Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * linux/mm/swap.c |
| 3 | * |
| 4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| 5 | */ |
| 6 | |
| 7 | /* |
| 8 | * This file contains the default values for the opereation of the |
| 9 | * Linux VM subsystem. Fine-tuning documentation can be found in |
| 10 | * Documentation/sysctl/vm.txt. |
| 11 | * Started 18.12.91 |
| 12 | * Swap aging added 23.2.95, Stephen Tweedie. |
| 13 | * Buffermem limits added 12.3.98, Rik van Riel. |
| 14 | */ |
| 15 | |
| 16 | #include <linux/mm.h> |
| 17 | #include <linux/sched.h> |
| 18 | #include <linux/kernel_stat.h> |
| 19 | #include <linux/swap.h> |
| 20 | #include <linux/mman.h> |
| 21 | #include <linux/pagemap.h> |
| 22 | #include <linux/pagevec.h> |
| 23 | #include <linux/init.h> |
| 24 | #include <linux/module.h> |
| 25 | #include <linux/mm_inline.h> |
| 26 | #include <linux/buffer_head.h> /* for try_to_release_page() */ |
| 27 | #include <linux/module.h> |
| 28 | #include <linux/percpu_counter.h> |
| 29 | #include <linux/percpu.h> |
| 30 | #include <linux/cpu.h> |
| 31 | #include <linux/notifier.h> |
| 32 | #include <linux/init.h> |
| 33 | |
| 34 | /* How many pages do we try to swap or page in/out together? */ |
| 35 | int page_cluster; |
| 36 | |
| 37 | #ifdef CONFIG_HUGETLB_PAGE |
| 38 | |
| 39 | void put_page(struct page *page) |
| 40 | { |
| 41 | if (unlikely(PageCompound(page))) { |
| 42 | page = (struct page *)page->private; |
| 43 | if (put_page_testzero(page)) { |
| 44 | void (*dtor)(struct page *page); |
| 45 | |
| 46 | dtor = (void (*)(struct page *))page[1].mapping; |
| 47 | (*dtor)(page); |
| 48 | } |
| 49 | return; |
| 50 | } |
| 51 | if (!PageReserved(page) && put_page_testzero(page)) |
| 52 | __page_cache_release(page); |
| 53 | } |
| 54 | EXPORT_SYMBOL(put_page); |
| 55 | #endif |
| 56 | |
| 57 | /* |
| 58 | * Writeback is about to end against a page which has been marked for immediate |
| 59 | * reclaim. If it still appears to be reclaimable, move it to the tail of the |
| 60 | * inactive list. The page still has PageWriteback set, which will pin it. |
| 61 | * |
| 62 | * We don't expect many pages to come through here, so don't bother batching |
| 63 | * things up. |
| 64 | * |
| 65 | * To avoid placing the page at the tail of the LRU while PG_writeback is still |
| 66 | * set, this function will clear PG_writeback before performing the page |
| 67 | * motion. Do that inside the lru lock because once PG_writeback is cleared |
| 68 | * we may not touch the page. |
| 69 | * |
| 70 | * Returns zero if it cleared PG_writeback. |
| 71 | */ |
| 72 | int rotate_reclaimable_page(struct page *page) |
| 73 | { |
| 74 | struct zone *zone; |
| 75 | unsigned long flags; |
| 76 | |
| 77 | if (PageLocked(page)) |
| 78 | return 1; |
| 79 | if (PageDirty(page)) |
| 80 | return 1; |
| 81 | if (PageActive(page)) |
| 82 | return 1; |
| 83 | if (!PageLRU(page)) |
| 84 | return 1; |
| 85 | |
| 86 | zone = page_zone(page); |
| 87 | spin_lock_irqsave(&zone->lru_lock, flags); |
| 88 | if (PageLRU(page) && !PageActive(page)) { |
| 89 | list_del(&page->lru); |
| 90 | list_add_tail(&page->lru, &zone->inactive_list); |
| 91 | inc_page_state(pgrotated); |
| 92 | } |
| 93 | if (!test_clear_page_writeback(page)) |
| 94 | BUG(); |
