Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * arch/s390/mm/fault.c |
| 3 | * |
| 4 | * S390 version |
| 5 | * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation |
| 6 | * Author(s): Hartmut Penner (hp@de.ibm.com) |
| 7 | * Ulrich Weigand (uweigand@de.ibm.com) |
| 8 | * |
| 9 | * Derived from "arch/i386/mm/fault.c" |
| 10 | * Copyright (C) 1995 Linus Torvalds |
| 11 | */ |
| 12 | |
| 13 | #include <linux/config.h> |
| 14 | #include <linux/signal.h> |
| 15 | #include <linux/sched.h> |
| 16 | #include <linux/kernel.h> |
| 17 | #include <linux/errno.h> |
| 18 | #include <linux/string.h> |
| 19 | #include <linux/types.h> |
| 20 | #include <linux/ptrace.h> |
| 21 | #include <linux/mman.h> |
| 22 | #include <linux/mm.h> |
| 23 | #include <linux/smp.h> |
| 24 | #include <linux/smp_lock.h> |
| 25 | #include <linux/init.h> |
| 26 | #include <linux/console.h> |
| 27 | #include <linux/module.h> |
| 28 | #include <linux/hardirq.h> |
| 29 | |
| 30 | #include <asm/system.h> |
| 31 | #include <asm/uaccess.h> |
| 32 | #include <asm/pgtable.h> |
| 33 | |
| 34 | #ifndef CONFIG_ARCH_S390X |
| 35 | #define __FAIL_ADDR_MASK 0x7ffff000 |
| 36 | #define __FIXUP_MASK 0x7fffffff |
| 37 | #define __SUBCODE_MASK 0x0200 |
| 38 | #define __PF_RES_FIELD 0ULL |
| 39 | #else /* CONFIG_ARCH_S390X */ |
| 40 | #define __FAIL_ADDR_MASK -4096L |
| 41 | #define __FIXUP_MASK ~0L |
| 42 | #define __SUBCODE_MASK 0x0600 |
| 43 | #define __PF_RES_FIELD 0x8000000000000000ULL |
| 44 | #endif /* CONFIG_ARCH_S390X */ |
| 45 | |
| 46 | #ifdef CONFIG_SYSCTL |
| 47 | extern int sysctl_userprocess_debug; |
| 48 | #endif |
| 49 | |
| 50 | extern void die(const char *,struct pt_regs *,long); |
| 51 | |
| 52 | extern spinlock_t timerlist_lock; |
| 53 | |
| 54 | /* |
| 55 | * Unlock any spinlocks which will prevent us from getting the |
| 56 | * message out (timerlist_lock is acquired through the |
| 57 | * console unblank code) |
| 58 | */ |
| 59 | void bust_spinlocks(int yes) |
| 60 | { |
| 61 | if (yes) { |
| 62 | oops_in_progress = 1; |
| 63 | } else { |
| 64 | int loglevel_save = console_loglevel; |
| 65 | console_unblank(); |
| 66 | oops_in_progress = 0; |
| 67 | /* |
| 68 | * OK, the message is on the console. Now we call printk() |
| 69 | * without oops_in_progress set so that printk will give klogd |
| 70 | * a poke. Hold onto your hats... |
| 71 | */ |
| 72 | console_loglevel = 15; |
| 73 | printk(" "); |
| 74 | console_loglevel = loglevel_save; |
| 75 | } |
| 76 | } |
| 77 | |
| 78 | /* |
| 79 | * Check which address space is addressed by the access |
| 80 | * register in S390_lowcore.exc_access_id. |
| 81 | * Returns 1 for user space and 0 for kernel space. |
| 82 | */ |
| 83 | static int __check_access_register(struct pt_regs *regs, int error_code) |
| 84 | { |
| 85 | int areg = S390_lowcore.exc_access_id; |
| 86 | |
| 87 | if (areg == 0) |
| 88 | /* Access via access register 0 -> kernel address */ |
| 89 | return 0; |
| 90 | save_access_regs(current->thread.acrs); |
| 91 | if (regs && areg < NUM_ACRS && current->thread.acrs[areg] <= 1) |
| 92 | /* |
| 93 | * access register contains 0 -> kernel address, |
| 94 | * access register contains 1 -> user space address |
| 95 | */ |
| 96 | return current->thread.acrs[areg]; |
| 97 | |
| 98 | /* Something unhealthy was done with the access registers... */ |
