Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* SCTP kernel reference Implementation |
| 2 | * (C) Copyright IBM Corp. 2001, 2004 |
| 3 | * Copyright (c) 1999-2000 Cisco, Inc. |
| 4 | * Copyright (c) 1999-2001 Motorola, Inc. |
| 5 | * Copyright (c) 2001 Intel Corp. |
| 6 | * Copyright (c) 2001 La Monte H.P. Yarroll |
| 7 | * |
| 8 | * This file is part of the SCTP kernel reference Implementation |
| 9 | * |
| 10 | * This module provides the abstraction for an SCTP association. |
| 11 | * |
| 12 | * The SCTP reference implementation is free software; |
| 13 | * you can redistribute it and/or modify it under the terms of |
| 14 | * the GNU General Public License as published by |
| 15 | * the Free Software Foundation; either version 2, or (at your option) |
| 16 | * any later version. |
| 17 | * |
| 18 | * The SCTP reference implementation is distributed in the hope that it |
| 19 | * will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| 20 | * ************************ |
| 21 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| 22 | * See the GNU General Public License for more details. |
| 23 | * |
| 24 | * You should have received a copy of the GNU General Public License |
| 25 | * along with GNU CC; see the file COPYING. If not, write to |
| 26 | * the Free Software Foundation, 59 Temple Place - Suite 330, |
| 27 | * Boston, MA 02111-1307, USA. |
| 28 | * |
| 29 | * Please send any bug reports or fixes you make to the |
| 30 | * email address(es): |
| 31 | * lksctp developers <lksctp-developers@lists.sourceforge.net> |
| 32 | * |
| 33 | * Or submit a bug report through the following website: |
| 34 | * http://www.sf.net/projects/lksctp |
| 35 | * |
| 36 | * Written or modified by: |
| 37 | * La Monte H.P. Yarroll <piggy@acm.org> |
| 38 | * Karl Knutson <karl@athena.chicago.il.us> |
| 39 | * Jon Grimm <jgrimm@us.ibm.com> |
| 40 | * Xingang Guo <xingang.guo@intel.com> |
| 41 | * Hui Huang <hui.huang@nokia.com> |
| 42 | * Sridhar Samudrala <sri@us.ibm.com> |
| 43 | * Daisy Chang <daisyc@us.ibm.com> |
| 44 | * Ryan Layer <rmlayer@us.ibm.com> |
| 45 | * Kevin Gao <kevin.gao@intel.com> |
| 46 | * |
| 47 | * Any bugs reported given to us we will try to fix... any fixes shared will |
| 48 | * be incorporated into the next SCTP release. |
| 49 | */ |
| 50 | |
| 51 | #include <linux/types.h> |
| 52 | #include <linux/fcntl.h> |
| 53 | #include <linux/poll.h> |
| 54 | #include <linux/init.h> |
| 55 | #include <linux/sched.h> |
| 56 | |
| 57 | #include <linux/slab.h> |
| 58 | #include <linux/in.h> |
| 59 | #include <net/ipv6.h> |
| 60 | #include <net/sctp/sctp.h> |
| 61 | #include <net/sctp/sm.h> |
| 62 | |
| 63 | /* Forward declarations for internal functions. */ |
| 64 | static void sctp_assoc_bh_rcv(struct sctp_association *asoc); |
| 65 | |
| 66 | |
| 67 | /* 1st Level Abstractions. */ |
| 68 | |
| 69 | /* Initialize a new association from provided memory. */ |
| 70 | static struct sctp_association *sctp_association_init(struct sctp_association *asoc, |
| 71 | const struct sctp_endpoint *ep, |
| 72 | const struct sock *sk, |
| 73 | sctp_scope_t scope, |
| 74 | int gfp) |
| 75 | { |
| 76 | struct sctp_sock *sp; |
| 77 | int i; |
| 78 | |
| 79 | /* Retrieve the SCTP per socket area. */ |
| 80 | sp = sctp_sk((struct sock *)sk); |
| 81 | |
| 82 | /* Init all variables to a known value. */ |
| 83 | memset(asoc, 0, sizeof(struct sctp_association)); |
| 84 | |
| 85 | /* Discarding const is appropriate here. */ |
| 86 | asoc->ep = (struct sctp_endpoint *)ep; |
| 87 | sctp_endpoint_hold(asoc->ep); |
| 88 | |
| 89 | /* Hold the sock. */ |
| 90 | asoc->base.sk = (struct sock *)sk; |
| 91 | sock_hold(asoc->base.sk); |
| 92 | |
| 93 | /* Initialize the common base substructure. */ |
| 94 | asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; |
| 95 | |
| 96 | /* Initialize the object handling fields. */ |
| 97 | atomic_set(&asoc->base.refcnt, 1); |
| 98 | asoc->base.dead = 0; |
| 99 | asoc->base.malloced = 0; |
| 100 | |
| 101 | /* Initialize the bind addr area. */ |
| 102 | sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); |
| 103 | rwlock_init(&asoc->base.addr_lock); |
| 104 | |
| 105 | asoc->state = SCTP_STATE_CLOSED; |
| 106 | |
| 107 | /* Set these values from the socket values, a conversion between |
| 108 | * millsecons to seconds/microseconds must also be done. |
| 109 | */ |
| 110 | asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000; |
| 111 | asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000) |
| 112 | * 1000; |
| 113 | asoc->pmtu = 0; |
| 114 | asoc->frag_point = 0; |
| 115 | |
| 116 | /* Set the association max_retrans and RTO values from the |
| 117 | * socket values. |
| 118 | */ |
| 119 | asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; |
| 120 | asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); |
| 121 | asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); |
| 122 | asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); |
| 123 | |
| 124 | asoc->overall_error_count = 0; |
| 125 | |
| 126 | /* Initialize the maximum mumber of new data packets that can be sent |
| 127 | * in a burst. |
| 128 | */ |
| 129 | asoc->max_burst = sctp_max_burst; |
| 130 | |
| 131 | /* Copy things from the endpoint. */ |
| 132 | for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { |
| 133 | asoc->timeouts[i] = ep->timeouts[i]; |
| 134 | init_timer(&asoc->timers[i]); |
| 135 | asoc->timers[i].function = sctp_timer_events[i]; |
| 136 | asoc->timers[i].data = (unsigned long) asoc; |
