Syed Rameez Mustafa | dddcab7 | 2016-09-07 16:18:27 -0700 | [diff] [blame] | 1 | /* Copyright (c) 2012-2016, The Linux Foundation. All rights reserved. |
| 2 | * |
| 3 | * This program is free software; you can redistribute it and/or modify |
| 4 | * it under the terms of the GNU General Public License version 2 and |
| 5 | * only version 2 as published by the Free Software Foundation. |
| 6 | * |
| 7 | * This program is distributed in the hope that it will be useful, |
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 10 | * GNU General Public License for more details. |
| 11 | * |
| 12 | * Implementation credits: Srivatsa Vaddagiri, Steve Muckle |
| 13 | * Syed Rameez Mustafa, Olav haugan, Joonwoo Park, Pavan Kumar Kondeti |
| 14 | * and Vikram Mulukutla |
| 15 | */ |
| 16 | |
| 17 | #include <linux/cpufreq.h> |
| 18 | #include <linux/list_sort.h> |
| 19 | #include <linux/syscore_ops.h> |
| 20 | |
| 21 | #include "sched.h" |
| 22 | |
| 23 | #include <trace/events/sched.h> |
| 24 | |
| 25 | const char *task_event_names[] = {"PUT_PREV_TASK", "PICK_NEXT_TASK", |
| 26 | "TASK_WAKE", "TASK_MIGRATE", "TASK_UPDATE", "IRQ_UPDATE"}; |
| 27 | |
| 28 | const char *migrate_type_names[] = {"GROUP_TO_RQ", "RQ_TO_GROUP", |
| 29 | "RQ_TO_RQ", "GROUP_TO_GROUP"}; |
| 30 | |
| 31 | |
| 32 | static ktime_t ktime_last; |
| 33 | static bool sched_ktime_suspended; |
| 34 | |
| 35 | static bool use_cycle_counter; |
| 36 | static struct cpu_cycle_counter_cb cpu_cycle_counter_cb; |
| 37 | |
| 38 | u64 sched_ktime_clock(void) |
| 39 | { |
| 40 | if (unlikely(sched_ktime_suspended)) |
| 41 | return ktime_to_ns(ktime_last); |
| 42 | return ktime_get_ns(); |
| 43 | } |
| 44 | |
| 45 | static void sched_resume(void) |
| 46 | { |
| 47 | sched_ktime_suspended = false; |
| 48 | } |
| 49 | |
| 50 | static int sched_suspend(void) |
| 51 | { |
| 52 | ktime_last = ktime_get(); |
| 53 | sched_ktime_suspended = true; |
| 54 | return 0; |
| 55 | } |
| 56 | |
| 57 | static struct syscore_ops sched_syscore_ops = { |
| 58 | .resume = sched_resume, |
| 59 | .suspend = sched_suspend |
| 60 | }; |
| 61 | |
| 62 | static int __init sched_init_ops(void) |
| 63 | { |
| 64 | register_syscore_ops(&sched_syscore_ops); |
| 65 | return 0; |
| 66 | } |
| 67 | late_initcall(sched_init_ops); |
| 68 | |
| 69 | inline void clear_ed_task(struct task_struct *p, struct rq *rq) |
| 70 | { |
| 71 | if (p == rq->ed_task) |
| 72 | rq->ed_task = NULL; |
| 73 | } |
| 74 | |
| 75 | inline void set_task_last_wake(struct task_struct *p, u64 wallclock) |
| 76 | { |
| 77 | p->last_wake_ts = wallclock; |
| 78 | } |
| 79 | |
| 80 | inline void set_task_last_switch_out(struct task_struct *p, u64 wallclock) |
| 81 | { |
| 82 | p->last_switch_out_ts = wallclock; |
| 83 | } |
| 84 | |
| 85 | /* |
| 86 | * Note C-state for (idle) cpus. |
| 87 | * |
| 88 | * @cstate = cstate index, 0 -> active state |
| 89 | * @wakeup_energy = energy spent in waking up cpu |
| 90 | * @wakeup_latency = latency to wakeup from cstate |
| 91 | * |
| 92 | */ |
| 93 | void |
| 94 | sched_set_cpu_cstate(int cpu, int cstate, int wakeup_energy, int wakeup_latency) |
| 95 | { |
| 96 | struct rq *rq = cpu_rq(cpu); |
| 97 | |
| 98 | rq->cstate = cstate; /* C1, C2 etc */ |
| 99 | rq->wakeup_energy = wakeup_energy; |
| 100 | rq->wakeup_latency = wakeup_latency; |
| 101 | } |
| 102 | |
| 103 | /* |
| 104 | * Note D-state for (idle) cluster. |
| 105 | * |
| 106 | * @dstate = dstate index, 0 -> active state |
| 107 | * @wakeup_energy = energy spent in waking up cluster |
| 108 | * @wakeup_latency = latency to wakeup from cluster |
| 109 | * |
| 110 | */ |
| 111 | void sched_set_cluster_dstate(const cpumask_t *cluster_cpus, int dstate, |
| 112 | int wakeup_energy, int wakeup_latency) |
| 113 | { |
| 114 | struct sched_cluster *cluster = |
| 115 | cpu_rq(cpumask_first(cluster_cpus))->cluster; |
| 116 | cluster->dstate = dstate; |
| 117 | cluster->dstate_wakeup_energy = wakeup_energy; |
| 118 | cluster->dstate_wakeup_latency = wakeup_latency; |
| 119 | } |
| 120 | |
| 121 | u32 __weak get_freq_max_load(int cpu, u32 freq) |
| 122 | { |
| 123 | /* 100% by default */ |
| 124 | return 100; |
| 125 | } |
| 126 | |
| 127 | struct freq_max_load_entry { |
| 128 | /* The maximum load which has accounted governor's headroom. */ |
| 129 | u64 hdemand; |
| 130 | }; |
| 131 | |
| 132 | struct freq_max_load { |
| 133 | struct rcu_head rcu; |
| 134 | int length; |
| 135 | struct freq_max_load_entry freqs[0]; |
| 136 | }; |
| 137 | |