| 99 | die("page fault via unknown access register", regs, error_code); |
| 100 | do_exit(SIGKILL); |
| 101 | return 0; |
| 102 | } |
| 103 | |
| 104 | /* |
| 105 | * Check which address space the address belongs to. |
| 106 | * Returns 1 for user space and 0 for kernel space. |
| 107 | */ |
| 108 | static inline int check_user_space(struct pt_regs *regs, int error_code) |
| 109 | { |
| 110 | /* |
| 111 | * The lowest two bits of S390_lowcore.trans_exc_code indicate |
| 112 | * which paging table was used: |
| 113 | * 0: Primary Segment Table Descriptor |
| 114 | * 1: STD determined via access register |
| 115 | * 2: Secondary Segment Table Descriptor |
| 116 | * 3: Home Segment Table Descriptor |
| 117 | */ |
| 118 | int descriptor = S390_lowcore.trans_exc_code & 3; |
| 119 | if (unlikely(descriptor == 1)) |
| 120 | return __check_access_register(regs, error_code); |
| 121 | if (descriptor == 2) |
| 122 | return current->thread.mm_segment.ar4; |
| 123 | return descriptor != 0; |
| 124 | } |
| 125 | |
| 126 | /* |
| 127 | * Send SIGSEGV to task. This is an external routine |
| 128 | * to keep the stack usage of do_page_fault small. |
| 129 | */ |
| 130 | static void do_sigsegv(struct pt_regs *regs, unsigned long error_code, |
| 131 | int si_code, unsigned long address) |
| 132 | { |
| 133 | struct siginfo si; |
| 134 | |
| 135 | #if defined(CONFIG_SYSCTL) || defined(CONFIG_PROCESS_DEBUG) |
| 136 | #if defined(CONFIG_SYSCTL) |
| 137 | if (sysctl_userprocess_debug) |
| 138 | #endif |
| 139 | { |
| 140 | printk("User process fault: interruption code 0x%lX\n", |
| 141 | error_code); |
| 142 | printk("failing address: %lX\n", address); |
| 143 | show_regs(regs); |
| 144 | } |
| 145 | #endif |
| 146 | si.si_signo = SIGSEGV; |
| 147 | si.si_code = si_code; |
| 148 | si.si_addr = (void *) address; |
| 149 | force_sig_info(SIGSEGV, &si, current); |
| 150 | } |
| 151 | |
| 152 | /* |
| 153 | * This routine handles page faults. It determines the address, |
| 154 | * and the problem, and then passes it off to one of the appropriate |
| 155 | * routines. |
| 156 | * |
| 157 | * error_code: |
| 158 | * 04 Protection -> Write-Protection (suprression) |
| 159 | * 10 Segment translation -> Not present (nullification) |
| 160 | * 11 Page translation -> Not present (nullification) |
| 161 | * 3b Region third trans. -> Not present (nullification) |
| 162 | */ |
| 163 | extern inline void |
| 164 | do_exception(struct pt_regs *regs, unsigned long error_code, int is_protection) |
| 165 | { |
| 166 | struct task_struct *tsk; |
| 167 | struct mm_struct *mm; |
| 168 | struct vm_area_struct * vma; |
| 169 | unsigned long address; |
| 170 | int user_address; |
| 171 | const struct exception_table_entry *fixup; |
| 172 | int si_code = SEGV_MAPERR; |
| 173 | |
| 174 | tsk = current; |
| 175 | mm = tsk->mm; |
| 176 | |
| 177 | /* |
| 178 | * Check for low-address protection. This needs to be treated |
| 179 | * as a special case because the translation exception code |
| 180 | * field is not guaranteed to contain valid data in this case. |
| 181 | */ |
| 182 | if (is_protection && !(S390_lowcore.trans_exc_code & 4)) { |
| 183 | |
| 184 | /* Low-address protection hit in kernel mode means |
| 185 | NULL pointer write access in kernel mode. */ |