| 137 | } |
| 138 | |
| 139 | /* Pull default initialization values from the sock options. |
| 140 | * Note: This assumes that the values have already been |
| 141 | * validated in the sock. |
| 142 | */ |
| 143 | asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; |
| 144 | asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; |
| 145 | asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; |
| 146 | |
| 147 | asoc->max_init_timeo = |
| 148 | msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); |
| 149 | |
| 150 | /* Allocate storage for the ssnmap after the inbound and outbound |
| 151 | * streams have been negotiated during Init. |
| 152 | */ |
| 153 | asoc->ssnmap = NULL; |
| 154 | |
| 155 | /* Set the local window size for receive. |
| 156 | * This is also the rcvbuf space per association. |
| 157 | * RFC 6 - A SCTP receiver MUST be able to receive a minimum of |
| 158 | * 1500 bytes in one SCTP packet. |
| 159 | */ |
| 160 | if (sk->sk_rcvbuf < SCTP_DEFAULT_MINWINDOW) |
| 161 | asoc->rwnd = SCTP_DEFAULT_MINWINDOW; |
| 162 | else |
| 163 | asoc->rwnd = sk->sk_rcvbuf; |
| 164 | |
| 165 | asoc->a_rwnd = asoc->rwnd; |
| 166 | |
| 167 | asoc->rwnd_over = 0; |
| 168 | |
| 169 | /* Use my own max window until I learn something better. */ |
| 170 | asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; |
| 171 | |
| 172 | /* Set the sndbuf size for transmit. */ |
| 173 | asoc->sndbuf_used = 0; |
| 174 | |
| 175 | init_waitqueue_head(&asoc->wait); |
| 176 | |
| 177 | asoc->c.my_vtag = sctp_generate_tag(ep); |
| 178 | asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ |
| 179 | asoc->c.peer_vtag = 0; |
| 180 | asoc->c.my_ttag = 0; |
| 181 | asoc->c.peer_ttag = 0; |
| 182 | asoc->c.my_port = ep->base.bind_addr.port; |
| 183 | |
| 184 | asoc->c.initial_tsn = sctp_generate_tsn(ep); |
| 185 | |
| 186 | asoc->next_tsn = asoc->c.initial_tsn; |
| 187 | |
| 188 | asoc->ctsn_ack_point = asoc->next_tsn - 1; |
| 189 | asoc->adv_peer_ack_point = asoc->ctsn_ack_point; |
| 190 | asoc->highest_sacked = asoc->ctsn_ack_point; |
| 191 | asoc->last_cwr_tsn = asoc->ctsn_ack_point; |
| 192 | asoc->unack_data = 0; |
| 193 | |
| 194 | SCTP_DEBUG_PRINTK("myctsnap for %s INIT as 0x%x.\n", |
| 195 | asoc->ep->debug_name, |
| 196 | asoc->ctsn_ack_point); |
| 197 | |
| 198 | /* ADDIP Section 4.1 Asconf Chunk Procedures |
| 199 | * |
| 200 | * When an endpoint has an ASCONF signaled change to be sent to the |
| 201 | * remote endpoint it should do the following: |
| 202 | * ... |
| 203 | * A2) a serial number should be assigned to the chunk. The serial |
| 204 | * number SHOULD be a monotonically increasing number. The serial |
| 205 | * numbers SHOULD be initialized at the start of the |
| 206 | * association to the same value as the initial TSN. |
| 207 | */ |
| 208 | asoc->addip_serial = asoc->c.initial_tsn; |
| 209 | |
| 210 | skb_queue_head_init(&asoc->addip_chunks); |
| 211 | |
| 212 | /* Make an empty list of remote transport addresses. */ |
| 213 | INIT_LIST_HEAD(&asoc->peer.transport_addr_list); |
| 214 | |
| 215 | /* RFC 2960 5.1 Normal Establishment of an Association |
| 216 | * |
| 217 | * After the reception of the first data chunk in an |
| 218 | * association the endpoint must immediately respond with a |
| 219 | * sack to acknowledge the data chunk. Subsequent |
| 220 | * acknowledgements should be done as described in Section |
| 221 | * 6.2. |
| 222 | * |
| 223 | * [We implement this by telling a new association that it |
| 224 | * already received one packet.] |
| 225 | */ |
| 226 | asoc->peer.sack_needed = 1; |
| 227 | |
| 228 | /* Assume that the peer recongizes ASCONF until reported otherwise |
| 229 | * via an ERROR chunk. |
| 230 | */ |
| 231 | asoc->peer.asconf_capable = 1; |
| 232 | |
| 233 | /* Create an input queue. */ |
| 234 | sctp_inq_init(&asoc->base.inqueue); |
| 235 | sctp_inq_set_th_handler(&asoc->base.inqueue, |
| 236 | (void (*)(void *))sctp_assoc_bh_rcv, |
| 237 | asoc); |
| 238 | |
| 239 | /* Create an output queue. */ |
| 240 | sctp_outq_init(asoc, &asoc->outqueue); |
| 241 | |
| 242 | if (!sctp_ulpq_init(&asoc->ulpq, asoc)) |
| 243 | goto fail_init; |
| 244 | |
| 245 | /* Set up the tsn tracking. */ |
| 246 | sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 0); |
| 247 | |
| 248 | asoc->need_ecne = 0; |
| 249 | |
| 250 | asoc->assoc_id = 0; |
| 251 | |
| 252 | /* Assume that peer would support both address types unless we are |
| 253 | * told otherwise. |
| 254 | */ |
| 255 | asoc->peer.ipv4_address = 1; |
| 256 | asoc->peer.ipv6_address = 1; |
| 257 | INIT_LIST_HEAD(&asoc->asocs); |
| 258 | |
| 259 | asoc->autoclose = sp->autoclose; |
| 260 | |
| 261 | asoc->default_stream = sp->default_stream; |
| 262 | asoc->default_ppid = sp->default_ppid; |
| 263 | asoc->default_flags = sp->default_flags; |
| 264 | asoc->default_context = sp->default_context; |
| 265 | asoc->default_timetolive = sp->default_timetolive; |
| 266 | |
| 267 | return asoc; |
| 268 | |
| 269 | fail_init: |
| 270 | sctp_endpoint_put(asoc->ep); |
| 271 | sock_put(asoc->base.sk); |
| 272 | return NULL; |
| 273 | } |
| 274 | |
| 275 | /* Allocate and initialize a new association */ |
| 276 | struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, |
| 277 | const struct sock *sk, |
| 278 | sctp_scope_t scope, int gfp) |
| 279 | { |
| 280 | struct sctp_association *asoc; |
| 281 | |
| 282 | asoc = t_new(struct sctp_association, gfp); |
| 283 | if (!asoc) |
| 284 | goto fail; |