| 138 | static DEFINE_PER_CPU(struct freq_max_load *, freq_max_load); |
| 139 | static DEFINE_SPINLOCK(freq_max_load_lock); |
| 140 | |
| 141 | struct cpu_pwr_stats __weak *get_cpu_pwr_stats(void) |
| 142 | { |
| 143 | return NULL; |
| 144 | } |
| 145 | |
| 146 | int sched_update_freq_max_load(const cpumask_t *cpumask) |
| 147 | { |
| 148 | int i, cpu, ret; |
| 149 | unsigned int freq; |
| 150 | struct cpu_pstate_pwr *costs; |
| 151 | struct cpu_pwr_stats *per_cpu_info = get_cpu_pwr_stats(); |
| 152 | struct freq_max_load *max_load, *old_max_load; |
| 153 | struct freq_max_load_entry *entry; |
| 154 | u64 max_demand_capacity, max_demand; |
| 155 | unsigned long flags; |
| 156 | u32 hfreq; |
| 157 | int hpct; |
| 158 | |
| 159 | if (!per_cpu_info) |
| 160 | return 0; |
| 161 | |
| 162 | spin_lock_irqsave(&freq_max_load_lock, flags); |
| 163 | max_demand_capacity = div64_u64(max_task_load(), max_possible_capacity); |
| 164 | for_each_cpu(cpu, cpumask) { |
| 165 | if (!per_cpu_info[cpu].ptable) { |
| 166 | ret = -EINVAL; |
| 167 | goto fail; |
| 168 | } |
| 169 | |
| 170 | old_max_load = rcu_dereference(per_cpu(freq_max_load, cpu)); |
| 171 | |
| 172 | /* |
| 173 | * allocate len + 1 and leave the last power cost as 0 for |
| 174 | * power_cost() can stop iterating index when |
| 175 | * per_cpu_info[cpu].len > len of max_load due to race between |
| 176 | * cpu power stats update and get_cpu_pwr_stats(). |
| 177 | */ |
| 178 | max_load = kzalloc(sizeof(struct freq_max_load) + |
| 179 | sizeof(struct freq_max_load_entry) * |
| 180 | (per_cpu_info[cpu].len + 1), GFP_ATOMIC); |
| 181 | if (unlikely(!max_load)) { |
| 182 | ret = -ENOMEM; |
| 183 | goto fail; |
| 184 | } |
| 185 | |
| 186 | max_load->length = per_cpu_info[cpu].len; |
| 187 | |
| 188 | max_demand = max_demand_capacity * |
| 189 | cpu_max_possible_capacity(cpu); |
| 190 | |
| 191 | i = 0; |
| 192 | costs = per_cpu_info[cpu].ptable; |
| 193 | while (costs[i].freq) { |
| 194 | entry = &max_load->freqs[i]; |
| 195 | freq = costs[i].freq; |
| 196 | hpct = get_freq_max_load(cpu, freq); |
| 197 | if (hpct <= 0 && hpct > 100) |
| 198 | hpct = 100; |
| 199 | hfreq = div64_u64((u64)freq * hpct, 100); |
| 200 | entry->hdemand = |
| 201 | div64_u64(max_demand * hfreq, |
| 202 | cpu_max_possible_freq(cpu)); |
| 203 | i++; |
| 204 | } |
| 205 | |
| 206 | rcu_assign_pointer(per_cpu(freq_max_load, cpu), max_load); |
| 207 | if (old_max_load) |
| 208 | kfree_rcu(old_max_load, rcu); |
| 209 | } |
| 210 | |
| 211 | spin_unlock_irqrestore(&freq_max_load_lock, flags); |
| 212 | return 0; |
| 213 | |
| 214 | fail: |
| 215 | for_each_cpu(cpu, cpumask) { |
| 216 | max_load = rcu_dereference(per_cpu(freq_max_load, cpu)); |
| 217 | if (max_load) { |
| 218 | rcu_assign_pointer(per_cpu(freq_max_load, cpu), NULL); |
| 219 | kfree_rcu(max_load, rcu); |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | spin_unlock_irqrestore(&freq_max_load_lock, flags); |
| 224 | return ret; |
| 225 | } |
| 226 | |
| 227 | unsigned int max_possible_efficiency = 1; |
| 228 | unsigned int min_possible_efficiency = UINT_MAX; |
| 229 | |
| 230 | unsigned long __weak arch_get_cpu_efficiency(int cpu) |
| 231 | { |
| 232 | return SCHED_CAPACITY_SCALE; |
| 233 | } |
| 234 | |
| 235 | /* Keep track of max/min capacity possible across CPUs "currently" */ |
| 236 | static void __update_min_max_capacity(void) |
| 237 | { |
| 238 | int i; |
| 239 | int max_cap = 0, min_cap = INT_MAX; |
| 240 | |
| 241 | for_each_online_cpu(i) { |
| 242 | max_cap = max(max_cap, cpu_capacity(i)); |
| 243 | min_cap = min(min_cap, cpu_capacity(i)); |
| 244 | } |
| 245 | |
| 246 | max_capacity = max_cap; |
| 247 | min_capacity = min_cap; |
| 248 | } |
| 249 | |
| 250 | static void update_min_max_capacity(void) |
| 251 | { |
| 252 | unsigned long flags; |
| 253 | int i; |
| 254 | |
| 255 | local_irq_save(flags); |
| 256 | for_each_possible_cpu(i) |
| 257 | raw_spin_lock(&cpu_rq(i)->lock); |
| 258 | |
| 259 | __update_min_max_capacity(); |
| 260 | |
| 261 | for_each_possible_cpu(i) |
| 262 | raw_spin_unlock(&cpu_rq(i)->lock); |
| 263 | local_irq_restore(flags); |
| 264 | } |
| 265 | |
| 266 | /* |
| 267 | * Return 'capacity' of a cpu in reference to "least" efficient cpu, such that |
| 268 | * least efficient cpu gets capacity of 1024 |
| 269 | */ |
| 270 | static unsigned long |
| 271 | capacity_scale_cpu_efficiency(struct sched_cluster *cluster) |
| 272 | { |
| 273 | return (1024 * cluster->efficiency) / min_possible_efficiency; |
| 274 | } |
| 275 | |
| 276 | /* |
