540 | |
| 1541 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 1542 | t->stats.backtrack++; |
| 1543 | #endif |
| 1544 | goto backtrace; |
| 1545 | } |
| 1546 | } |
| 1547 | failed: |
| 1548 | ret = 1; |
| 1549 | found: |
| 1550 | read_unlock(&fib_lock); |
| 1551 | return ret; |
| 1552 | } |
| 1553 | |
| 1554 | static int trie_leaf_remove(struct trie *t, t_key key) |
| 1555 | { |
| 1556 | t_key cindex; |
| 1557 | struct tnode *tp = NULL; |
| 1558 | struct node *n = t->trie; |
| 1559 | struct leaf *l; |
| 1560 | |
| 1561 | if(trie_debug) |
| 1562 | printk("entering trie_leaf_remove(%p)\n", n); |
| 1563 | |
| 1564 | /* Note that in the case skipped bits, those bits are *not* checked! |
| 1565 | * When we finish this, we will have NULL or a T_LEAF, and the |
| 1566 | * T_LEAF may or may not match our key. |
| 1567 | */ |
| 1568 | |
| 1569 | while (n != NULL && IS_TNODE(n)) { |
| 1570 | struct tnode *tn = (struct tnode *) n; |
| 1571 | check_tnode(tn); |
| 1572 | n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits)); |
| 1573 | |
| 1574 | if(n && NODE_PARENT(n) != tn) { |
| 1575 | printk("BUG tn=%p, n->parent=%p\n", tn, NODE_PARENT(n)); |
| 1576 | BUG(); |
| 1577 | } |
| 1578 | } |
| 1579 | l = (struct leaf *) n; |
| 1580 | |
| 1581 | if(!n || !tkey_equals(l->key, key)) |
| 1582 | return 0; |
| 1583 | |
| 1584 | /* |
| 1585 | * Key found. |
| 1586 | * Remove the leaf and rebalance the tree |
| 1587 | */ |
| 1588 | |
| 1589 | t->revision++; |
| 1590 | t->size--; |
| 1591 | |
| 1592 | tp = NODE_PARENT(n); |
| 1593 | tnode_free((struct tnode *) n); |
| 1594 | |
| 1595 | if(tp) { |
| 1596 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
| 1597 | put_child(t, (struct tnode *)tp, cindex, NULL); |
| 1598 | t->trie = trie_rebalance(t, tp); |
| 1599 | } |
| 1600 | else |
| 1601 | t->trie = NULL; |
| 1602 | |
| 1603 | return 1; |
| 1604 | } |
| 1605 | |
| 1606 | static int |
| 1607 | fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta, |
| 1608 | struct nlmsghdr *nlhdr, struct netlink_skb_parms *req) |
| 1609 | { |
| 1610 | struct trie *t = (struct trie *) tb->tb_data; |
| 1611 | u32 key, mask; |
| 1612 | int plen = r->rtm_dst_len; |
| 1613 | u8 tos = r->rtm_tos; |
| 1614 | struct fib_alias *fa, *fa_to_delete; |
| 1615 | struct list_head *fa_head; |
| 1616 | struct leaf *l; |
| 1617 | |
| 1618 | if (plen > 32) |
| 1619 | return -EINVAL; |
| 1620 | |
| 1621 | key = 0; |
| 1622 | if (rta->rta_dst) |
| 1623 | memcpy(&key, rta->rta_dst, 4); |
| 1624 | |
| 1625 | key = ntohl(key); |
| 1626 | mask = ntohl( inet_make_mask(plen) ); |
| 1627 | |
| 1628 | if(key & ~mask) |
| 1629 | return -EINVAL; |
| 1630 | |
| 1631 | key = key & mask; |
| 1632 | l = fib_find_node(t, key); |
| 1633 | |
| 1634 | if(!l) |
| 1635 | return -ESRCH; |
| 1636 | |
| 1637 | fa_head = get_fa_head(l, plen); |
| 1638 | fa = fib_find_alias(fa_head, tos, 0); |
| 1639 | |
| 1640 | if (!fa) |
| 1641 | return -ESRCH; |
| 1642 | |
| 1643 | if (trie_debug) |
| 1644 | printk("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); |
| 1645 | |
| 1646 | fa_to_delete = NULL; |
| 1647 | fa_head = fa->fa_list.prev; |
| 1648 | list_for_each_entry(fa, fa_head, fa_list) { |
| 1649 | struct fib_info *fi = fa->fa_info; |
| 1650 | |
| 1651 | if (fa->fa_tos != tos) |
| 1652 | break; |
| 1653 | |
| 1654 | if ((!r->rtm_type || |
| 1655 | fa->fa_type == r->rtm_type) && |
| 1656 | (r->rtm_scope == RT_SCOPE_NOWHERE || |
| 1657 | fa->fa_scope == r->rtm_scope) && |
| 1658 | (!r->rtm_protocol || |
| 1659 | fi->fib_protocol == r->rtm_protocol) && |
| 1660 | fib_nh_match(r, nlhdr, rta, fi) == 0) { |
| 1661 | fa_to_delete = fa; |
| 1662 | break; |
| 1663 | } |
| 1664 | } |
| 1665 | |
| 1666 | if (fa_to_delete) { |
| 1667 | int kill_li = 0; |
| 1668 | struct leaf_info *li; |
| 1669 | |
| 1670 | fa = fa_to_delete; |
| 1671 | rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req); |
| 1672 | |
| 1673 | l = fib_find_node(t, key); |
| 1674 | li = find_leaf_info(&l->list, plen); |
| 1675 | |