| 95 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
| 96 | return 0; |
| 97 | } |
| 98 | |
| 99 | /* |
| 100 | * FIXME: speed this up? |
| 101 | */ |
| 102 | void fastcall activate_page(struct page *page) |
| 103 | { |
| 104 | struct zone *zone = page_zone(page); |
| 105 | |
| 106 | spin_lock_irq(&zone->lru_lock); |
| 107 | if (PageLRU(page) && !PageActive(page)) { |
| 108 | del_page_from_inactive_list(zone, page); |
| 109 | SetPageActive(page); |
| 110 | add_page_to_active_list(zone, page); |
| 111 | inc_page_state(pgactivate); |
| 112 | } |
| 113 | spin_unlock_irq(&zone->lru_lock); |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | * Mark a page as having seen activity. |
| 118 | * |
| 119 | * inactive,unreferenced -> inactive,referenced |
| 120 | * inactive,referenced -> active,unreferenced |
| 121 | * active,unreferenced -> active,referenced |
| 122 | */ |
| 123 | void fastcall mark_page_accessed(struct page *page) |
| 124 | { |
| 125 | if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) { |
| 126 | activate_page(page); |
| 127 | ClearPageReferenced(page); |
| 128 | } else if (!PageReferenced(page)) { |
| 129 | SetPageReferenced(page); |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | EXPORT_SYMBOL(mark_page_accessed); |
| 134 | |
| 135 | /** |
| 136 | * lru_cache_add: add a page to the page lists |
| 137 | * @page: the page to add |
| 138 | */ |
| 139 | static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, }; |
| 140 | static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, }; |
| 141 | |
| 142 | void fastcall lru_cache_add(struct page *page) |
| 143 | { |
| 144 | struct pagevec *pvec = &get_cpu_var(lru_add_pvecs); |
| 145 | |
| 146 | page_cache_get(page); |
| 147 | if (!pagevec_add(pvec, page)) |
| 148 | __pagevec_lru_add(pvec); |
| 149 | put_cpu_var(lru_add_pvecs); |
| 150 | } |
| 151 | |
| 152 | void fastcall lru_cache_add_active(struct page *page) |
| 153 | { |
| 154 | struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs); |
| 155 | |
| 156 | page_cache_get(page); |
| 157 | if (!pagevec_add(pvec, page)) |
| 158 | __pagevec_lru_add_active(pvec); |
| 159 | put_cpu_var(lru_add_active_pvecs); |
| 160 | } |
| 161 | |
| 162 | void lru_add_drain(void) |
| 163 | { |
| 164 | struct pagevec *pvec = &get_cpu_var(lru_add_pvecs); |
| 165 | |
| 166 | if (pagevec_count(pvec)) |
| 167 | __pagevec_lru_add(pvec); |
| 168 | pvec = &__get_cpu_var(lru_add_active_pvecs); |
| 169 | if (pagevec_count(pvec)) |
| 170 | __pagevec_lru_add_active(pvec); |
| 171 | put_cpu_var(lru_add_pvecs); |
| 172 | } |
| 173 | |
| 174 | /* |
| 175 | * This path almost never happens for VM activity - pages are normally |
| 176 | * freed via pagevecs. But it gets used by networking. |
| 177 | */ |
| 178 | void fastcall __page_cache_release(struct page *page) |
| 179 | { |
| 180 | unsigned long flags; |
| 181 | struct zone *zone = page_zone(page); |
| 182 | |
| 183 | spin_lock_irqsave(&zone->lru_lock, flags); |
| 184 | if (TestClearPageLRU(page)) |
| 185 | del_page_from_lru(zone, page); |
| 186 | if (page_count(page) != 0) |
| 187 | page = NULL; |
| 188 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
| 189 | if (page) |
| 190 | free_hot_page(page); |
| 191 | } |
| 192 | |
| 193 | EXPORT_SYMBOL(__page_cache_release); |
| 194 | |
| 195 | /* |