| 277 | * Return 'capacity' of a cpu in reference to cpu with lowest max_freq |
| 278 | * (min_max_freq), such that one with lowest max_freq gets capacity of 1024. |
| 279 | */ |
| 280 | static unsigned long capacity_scale_cpu_freq(struct sched_cluster *cluster) |
| 281 | { |
| 282 | return (1024 * cluster_max_freq(cluster)) / min_max_freq; |
| 283 | } |
| 284 | |
| 285 | /* |
| 286 | * Return load_scale_factor of a cpu in reference to "most" efficient cpu, so |
| 287 | * that "most" efficient cpu gets a load_scale_factor of 1 |
| 288 | */ |
| 289 | static inline unsigned long |
| 290 | load_scale_cpu_efficiency(struct sched_cluster *cluster) |
| 291 | { |
| 292 | return DIV_ROUND_UP(1024 * max_possible_efficiency, |
| 293 | cluster->efficiency); |
| 294 | } |
| 295 | |
| 296 | /* |
| 297 | * Return load_scale_factor of a cpu in reference to cpu with best max_freq |
| 298 | * (max_possible_freq), so that one with best max_freq gets a load_scale_factor |
| 299 | * of 1. |
| 300 | */ |
| 301 | static inline unsigned long load_scale_cpu_freq(struct sched_cluster *cluster) |
| 302 | { |
| 303 | return DIV_ROUND_UP(1024 * max_possible_freq, |
| 304 | cluster_max_freq(cluster)); |
| 305 | } |
| 306 | |
| 307 | static int compute_capacity(struct sched_cluster *cluster) |
| 308 | { |
| 309 | int capacity = 1024; |
| 310 | |
| 311 | capacity *= capacity_scale_cpu_efficiency(cluster); |
| 312 | capacity >>= 10; |
| 313 | |
| 314 | capacity *= capacity_scale_cpu_freq(cluster); |
| 315 | capacity >>= 10; |
| 316 | |
| 317 | return capacity; |
| 318 | } |
| 319 | |
| 320 | static int compute_max_possible_capacity(struct sched_cluster *cluster) |
| 321 | { |
| 322 | int capacity = 1024; |
| 323 | |
| 324 | capacity *= capacity_scale_cpu_efficiency(cluster); |
| 325 | capacity >>= 10; |
| 326 | |
| 327 | capacity *= (1024 * cluster->max_possible_freq) / min_max_freq; |
| 328 | capacity >>= 10; |
| 329 | |
| 330 | return capacity; |
| 331 | } |
| 332 | |
| 333 | static int compute_load_scale_factor(struct sched_cluster *cluster) |
| 334 | { |
| 335 | int load_scale = 1024; |
| 336 | |
| 337 | /* |
| 338 | * load_scale_factor accounts for the fact that task load |
| 339 | * is in reference to "best" performing cpu. Task's load will need to be |
| 340 | * scaled (up) by a factor to determine suitability to be placed on a |
| 341 | * (little) cpu. |
| 342 | */ |
| 343 | load_scale *= load_scale_cpu_efficiency(cluster); |
| 344 | load_scale >>= 10; |
| 345 | |
| 346 | load_scale *= load_scale_cpu_freq(cluster); |
| 347 | load_scale >>= 10; |
| 348 | |
| 349 | return load_scale; |
| 350 | } |
| 351 | |
| 352 | struct list_head cluster_head; |
| 353 | static DEFINE_MUTEX(cluster_lock); |
| 354 | static cpumask_t all_cluster_cpus = CPU_MASK_NONE; |
| 355 | DECLARE_BITMAP(all_cluster_ids, NR_CPUS); |
| 356 | struct sched_cluster *sched_cluster[NR_CPUS]; |
| 357 | int num_clusters; |
| 358 | |
| 359 | struct sched_cluster init_cluster = { |
| 360 | .list = LIST_HEAD_INIT(init_cluster.list), |
| 361 | .id = 0, |
| 362 | .max_power_cost = 1, |
| 363 | .min_power_cost = 1, |
| 364 | .capacity = 1024, |
| 365 | .max_possible_capacity = 1024, |
| 366 | .efficiency = 1, |
| 367 | .load_scale_factor = 1024, |
| 368 | .cur_freq = 1, |
| 369 | .max_freq = 1, |
| 370 | .max_mitigated_freq = UINT_MAX, |
| 371 | .min_freq = 1, |
| 372 | .max_possible_freq = 1, |
| 373 | .dstate = 0, |
| 374 | .dstate_wakeup_energy = 0, |
| 375 | .dstate_wakeup_latency = 0, |
| 376 | .exec_scale_factor = 1024, |
| 377 | .notifier_sent = 0, |
| 378 | }; |
| 379 | |
| 380 | static void update_all_clusters_stats(void) |
| 381 | { |
| 382 | struct sched_cluster *cluster; |
| 383 | u64 highest_mpc = 0, lowest_mpc = U64_MAX; |
| 384 | |
| 385 | pre_big_task_count_change(cpu_possible_mask); |
| 386 | |
| 387 | for_each_sched_cluster(cluster) { |
| 388 | u64 mpc; |
| 389 | |
| 390 | cluster->capacity = compute_capacity(cluster); |
| 391 | mpc = cluster->max_possible_capacity = |
| 392 | compute_max_possible_capacity(cluster); |
| 393 | cluster->load_scale_factor = compute_load_scale_factor(cluster); |
| 394 | |
| 395 | cluster->exec_scale_factor = |
| 396 | DIV_ROUND_UP(cluster->efficiency * 1024, |
| 397 | max_possible_efficiency); |
| 398 | |
| 399 | if (mpc > highest_mpc) |
| 400 | highest_mpc = mpc; |
| 401 | |
| 402 | if (mpc < lowest_mpc) |
| 403 | lowest_mpc = mpc; |
| 404 | } |
| 405 | |
| 406 | max_possible_capacity = highest_mpc; |
| 407 | min_max_possible_capacity = lowest_mpc; |