| 285 | |
| 286 | if (!sctp_association_init(asoc, ep, sk, scope, gfp)) |
| 287 | goto fail_init; |
| 288 | |
| 289 | asoc->base.malloced = 1; |
| 290 | SCTP_DBG_OBJCNT_INC(assoc); |
| 291 | |
| 292 | return asoc; |
| 293 | |
| 294 | fail_init: |
| 295 | kfree(asoc); |
| 296 | fail: |
| 297 | return NULL; |
| 298 | } |
| 299 | |
| 300 | /* Free this association if possible. There may still be users, so |
| 301 | * the actual deallocation may be delayed. |
| 302 | */ |
| 303 | void sctp_association_free(struct sctp_association *asoc) |
| 304 | { |
| 305 | struct sock *sk = asoc->base.sk; |
| 306 | struct sctp_transport *transport; |
| 307 | struct list_head *pos, *temp; |
| 308 | int i; |
| 309 | |
| 310 | list_del(&asoc->asocs); |
| 311 | |
| 312 | /* Decrement the backlog value for a TCP-style listening socket. */ |
| 313 | if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) |
| 314 | sk->sk_ack_backlog--; |
| 315 | |
| 316 | /* Mark as dead, so other users can know this structure is |
| 317 | * going away. |
| 318 | */ |
| 319 | asoc->base.dead = 1; |
| 320 | |
| 321 | /* Dispose of any data lying around in the outqueue. */ |
| 322 | sctp_outq_free(&asoc->outqueue); |
| 323 | |
| 324 | /* Dispose of any pending messages for the upper layer. */ |
| 325 | sctp_ulpq_free(&asoc->ulpq); |
| 326 | |
| 327 | /* Dispose of any pending chunks on the inqueue. */ |
| 328 | sctp_inq_free(&asoc->base.inqueue); |
| 329 | |
| 330 | /* Free ssnmap storage. */ |
| 331 | sctp_ssnmap_free(asoc->ssnmap); |
| 332 | |
| 333 | /* Clean up the bound address list. */ |
| 334 | sctp_bind_addr_free(&asoc->base.bind_addr); |
| 335 | |
| 336 | /* Do we need to go through all of our timers and |
| 337 | * delete them? To be safe we will try to delete all, but we |
| 338 | * should be able to go through and make a guess based |
| 339 | * on our state. |
| 340 | */ |
| 341 | for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { |
| 342 | if (timer_pending(&asoc->timers[i]) && |
| 343 | del_timer(&asoc->timers[i])) |
| 344 | sctp_association_put(asoc); |
| 345 | } |
| 346 | |
| 347 | /* Free peer's cached cookie. */ |
| 348 | if (asoc->peer.cookie) { |
| 349 | kfree(asoc->peer.cookie); |
| 350 | } |
| 351 | |
| 352 | /* Release the transport structures. */ |
| 353 | list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { |
| 354 | transport = list_entry(pos, struct sctp_transport, transports); |
| 355 | list_del(pos); |
| 356 | sctp_transport_free(transport); |
| 357 | } |
| 358 | |
| 359 | /* Free any cached ASCONF_ACK chunk. */ |
| 360 | if (asoc->addip_last_asconf_ack) |
| 361 | sctp_chunk_free(asoc->addip_last_asconf_ack); |
| 362 | |
| 363 | /* Free any cached ASCONF chunk. */ |
| 364 | if (asoc->addip_last_asconf) |
| 365 | sctp_chunk_free(asoc->addip_last_asconf); |
| 366 | |
| 367 | sctp_association_put(asoc); |
| 368 | } |
| 369 | |
| 370 | /* Cleanup and free up an association. */ |
| 371 | static void sctp_association_destroy(struct sctp_association *asoc) |
| 372 | { |
| 373 | SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return); |
| 374 | |
| 375 | sctp_endpoint_put(asoc->ep); |
| 376 | sock_put(asoc->base.sk); |
| 377 | |
| 378 | if (asoc->assoc_id != 0) { |
| 379 | spin_lock_bh(&sctp_assocs_id_lock); |
| 380 | idr_remove(&sctp_assocs_id, asoc->assoc_id); |
| 381 | spin_unlock_bh(&sctp_assocs_id_lock); |
| 382 | } |
| 383 | |
| 384 | if (asoc->base.malloced) { |
| 385 | kfree(asoc); |
| 386 | SCTP_DBG_OBJCNT_DEC(assoc); |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | /* Change the primary destination address for the peer. */ |
| 391 | void sctp_assoc_set_primary(struct sctp_association *asoc, |
| 392 | struct sctp_transport *transport) |
| 393 | { |
| 394 | asoc->peer.primary_path = transport; |
| 395 | |
| 396 | /* Set a default msg_name for events. */ |
| 397 | memcpy(&asoc->peer.primary_addr, &transport->ipaddr, |
| 398 | sizeof(union sctp_addr)); |
| 399 | |
| 400 | /* If the primary path is changing, assume that the |
| 401 | * user wants to use this new path. |
| 402 | */ |
| 403 | if (transport->active) |
| 404 | asoc->peer.active_path = transport; |
| 405 | |
| 406 | /* |
| 407 | * SFR-CACC algorithm: |
| 408 | * Upon the receipt of a request to change the primary |
| 409 | * destination address, on the data structure for the new |
| 410 | * primary destination, the sender MUST do the following: |
| 411 | * |
| 412 | * 1) If CHANGEOVER_ACTIVE is set, then there was a switch |
| 413 | * to this destination address earlier. The sender MUST set |
| 414 | * CYCLING_CHANGEOVER to indicate that this switch is a |
| 415 | * double switch to the same destination address. |
| 416 | */ |
| 417 | if (transport->cacc.changeover_active) |
| 418 | transport->cacc.cycling_changeover = 1; |
| 419 | |
| 420 | /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that |
| 421 | * a changeover has occurred. |
| 422 | */ |
| 423 | transport->cacc.changeover_active = 1; |
| 424 | |
| 425 | /* 3) The sender MUST store the next TSN to be sent in |
| 426 | * next_tsn_at_change. |
| 427 | */ |
| 428 | transport->cacc.next_tsn_at_change = asoc->next_tsn; |
| 429 | } |
| 430 | |
| 431 | /* Add a transport address to an association. */ |
| 432 | struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, |
| 433 | const union sctp_addr *addr, |
| 434 | int gfp) |
| 435 | { |
| 436 | struct sctp_transport *peer; |
| 437 | struct sctp_sock *sp; |
| 438 | unsigned short port; |
| 439 | |