| 186 | if (!(regs->psw.mask & PSW_MASK_PSTATE)) { |
| 187 | address = 0; |
| 188 | user_address = 0; |
| 189 | goto no_context; |
| 190 | } |
| 191 | |
| 192 | /* Low-address protection hit in user mode 'cannot happen'. */ |
| 193 | die ("Low-address protection", regs, error_code); |
| 194 | do_exit(SIGKILL); |
| 195 | } |
| 196 | |
| 197 | /* |
| 198 | * get the failing address |
| 199 | * more specific the segment and page table portion of |
| 200 | * the address |
| 201 | */ |
| 202 | address = S390_lowcore.trans_exc_code & __FAIL_ADDR_MASK; |
| 203 | user_address = check_user_space(regs, error_code); |
| 204 | |
| 205 | /* |
| 206 | * Verify that the fault happened in user space, that |
| 207 | * we are not in an interrupt and that there is a |
| 208 | * user context. |
| 209 | */ |
| 210 | if (user_address == 0 || in_interrupt() || !mm) |
| 211 | goto no_context; |
| 212 | |
| 213 | /* |
| 214 | * When we get here, the fault happened in the current |
| 215 | * task's user address space, so we can switch on the |
| 216 | * interrupts again and then search the VMAs |
| 217 | */ |
| 218 | local_irq_enable(); |
| 219 | |
| 220 | down_read(&mm->mmap_sem); |
| 221 | |
| 222 | vma = find_vma(mm, address); |
| 223 | if (!vma) |
| 224 | goto bad_area; |
| 225 | if (vma->vm_start <= address) |
| 226 | goto good_area; |
| 227 | if (!(vma->vm_flags & VM_GROWSDOWN)) |
| 228 | goto bad_area; |
| 229 | if (expand_stack(vma, address)) |
| 230 | goto bad_area; |
| 231 | /* |
| 232 | * Ok, we have a good vm_area for this memory access, so |
| 233 | * we can handle it.. |
| 234 | */ |
| 235 | good_area: |
| 236 | si_code = SEGV_ACCERR; |
| 237 | if (!is_protection) { |
| 238 | /* page not present, check vm flags */ |
| 239 | if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) |
| 240 | goto bad_area; |
| 241 | } else { |
| 242 | if (!(vma->vm_flags & VM_WRITE)) |
| 243 | goto bad_area; |
| 244 | } |
| 245 | |
| 246 | survive: |
| 247 | /* |
| 248 | * If for any reason at all we couldn't handle the fault, |
| 249 | * make sure we exit gracefully rather than endlessly redo |
| 250 | * the fault. |
| 251 | */ |
| 252 | switch (handle_mm_fault(mm, vma, address, is_protection)) { |
| 253 | case VM_FAULT_MINOR: |
| 254 | tsk->min_flt++; |
| 255 | break; |
| 256 | case VM_FAULT_MAJOR: |
| 257 | tsk->maj_flt++; |
| 258 | break; |
| 259 | case VM_FAULT_SIGBUS: |
| 260 | goto do_sigbus; |
| 261 | case VM_FAULT_OOM: |
| 262 | goto out_of_memory; |
| 263 | default: |
| 264 | BUG(); |
| 265 | } |
| 266 | |
| 267 | up_read(&mm->mmap_sem); |
| 268 | /* |
| 269 | * The instruction that caused the program check will |
| 270 | * be repeated. Don't signal single step via SIGTRAP. |
| 271 | */ |
| 272 | clear_tsk_thread_flag(current, TIF_SINGLE_STEP); |
| 273 | return; |
| 274 | |
| 275 | /* |
| 276 | * Something tried to access memory that isn't in our memory map.. |
| 277 | * Fix it, but check if it's kernel or user first.. |
| 278 | */ |
| 279 | bad_area: |
| 280 | up_read(&mm->mmap_sem); |
| 281 | |
| 282 | /* User mode accesses just cause a SIGSEGV */ |
| 283 | if (regs->psw.mask & PSW_MASK_PSTATE) { |
| 284 | tsk->thread.prot_addr = address; |
| 285 | tsk->thread.trap_no = error_code; |
| 286 | do_sigsegv(regs, error_code, si_code, address); |
| 287 | return; |
| 288 | } |
| 289 | |