| 1676 | write_lock_bh(&fib_lock); |
| 1677 | |
| 1678 | list_del(&fa->fa_list); |
| 1679 | |
| 1680 | if(list_empty(fa_head)) { |
| 1681 | hlist_del(&li->hlist); |
| 1682 | kill_li = 1; |
| 1683 | } |
| 1684 | write_unlock_bh(&fib_lock); |
| 1685 | |
| 1686 | if(kill_li) |
| 1687 | free_leaf_info(li); |
| 1688 | |
| 1689 | if(hlist_empty(&l->list)) |
| 1690 | trie_leaf_remove(t, key); |
| 1691 | |
| 1692 | if (fa->fa_state & FA_S_ACCESSED) |
| 1693 | rt_cache_flush(-1); |
| 1694 | |
| 1695 | fn_free_alias(fa); |
| 1696 | return 0; |
| 1697 | } |
| 1698 | return -ESRCH; |
| 1699 | } |
| 1700 | |
| 1701 | static int trie_flush_list(struct trie *t, struct list_head *head) |
| 1702 | { |
| 1703 | struct fib_alias *fa, *fa_node; |
| 1704 | int found = 0; |
| 1705 | |
| 1706 | list_for_each_entry_safe(fa, fa_node, head, fa_list) { |
| 1707 | struct fib_info *fi = fa->fa_info; |
| 1708 | |
| 1709 | if (fi && (fi->fib_flags&RTNH_F_DEAD)) { |
| 1710 | |
| 1711 | write_lock_bh(&fib_lock); |
| 1712 | list_del(&fa->fa_list); |
| 1713 | write_unlock_bh(&fib_lock); |
| 1714 | |
| 1715 | fn_free_alias(fa); |
| 1716 | found++; |
| 1717 | } |
| 1718 | } |
| 1719 | return found; |
| 1720 | } |
| 1721 | |
| 1722 | static int trie_flush_leaf(struct trie *t, struct leaf *l) |
| 1723 | { |
| 1724 | int found = 0; |
| 1725 | struct hlist_head *lih = &l->list; |
| 1726 | struct hlist_node *node, *tmp; |
| 1727 | struct leaf_info *li = NULL; |
| 1728 | |
| 1729 | hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { |
| 1730 | |
| 1731 | found += trie_flush_list(t, &li->falh); |
| 1732 | |
| 1733 | if (list_empty(&li->falh)) { |
| 1734 | |
| 1735 | write_lock_bh(&fib_lock); |
| 1736 | hlist_del(&li->hlist); |
| 1737 | write_unlock_bh(&fib_lock); |
| 1738 | |
| 1739 | free_leaf_info(li); |
| 1740 | } |
| 1741 | } |
| 1742 | return found; |
| 1743 | } |
| 1744 | |
| 1745 | static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf) |
| 1746 | { |
| 1747 | struct node *c = (struct node *) thisleaf; |
| 1748 | struct tnode *p; |
| 1749 | int idx; |
| 1750 | |
| 1751 | if(c == NULL) { |
| 1752 | if(t->trie == NULL) |
| 1753 | return NULL; |
| 1754 | |
| 1755 | if (IS_LEAF(t->trie)) /* trie w. just a leaf */ |
| 1756 | return (struct leaf *) t->trie; |
| 1757 | |
| 1758 | p = (struct tnode*) t->trie; /* Start */ |
| 1759 | } |
| 1760 | else |
| 1761 | p = (struct tnode *) NODE_PARENT(c); |
| 1762 | while (p) { |
| 1763 | int pos, last; |
| 1764 | |
| 1765 | /* Find the next child of the parent */ |
| 1766 | if(c) |
| 1767 | pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits); |
| 1768 | else |
| 1769 | pos = 0; |
| 1770 | |
| 1771 | last = 1 << p->bits; |
| 1772 | for(idx = pos; idx < last ; idx++) { |
| 1773 | if( p->child[idx]) { |
| 1774 | |
| 1775 | /* Decend if tnode */ |
| 1776 | |
| 1777 | while (IS_TNODE(p->child[idx])) { |
| 1778 | p = (struct tnode*) p->child[idx]; |
| 1779 | idx = 0; |
| 1780 | |
| 1781 | /* Rightmost non-NULL branch */ |
| 1782 | if( p && IS_TNODE(p) ) |
| 1783 | while ( p->child[idx] == NULL && idx < (1 << p->bits) ) idx++; |
| 1784 | |
| 1785 | /* Done with this tnode? */ |
| 1786 | if( idx >= (1 << p->bits) || p->child[idx] == NULL ) |
| 1787 | goto up; |
| 1788 | } |
| 1789 | return (struct leaf*) p->child[idx]; |
| 1790 | } |
| 1791 | } |
| 1792 | up: |
| 1793 | /* No more children go up one step */ |
| 1794 | c = (struct node*) p; |
| 1795 | p = (struct tnode *) NODE_PARENT(p); |
| 1796 | } |
| 1797 | return NULL; /* Ready. Root of trie */ |
| 1798 | } |
| 1799 | |
| 1800 | static int fn_trie_flush(struct fib_table *tb) |
| 1801 | { |
| 1802 | struct trie *t = (struct trie *) tb->tb_data; |
| 1803 | struct leaf *ll = NULL, *l = NULL; |
| 1804 | int found = 0, h; |
| 1805 | |
| 1806 | t->revision++; |
| 1807 | |
| 1808 | for (h=0; (l = nextleaf(t, l)) != NULL; h++) { |
| 1809 | found += trie_flush_leaf(t, l); |
| 1810 | |
| 1811 | if (ll && hlist_empty(&ll->list)) |
| 1812 | trie_leaf_remove(t, ll->key); |
| 1813 | ll = l; |