| 440 | sp = sctp_sk(asoc->base.sk); |
| 441 | |
| 442 | /* AF_INET and AF_INET6 share common port field. */ |
| 443 | port = addr->v4.sin_port; |
| 444 | |
| 445 | /* Set the port if it has not been set yet. */ |
| 446 | if (0 == asoc->peer.port) |
| 447 | asoc->peer.port = port; |
| 448 | |
| 449 | /* Check to see if this is a duplicate. */ |
| 450 | peer = sctp_assoc_lookup_paddr(asoc, addr); |
| 451 | if (peer) |
| 452 | return peer; |
| 453 | |
| 454 | peer = sctp_transport_new(addr, gfp); |
| 455 | if (!peer) |
| 456 | return NULL; |
| 457 | |
| 458 | sctp_transport_set_owner(peer, asoc); |
| 459 | |
| 460 | /* Initialize the pmtu of the transport. */ |
| 461 | sctp_transport_pmtu(peer); |
| 462 | |
| 463 | /* If this is the first transport addr on this association, |
| 464 | * initialize the association PMTU to the peer's PMTU. |
| 465 | * If not and the current association PMTU is higher than the new |
| 466 | * peer's PMTU, reset the association PMTU to the new peer's PMTU. |
| 467 | */ |
| 468 | if (asoc->pmtu) |
| 469 | asoc->pmtu = min_t(int, peer->pmtu, asoc->pmtu); |
| 470 | else |
| 471 | asoc->pmtu = peer->pmtu; |
| 472 | |
| 473 | SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " |
| 474 | "%d\n", asoc, asoc->pmtu); |
| 475 | |
| 476 | asoc->frag_point = sctp_frag_point(sp, asoc->pmtu); |
| 477 | |
| 478 | /* The asoc->peer.port might not be meaningful yet, but |
| 479 | * initialize the packet structure anyway. |
| 480 | */ |
| 481 | sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, |
| 482 | asoc->peer.port); |
| 483 | |
| 484 | /* 7.2.1 Slow-Start |
| 485 | * |
| 486 | * o The initial cwnd before DATA transmission or after a sufficiently |
| 487 | * long idle period MUST be set to |
| 488 | * min(4*MTU, max(2*MTU, 4380 bytes)) |
| 489 | * |
| 490 | * o The initial value of ssthresh MAY be arbitrarily high |
| 491 | * (for example, implementations MAY use the size of the |
| 492 | * receiver advertised window). |
| 493 | */ |
| 494 | peer->cwnd = min(4*asoc->pmtu, max_t(__u32, 2*asoc->pmtu, 4380)); |
| 495 | |
| 496 | /* At this point, we may not have the receiver's advertised window, |
| 497 | * so initialize ssthresh to the default value and it will be set |
| 498 | * later when we process the INIT. |
| 499 | */ |
| 500 | peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; |
| 501 | |
| 502 | peer->partial_bytes_acked = 0; |
| 503 | peer->flight_size = 0; |
| 504 | |
| 505 | /* By default, enable heartbeat for peer address. */ |
| 506 | peer->hb_allowed = 1; |
| 507 | |
| 508 | /* Initialize the peer's heartbeat interval based on the |
| 509 | * sock configured value. |
| 510 | */ |
| 511 | peer->hb_interval = msecs_to_jiffies(sp->paddrparam.spp_hbinterval); |
| 512 | |
| 513 | /* Set the path max_retrans. */ |
| 514 | peer->max_retrans = sp->paddrparam.spp_pathmaxrxt; |
| 515 | |
| 516 | /* Set the transport's RTO.initial value */ |
| 517 | peer->rto = asoc->rto_initial; |
| 518 | |
| 519 | /* Attach the remote transport to our asoc. */ |
| 520 | list_add_tail(&peer->transports, &asoc->peer.transport_addr_list); |
| 521 | |
| 522 | /* If we do not yet have a primary path, set one. */ |
| 523 | if (!asoc->peer.primary_path) { |
| 524 | sctp_assoc_set_primary(asoc, peer); |
| 525 | asoc->peer.retran_path = peer; |
| 526 | } |
| 527 | |
| 528 | if (asoc->peer.active_path == asoc->peer.retran_path) |
| 529 | asoc->peer.retran_path = peer; |
| 530 | |
| 531 | return peer; |
| 532 | } |
| 533 | |
| 534 | /* Delete a transport address from an association. */ |
| 535 | void sctp_assoc_del_peer(struct sctp_association *asoc, |
| 536 | const union sctp_addr *addr) |
| 537 | { |
| 538 | struct list_head *pos; |
| 539 | struct list_head *temp; |
| 540 | struct sctp_transport *peer = NULL; |
| 541 | struct sctp_transport *transport; |
| 542 | |
| 543 | list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { |
| 544 | transport = list_entry(pos, struct sctp_transport, transports); |
| 545 | if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { |
| 546 | peer = transport; |
| 547 | list_del(pos); |
| 548 | break; |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | /* The address we want delete is not in the association. */ |
| 553 | if (!peer) |
| 554 | return; |
| 555 | |
| 556 | /* Get the first transport of asoc. */ |
| 557 | pos = asoc->peer.transport_addr_list.next; |
| 558 | transport = list_entry(pos, struct sctp_transport, transports); |
| 559 | |
| 560 | /* Update any entries that match the peer to be deleted. */ |
| 561 | if (asoc->peer.primary_path == peer) |
| 562 | sctp_assoc_set_primary(asoc, transport); |
| 563 | if (asoc->peer.active_path == peer) |
| 564 | asoc->peer.active_path = transport; |
| 565 | if (asoc->peer.retran_path == peer) |
| 566 | asoc->peer.retran_path = transport; |
| 567 | if (asoc->peer.last_data_from == peer) |
| 568 | asoc->peer.last_data_from = transport; |
| 569 | |
| 570 | sctp_transport_free(peer); |
| 571 | } |
| 572 | |
| 573 | /* Lookup a transport by address. */ |
| 574 | struct sctp_transport *sctp_assoc_lookup_paddr( |
| 575 | const struct sctp_association *asoc, |
| 576 | const union sctp_addr *address) |
| 577 | { |
| 578 | struct sctp_transport *t; |
| 579 | struct list_head *pos; |
| 580 | |
| 581 | /* Cycle through all transports searching for a peer address. */ |
| 582 | |
| 583 | list_for_each(pos, &asoc->peer.transport_addr_list) { |
| 584 | t = list_entry(pos, struct sctp_transport, transports); |