| 408 | |
| 409 | __update_min_max_capacity(); |
| 410 | sched_update_freq_max_load(cpu_possible_mask); |
| 411 | post_big_task_count_change(cpu_possible_mask); |
| 412 | } |
| 413 | |
| 414 | static void assign_cluster_ids(struct list_head *head) |
| 415 | { |
| 416 | struct sched_cluster *cluster; |
| 417 | int pos = 0; |
| 418 | |
| 419 | list_for_each_entry(cluster, head, list) { |
| 420 | cluster->id = pos; |
| 421 | sched_cluster[pos++] = cluster; |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | static void |
| 426 | move_list(struct list_head *dst, struct list_head *src, bool sync_rcu) |
| 427 | { |
| 428 | struct list_head *first, *last; |
| 429 | |
| 430 | first = src->next; |
| 431 | last = src->prev; |
| 432 | |
| 433 | if (sync_rcu) { |
| 434 | INIT_LIST_HEAD_RCU(src); |
| 435 | synchronize_rcu(); |
| 436 | } |
| 437 | |
| 438 | first->prev = dst; |
| 439 | dst->prev = last; |
| 440 | last->next = dst; |
| 441 | |
| 442 | /* Ensure list sanity before making the head visible to all CPUs. */ |
| 443 | smp_mb(); |
| 444 | dst->next = first; |
| 445 | } |
| 446 | |
| 447 | static int |
| 448 | compare_clusters(void *priv, struct list_head *a, struct list_head *b) |
| 449 | { |
| 450 | struct sched_cluster *cluster1, *cluster2; |
| 451 | int ret; |
| 452 | |
| 453 | cluster1 = container_of(a, struct sched_cluster, list); |
| 454 | cluster2 = container_of(b, struct sched_cluster, list); |
| 455 | |
| 456 | ret = cluster1->max_power_cost > cluster2->max_power_cost || |
| 457 | (cluster1->max_power_cost == cluster2->max_power_cost && |
| 458 | cluster1->max_possible_capacity < |
| 459 | cluster2->max_possible_capacity); |
| 460 | |
| 461 | return ret; |
| 462 | } |
| 463 | |
| 464 | static void sort_clusters(void) |
| 465 | { |
| 466 | struct sched_cluster *cluster; |
| 467 | struct list_head new_head; |
| 468 | |
| 469 | INIT_LIST_HEAD(&new_head); |
| 470 | |
| 471 | for_each_sched_cluster(cluster) { |
| 472 | cluster->max_power_cost = power_cost(cluster_first_cpu(cluster), |
| 473 | max_task_load()); |
| 474 | cluster->min_power_cost = power_cost(cluster_first_cpu(cluster), |
| 475 | 0); |
| 476 | } |
| 477 | |
| 478 | move_list(&new_head, &cluster_head, true); |
| 479 | |
| 480 | list_sort(NULL, &new_head, compare_clusters); |
| 481 | assign_cluster_ids(&new_head); |
| 482 | |
| 483 | /* |
| 484 | * Ensure cluster ids are visible to all CPUs before making |
| 485 | * cluster_head visible. |
| 486 | */ |
| 487 | move_list(&cluster_head, &new_head, false); |
| 488 | } |
| 489 | |
| 490 | static void |
| 491 | insert_cluster(struct sched_cluster *cluster, struct list_head *head) |
| 492 | { |
| 493 | struct sched_cluster *tmp; |
| 494 | struct list_head *iter = head; |
| 495 | |
| 496 | list_for_each_entry(tmp, head, list) { |
| 497 | if (cluster->max_power_cost < tmp->max_power_cost) |
| 498 | break; |
| 499 | iter = &tmp->list; |
| 500 | } |
| 501 | |
| 502 | list_add(&cluster->list, iter); |
| 503 | } |
| 504 | |
| 505 | static struct sched_cluster *alloc_new_cluster(const struct cpumask *cpus) |
| 506 | { |
| 507 | struct sched_cluster *cluster = NULL; |
| 508 | |
| 509 | cluster = kzalloc(sizeof(struct sched_cluster), GFP_ATOMIC); |
| 510 | if (!cluster) { |
| 511 | __WARN_printf("Cluster allocation failed. \ |
| 512 | Possible bad scheduling\n"); |
| 513 | return NULL; |
| 514 | } |
| 515 | |
| 516 | INIT_LIST_HEAD(&cluster->list); |
| 517 | cluster->max_power_cost = 1; |
| 518 | cluster->min_power_cost = 1; |
| 519 | cluster->capacity = 1024; |
| 520 | cluster->max_possible_capacity = 1024; |
| 521 | cluster->efficiency = 1; |
| 522 | cluster->load_scale_factor = 1024; |
| 523 | cluster->cur_freq = 1; |
| 524 | cluster->max_freq = 1; |
| 525 | cluster->max_mitigated_freq = UINT_MAX; |
| 526 | cluster->min_freq = 1; |
| 527 | cluster->max_possible_freq = 1; |
| 528 | cluster->dstate = 0; |
| 529 | cluster->dstate_wakeup_energy = 0; |
| 530 | cluster->dstate_wakeup_latency = 0; |
| 531 | cluster->freq_init_done = false; |
| 532 | |
| 533 | cluster->cpus = *cpus; |
| 534 | cluster->efficiency = arch_get_cpu_efficiency(cpumask_first(cpus)); |
| 535 | |
| 536 | if (cluster->efficiency > max_possible_efficiency) |
| 537 | max_possible_efficiency = cluster->efficiency; |
| 538 | if (cluster->efficiency < min_possible_efficiency) |
| 539 | min_possible_efficiency = cluster->efficiency; |
| 540 | |
| 541 | cluster->notifier_sent = 0; |
| 542 | return cluster; |
| 543 | } |
| 544 | |