| 1814 | } |
| 1815 | |
| 1816 | if (ll && hlist_empty(&ll->list)) |
| 1817 | trie_leaf_remove(t, ll->key); |
| 1818 | |
| 1819 | if(trie_debug) |
| 1820 | printk("trie_flush found=%d\n", found); |
| 1821 | return found; |
| 1822 | } |
| 1823 | |
| 1824 | static int trie_last_dflt=-1; |
| 1825 | |
| 1826 | static void |
| 1827 | fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res) |
| 1828 | { |
| 1829 | struct trie *t = (struct trie *) tb->tb_data; |
| 1830 | int order, last_idx; |
| 1831 | struct fib_info *fi = NULL; |
| 1832 | struct fib_info *last_resort; |
| 1833 | struct fib_alias *fa = NULL; |
| 1834 | struct list_head *fa_head; |
| 1835 | struct leaf *l; |
| 1836 | |
| 1837 | last_idx = -1; |
| 1838 | last_resort = NULL; |
| 1839 | order = -1; |
| 1840 | |
| 1841 | read_lock(&fib_lock); |
| 1842 | |
| 1843 | l = fib_find_node(t, 0); |
| 1844 | if(!l) |
| 1845 | goto out; |
| 1846 | |
| 1847 | fa_head = get_fa_head(l, 0); |
| 1848 | if(!fa_head) |
| 1849 | goto out; |
| 1850 | |
| 1851 | if (list_empty(fa_head)) |
| 1852 | goto out; |
| 1853 | |
| 1854 | list_for_each_entry(fa, fa_head, fa_list) { |
| 1855 | struct fib_info *next_fi = fa->fa_info; |
| 1856 | |
| 1857 | if (fa->fa_scope != res->scope || |
| 1858 | fa->fa_type != RTN_UNICAST) |
| 1859 | continue; |
| 1860 | |
| 1861 | if (next_fi->fib_priority > res->fi->fib_priority) |
| 1862 | break; |
| 1863 | if (!next_fi->fib_nh[0].nh_gw || |
| 1864 | next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK) |
| 1865 | continue; |
| 1866 | fa->fa_state |= FA_S_ACCESSED; |
| 1867 | |
| 1868 | if (fi == NULL) { |
| 1869 | if (next_fi != res->fi) |
| 1870 | break; |
| 1871 | } else if (!fib_detect_death(fi, order, &last_resort, |
| 1872 | &last_idx, &trie_last_dflt)) { |
| 1873 | if (res->fi) |
| 1874 | fib_info_put(res->fi); |
| 1875 | res->fi = fi; |
| 1876 | atomic_inc(&fi->fib_clntref); |
| 1877 | trie_last_dflt = order; |
| 1878 | goto out; |
| 1879 | } |
| 1880 | fi = next_fi; |
| 1881 | order++; |
| 1882 | } |
| 1883 | if (order <= 0 || fi == NULL) { |
| 1884 | trie_last_dflt = -1; |
| 1885 | goto out; |
| 1886 | } |
| 1887 | |
| 1888 | if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) { |
| 1889 | if (res->fi) |
| 1890 | fib_info_put(res->fi); |
| 1891 | res->fi = fi; |
| 1892 | atomic_inc(&fi->fib_clntref); |
| 1893 | trie_last_dflt = order; |
| 1894 | goto out; |
| 1895 | } |
| 1896 | if (last_idx >= 0) { |
| 1897 | if (res->fi) |
| 1898 | fib_info_put(res->fi); |
| 1899 | res->fi = last_resort; |
| 1900 | if (last_resort) |
| 1901 | atomic_inc(&last_resort->fib_clntref); |
| 1902 | } |
| 1903 | trie_last_dflt = last_idx; |
| 1904 | out:; |
| 1905 | read_unlock(&fib_lock); |
| 1906 | } |
| 1907 | |
| 1908 | static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb, |
| 1909 | struct sk_buff *skb, struct netlink_callback *cb) |
| 1910 | { |
| 1911 | int i, s_i; |
| 1912 | struct fib_alias *fa; |
| 1913 | |
| 1914 | u32 xkey=htonl(key); |
| 1915 | |
| 1916 | s_i=cb->args[3]; |
| 1917 | i = 0; |
| 1918 | |
| 1919 | list_for_each_entry(fa, fah, fa_list) { |
| 1920 | if (i < s_i) { |
| 1921 | i++; |
| 1922 | continue; |
| 1923 | } |
| 1924 | if (fa->fa_info->fib_nh == NULL) { |
| 1925 | printk("Trie error _fib_nh=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen); |
| 1926 | i++; |
| 1927 | continue; |
| 1928 | } |
| 1929 | if (fa->fa_info == NULL) { |
| 1930 | printk("Trie error fa_info=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen); |
| 1931 | i++; |
| 1932 | continue; |
| 1933 | } |
| 1934 | |
| 1935 | if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, |
| 1936 | cb->nlh->nlmsg_seq, |
| 1937 | RTM_NEWROUTE, |
| 1938 | tb->tb_id, |
| 1939 | fa->fa_type, |
| 1940 | fa->fa_scope, |
| 1941 | &xkey, |
| 1942 | plen, |
| 1943 | fa->fa_tos, |
David S. Miller | 90f6691 | 2005-06-21 14:43:28 -0700 | [diff] [blame] | 1944 | fa->fa_info, 0) < 0) { |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 1945 | cb->args[3] = i; |