| 585 | if (sctp_cmp_addr_exact(address, &t->ipaddr)) |
| 586 | return t; |
| 587 | } |
| 588 | |
| 589 | return NULL; |
| 590 | } |
| 591 | |
| 592 | /* Engage in transport control operations. |
| 593 | * Mark the transport up or down and send a notification to the user. |
| 594 | * Select and update the new active and retran paths. |
| 595 | */ |
| 596 | void sctp_assoc_control_transport(struct sctp_association *asoc, |
| 597 | struct sctp_transport *transport, |
| 598 | sctp_transport_cmd_t command, |
| 599 | sctp_sn_error_t error) |
| 600 | { |
| 601 | struct sctp_transport *t = NULL; |
| 602 | struct sctp_transport *first; |
| 603 | struct sctp_transport *second; |
| 604 | struct sctp_ulpevent *event; |
| 605 | struct list_head *pos; |
| 606 | int spc_state = 0; |
| 607 | |
| 608 | /* Record the transition on the transport. */ |
| 609 | switch (command) { |
| 610 | case SCTP_TRANSPORT_UP: |
| 611 | transport->active = SCTP_ACTIVE; |
| 612 | spc_state = SCTP_ADDR_AVAILABLE; |
| 613 | break; |
| 614 | |
| 615 | case SCTP_TRANSPORT_DOWN: |
| 616 | transport->active = SCTP_INACTIVE; |
| 617 | spc_state = SCTP_ADDR_UNREACHABLE; |
| 618 | break; |
| 619 | |
| 620 | default: |
| 621 | return; |
| 622 | }; |
| 623 | |
| 624 | /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the |
| 625 | * user. |
| 626 | */ |
| 627 | event = sctp_ulpevent_make_peer_addr_change(asoc, |
| 628 | (struct sockaddr_storage *) &transport->ipaddr, |
| 629 | 0, spc_state, error, GFP_ATOMIC); |
| 630 | if (event) |
| 631 | sctp_ulpq_tail_event(&asoc->ulpq, event); |
| 632 | |
| 633 | /* Select new active and retran paths. */ |
| 634 | |
| 635 | /* Look for the two most recently used active transports. |
| 636 | * |
| 637 | * This code produces the wrong ordering whenever jiffies |
| 638 | * rolls over, but we still get usable transports, so we don't |
| 639 | * worry about it. |
| 640 | */ |
| 641 | first = NULL; second = NULL; |
| 642 | |
| 643 | list_for_each(pos, &asoc->peer.transport_addr_list) { |
| 644 | t = list_entry(pos, struct sctp_transport, transports); |
| 645 | |
| 646 | if (!t->active) |
| 647 | continue; |
| 648 | if (!first || t->last_time_heard > first->last_time_heard) { |
| 649 | second = first; |
| 650 | first = t; |
| 651 | } |
| 652 | if (!second || t->last_time_heard > second->last_time_heard) |
| 653 | second = t; |
| 654 | } |
| 655 | |
| 656 | /* RFC 2960 6.4 Multi-Homed SCTP Endpoints |
| 657 | * |
| 658 | * By default, an endpoint should always transmit to the |
| 659 | * primary path, unless the SCTP user explicitly specifies the |
| 660 | * destination transport address (and possibly source |
| 661 | * transport address) to use. |
| 662 | * |
| 663 | * [If the primary is active but not most recent, bump the most |
| 664 | * recently used transport.] |
| 665 | */ |
| 666 | if (asoc->peer.primary_path->active && |
| 667 | first != asoc->peer.primary_path) { |
| 668 | second = first; |
| 669 | first = asoc->peer.primary_path; |
| 670 | } |
| 671 | |
| 672 | /* If we failed to find a usable transport, just camp on the |
| 673 | * primary, even if it is inactive. |
| 674 | */ |
| 675 | if (!first) { |
| 676 | first = asoc->peer.primary_path; |
| 677 | second = asoc->peer.primary_path; |
| 678 | } |
| 679 | |
| 680 | /* Set the active and retran transports. */ |
| 681 | asoc->peer.active_path = first; |
| 682 | asoc->peer.retran_path = second; |
| 683 | } |
| 684 | |
| 685 | /* Hold a reference to an association. */ |
| 686 | void sctp_association_hold(struct sctp_association *asoc) |
| 687 | { |
| 688 | atomic_inc(&asoc->base.refcnt); |
| 689 | } |
| 690 | |
| 691 | /* Release a reference to an association and cleanup |
| 692 | * if there are no more references. |
| 693 | */ |
| 694 | void sctp_association_put(struct sctp_association *asoc) |
| 695 | { |
| 696 | if (atomic_dec_and_test(&asoc->base.refcnt)) |
| 697 | sctp_association_destroy(asoc); |
| 698 | } |
| 699 | |
| 700 | /* Allocate the next TSN, Transmission Sequence Number, for the given |
| 701 | * association. |
| 702 | */ |
| 703 | __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) |
| 704 | { |
| 705 | /* From Section 1.6 Serial Number Arithmetic: |
| 706 | * Transmission Sequence Numbers wrap around when they reach |
| 707 | * 2**32 - 1. That is, the next TSN a DATA chunk MUST use |
| 708 | * after transmitting TSN = 2*32 - 1 is TSN = 0. |
| 709 | */ |
| 710 | __u32 retval = asoc->next_tsn; |
| 711 | asoc->next_tsn++; |
| 712 | asoc->unack_data++; |
| 713 | |
| 714 | return retval; |
| 715 | } |
| 716 | |
| 717 | /* Compare two addresses to see if they match. Wildcard addresses |
| 718 | * only match themselves. |
| 719 | */ |
| 720 | int sctp_cmp_addr_exact(const union sctp_addr *ss1, |
| 721 | const union sctp_addr *ss2) |
| 722 | { |
| 723 | struct sctp_af *af; |
| 724 | |
| 725 | af = sctp_get_af_specific(ss1->sa.sa_family); |
| 726 | if (unlikely(!af)) |
| 727 | return 0; |
| 728 | |
| 729 | return af->cmp_addr(ss1, ss2); |
| 730 | } |
| 731 | |
| 732 | /* Return an ecne chunk to get prepended to a packet. |
| 733 | * Note: We are sly and return a shared, prealloced chunk. FIXME: |
| 734 | * No we don't, but we could/should. |
| 735 | */ |
| 736 | struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) |
| 737 | { |
| 738 | struct sctp_chunk *chunk; |
| 739 | |
| 740 | /* Send ECNE if needed. |
| 741 | * Not being able to allocate a chunk here is not deadly. |
| 742 | */ |
| 743 | if (asoc->need_ecne) |