| 545 | static void add_cluster(const struct cpumask *cpus, struct list_head *head) |
| 546 | { |
| 547 | struct sched_cluster *cluster = alloc_new_cluster(cpus); |
| 548 | int i; |
| 549 | |
| 550 | if (!cluster) |
| 551 | return; |
| 552 | |
| 553 | for_each_cpu(i, cpus) |
| 554 | cpu_rq(i)->cluster = cluster; |
| 555 | |
| 556 | insert_cluster(cluster, head); |
| 557 | set_bit(num_clusters, all_cluster_ids); |
| 558 | num_clusters++; |
| 559 | } |
| 560 | |
| 561 | void update_cluster_topology(void) |
| 562 | { |
| 563 | struct cpumask cpus = *cpu_possible_mask; |
| 564 | const struct cpumask *cluster_cpus; |
| 565 | struct list_head new_head; |
| 566 | int i; |
| 567 | |
| 568 | INIT_LIST_HEAD(&new_head); |
| 569 | |
| 570 | for_each_cpu(i, &cpus) { |
| 571 | cluster_cpus = cpu_coregroup_mask(i); |
| 572 | cpumask_or(&all_cluster_cpus, &all_cluster_cpus, cluster_cpus); |
| 573 | cpumask_andnot(&cpus, &cpus, cluster_cpus); |
| 574 | add_cluster(cluster_cpus, &new_head); |
| 575 | } |
| 576 | |
| 577 | assign_cluster_ids(&new_head); |
| 578 | |
| 579 | /* |
| 580 | * Ensure cluster ids are visible to all CPUs before making |
| 581 | * cluster_head visible. |
| 582 | */ |
| 583 | move_list(&cluster_head, &new_head, false); |
| 584 | } |
| 585 | |
| 586 | void init_clusters(void) |
| 587 | { |
| 588 | bitmap_clear(all_cluster_ids, 0, NR_CPUS); |
| 589 | init_cluster.cpus = *cpu_possible_mask; |
| 590 | INIT_LIST_HEAD(&cluster_head); |
| 591 | } |
| 592 | |
| 593 | int register_cpu_cycle_counter_cb(struct cpu_cycle_counter_cb *cb) |
| 594 | { |
| 595 | mutex_lock(&cluster_lock); |
| 596 | if (!cb->get_cpu_cycle_counter) { |
| 597 | mutex_unlock(&cluster_lock); |
| 598 | return -EINVAL; |
| 599 | } |
| 600 | |
| 601 | cpu_cycle_counter_cb = *cb; |
| 602 | use_cycle_counter = true; |
| 603 | mutex_unlock(&cluster_lock); |
| 604 | |
| 605 | return 0; |
| 606 | } |
| 607 | |
| 608 | int got_boost_kick(void) |
| 609 | { |
| 610 | int cpu = smp_processor_id(); |
| 611 | struct rq *rq = cpu_rq(cpu); |
| 612 | |
| 613 | return test_bit(BOOST_KICK, &rq->hmp_flags); |
| 614 | } |
| 615 | |
| 616 | inline void clear_boost_kick(int cpu) |
| 617 | { |
| 618 | struct rq *rq = cpu_rq(cpu); |
| 619 | |
| 620 | clear_bit(BOOST_KICK, &rq->hmp_flags); |
| 621 | } |
| 622 | |
| 623 | inline void boost_kick(int cpu) |
| 624 | { |
| 625 | struct rq *rq = cpu_rq(cpu); |
| 626 | |
| 627 | if (!test_and_set_bit(BOOST_KICK, &rq->hmp_flags)) |
| 628 | smp_send_reschedule(cpu); |
| 629 | } |
| 630 | |
| 631 | /* Clear any HMP scheduler related requests pending from or on cpu */ |
| 632 | void clear_hmp_request(int cpu) |
| 633 | { |
| 634 | struct rq *rq = cpu_rq(cpu); |
| 635 | unsigned long flags; |
| 636 | |
| 637 | clear_boost_kick(cpu); |
| 638 | clear_reserved(cpu); |
| 639 | if (rq->push_task) { |
| 640 | raw_spin_lock_irqsave(&rq->lock, flags); |
| 641 | if (rq->push_task) { |
| 642 | clear_reserved(rq->push_cpu); |
| 643 | put_task_struct(rq->push_task); |
| 644 | rq->push_task = NULL; |
| 645 | } |
| 646 | rq->active_balance = 0; |
| 647 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
| 648 | } |
| 649 | } |
| 650 | |
| 651 | int sched_set_static_cpu_pwr_cost(int cpu, unsigned int cost) |
| 652 | { |
| 653 | struct rq *rq = cpu_rq(cpu); |
| 654 | |
| 655 | rq->static_cpu_pwr_cost = cost; |
| 656 | return 0; |
| 657 | } |
| 658 | |
| 659 | unsigned int sched_get_static_cpu_pwr_cost(int cpu) |
| 660 | { |
| 661 | return cpu_rq(cpu)->static_cpu_pwr_cost; |
| 662 | } |
| 663 | |
| 664 | int sched_set_static_cluster_pwr_cost(int cpu, unsigned int cost) |
| 665 | { |
| 666 | struct sched_cluster *cluster = cpu_rq(cpu)->cluster; |
| 667 | |
| 668 | cluster->static_cluster_pwr_cost = cost; |
| 669 | return 0; |
| 670 | } |
| 671 | |
| 672 | unsigned int sched_get_static_cluster_pwr_cost(int cpu) |
| 673 | { |
| 674 | return cpu_rq(cpu)->cluster->static_cluster_pwr_cost; |
| 675 | } |
| 676 | |
| 677 | /* |
| 678 | * sched_window_stats_policy and sched_ravg_hist_size have a 'sysctl' copy |
| 679 | * associated with them. This is required for atomic update of those variables |
| 680 | * when being modifed via sysctl interface. |
| 681 | * |
| 682 | * IMPORTANT: Initialize both copies to same value!! |
| 683 | */ |
| 684 | |
| 685 | /* |
| 686 | * Tasks that are runnable continuously for a period greather than |
| 687 | * EARLY_DETECTION_DURATION can be flagged early as potential |
| 688 | * high load tasks. |
| 689 | */ |
| 690 | #define EARLY_DETECTION_DURATION 9500000 |