| 1946 | return -1; |
| 1947 | } |
| 1948 | i++; |
| 1949 | } |
| 1950 | cb->args[3]=i; |
| 1951 | return skb->len; |
| 1952 | } |
| 1953 | |
| 1954 | static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb, |
| 1955 | struct netlink_callback *cb) |
| 1956 | { |
| 1957 | int h, s_h; |
| 1958 | struct list_head *fa_head; |
| 1959 | struct leaf *l = NULL; |
| 1960 | s_h=cb->args[2]; |
| 1961 | |
| 1962 | for (h=0; (l = nextleaf(t, l)) != NULL; h++) { |
| 1963 | |
| 1964 | if (h < s_h) |
| 1965 | continue; |
| 1966 | if (h > s_h) |
| 1967 | memset(&cb->args[3], 0, |
| 1968 | sizeof(cb->args) - 3*sizeof(cb->args[0])); |
| 1969 | |
| 1970 | fa_head = get_fa_head(l, plen); |
| 1971 | |
| 1972 | if(!fa_head) |
| 1973 | continue; |
| 1974 | |
| 1975 | if(list_empty(fa_head)) |
| 1976 | continue; |
| 1977 | |
| 1978 | if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) { |
| 1979 | cb->args[2]=h; |
| 1980 | return -1; |
| 1981 | } |
| 1982 | } |
| 1983 | cb->args[2]=h; |
| 1984 | return skb->len; |
| 1985 | } |
| 1986 | |
| 1987 | static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb) |
| 1988 | { |
| 1989 | int m, s_m; |
| 1990 | struct trie *t = (struct trie *) tb->tb_data; |
| 1991 | |
| 1992 | s_m = cb->args[1]; |
| 1993 | |
| 1994 | read_lock(&fib_lock); |
| 1995 | for (m=0; m<=32; m++) { |
| 1996 | |
| 1997 | if (m < s_m) |
| 1998 | continue; |
| 1999 | if (m > s_m) |
| 2000 | memset(&cb->args[2], 0, |
| 2001 | sizeof(cb->args) - 2*sizeof(cb->args[0])); |
| 2002 | |
| 2003 | if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) { |
| 2004 | cb->args[1] = m; |
| 2005 | goto out; |
| 2006 | } |
| 2007 | } |
| 2008 | read_unlock(&fib_lock); |
| 2009 | cb->args[1] = m; |
| 2010 | return skb->len; |
| 2011 | out: |
| 2012 | read_unlock(&fib_lock); |
| 2013 | return -1; |
| 2014 | } |
| 2015 | |
| 2016 | /* Fix more generic FIB names for init later */ |
| 2017 | |
| 2018 | #ifdef CONFIG_IP_MULTIPLE_TABLES |
| 2019 | struct fib_table * fib_hash_init(int id) |
| 2020 | #else |
| 2021 | struct fib_table * __init fib_hash_init(int id) |
| 2022 | #endif |
| 2023 | { |
| 2024 | struct fib_table *tb; |
| 2025 | struct trie *t; |
| 2026 | |
| 2027 | if (fn_alias_kmem == NULL) |
| 2028 | fn_alias_kmem = kmem_cache_create("ip_fib_alias", |
| 2029 | sizeof(struct fib_alias), |
| 2030 | 0, SLAB_HWCACHE_ALIGN, |
| 2031 | NULL, NULL); |
| 2032 | |
| 2033 | tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), |
| 2034 | GFP_KERNEL); |
| 2035 | if (tb == NULL) |
| 2036 | return NULL; |
| 2037 | |
| 2038 | tb->tb_id = id; |
| 2039 | tb->tb_lookup = fn_trie_lookup; |
| 2040 | tb->tb_insert = fn_trie_insert; |
| 2041 | tb->tb_delete = fn_trie_delete; |
| 2042 | tb->tb_flush = fn_trie_flush; |
| 2043 | tb->tb_select_default = fn_trie_select_default; |
| 2044 | tb->tb_dump = fn_trie_dump; |
| 2045 | memset(tb->tb_data, 0, sizeof(struct trie)); |
| 2046 | |
| 2047 | t = (struct trie *) tb->tb_data; |
| 2048 | |
| 2049 | trie_init(t); |
| 2050 | |
| 2051 | if (id == RT_TABLE_LOCAL) |
| 2052 | trie_local=t; |
| 2053 | else if (id == RT_TABLE_MAIN) |
| 2054 | trie_main=t; |
| 2055 | |
| 2056 | if (id == RT_TABLE_LOCAL) |
| 2057 | printk("IPv4 FIB: Using LC-trie version %s\n", VERSION); |
| 2058 | |
| 2059 | return tb; |
| 2060 | } |
| 2061 | |
| 2062 | /* Trie dump functions */ |
| 2063 | |
| 2064 | static void putspace_seq(struct seq_file *seq, int n) |
| 2065 | { |
| 2066 | while (n--) seq_printf(seq, " "); |
| 2067 | } |
| 2068 | |
| 2069 | static void printbin_seq(struct seq_file *seq, unsigned int v, int bits) |
| 2070 | { |
| 2071 | while (bits--) |
| 2072 | seq_printf(seq, "%s", (v & (1<<bits))?"1":"0"); |
| 2073 | } |
| 2074 | |
| 2075 | static void printnode_seq(struct seq_file *seq, int indent, struct node *n, |
| 2076 | int pend, int cindex, int bits) |
| 2077 | { |
| 2078 | putspace_seq(seq, indent); |
| 2079 | if (IS_LEAF(n)) |
| 2080 | seq_printf(seq, "|"); |
| 2081 | else |
| 2082 | seq_printf(seq, "+"); |
| 2083 | if (bits) { |