| 744 | chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); |
| 745 | else |
| 746 | chunk = NULL; |
| 747 | |
| 748 | return chunk; |
| 749 | } |
| 750 | |
| 751 | /* |
| 752 | * Find which transport this TSN was sent on. |
| 753 | */ |
| 754 | struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, |
| 755 | __u32 tsn) |
| 756 | { |
| 757 | struct sctp_transport *active; |
| 758 | struct sctp_transport *match; |
| 759 | struct list_head *entry, *pos; |
| 760 | struct sctp_transport *transport; |
| 761 | struct sctp_chunk *chunk; |
| 762 | __u32 key = htonl(tsn); |
| 763 | |
| 764 | match = NULL; |
| 765 | |
| 766 | /* |
| 767 | * FIXME: In general, find a more efficient data structure for |
| 768 | * searching. |
| 769 | */ |
| 770 | |
| 771 | /* |
| 772 | * The general strategy is to search each transport's transmitted |
| 773 | * list. Return which transport this TSN lives on. |
| 774 | * |
| 775 | * Let's be hopeful and check the active_path first. |
| 776 | * Another optimization would be to know if there is only one |
| 777 | * outbound path and not have to look for the TSN at all. |
| 778 | * |
| 779 | */ |
| 780 | |
| 781 | active = asoc->peer.active_path; |
| 782 | |
| 783 | list_for_each(entry, &active->transmitted) { |
| 784 | chunk = list_entry(entry, struct sctp_chunk, transmitted_list); |
| 785 | |
| 786 | if (key == chunk->subh.data_hdr->tsn) { |
| 787 | match = active; |
| 788 | goto out; |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | /* If not found, go search all the other transports. */ |
| 793 | list_for_each(pos, &asoc->peer.transport_addr_list) { |
| 794 | transport = list_entry(pos, struct sctp_transport, transports); |
| 795 | |
| 796 | if (transport == active) |
| 797 | break; |
| 798 | list_for_each(entry, &transport->transmitted) { |
| 799 | chunk = list_entry(entry, struct sctp_chunk, |
| 800 | transmitted_list); |
| 801 | if (key == chunk->subh.data_hdr->tsn) { |
| 802 | match = transport; |
| 803 | goto out; |
| 804 | } |
| 805 | } |
| 806 | } |
| 807 | out: |
| 808 | return match; |
| 809 | } |
| 810 | |
| 811 | /* Is this the association we are looking for? */ |
| 812 | struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, |
| 813 | const union sctp_addr *laddr, |
| 814 | const union sctp_addr *paddr) |
| 815 | { |
| 816 | struct sctp_transport *transport; |
| 817 | |
| 818 | sctp_read_lock(&asoc->base.addr_lock); |
| 819 | |
| 820 | if ((asoc->base.bind_addr.port == laddr->v4.sin_port) && |
| 821 | (asoc->peer.port == paddr->v4.sin_port)) { |
| 822 | transport = sctp_assoc_lookup_paddr(asoc, paddr); |
| 823 | if (!transport) |
| 824 | goto out; |
| 825 | |
| 826 | if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, |
| 827 | sctp_sk(asoc->base.sk))) |
| 828 | goto out; |
| 829 | } |
| 830 | transport = NULL; |
| 831 | |
| 832 | out: |
| 833 | sctp_read_unlock(&asoc->base.addr_lock); |
| 834 | return transport; |
| 835 | } |
| 836 | |
| 837 | /* Do delayed input processing. This is scheduled by sctp_rcv(). */ |
| 838 | static void sctp_assoc_bh_rcv(struct sctp_association *asoc) |
| 839 | { |
| 840 | struct sctp_endpoint *ep; |
| 841 | struct sctp_chunk *chunk; |
| 842 | struct sock *sk; |
| 843 | struct sctp_inq *inqueue; |
| 844 | int state; |
| 845 | sctp_subtype_t subtype; |
| 846 | int error = 0; |
| 847 | |
| 848 | /* The association should be held so we should be safe. */ |
| 849 | ep = asoc->ep; |
| 850 | sk = asoc->base.sk; |
| 851 | |
| 852 | inqueue = &asoc->base.inqueue; |
| 853 | sctp_association_hold(asoc); |
| 854 | while (NULL != (chunk = sctp_inq_pop(inqueue))) { |
| 855 | state = asoc->state; |
| 856 | subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); |
| 857 | |
| 858 | /* Remember where the last DATA chunk came from so we |
| 859 | * know where to send the SACK. |
| 860 | */ |
| 861 | if (sctp_chunk_is_data(chunk)) |
| 862 | asoc->peer.last_data_from = chunk->transport; |
| 863 | else |
| 864 | SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS); |
| 865 | |
| 866 | if (chunk->transport) |
| 867 | chunk->transport->last_time_heard = jiffies; |
| 868 | |
| 869 | /* Run through the state machine. */ |
| 870 | error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype, |
| 871 | state, ep, asoc, chunk, GFP_ATOMIC); |
| 872 | |
| 873 | /* Check to see if the association is freed in response to |
| 874 | * the incoming chunk. If so, get out of the while loop. |
| 875 | */ |
| 876 | if (asoc->base.dead) |
| 877 | break; |
| 878 | |
| 879 | /* If there is an error on chunk, discard this packet. */ |
| 880 | if (error && chunk) |
| 881 | chunk->pdiscard = 1; |
| 882 | } |
| 883 | sctp_association_put(asoc); |
| 884 | } |
| 885 | |
| 886 | /* This routine moves an association from its old sk to a new sk. */ |
| 887 | void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) |
| 888 | { |
| 889 | struct sctp_sock *newsp = sctp_sk(newsk); |
| 890 | struct sock *oldsk = assoc->base.sk; |
| 891 | |
| 892 | /* Delete the association from the old endpoint's list of |
| 893 | * associations. |
| 894 | */ |
| 895 | list_del_init(&assoc->asocs); |
| 896 | |
| 897 | /* Decrement the backlog value for a TCP-style socket. */ |
| 898 | if (sctp_style(oldsk, TCP)) |
| 899 | oldsk->sk_ack_backlog--; |
| 900 | |
| 901 | /* Release references to the old endpoint and the sock. */ |
| 902 | sctp_endpoint_put(assoc->ep); |
| 903 | sock_put(assoc->base.sk); |
| 904 | |
| 905 | /* Get a reference to the new endpoint. */ |
| 906 | assoc->ep = newsp->ep; |