| 691 | |
| 692 | static __read_mostly unsigned int sched_ravg_hist_size = 5; |
| 693 | __read_mostly unsigned int sysctl_sched_ravg_hist_size = 5; |
| 694 | |
| 695 | static __read_mostly unsigned int sched_window_stats_policy = |
| 696 | WINDOW_STATS_MAX_RECENT_AVG; |
| 697 | __read_mostly unsigned int sysctl_sched_window_stats_policy = |
| 698 | WINDOW_STATS_MAX_RECENT_AVG; |
| 699 | |
| 700 | #define SCHED_ACCOUNT_WAIT_TIME 1 |
| 701 | |
| 702 | __read_mostly unsigned int sysctl_sched_cpu_high_irqload = (10 * NSEC_PER_MSEC); |
| 703 | |
| 704 | unsigned int __read_mostly sysctl_sched_enable_colocation = 1; |
| 705 | |
| 706 | /* |
| 707 | * Enable colocation and frequency aggregation for all threads in a process. |
| 708 | * The children inherits the group id from the parent. |
| 709 | */ |
| 710 | unsigned int __read_mostly sysctl_sched_enable_thread_grouping; |
| 711 | |
| 712 | |
| 713 | __read_mostly unsigned int sysctl_sched_new_task_windows = 5; |
| 714 | |
| 715 | #define SCHED_FREQ_ACCOUNT_WAIT_TIME 0 |
| 716 | |
| 717 | /* |
| 718 | * For increase, send notification if |
| 719 | * freq_required - cur_freq > sysctl_sched_freq_inc_notify |
| 720 | */ |
| 721 | __read_mostly int sysctl_sched_freq_inc_notify = 10 * 1024 * 1024; /* + 10GHz */ |
| 722 | |
| 723 | /* |
| 724 | * For decrease, send notification if |
| 725 | * cur_freq - freq_required > sysctl_sched_freq_dec_notify |
| 726 | */ |
| 727 | __read_mostly int sysctl_sched_freq_dec_notify = 10 * 1024 * 1024; /* - 10GHz */ |
| 728 | |
| 729 | static __read_mostly unsigned int sched_io_is_busy; |
| 730 | |
| 731 | __read_mostly unsigned int sysctl_sched_pred_alert_freq = 10 * 1024 * 1024; |
| 732 | |
| 733 | /* |
| 734 | * Maximum possible frequency across all cpus. Task demand and cpu |
| 735 | * capacity (cpu_power) metrics are scaled in reference to it. |
| 736 | */ |
| 737 | unsigned int max_possible_freq = 1; |
| 738 | |
| 739 | /* |
| 740 | * Minimum possible max_freq across all cpus. This will be same as |
| 741 | * max_possible_freq on homogeneous systems and could be different from |
| 742 | * max_possible_freq on heterogenous systems. min_max_freq is used to derive |
| 743 | * capacity (cpu_power) of cpus. |
| 744 | */ |
| 745 | unsigned int min_max_freq = 1; |
| 746 | |
| 747 | unsigned int max_capacity = 1024; /* max(rq->capacity) */ |
| 748 | unsigned int min_capacity = 1024; /* min(rq->capacity) */ |
| 749 | unsigned int max_possible_capacity = 1024; /* max(rq->max_possible_capacity) */ |
| 750 | unsigned int |
| 751 | min_max_possible_capacity = 1024; /* min(rq->max_possible_capacity) */ |
| 752 | |
| 753 | /* Window size (in ns) */ |
| 754 | __read_mostly unsigned int sched_ravg_window = 10000000; |
| 755 | |
| 756 | /* Min window size (in ns) = 10ms */ |
| 757 | #define MIN_SCHED_RAVG_WINDOW 10000000 |
| 758 | |
| 759 | /* Max window size (in ns) = 1s */ |
| 760 | #define MAX_SCHED_RAVG_WINDOW 1000000000 |
| 761 | |
| 762 | /* Temporarily disable window-stats activity on all cpus */ |
| 763 | unsigned int __read_mostly sched_disable_window_stats; |
| 764 | |
| 765 | /* |
| 766 | * Major task runtime. If a task runs for more than sched_major_task_runtime |
| 767 | * in a window, it's considered to be generating majority of workload |
| 768 | * for this window. Prediction could be adjusted for such tasks. |
| 769 | */ |
| 770 | __read_mostly unsigned int sched_major_task_runtime = 10000000; |
| 771 | |
| 772 | static unsigned int sync_cpu; |
| 773 | |
| 774 | static LIST_HEAD(related_thread_groups); |
| 775 | static DEFINE_RWLOCK(related_thread_group_lock); |
| 776 | |
| 777 | #define for_each_related_thread_group(grp) \ |
| 778 | list_for_each_entry(grp, &related_thread_groups, list) |
| 779 | |
| 780 | /* |
| 781 | * Demand aggregation for frequency purpose: |
| 782 | * |
| 783 | * 'sched_freq_aggregate' controls aggregation of cpu demand of related threads |
| 784 | * for frequency determination purpose. This aggregation is done per-cluster. |
| 785 | * |
| 786 | * CPU demand of tasks from various related groups is aggregated per-cluster and |
| 787 | * added to the "max_busy_cpu" in that cluster, where max_busy_cpu is determined |
| 788 | * by just rq->prev_runnable_sum. |
| 789 | * |
| 790 | * Some examples follow, which assume: |
| 791 | * Cluster0 = CPU0-3, Cluster1 = CPU4-7 |
| 792 | * One related thread group A that has tasks A0, A1, A2 |
| 793 | * |
| 794 | * A->cpu_time[X].curr/prev_sum = counters in which cpu execution stats of |