| 290 | no_context: |
| 291 | /* Are we prepared to handle this kernel fault? */ |
| 292 | fixup = search_exception_tables(regs->psw.addr & __FIXUP_MASK); |
| 293 | if (fixup) { |
| 294 | regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE; |
| 295 | return; |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * Oops. The kernel tried to access some bad page. We'll have to |
| 300 | * terminate things with extreme prejudice. |
| 301 | */ |
| 302 | if (user_address == 0) |
| 303 | printk(KERN_ALERT "Unable to handle kernel pointer dereference" |
| 304 | " at virtual kernel address %p\n", (void *)address); |
| 305 | else |
| 306 | printk(KERN_ALERT "Unable to handle kernel paging request" |
| 307 | " at virtual user address %p\n", (void *)address); |
| 308 | |
| 309 | die("Oops", regs, error_code); |
| 310 | do_exit(SIGKILL); |
| 311 | |
| 312 | |
| 313 | /* |
| 314 | * We ran out of memory, or some other thing happened to us that made |
| 315 | * us unable to handle the page fault gracefully. |
| 316 | */ |
| 317 | out_of_memory: |
| 318 | up_read(&mm->mmap_sem); |
| 319 | if (tsk->pid == 1) { |
| 320 | yield(); |
| 321 | goto survive; |
| 322 | } |
| 323 | printk("VM: killing process %s\n", tsk->comm); |
| 324 | if (regs->psw.mask & PSW_MASK_PSTATE) |
| 325 | do_exit(SIGKILL); |
| 326 | goto no_context; |
| 327 | |
| 328 | do_sigbus: |
| 329 | up_read(&mm->mmap_sem); |
| 330 | |
| 331 | /* |
| 332 | * Send a sigbus, regardless of whether we were in kernel |
| 333 | * or user mode. |
| 334 | */ |
| 335 | tsk->thread.prot_addr = address; |
| 336 | tsk->thread.trap_no = error_code; |
| 337 | force_sig(SIGBUS, tsk); |
| 338 | |
| 339 | /* Kernel mode? Handle exceptions or die */ |
| 340 | if (!(regs->psw.mask & PSW_MASK_PSTATE)) |
| 341 | goto no_context; |
| 342 | } |
| 343 | |
| 344 | void do_protection_exception(struct pt_regs *regs, unsigned long error_code) |
| 345 | { |
| 346 | regs->psw.addr -= (error_code >> 16); |
| 347 | do_exception(regs, 4, 1); |
| 348 | } |
| 349 | |
| 350 | void do_dat_exception(struct pt_regs *regs, unsigned long error_code) |
| 351 | { |
| 352 | do_exception(regs, error_code & 0xff, 0); |
| 353 | } |
| 354 | |
| 355 | #ifndef CONFIG_ARCH_S390X |
| 356 | |
| 357 | typedef struct _pseudo_wait_t { |
| 358 | struct _pseudo_wait_t *next; |
| 359 | wait_queue_head_t queue; |
| 360 | unsigned long address; |
| 361 | int resolved; |
| 362 | } pseudo_wait_t; |
| 363 | |
| 364 | static pseudo_wait_t *pseudo_lock_queue = NULL; |
| 365 | static spinlock_t pseudo_wait_spinlock; /* spinlock to protect lock queue */ |
| 366 | |
| 367 | /* |
| 368 | * This routine handles 'pagex' pseudo page faults. |
| 369 | */ |
| 370 | asmlinkage void |
| 371 | do_pseudo_page_fault(struct pt_regs *regs, unsigned long error_code) |
| 372 | { |
| 373 | pseudo_wait_t wait_struct; |
| 374 | pseudo_wait_t *ptr, *last, *next; |
| 375 | unsigned long address; |
| 376 | |
| 377 | /* |
| 378 | * get the failing address |
| 379 | * more specific the segment and page table portion of |
| 380 | * the address |
| 381 | */ |
| 382 | address = S390_lowcore.trans_exc_code & 0xfffff000; |
| 383 | |
| 384 | if (address & 0x80000000) { |
| 385 | /* high bit set -> a page has been swapped in by VM */ |
| 386 | address &= 0x7fffffff; |
| 387 | spin_lock(&pseudo_wait_spinlock); |