| 2084 | seq_printf(seq, "%d/", cindex); |
| 2085 | printbin_seq(seq, cindex, bits); |
| 2086 | seq_printf(seq, ": "); |
| 2087 | } |
| 2088 | else |
| 2089 | seq_printf(seq, "<root>: "); |
| 2090 | seq_printf(seq, "%s:%p ", IS_LEAF(n)?"Leaf":"Internal node", n); |
| 2091 | |
| 2092 | if (IS_LEAF(n)) |
| 2093 | seq_printf(seq, "key=%d.%d.%d.%d\n", |
| 2094 | n->key >> 24, (n->key >> 16) % 256, (n->key >> 8) % 256, n->key % 256); |
| 2095 | else { |
| 2096 | int plen=((struct tnode *)n)->pos; |
| 2097 | t_key prf=MASK_PFX(n->key, plen); |
| 2098 | seq_printf(seq, "key=%d.%d.%d.%d/%d\n", |
| 2099 | prf >> 24, (prf >> 16) % 256, (prf >> 8) % 256, prf % 256, plen); |
| 2100 | } |
| 2101 | if (IS_LEAF(n)) { |
| 2102 | struct leaf *l=(struct leaf *)n; |
| 2103 | struct fib_alias *fa; |
| 2104 | int i; |
| 2105 | for (i=32; i>=0; i--) |
| 2106 | if(find_leaf_info(&l->list, i)) { |
| 2107 | |
| 2108 | struct list_head *fa_head = get_fa_head(l, i); |
| 2109 | |
| 2110 | if(!fa_head) |
| 2111 | continue; |
| 2112 | |
| 2113 | if(list_empty(fa_head)) |
| 2114 | continue; |
| 2115 | |
| 2116 | putspace_seq(seq, indent+2); |
| 2117 | seq_printf(seq, "{/%d...dumping}\n", i); |
| 2118 | |
| 2119 | |
| 2120 | list_for_each_entry(fa, fa_head, fa_list) { |
| 2121 | putspace_seq(seq, indent+2); |
| 2122 | if (fa->fa_info->fib_nh == NULL) { |
| 2123 | seq_printf(seq, "Error _fib_nh=NULL\n"); |
| 2124 | continue; |
| 2125 | } |
| 2126 | if (fa->fa_info == NULL) { |
| 2127 | seq_printf(seq, "Error fa_info=NULL\n"); |
| 2128 | continue; |
| 2129 | } |
| 2130 | |
| 2131 | seq_printf(seq, "{type=%d scope=%d TOS=%d}\n", |
| 2132 | fa->fa_type, |
| 2133 | fa->fa_scope, |
| 2134 | fa->fa_tos); |
| 2135 | } |
| 2136 | } |
| 2137 | } |
| 2138 | else if (IS_TNODE(n)) { |
| 2139 | struct tnode *tn=(struct tnode *)n; |
| 2140 | putspace_seq(seq, indent); seq_printf(seq, "| "); |
| 2141 | seq_printf(seq, "{key prefix=%08x/", tn->key&TKEY_GET_MASK(0, tn->pos)); |
| 2142 | printbin_seq(seq, tkey_extract_bits(tn->key, 0, tn->pos), tn->pos); |
| 2143 | seq_printf(seq, "}\n"); |
| 2144 | putspace_seq(seq, indent); seq_printf(seq, "| "); |
| 2145 | seq_printf(seq, "{pos=%d", tn->pos); |
| 2146 | seq_printf(seq, " (skip=%d bits)", tn->pos - pend); |
| 2147 | seq_printf(seq, " bits=%d (%u children)}\n", tn->bits, (1 << tn->bits)); |
| 2148 | putspace_seq(seq, indent); seq_printf(seq, "| "); |
| 2149 | seq_printf(seq, "{empty=%d full=%d}\n", tn->empty_children, tn->full_children); |
| 2150 | } |
| 2151 | } |
| 2152 | |
| 2153 | static void trie_dump_seq(struct seq_file *seq, struct trie *t) |
| 2154 | { |
| 2155 | struct node *n=t->trie; |
| 2156 | int cindex=0; |
| 2157 | int indent=1; |
| 2158 | int pend=0; |
| 2159 | int depth = 0; |
| 2160 | |
| 2161 | read_lock(&fib_lock); |
| 2162 | |
| 2163 | seq_printf(seq, "------ trie_dump of t=%p ------\n", t); |
| 2164 | if (n) { |
| 2165 | printnode_seq(seq, indent, n, pend, cindex, 0); |
| 2166 | if (IS_TNODE(n)) { |
| 2167 | struct tnode *tn=(struct tnode *)n; |
| 2168 | pend = tn->pos+tn->bits; |
| 2169 | putspace_seq(seq, indent); seq_printf(seq, "\\--\n"); |
| 2170 | indent += 3; |
| 2171 | depth++; |
| 2172 | |
| 2173 | while (tn && cindex < (1 << tn->bits)) { |
| 2174 | if (tn->child[cindex]) { |
| 2175 | |
| 2176 | /* Got a child */ |
| 2177 | |
| 2178 | printnode_seq(seq, indent, tn->child[cindex], pend, cindex, tn->bits); |
| 2179 | if (IS_LEAF(tn->child[cindex])) { |
| 2180 | cindex++; |
| 2181 | |
| 2182 | } |
| 2183 | else { |
| 2184 | /* |
| 2185 | * New tnode. Decend one level |
| 2186 | */ |
| 2187 | |
| 2188 | depth++; |
| 2189 | n=tn->child[cindex]; |
| 2190 | tn=(struct tnode *)n; |
| 2191 | pend=tn->pos+tn->bits; |
| 2192 | putspace_seq(seq, indent); seq_printf(seq, "\\--\n"); |
| 2193 | indent+=3; |
| 2194 | cindex=0; |
| 2195 | } |
| 2196 | } |
| 2197 | else |
| 2198 | cindex++; |
| 2199 | |
| 2200 | /* |
| 2201 | * Test if we are done |
| 2202 | */ |
| 2203 | |
| 2204 | while (cindex >= (1 << tn->bits)) { |