| 196 | * Batched page_cache_release(). Decrement the reference count on all the |
| 197 | * passed pages. If it fell to zero then remove the page from the LRU and |
| 198 | * free it. |
| 199 | * |
| 200 | * Avoid taking zone->lru_lock if possible, but if it is taken, retain it |
| 201 | * for the remainder of the operation. |
| 202 | * |
| 203 | * The locking in this function is against shrink_cache(): we recheck the |
| 204 | * page count inside the lock to see whether shrink_cache grabbed the page |
| 205 | * via the LRU. If it did, give up: shrink_cache will free it. |
| 206 | */ |
| 207 | void release_pages(struct page **pages, int nr, int cold) |
| 208 | { |
| 209 | int i; |
| 210 | struct pagevec pages_to_free; |
| 211 | struct zone *zone = NULL; |
| 212 | |
| 213 | pagevec_init(&pages_to_free, cold); |
| 214 | for (i = 0; i < nr; i++) { |
| 215 | struct page *page = pages[i]; |
| 216 | struct zone *pagezone; |
| 217 | |
| 218 | if (PageReserved(page) || !put_page_testzero(page)) |
| 219 | continue; |
| 220 | |
| 221 | pagezone = page_zone(page); |
| 222 | if (pagezone != zone) { |
| 223 | if (zone) |
| 224 | spin_unlock_irq(&zone->lru_lock); |
| 225 | zone = pagezone; |
| 226 | spin_lock_irq(&zone->lru_lock); |
| 227 | } |
| 228 | if (TestClearPageLRU(page)) |
| 229 | del_page_from_lru(zone, page); |
| 230 | if (page_count(page) == 0) { |
| 231 | if (!pagevec_add(&pages_to_free, page)) { |
| 232 | spin_unlock_irq(&zone->lru_lock); |
| 233 | __pagevec_free(&pages_to_free); |
| 234 | pagevec_reinit(&pages_to_free); |
| 235 | zone = NULL; /* No lock is held */ |
| 236 | } |
| 237 | } |
| 238 | } |
| 239 | if (zone) |
| 240 | spin_unlock_irq(&zone->lru_lock); |
| 241 | |
| 242 | pagevec_free(&pages_to_free); |
| 243 | } |
| 244 | |
| 245 | /* |
| 246 | * The pages which we're about to release may be in the deferred lru-addition |
| 247 | * queues. That would prevent them from really being freed right now. That's |
| 248 | * OK from a correctness point of view but is inefficient - those pages may be |
| 249 | * cache-warm and we want to give them back to the page allocator ASAP. |
| 250 | * |
| 251 | * So __pagevec_release() will drain those queues here. __pagevec_lru_add() |
| 252 | * and __pagevec_lru_add_active() call release_pages() directly to avoid |
| 253 | * mutual recursion. |
| 254 | */ |
| 255 | void __pagevec_release(struct pagevec *pvec) |
| 256 | { |
| 257 | lru_add_drain(); |
| 258 | release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); |
| 259 | pagevec_reinit(pvec); |
| 260 | } |
| 261 | |
| 262 | /* |
| 263 | * pagevec_release() for pages which are known to not be on the LRU |
| 264 | * |
| 265 | * This function reinitialises the caller's pagevec. |
| 266 | */ |
| 267 | void __pagevec_release_nonlru(struct pagevec *pvec) |
| 268 | { |
| 269 | int i; |
| 270 | struct pagevec pages_to_free; |
| 271 | |
| 272 | pagevec_init(&pages_to_free, pvec->cold); |
| 273 | pages_to_free.cold = pvec->cold; |
| 274 | for (i = 0; i < pagevec_count(pvec); i++) { |
| 275 | struct page *page = pvec->pages[i]; |
| 276 | |
| 277 | BUG_ON(PageLRU(page)); |
| 278 | if (put_page_testzero(page)) |
| 279 | pagevec_add(&pages_to_free, page); |
| 280 | } |
| 281 | pagevec_free(&pages_to_free); |
| 282 | pagevec_reinit(pvec); |