| 388 | last = NULL; |
| 389 | ptr = pseudo_lock_queue; |
| 390 | while (ptr != NULL) { |
| 391 | next = ptr->next; |
| 392 | if (address == ptr->address) { |
| 393 | /* |
| 394 | * This is one of the processes waiting |
| 395 | * for the page. Unchain from the queue. |
| 396 | * There can be more than one process |
| 397 | * waiting for the same page. VM presents |
| 398 | * an initial and a completion interrupt for |
| 399 | * every process that tries to access a |
| 400 | * page swapped out by VM. |
| 401 | */ |
| 402 | if (last == NULL) |
| 403 | pseudo_lock_queue = next; |
| 404 | else |
| 405 | last->next = next; |
| 406 | /* now wake up the process */ |
| 407 | ptr->resolved = 1; |
| 408 | wake_up(&ptr->queue); |
| 409 | } else |
| 410 | last = ptr; |
| 411 | ptr = next; |
| 412 | } |
| 413 | spin_unlock(&pseudo_wait_spinlock); |
| 414 | } else { |
| 415 | /* Pseudo page faults in kernel mode is a bad idea */ |
| 416 | if (!(regs->psw.mask & PSW_MASK_PSTATE)) { |
| 417 | /* |
| 418 | * VM presents pseudo page faults if the interrupted |
| 419 | * state was not disabled for interrupts. So we can |
| 420 | * get pseudo page fault interrupts while running |
| 421 | * in kernel mode. We simply access the page here |
| 422 | * while we are running disabled. VM will then swap |
| 423 | * in the page synchronously. |
| 424 | */ |
| 425 | if (check_user_space(regs, error_code) == 0) |
| 426 | /* dereference a virtual kernel address */ |
| 427 | __asm__ __volatile__ ( |
| 428 | " ic 0,0(%0)" |
| 429 | : : "a" (address) : "0"); |
| 430 | else |
| 431 | /* dereference a virtual user address */ |
| 432 | __asm__ __volatile__ ( |
| 433 | " la 2,0(%0)\n" |
| 434 | " sacf 512\n" |
| 435 | " ic 2,0(2)\n" |
| 436 | "0:sacf 0\n" |
| 437 | ".section __ex_table,\"a\"\n" |
| 438 | " .align 4\n" |
| 439 | " .long 0b,0b\n" |
| 440 | ".previous" |
| 441 | : : "a" (address) : "2" ); |
| 442 | |
| 443 | return; |
| 444 | } |
| 445 | /* initialize and add element to pseudo_lock_queue */ |
| 446 | init_waitqueue_head (&wait_struct.queue); |
| 447 | wait_struct.address = address; |
| 448 | wait_struct.resolved = 0; |
| 449 | spin_lock(&pseudo_wait_spinlock); |
| 450 | wait_struct.next = pseudo_lock_queue; |
| 451 | pseudo_lock_queue = &wait_struct; |
| 452 | spin_unlock(&pseudo_wait_spinlock); |
| 453 | /* |
| 454 | * The instruction that caused the program check will |
| 455 | * be repeated. Don't signal single step via SIGTRAP. |
| 456 | */ |
| 457 | clear_tsk_thread_flag(current, TIF_SINGLE_STEP); |
| 458 | /* go to sleep */ |
| 459 | wait_event(wait_struct.queue, wait_struct.resolved); |
| 460 | } |
| 461 | } |
| 462 | #endif /* CONFIG_ARCH_S390X */ |
| 463 | |
| 464 | #ifdef CONFIG_PFAULT |
| 465 | /* |
| 466 | * 'pfault' pseudo page faults routines. |
| 467 | */ |
| 468 | static int pfault_disable = 0; |
| 469 | |
| 470 | static int __init nopfault(char *str) |
| 471 | { |
| 472 | pfault_disable = 1; |
| 473 | return 1; |
| 474 | } |
| 475 | |
| 476 | __setup("nopfault", nopfault); |
| 477 | |
| 478 | typedef struct { |
| 479 | __u16 refdiagc; |
| 480 | __u16 reffcode; |
| 481 | __u16 refdwlen; |
| 482 | __u16 refversn; |
| 483 | __u64 refgaddr; |
| 484 | __u64 refselmk; |
| 485 | __u64 refcmpmk; |
| 486 | __u64 reserved; |
| 487 | } __attribute__ ((packed)) pfault_refbk_t; |