| 2205 | |
| 2206 | /* |
| 2207 | * Move upwards and test for root |
| 2208 | * pop off all traversed nodes |
| 2209 | */ |
| 2210 | |
| 2211 | if (NODE_PARENT(tn) == NULL) { |
| 2212 | tn = NULL; |
| 2213 | n = NULL; |
| 2214 | break; |
| 2215 | } |
| 2216 | else { |
| 2217 | cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits); |
| 2218 | tn = NODE_PARENT(tn); |
| 2219 | cindex++; |
| 2220 | n=(struct node *)tn; |
| 2221 | pend=tn->pos+tn->bits; |
| 2222 | indent-=3; |
| 2223 | depth--; |
| 2224 | } |
| 2225 | } |
| 2226 | } |
| 2227 | } |
| 2228 | else n = NULL; |
| 2229 | } |
| 2230 | else seq_printf(seq, "------ trie is empty\n"); |
| 2231 | |
| 2232 | read_unlock(&fib_lock); |
| 2233 | } |
| 2234 | |
| 2235 | static struct trie_stat *trie_stat_new(void) |
| 2236 | { |
| 2237 | struct trie_stat *s = kmalloc(sizeof(struct trie_stat), GFP_KERNEL); |
| 2238 | int i; |
| 2239 | |
| 2240 | if(s) { |
| 2241 | s->totdepth = 0; |
| 2242 | s->maxdepth = 0; |
| 2243 | s->tnodes = 0; |
| 2244 | s->leaves = 0; |
| 2245 | s->nullpointers = 0; |
| 2246 | |
| 2247 | for(i=0; i< MAX_CHILDS; i++) |
| 2248 | s->nodesizes[i] = 0; |
| 2249 | } |
| 2250 | return s; |
| 2251 | } |
| 2252 | |
| 2253 | static struct trie_stat *trie_collect_stats(struct trie *t) |
| 2254 | { |
| 2255 | struct node *n=t->trie; |
| 2256 | struct trie_stat *s = trie_stat_new(); |
| 2257 | int cindex = 0; |
| 2258 | int indent = 1; |
| 2259 | int pend = 0; |
| 2260 | int depth = 0; |
| 2261 | |
| 2262 | read_lock(&fib_lock); |
| 2263 | |
| 2264 | if (s) { |
| 2265 | if (n) { |
| 2266 | if (IS_TNODE(n)) { |
| 2267 | struct tnode *tn = (struct tnode *)n; |
| 2268 | pend=tn->pos+tn->bits; |
| 2269 | indent += 3; |
| 2270 | s->nodesizes[tn->bits]++; |
| 2271 | depth++; |
| 2272 | |
| 2273 | while (tn && cindex < (1 << tn->bits)) { |
| 2274 | if (tn->child[cindex]) { |
| 2275 | /* Got a child */ |
| 2276 | |
| 2277 | if (IS_LEAF(tn->child[cindex])) { |
| 2278 | cindex++; |
| 2279 | |
| 2280 | /* stats */ |
| 2281 | if (depth > s->maxdepth) |
| 2282 | s->maxdepth = depth; |
| 2283 | s->totdepth += depth; |
| 2284 | s->leaves++; |
| 2285 | } |
| 2286 | |
| 2287 | else { |
| 2288 | /* |
| 2289 | * New tnode. Decend one level |
| 2290 | */ |
| 2291 | |
| 2292 | s->tnodes++; |
| 2293 | s->nodesizes[tn->bits]++; |
| 2294 | depth++; |
| 2295 | |
| 2296 | n = tn->child[cindex]; |
| 2297 | tn = (struct tnode *)n; |
| 2298 | pend = tn->pos+tn->bits; |
| 2299 | |
| 2300 | indent += 3; |
| 2301 | cindex = 0; |
| 2302 | } |
| 2303 | } |
| 2304 | else { |
| 2305 | cindex++; |
| 2306 | s->nullpointers++; |
| 2307 | } |
| 2308 | |
| 2309 | /* |
| 2310 | * Test if we are done |
| 2311 | */ |
| 2312 | |
| 2313 | while (cindex >= (1 << tn->bits)) { |
| 2314 | |
| 2315 | /* |
| 2316 | * Move upwards and test for root |
| 2317 | * pop off all traversed nodes |
| 2318 | */ |
| 2319 | |
| 2320 | |
| 2321 | if (NODE_PARENT(tn) == NULL) { |
| 2322 | tn = NULL; |
| 2323 | n = NULL; |
| 2324 | break; |
| 2325 | } |
| 2326 | else { |
| 2327 | cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits); |
| 2328 | tn = NODE_PARENT(tn); |
| 2329 | cindex++; |
| 2330 | n = (struct node *)tn; |
| 2331 | pend=tn->pos+tn->bits; |
| 2332 | indent -= 3; |
| 2333 | depth--; |
| 2334 | } |
| 2335 | } |
| 2336 | } |
| 2337 | } |
| 2338 | else n = NULL; |
| 2339 | } |
| 2340 | } |
| 2341 | |
| 2342 | read_unlock(&fib_lock); |
| 2343 | return s; |
| 2344 | } |
| 2345 | |
| 2346 | #ifdef CONFIG_PROC_FS |
| 2347 | |
| 2348 | static struct fib_alias *fib_triestat_get_first(struct seq_file *seq) |
| 2349 | { |
| 2350 | return NULL; |
| 2351 | } |
| 2352 | |
| 2353 | static struct fib_alias *fib_triestat_get_next(struct seq_file *seq) |
| 2354 | { |
| 2355 | return NULL; |
| 2356 | } |
| 2357 | |
| 2358 | static void *fib_triestat_seq_start(struct seq_file *seq, loff_t *pos) |
| 2359 | { |
| 2360 | void *v = NULL; |
| 2361 | |
| 2362 | if (ip_fib_main_table) |
| 2363 | v = *pos ? fib_triestat_get_next(seq) : SEQ_START_TOKEN; |