| 795 | * tasks belonging to group A are accumulated when they run on cpu X. |
| 796 | * |
| 797 | * CX->curr/prev_sum = counters in which cpu execution stats of all tasks |
| 798 | * not belonging to group A are accumulated when they run on cpu X |
| 799 | * |
| 800 | * Lets say the stats for window M was as below: |
| 801 | * |
| 802 | * C0->prev_sum = 1ms, A->cpu_time[0].prev_sum = 5ms |
| 803 | * Task A0 ran 5ms on CPU0 |
| 804 | * Task B0 ran 1ms on CPU0 |
| 805 | * |
| 806 | * C1->prev_sum = 5ms, A->cpu_time[1].prev_sum = 6ms |
| 807 | * Task A1 ran 4ms on CPU1 |
| 808 | * Task A2 ran 2ms on CPU1 |
| 809 | * Task B1 ran 5ms on CPU1 |
| 810 | * |
| 811 | * C2->prev_sum = 0ms, A->cpu_time[2].prev_sum = 0 |
| 812 | * CPU2 idle |
| 813 | * |
| 814 | * C3->prev_sum = 0ms, A->cpu_time[3].prev_sum = 0 |
| 815 | * CPU3 idle |
| 816 | * |
| 817 | * In this case, CPU1 was most busy going by just its prev_sum counter. Demand |
| 818 | * from all group A tasks are added to CPU1. IOW, at end of window M, cpu busy |
| 819 | * time reported to governor will be: |
| 820 | * |
| 821 | * |
| 822 | * C0 busy time = 1ms |
| 823 | * C1 busy time = 5 + 5 + 6 = 16ms |
| 824 | * |
| 825 | */ |
| 826 | static __read_mostly unsigned int sched_freq_aggregate; |
| 827 | __read_mostly unsigned int sysctl_sched_freq_aggregate; |
| 828 | |
| 829 | unsigned int __read_mostly sysctl_sched_freq_aggregate_threshold_pct; |
| 830 | static unsigned int __read_mostly sched_freq_aggregate_threshold; |
| 831 | |
| 832 | /* Initial task load. Newly created tasks are assigned this load. */ |
| 833 | unsigned int __read_mostly sched_init_task_load_windows; |
| 834 | unsigned int __read_mostly sysctl_sched_init_task_load_pct = 15; |
| 835 | |
| 836 | unsigned int max_task_load(void) |
| 837 | { |
| 838 | return sched_ravg_window; |
| 839 | } |
| 840 | |
| 841 | /* |
| 842 | * Scheduler boost is a mechanism to temporarily place tasks on CPUs |
| 843 | * with higher capacity than those where a task would have normally |
| 844 | * ended up with their load characteristics. Any entity enabling |
| 845 | * boost is responsible for disabling it as well. |
| 846 | */ |
| 847 | unsigned int sysctl_sched_boost; |
| 848 | |
| 849 | /* A cpu can no longer accommodate more tasks if: |
| 850 | * |
| 851 | * rq->nr_running > sysctl_sched_spill_nr_run || |
| 852 | * rq->hmp_stats.cumulative_runnable_avg > sched_spill_load |
| 853 | */ |
| 854 | unsigned int __read_mostly sysctl_sched_spill_nr_run = 10; |
| 855 | |
| 856 | /* |
| 857 | * Place sync wakee tasks those have less than configured demand to the waker's |
| 858 | * cluster. |
| 859 | */ |
| 860 | unsigned int __read_mostly sched_small_wakee_task_load; |
| 861 | unsigned int __read_mostly sysctl_sched_small_wakee_task_load_pct = 10; |
| 862 | |
| 863 | unsigned int __read_mostly sched_big_waker_task_load; |
| 864 | unsigned int __read_mostly sysctl_sched_big_waker_task_load_pct = 25; |
| 865 | |
| 866 | /* |
| 867 | * CPUs with load greater than the sched_spill_load_threshold are not |
| 868 | * eligible for task placement. When all CPUs in a cluster achieve a |
| 869 | * load higher than this level, tasks becomes eligible for inter |
| 870 | * cluster migration. |
| 871 | */ |
| 872 | unsigned int __read_mostly sched_spill_load; |
| 873 | unsigned int __read_mostly sysctl_sched_spill_load_pct = 100; |
| 874 | |
| 875 | /* |
| 876 | * Tasks whose bandwidth consumption on a cpu is more than |
| 877 | * sched_upmigrate are considered "big" tasks. Big tasks will be |
| 878 | * considered for "up" migration, i.e migrating to a cpu with better |
| 879 | * capacity. |
| 880 | */ |
| 881 | unsigned int __read_mostly sched_upmigrate; |
| 882 | unsigned int __read_mostly sysctl_sched_upmigrate_pct = 80; |
| 883 | |
| 884 | /* |
| 885 | * Big tasks, once migrated, will need to drop their bandwidth |
| 886 | * consumption to less than sched_downmigrate before they are "down" |
| 887 | * migrated. |
| 888 | */ |
| 889 | unsigned int __read_mostly sched_downmigrate; |
| 890 | unsigned int __read_mostly sysctl_sched_downmigrate_pct = 60; |
| 891 | |
| 892 | /* |
| 893 | * The load scale factor of a CPU gets boosted when its max frequency |
| 894 | * is restricted due to which the tasks are migrating to higher capacity |
| 895 | * CPUs early. The sched_upmigrate threshold is auto-upgraded by |
| 896 | * rq->max_possible_freq/rq->max_freq of a lower capacity CPU. |
| 897 | */ |
| 898 | unsigned int up_down_migrate_scale_factor = 1024; |