| 488 | |
| 489 | int pfault_init(void) |
| 490 | { |
| 491 | pfault_refbk_t refbk = |
| 492 | { 0x258, 0, 5, 2, __LC_CURRENT, 1ULL << 48, 1ULL << 48, |
| 493 | __PF_RES_FIELD }; |
| 494 | int rc; |
| 495 | |
| 496 | if (pfault_disable) |
| 497 | return -1; |
| 498 | __asm__ __volatile__( |
| 499 | " diag %1,%0,0x258\n" |
| 500 | "0: j 2f\n" |
| 501 | "1: la %0,8\n" |
| 502 | "2:\n" |
| 503 | ".section __ex_table,\"a\"\n" |
| 504 | " .align 4\n" |
| 505 | #ifndef CONFIG_ARCH_S390X |
| 506 | " .long 0b,1b\n" |
| 507 | #else /* CONFIG_ARCH_S390X */ |
| 508 | " .quad 0b,1b\n" |
| 509 | #endif /* CONFIG_ARCH_S390X */ |
| 510 | ".previous" |
| 511 | : "=d" (rc) : "a" (&refbk) : "cc" ); |
| 512 | __ctl_set_bit(0, 9); |
| 513 | return rc; |
| 514 | } |
| 515 | |
| 516 | void pfault_fini(void) |
| 517 | { |
| 518 | pfault_refbk_t refbk = |
| 519 | { 0x258, 1, 5, 2, 0ULL, 0ULL, 0ULL, 0ULL }; |
| 520 | |
| 521 | if (pfault_disable) |
| 522 | return; |
| 523 | __ctl_clear_bit(0,9); |
| 524 | __asm__ __volatile__( |
| 525 | " diag %0,0,0x258\n" |
| 526 | "0:\n" |
| 527 | ".section __ex_table,\"a\"\n" |
| 528 | " .align 4\n" |
| 529 | #ifndef CONFIG_ARCH_S390X |
| 530 | " .long 0b,0b\n" |
| 531 | #else /* CONFIG_ARCH_S390X */ |
| 532 | " .quad 0b,0b\n" |
| 533 | #endif /* CONFIG_ARCH_S390X */ |
| 534 | ".previous" |
| 535 | : : "a" (&refbk) : "cc" ); |
| 536 | } |
| 537 | |
| 538 | asmlinkage void |
| 539 | pfault_interrupt(struct pt_regs *regs, __u16 error_code) |
| 540 | { |
| 541 | struct task_struct *tsk; |
| 542 | __u16 subcode; |
| 543 | |
| 544 | /* |
| 545 | * Get the external interruption subcode & pfault |
| 546 | * initial/completion signal bit. VM stores this |
| 547 | * in the 'cpu address' field associated with the |
| 548 | * external interrupt. |
| 549 | */ |
| 550 | subcode = S390_lowcore.cpu_addr; |
| 551 | if ((subcode & 0xff00) != __SUBCODE_MASK) |
| 552 | return; |
| 553 | |
| 554 | /* |
| 555 | * Get the token (= address of the task structure of the affected task). |
| 556 | */ |
| 557 | tsk = *(struct task_struct **) __LC_PFAULT_INTPARM; |
| 558 | |
| 559 | if (subcode & 0x0080) { |
| 560 | /* signal bit is set -> a page has been swapped in by VM */ |
| 561 | if (xchg(&tsk->thread.pfault_wait, -1) != 0) { |
| 562 | /* Initial interrupt was faster than the completion |
| 563 | * interrupt. pfault_wait is valid. Set pfault_wait |
| 564 | * back to zero and wake up the process. This can |
| 565 | * safely be done because the task is still sleeping |
| 566 | * and can't procude new pfaults. */ |
| 567 | tsk->thread.pfault_wait = 0; |
| 568 | wake_up_process(tsk); |
| 569 | } |
| 570 | } else { |
| 571 | /* signal bit not set -> a real page is missing. */ |
| 572 | set_task_state(tsk, TASK_UNINTERRUPTIBLE); |
| 573 | if (xchg(&tsk->thread.pfault_wait, 1) != 0) { |
| 574 | /* Completion interrupt was faster than the initial |
| 575 | * interrupt (swapped in a -1 for pfault_wait). Set |
| 576 | * pfault_wait back to zero and exit. This can be |
| 577 | * done safely because tsk is running in kernel |
| 578 | * mode and can't produce new pfaults. */ |
| 579 | tsk->thread.pfault_wait = 0; |
| 580 | set_task_state(tsk, TASK_RUNNING); |
| 581 | } else |
| 582 | set_tsk_need_resched(tsk); |
| 583 | } |
| 584 | } |
| 585 | #endif |
| 586 | |