| 2364 | return v; |
| 2365 | } |
| 2366 | |
| 2367 | static void *fib_triestat_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| 2368 | { |
| 2369 | ++*pos; |
| 2370 | return v == SEQ_START_TOKEN ? fib_triestat_get_first(seq) : fib_triestat_get_next(seq); |
| 2371 | } |
| 2372 | |
| 2373 | static void fib_triestat_seq_stop(struct seq_file *seq, void *v) |
| 2374 | { |
| 2375 | |
| 2376 | } |
| 2377 | |
| 2378 | /* |
| 2379 | * This outputs /proc/net/fib_triestats |
| 2380 | * |
| 2381 | * It always works in backward compatibility mode. |
| 2382 | * The format of the file is not supposed to be changed. |
| 2383 | */ |
| 2384 | |
| 2385 | static void collect_and_show(struct trie *t, struct seq_file *seq) |
| 2386 | { |
| 2387 | int bytes = 0; /* How many bytes are used, a ref is 4 bytes */ |
| 2388 | int i, max, pointers; |
| 2389 | struct trie_stat *stat; |
| 2390 | int avdepth; |
| 2391 | |
| 2392 | stat = trie_collect_stats(t); |
| 2393 | |
| 2394 | bytes=0; |
| 2395 | seq_printf(seq, "trie=%p\n", t); |
| 2396 | |
| 2397 | if (stat) { |
| 2398 | if (stat->leaves) |
| 2399 | avdepth=stat->totdepth*100 / stat->leaves; |
| 2400 | else |
| 2401 | avdepth=0; |
| 2402 | seq_printf(seq, "Aver depth: %d.%02d\n", avdepth / 100, avdepth % 100 ); |
| 2403 | seq_printf(seq, "Max depth: %4d\n", stat->maxdepth); |
| 2404 | |
| 2405 | seq_printf(seq, "Leaves: %d\n", stat->leaves); |
| 2406 | bytes += sizeof(struct leaf) * stat->leaves; |
| 2407 | seq_printf(seq, "Internal nodes: %d\n", stat->tnodes); |
| 2408 | bytes += sizeof(struct tnode) * stat->tnodes; |
| 2409 | |
| 2410 | max = MAX_CHILDS-1; |
| 2411 | |
| 2412 | while (max >= 0 && stat->nodesizes[max] == 0) |
| 2413 | max--; |
| 2414 | pointers = 0; |
| 2415 | |
| 2416 | for (i = 1; i <= max; i++) |
| 2417 | if (stat->nodesizes[i] != 0) { |
| 2418 | seq_printf(seq, " %d: %d", i, stat->nodesizes[i]); |
| 2419 | pointers += (1<<i) * stat->nodesizes[i]; |
| 2420 | } |
| 2421 | seq_printf(seq, "\n"); |
| 2422 | seq_printf(seq, "Pointers: %d\n", pointers); |
| 2423 | bytes += sizeof(struct node *) * pointers; |
| 2424 | seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers); |
| 2425 | seq_printf(seq, "Total size: %d kB\n", bytes / 1024); |
| 2426 | |
| 2427 | kfree(stat); |
| 2428 | } |
| 2429 | |
| 2430 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
| 2431 | seq_printf(seq, "Counters:\n---------\n"); |
| 2432 | seq_printf(seq,"gets = %d\n", t->stats.gets); |
| 2433 | seq_printf(seq,"backtracks = %d\n", t->stats.backtrack); |
| 2434 | seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed); |
| 2435 | seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss); |
| 2436 | seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit); |
Robert Olsson | 2f36895 | 2005-07-05 15:02:40 -0700 | [diff] [blame^] | 2437 | seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped); |
Robert Olsson | 19baf83 | 2005-06-21 12:43:18 -0700 | [diff] [blame] | 2438 | #ifdef CLEAR_STATS |
| 2439 | memset(&(t->stats), 0, sizeof(t->stats)); |
| 2440 | #endif |
| 2441 | #endif /* CONFIG_IP_FIB_TRIE_STATS */ |
| 2442 | } |
| 2443 | |
| 2444 | static int fib_triestat_seq_show(struct seq_file *seq, void *v) |
| 2445 | { |
| 2446 | char bf[128]; |
| 2447 | |
| 2448 | if (v == SEQ_START_TOKEN) { |
| 2449 | seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n", |
| 2450 | sizeof(struct leaf), sizeof(struct tnode)); |
| 2451 | if (trie_local) |
| 2452 | collect_and_show(trie_local, seq); |
| 2453 | |
| 2454 | if (trie_main) |
| 2455 | collect_and_show(trie_main, seq); |
| 2456 | } |
| 2457 | else { |
| 2458 | snprintf(bf, sizeof(bf), |
| 2459 | "*\t%08X\t%08X", 200, 400); |
| 2460 | |
| 2461 | seq_printf(seq, "%-127s\n", bf); |
| 2462 | } |
| 2463 | return 0; |
| 2464 | } |
| 2465 | |
| 2466 | static struct seq_operations fib_triestat_seq_ops = { |
| 2467 | .start = fib_triestat_seq_start, |
| 2468 | .next = fib_triestat_seq_next, |
| 2469 | .stop = fib_triestat_seq_stop, |