| 907 | sctp_endpoint_hold(assoc->ep); |
| 908 | |
| 909 | /* Get a reference to the new sock. */ |
| 910 | assoc->base.sk = newsk; |
| 911 | sock_hold(assoc->base.sk); |
| 912 | |
| 913 | /* Add the association to the new endpoint's list of associations. */ |
| 914 | sctp_endpoint_add_asoc(newsp->ep, assoc); |
| 915 | } |
| 916 | |
| 917 | /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ |
| 918 | void sctp_assoc_update(struct sctp_association *asoc, |
| 919 | struct sctp_association *new) |
| 920 | { |
| 921 | struct sctp_transport *trans; |
| 922 | struct list_head *pos, *temp; |
| 923 | |
| 924 | /* Copy in new parameters of peer. */ |
| 925 | asoc->c = new->c; |
| 926 | asoc->peer.rwnd = new->peer.rwnd; |
| 927 | asoc->peer.sack_needed = new->peer.sack_needed; |
| 928 | asoc->peer.i = new->peer.i; |
| 929 | sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, |
| 930 | asoc->peer.i.initial_tsn); |
| 931 | |
| 932 | /* Remove any peer addresses not present in the new association. */ |
| 933 | list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { |
| 934 | trans = list_entry(pos, struct sctp_transport, transports); |
| 935 | if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) |
| 936 | sctp_assoc_del_peer(asoc, &trans->ipaddr); |
| 937 | } |
| 938 | |
| 939 | /* If the case is A (association restart), use |
| 940 | * initial_tsn as next_tsn. If the case is B, use |
| 941 | * current next_tsn in case data sent to peer |
| 942 | * has been discarded and needs retransmission. |
| 943 | */ |
| 944 | if (asoc->state >= SCTP_STATE_ESTABLISHED) { |
| 945 | asoc->next_tsn = new->next_tsn; |
| 946 | asoc->ctsn_ack_point = new->ctsn_ack_point; |
| 947 | asoc->adv_peer_ack_point = new->adv_peer_ack_point; |
| 948 | |
| 949 | /* Reinitialize SSN for both local streams |
| 950 | * and peer's streams. |
| 951 | */ |
| 952 | sctp_ssnmap_clear(asoc->ssnmap); |
| 953 | |
| 954 | } else { |
| 955 | /* Add any peer addresses from the new association. */ |
| 956 | list_for_each(pos, &new->peer.transport_addr_list) { |
| 957 | trans = list_entry(pos, struct sctp_transport, |
| 958 | transports); |
| 959 | if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) |
| 960 | sctp_assoc_add_peer(asoc, &trans->ipaddr, |
| 961 | GFP_ATOMIC); |
| 962 | } |
| 963 | |
| 964 | asoc->ctsn_ack_point = asoc->next_tsn - 1; |
| 965 | asoc->adv_peer_ack_point = asoc->ctsn_ack_point; |
| 966 | if (!asoc->ssnmap) { |
| 967 | /* Move the ssnmap. */ |
| 968 | asoc->ssnmap = new->ssnmap; |
| 969 | new->ssnmap = NULL; |
| 970 | } |
| 971 | } |
| 972 | } |
| 973 | |
| 974 | /* Update the retran path for sending a retransmitted packet. |
| 975 | * Round-robin through the active transports, else round-robin |
| 976 | * through the inactive transports as this is the next best thing |
| 977 | * we can try. |
| 978 | */ |
| 979 | void sctp_assoc_update_retran_path(struct sctp_association *asoc) |
| 980 | { |
| 981 | struct sctp_transport *t, *next; |
| 982 | struct list_head *head = &asoc->peer.transport_addr_list; |
| 983 | struct list_head *pos; |
| 984 | |
| 985 | /* Find the next transport in a round-robin fashion. */ |
| 986 | t = asoc->peer.retran_path; |
| 987 | pos = &t->transports; |
| 988 | next = NULL; |
| 989 | |
| 990 | while (1) { |
| 991 | /* Skip the head. */ |
| 992 | if (pos->next == head) |
| 993 | pos = head->next; |
| 994 | else |
| 995 | pos = pos->next; |
| 996 | |
| 997 | t = list_entry(pos, struct sctp_transport, transports); |
| 998 | |
| 999 | /* Try to find an active transport. */ |
| 1000 | |
| 1001 | if (t->active) { |
| 1002 | break; |
| 1003 | } else { |
| 1004 | /* Keep track of the next transport in case |
| 1005 | * we don't find any active transport. |
| 1006 | */ |
| 1007 | if (!next) |
| 1008 | next = t; |
| 1009 | } |
| 1010 | |
| 1011 | /* We have exhausted the list, but didn't find any |
| 1012 | * other active transports. If so, use the next |
| 1013 | * transport. |
| 1014 | */ |
| 1015 | if (t == asoc->peer.retran_path) { |
| 1016 | t = next; |
| 1017 | break; |
| 1018 | } |
| 1019 | } |
| 1020 | |
| 1021 | asoc->peer.retran_path = t; |
| 1022 | } |
| 1023 | |
| 1024 | /* Choose the transport for sending a SHUTDOWN packet. */ |
| 1025 | struct sctp_transport *sctp_assoc_choose_shutdown_transport( |
| 1026 | struct sctp_association *asoc) |
| 1027 | { |
| 1028 | /* If this is the first time SHUTDOWN is sent, use the active path, |
| 1029 | * else use the retran path. If the last SHUTDOWN was sent over the |
| 1030 | * retran path, update the retran path and use it. |
| 1031 | */ |
| 1032 | if (!asoc->shutdown_last_sent_to) |
| 1033 | return asoc->peer.active_path; |
| 1034 | else { |
| 1035 | if (asoc->shutdown_last_sent_to == asoc->peer.retran_path) |
| 1036 | sctp_assoc_update_retran_path(asoc); |
| 1037 | return asoc->peer.retran_path; |
| 1038 | } |
| 1039 | |
| 1040 | } |
| 1041 | |
| 1042 | /* Update the association's pmtu and frag_point by going through all the |
| 1043 | * transports. This routine is called when a transport's PMTU has changed. |
| 1044 | */ |
| 1045 | void sctp_assoc_sync_pmtu(struct sctp_association *asoc) |
| 1046 | { |
| 1047 | struct sctp_transport *t; |
| 1048 | struct list_head *pos; |
| 1049 | __u32 pmtu = 0; |
| 1050 | |
| 1051 | if (!asoc) |
| 1052 | return; |
| 1053 | |
| 1054 | /* Get the lowest pmtu of all the transports. */ |
| 1055 | list_for_each(pos, &asoc->peer.transport_addr_list) { |
| 1056 | t = list_entry(pos, struct sctp_transport, transports); |