| 283 | } |
| 284 | |
| 285 | /* |
| 286 | * Add the passed pages to the LRU, then drop the caller's refcount |
| 287 | * on them. Reinitialises the caller's pagevec. |
| 288 | */ |
| 289 | void __pagevec_lru_add(struct pagevec *pvec) |
| 290 | { |
| 291 | int i; |
| 292 | struct zone *zone = NULL; |
| 293 | |
| 294 | for (i = 0; i < pagevec_count(pvec); i++) { |
| 295 | struct page *page = pvec->pages[i]; |
| 296 | struct zone *pagezone = page_zone(page); |
| 297 | |
| 298 | if (pagezone != zone) { |
| 299 | if (zone) |
| 300 | spin_unlock_irq(&zone->lru_lock); |
| 301 | zone = pagezone; |
| 302 | spin_lock_irq(&zone->lru_lock); |
| 303 | } |
| 304 | if (TestSetPageLRU(page)) |
| 305 | BUG(); |
| 306 | add_page_to_inactive_list(zone, page); |
| 307 | } |
| 308 | if (zone) |
| 309 | spin_unlock_irq(&zone->lru_lock); |
| 310 | release_pages(pvec->pages, pvec->nr, pvec->cold); |
| 311 | pagevec_reinit(pvec); |
| 312 | } |
| 313 | |
| 314 | EXPORT_SYMBOL(__pagevec_lru_add); |
| 315 | |
| 316 | void __pagevec_lru_add_active(struct pagevec *pvec) |
| 317 | { |
| 318 | int i; |
| 319 | struct zone *zone = NULL; |
| 320 | |
| 321 | for (i = 0; i < pagevec_count(pvec); i++) { |
| 322 | struct page *page = pvec->pages[i]; |
| 323 | struct zone *pagezone = page_zone(page); |
| 324 | |
| 325 | if (pagezone != zone) { |
| 326 | if (zone) |
| 327 | spin_unlock_irq(&zone->lru_lock); |
| 328 | zone = pagezone; |
| 329 | spin_lock_irq(&zone->lru_lock); |
| 330 | } |
| 331 | if (TestSetPageLRU(page)) |
| 332 | BUG(); |
| 333 | if (TestSetPageActive(page)) |
| 334 | BUG(); |
| 335 | add_page_to_active_list(zone, page); |
| 336 | } |
| 337 | if (zone) |
| 338 | spin_unlock_irq(&zone->lru_lock); |
| 339 | release_pages(pvec->pages, pvec->nr, pvec->cold); |
| 340 | pagevec_reinit(pvec); |
| 341 | } |
| 342 | |
| 343 | /* |
| 344 | * Try to drop buffers from the pages in a pagevec |
| 345 | */ |
| 346 | void pagevec_strip(struct pagevec *pvec) |
| 347 | { |
| 348 | int i; |
| 349 | |
| 350 | for (i = 0; i < pagevec_count(pvec); i++) { |
| 351 | struct page *page = pvec->pages[i]; |
| 352 | |
| 353 | if (PagePrivate(page) && !TestSetPageLocked(page)) { |
| 354 | try_to_release_page(page, 0); |
| 355 | unlock_page(page); |
| 356 | } |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | /** |
| 361 | * pagevec_lookup - gang pagecache lookup |
| 362 | * @pvec: Where the resulting pages are placed |
| 363 | * @mapping: The address_space to search |
| 364 | * @start: The starting page index |
| 365 | * @nr_pages: The maximum number of pages |
| 366 | * |
| 367 | * pagevec_lookup() will search for and return a group of up to @nr_pages pages |
| 368 | * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a |
| 369 | * reference against the pages in @pvec. |
| 370 | * |
| 371 | * The search returns a group of mapping-contiguous pages with ascending |
| 372 | * indexes. There may be holes in the indices due to not-present pages. |
| 373 | * |
| 374 | * pagevec_lookup() returns the number of pages which were found. |
| 375 | */ |
| 376 | unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, |
| 377 | pgoff_t start, unsigned nr_pages) |
| 378 | { |
| 379 | pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); |
| 380 | return pagevec_count(pvec); |
| 381 | } |