| 2470 | .show = fib_triestat_seq_show, |
| 2471 | }; |
| 2472 | |
| 2473 | static int fib_triestat_seq_open(struct inode *inode, struct file *file) |
| 2474 | { |
| 2475 | struct seq_file *seq; |
| 2476 | int rc = -ENOMEM; |
| 2477 | |
| 2478 | rc = seq_open(file, &fib_triestat_seq_ops); |
| 2479 | if (rc) |
| 2480 | goto out_kfree; |
| 2481 | |
| 2482 | seq = file->private_data; |
| 2483 | out: |
| 2484 | return rc; |
| 2485 | out_kfree: |
| 2486 | goto out; |
| 2487 | } |
| 2488 | |
| 2489 | static struct file_operations fib_triestat_seq_fops = { |
| 2490 | .owner = THIS_MODULE, |
| 2491 | .open = fib_triestat_seq_open, |
| 2492 | .read = seq_read, |
| 2493 | .llseek = seq_lseek, |
| 2494 | .release = seq_release_private, |
| 2495 | }; |
| 2496 | |
| 2497 | int __init fib_stat_proc_init(void) |
| 2498 | { |
| 2499 | if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_seq_fops)) |
| 2500 | return -ENOMEM; |
| 2501 | return 0; |
| 2502 | } |
| 2503 | |
| 2504 | void __init fib_stat_proc_exit(void) |
| 2505 | { |
| 2506 | proc_net_remove("fib_triestat"); |
| 2507 | } |
| 2508 | |
| 2509 | static struct fib_alias *fib_trie_get_first(struct seq_file *seq) |
| 2510 | { |
| 2511 | return NULL; |
| 2512 | } |
| 2513 | |
| 2514 | static struct fib_alias *fib_trie_get_next(struct seq_file *seq) |
| 2515 | { |
| 2516 | return NULL; |
| 2517 | } |
| 2518 | |
| 2519 | static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) |
| 2520 | { |
| 2521 | void *v = NULL; |
| 2522 | |
| 2523 | if (ip_fib_main_table) |
| 2524 | v = *pos ? fib_trie_get_next(seq) : SEQ_START_TOKEN; |
| 2525 | return v; |
| 2526 | } |
| 2527 | |
| 2528 | static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| 2529 | { |
| 2530 | ++*pos; |
| 2531 | return v == SEQ_START_TOKEN ? fib_trie_get_first(seq) : fib_trie_get_next(seq); |
| 2532 | } |
| 2533 | |
| 2534 | static void fib_trie_seq_stop(struct seq_file *seq, void *v) |
| 2535 | { |
| 2536 | |
| 2537 | } |
| 2538 | |
| 2539 | /* |
| 2540 | * This outputs /proc/net/fib_trie. |
| 2541 | * |
| 2542 | * It always works in backward compatibility mode. |
| 2543 | * The format of the file is not supposed to be changed. |
| 2544 | */ |
| 2545 | |
| 2546 | static int fib_trie_seq_show(struct seq_file *seq, void *v) |
| 2547 | { |
| 2548 | char bf[128]; |
| 2549 | |
| 2550 | if (v == SEQ_START_TOKEN) { |
| 2551 | if (trie_local) |
| 2552 | trie_dump_seq(seq, trie_local); |
| 2553 | |
| 2554 | if (trie_main) |
| 2555 | trie_dump_seq(seq, trie_main); |
| 2556 | } |
| 2557 | |
| 2558 | else { |
| 2559 | snprintf(bf, sizeof(bf), |
| 2560 | "*\t%08X\t%08X", 200, 400); |
| 2561 | seq_printf(seq, "%-127s\n", bf); |
| 2562 | } |
| 2563 | |
| 2564 | return 0; |
| 2565 | } |
| 2566 | |
| 2567 | static struct seq_operations fib_trie_seq_ops = { |
| 2568 | .start = fib_trie_seq_start, |
| 2569 | .next = fib_trie_seq_next, |
| 2570 | .stop = fib_trie_seq_stop, |
| 2571 | .show = fib_trie_seq_show, |
| 2572 | }; |
| 2573 | |
| 2574 | static int fib_trie_seq_open(struct inode *inode, struct file *file) |
| 2575 | { |
| 2576 | struct seq_file *seq; |
| 2577 | int rc = -ENOMEM; |
| 2578 | |
| 2579 | rc = seq_open(file, &fib_trie_seq_ops); |
| 2580 | if (rc) |
| 2581 | goto out_kfree; |
| 2582 | |
| 2583 | seq = file->private_data; |
| 2584 | out: |
| 2585 | return rc; |
| 2586 | out_kfree: |
| 2587 | goto out; |
| 2588 | } |
| 2589 | |
| 2590 | static struct file_operations fib_trie_seq_fops = { |
| 2591 | .owner = THIS_MODULE, |
| 2592 | .open = fib_trie_seq_open, |
| 2593 | .read = seq_read, |
| 2594 | .llseek = seq_lseek, |
| 2595 | .release = seq_release_private, |
| 2596 | }; |
| 2597 | |
| 2598 | int __init fib_proc_init(void) |
| 2599 | { |
| 2600 | if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_seq_fops)) |
| 2601 | return -ENOMEM; |
| 2602 | return 0; |
| 2603 | } |
| 2604 | |
| 2605 | void __init fib_proc_exit(void) |
| 2606 | { |
| 2607 | proc_net_remove("fib_trie"); |
| 2608 | } |
| 2609 | |
| 2610 | #endif /* CONFIG_PROC_FS */ |