| 1057 | if (!pmtu || (t->pmtu < pmtu)) |
| 1058 | pmtu = t->pmtu; |
| 1059 | } |
| 1060 | |
| 1061 | if (pmtu) { |
| 1062 | struct sctp_sock *sp = sctp_sk(asoc->base.sk); |
| 1063 | asoc->pmtu = pmtu; |
| 1064 | asoc->frag_point = sctp_frag_point(sp, pmtu); |
| 1065 | } |
| 1066 | |
| 1067 | SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", |
| 1068 | __FUNCTION__, asoc, asoc->pmtu, asoc->frag_point); |
| 1069 | } |
| 1070 | |
| 1071 | /* Should we send a SACK to update our peer? */ |
| 1072 | static inline int sctp_peer_needs_update(struct sctp_association *asoc) |
| 1073 | { |
| 1074 | switch (asoc->state) { |
| 1075 | case SCTP_STATE_ESTABLISHED: |
| 1076 | case SCTP_STATE_SHUTDOWN_PENDING: |
| 1077 | case SCTP_STATE_SHUTDOWN_RECEIVED: |
| 1078 | case SCTP_STATE_SHUTDOWN_SENT: |
| 1079 | if ((asoc->rwnd > asoc->a_rwnd) && |
| 1080 | ((asoc->rwnd - asoc->a_rwnd) >= |
| 1081 | min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pmtu))) |
| 1082 | return 1; |
| 1083 | break; |
| 1084 | default: |
| 1085 | break; |
| 1086 | } |
| 1087 | return 0; |
| 1088 | } |
| 1089 | |
| 1090 | /* Increase asoc's rwnd by len and send any window update SACK if needed. */ |
| 1091 | void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len) |
| 1092 | { |
| 1093 | struct sctp_chunk *sack; |
| 1094 | struct timer_list *timer; |
| 1095 | |
| 1096 | if (asoc->rwnd_over) { |
| 1097 | if (asoc->rwnd_over >= len) { |
| 1098 | asoc->rwnd_over -= len; |
| 1099 | } else { |
| 1100 | asoc->rwnd += (len - asoc->rwnd_over); |
| 1101 | asoc->rwnd_over = 0; |
| 1102 | } |
| 1103 | } else { |
| 1104 | asoc->rwnd += len; |
| 1105 | } |
| 1106 | |
| 1107 | SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) " |
| 1108 | "- %u\n", __FUNCTION__, asoc, len, asoc->rwnd, |
| 1109 | asoc->rwnd_over, asoc->a_rwnd); |
| 1110 | |
| 1111 | /* Send a window update SACK if the rwnd has increased by at least the |
| 1112 | * minimum of the association's PMTU and half of the receive buffer. |
| 1113 | * The algorithm used is similar to the one described in |
| 1114 | * Section 4.2.3.3 of RFC 1122. |
| 1115 | */ |
| 1116 | if (sctp_peer_needs_update(asoc)) { |
| 1117 | asoc->a_rwnd = asoc->rwnd; |
| 1118 | SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p " |
| 1119 | "rwnd: %u a_rwnd: %u\n", __FUNCTION__, |
| 1120 | asoc, asoc->rwnd, asoc->a_rwnd); |
| 1121 | sack = sctp_make_sack(asoc); |
| 1122 | if (!sack) |
| 1123 | return; |
| 1124 | |
| 1125 | asoc->peer.sack_needed = 0; |
| 1126 | |
| 1127 | sctp_outq_tail(&asoc->outqueue, sack); |
| 1128 | |
| 1129 | /* Stop the SACK timer. */ |
| 1130 | timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; |
| 1131 | if (timer_pending(timer) && del_timer(timer)) |
| 1132 | sctp_association_put(asoc); |
| 1133 | } |
| 1134 | } |
| 1135 | |
| 1136 | /* Decrease asoc's rwnd by len. */ |
| 1137 | void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len) |
| 1138 | { |
| 1139 | SCTP_ASSERT(asoc->rwnd, "rwnd zero", return); |
| 1140 | SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return); |
| 1141 | if (asoc->rwnd >= len) { |
| 1142 | asoc->rwnd -= len; |
| 1143 | } else { |
| 1144 | asoc->rwnd_over = len - asoc->rwnd; |
| 1145 | asoc->rwnd = 0; |
| 1146 | } |
| 1147 | SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n", |
| 1148 | __FUNCTION__, asoc, len, asoc->rwnd, |
| 1149 | asoc->rwnd_over); |
| 1150 | } |
| 1151 | |
| 1152 | /* Build the bind address list for the association based on info from the |
| 1153 | * local endpoint and the remote peer. |
| 1154 | */ |
| 1155 | int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, int gfp) |
| 1156 | { |
| 1157 | sctp_scope_t scope; |
| 1158 | int flags; |
| 1159 | |
| 1160 | /* Use scoping rules to determine the subset of addresses from |
| 1161 | * the endpoint. |
| 1162 | */ |
| 1163 | scope = sctp_scope(&asoc->peer.active_path->ipaddr); |
| 1164 | flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; |
| 1165 | if (asoc->peer.ipv4_address) |
| 1166 | flags |= SCTP_ADDR4_PEERSUPP; |
| 1167 | if (asoc->peer.ipv6_address) |
| 1168 | flags |= SCTP_ADDR6_PEERSUPP; |
| 1169 | |
| 1170 | return sctp_bind_addr_copy(&asoc->base.bind_addr, |
| 1171 | &asoc->ep->base.bind_addr, |
| 1172 | scope, gfp, flags); |
| 1173 | } |
| 1174 | |
| 1175 | /* Build the association's bind address list from the cookie. */ |
| 1176 | int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, |
| 1177 | struct sctp_cookie *cookie, int gfp) |
| 1178 | { |
| 1179 | int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); |
| 1180 | int var_size3 = cookie->raw_addr_list_len; |
| 1181 | __u8 *raw = (__u8 *)cookie->peer_init + var_size2; |
| 1182 | |
| 1183 | return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, |
| 1184 | asoc->ep->base.bind_addr.port, gfp); |
| 1185 | } |
| 1186 | |
| 1187 | /* Lookup laddr in the bind address list of an association. */ |
| 1188 | int sctp_assoc_lookup_laddr(struct sctp_association *asoc, |
| 1189 | const union sctp_addr *laddr) |
| 1190 | { |
| 1191 | int found; |
| 1192 | |
| 1193 | sctp_read_lock(&asoc->base.addr_lock); |
| 1194 | if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && |
| 1195 | sctp_bind_addr_match(&asoc->base.bind_addr, laddr, |
| 1196 | sctp_sk(asoc->base.sk))) { |
| 1197 | found = 1; |
| 1198 | goto out; |
| 1199 | } |
| 1200 | |
| 1201 | found = 0; |
| 1202 | out: |
| 1203 | sctp_read_unlock(&asoc->base.addr_lock); |
| 1204 | return found; |
| 1205 | } |