| 382 | |
| 383 | unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, |
| 384 | pgoff_t *index, int tag, unsigned nr_pages) |
| 385 | { |
| 386 | pvec->nr = find_get_pages_tag(mapping, index, tag, |
| 387 | nr_pages, pvec->pages); |
| 388 | return pagevec_count(pvec); |
| 389 | } |
| 390 | |
| 391 | |
| 392 | #ifdef CONFIG_SMP |
| 393 | /* |
| 394 | * We tolerate a little inaccuracy to avoid ping-ponging the counter between |
| 395 | * CPUs |
| 396 | */ |
| 397 | #define ACCT_THRESHOLD max(16, NR_CPUS * 2) |
| 398 | |
| 399 | static DEFINE_PER_CPU(long, committed_space) = 0; |
| 400 | |
| 401 | void vm_acct_memory(long pages) |
| 402 | { |
| 403 | long *local; |
| 404 | |
| 405 | preempt_disable(); |
| 406 | local = &__get_cpu_var(committed_space); |
| 407 | *local += pages; |
| 408 | if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) { |
| 409 | atomic_add(*local, &vm_committed_space); |
| 410 | *local = 0; |
| 411 | } |
| 412 | preempt_enable(); |
| 413 | } |
| 414 | EXPORT_SYMBOL(vm_acct_memory); |
| 415 | |
| 416 | #ifdef CONFIG_HOTPLUG_CPU |
| 417 | static void lru_drain_cache(unsigned int cpu) |
| 418 | { |
| 419 | struct pagevec *pvec = &per_cpu(lru_add_pvecs, cpu); |
| 420 | |
| 421 | /* CPU is dead, so no locking needed. */ |
| 422 | if (pagevec_count(pvec)) |
| 423 | __pagevec_lru_add(pvec); |
| 424 | pvec = &per_cpu(lru_add_active_pvecs, cpu); |
| 425 | if (pagevec_count(pvec)) |
| 426 | __pagevec_lru_add_active(pvec); |
| 427 | } |
| 428 | |
| 429 | /* Drop the CPU's cached committed space back into the central pool. */ |
| 430 | static int cpu_swap_callback(struct notifier_block *nfb, |
| 431 | unsigned long action, |
| 432 | void *hcpu) |
| 433 | { |
| 434 | long *committed; |
| 435 | |
| 436 | committed = &per_cpu(committed_space, (long)hcpu); |
| 437 | if (action == CPU_DEAD) { |
| 438 | atomic_add(*committed, &vm_committed_space); |
| 439 | *committed = 0; |
| 440 | lru_drain_cache((long)hcpu); |
| 441 | } |
| 442 | return NOTIFY_OK; |
| 443 | } |
| 444 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 445 | #endif /* CONFIG_SMP */ |
| 446 | |
| 447 | #ifdef CONFIG_SMP |
| 448 | void percpu_counter_mod(struct percpu_counter *fbc, long amount) |
| 449 | { |
| 450 | long count; |
| 451 | long *pcount; |
| 452 | int cpu = get_cpu(); |
| 453 | |
| 454 | pcount = per_cpu_ptr(fbc->counters, cpu); |
| 455 | count = *pcount + amount; |
| 456 | if (count >= FBC_BATCH || count <= -FBC_BATCH) { |
| 457 | spin_lock(&fbc->lock); |
| 458 | fbc->count += count; |
| 459 | spin_unlock(&fbc->lock); |
| 460 | count = 0; |
| 461 | } |
| 462 | *pcount = count; |
| 463 | put_cpu(); |
| 464 | } |
| 465 | EXPORT_SYMBOL(percpu_counter_mod); |
| 466 | #endif |
| 467 | |
| 468 | /* |
| 469 | * Perform any setup for the swap system |
| 470 | */ |
| 471 | void __init swap_setup(void) |
| 472 | { |
| 473 | unsigned long megs = num_physpages >> (20 - PAGE_SHIFT); |
| 474 | |
| 475 | /* Use a smaller cluster for small-memory machines */ |
| 476 | if (megs < 16) |
| 477 | page_cluster = 2; |
| 478 | else |
| 479 | page_cluster = 3; |
| 480 | /* |
| 481 | * Right now other parts of the system means that we |
| 482 | * _really_ don't want to cluster much more |
| 483 | */ |
| 484 | hotcpu_notifier(cpu_swap_callback, 0); |
| 485 | } |