| 899 | |
| 900 | /* |
| 901 | * Scheduler selects and places task to its previous CPU if sleep time is |
| 902 | * less than sysctl_sched_select_prev_cpu_us. |
| 903 | */ |
| 904 | unsigned int __read_mostly |
| 905 | sched_short_sleep_task_threshold = 2000 * NSEC_PER_USEC; |
| 906 | |
| 907 | unsigned int __read_mostly sysctl_sched_select_prev_cpu_us = 2000; |
| 908 | |
| 909 | unsigned int __read_mostly |
| 910 | sched_long_cpu_selection_threshold = 100 * NSEC_PER_MSEC; |
| 911 | |
| 912 | unsigned int __read_mostly sysctl_sched_restrict_cluster_spill; |
| 913 | |
| 914 | void update_up_down_migrate(void) |
| 915 | { |
| 916 | unsigned int up_migrate = pct_to_real(sysctl_sched_upmigrate_pct); |
| 917 | unsigned int down_migrate = pct_to_real(sysctl_sched_downmigrate_pct); |
| 918 | unsigned int delta; |
| 919 | |
| 920 | if (up_down_migrate_scale_factor == 1024) |
| 921 | goto done; |
| 922 | |
| 923 | delta = up_migrate - down_migrate; |
| 924 | |
| 925 | up_migrate /= NSEC_PER_USEC; |
| 926 | up_migrate *= up_down_migrate_scale_factor; |
| 927 | up_migrate >>= 10; |
| 928 | up_migrate *= NSEC_PER_USEC; |
| 929 | |
| 930 | up_migrate = min(up_migrate, sched_ravg_window); |
| 931 | |
| 932 | down_migrate /= NSEC_PER_USEC; |
| 933 | down_migrate *= up_down_migrate_scale_factor; |
| 934 | down_migrate >>= 10; |
| 935 | down_migrate *= NSEC_PER_USEC; |
| 936 | |
| 937 | down_migrate = min(down_migrate, up_migrate - delta); |
| 938 | done: |
| 939 | sched_upmigrate = up_migrate; |
| 940 | sched_downmigrate = down_migrate; |
| 941 | } |
| 942 | |
| 943 | void set_hmp_defaults(void) |
| 944 | { |
| 945 | sched_spill_load = |
| 946 | pct_to_real(sysctl_sched_spill_load_pct); |
| 947 | |
| 948 | update_up_down_migrate(); |
| 949 | |
| 950 | sched_major_task_runtime = |
| 951 | mult_frac(sched_ravg_window, MAJOR_TASK_PCT, 100); |
| 952 | |
| 953 | sched_init_task_load_windows = |
| 954 | div64_u64((u64)sysctl_sched_init_task_load_pct * |
| 955 | (u64)sched_ravg_window, 100); |
| 956 | |
| 957 | sched_short_sleep_task_threshold = sysctl_sched_select_prev_cpu_us * |
| 958 | NSEC_PER_USEC; |
| 959 | |
| 960 | sched_small_wakee_task_load = |
| 961 | div64_u64((u64)sysctl_sched_small_wakee_task_load_pct * |
| 962 | (u64)sched_ravg_window, 100); |
| 963 | |
| 964 | sched_big_waker_task_load = |
| 965 | div64_u64((u64)sysctl_sched_big_waker_task_load_pct * |
| 966 | (u64)sched_ravg_window, 100); |
| 967 | |
| 968 | sched_freq_aggregate_threshold = |
| 969 | pct_to_real(sysctl_sched_freq_aggregate_threshold_pct); |
| 970 | } |
| 971 | |
| 972 | u32 sched_get_init_task_load(struct task_struct *p) |
| 973 | { |
| 974 | return p->init_load_pct; |
| 975 | } |
| 976 | |
| 977 | int sched_set_init_task_load(struct task_struct *p, int init_load_pct) |
| 978 | { |
| 979 | if (init_load_pct < 0 || init_load_pct > 100) |
| 980 | return -EINVAL; |
| 981 | |
| 982 | p->init_load_pct = init_load_pct; |
| 983 | |
| 984 | return 0; |
| 985 | } |
| 986 | |
| 987 | #ifdef CONFIG_CGROUP_SCHED |
| 988 | |
| 989 | int upmigrate_discouraged(struct task_struct *p) |
| 990 | { |
| 991 | return task_group(p)->upmigrate_discouraged; |
| 992 | } |
| 993 | |
| 994 | #else |
| 995 | |
| 996 | static inline int upmigrate_discouraged(struct task_struct *p) |
| 997 | { |
| 998 | return 0; |
| 999 | } |
| 1000 | |
| 1001 | #endif |
| 1002 | |
| 1003 | /* Is a task "big" on its current cpu */ |
| 1004 | static inline int __is_big_task(struct task_struct *p, u64 scaled_load) |
| 1005 | { |
| 1006 | int nice = task_nice(p); |
| 1007 | |
| 1008 | if (nice > SCHED_UPMIGRATE_MIN_NICE || upmigrate_discouraged(p)) |
| 1009 | return 0; |
| 1010 | |
| 1011 | return scaled_load > sched_upmigrate; |
| 1012 | } |
| 1013 | |
| 1014 | int is_big_task(struct task_struct *p) |
| 1015 | { |
| 1016 | return __is_big_task(p, scale_load_to_cpu(task_load(p), task_cpu(p))); |
| 1017 | } |
| 1018 | |
| 1019 | u64 cpu_load(int cpu) |
| 1020 | { |
| 1021 | struct rq *rq = cpu_rq(cpu); |
| 1022 | |
| 1023 | return scale_load_to_cpu(rq->hmp_stats.cumulative_runnable_avg, cpu); |
| 1024 | } |
| 1025 | |
| 1026 | u64 cpu_load_sync(int cpu, int sync) |
| 1027 | { |
| 1028 | return scale_load_to_cpu(cpu_cravg_sync(cpu, sync), cpu); |
| 1029 | } |
| 1030 | |
| 1031 | static int boost_refcount; |
| 1032 | static DEFINE_SPINLOCK(boost_lock); |
| 1033 | static DEFINE_MUTEX(boost_mutex); |
| 1034 | |
| 1035 | static void boost_kick_cpus(void) |
| 1036 | { |
| 1037 | int i; |
| 1038 | |
| 1039 | for_each_online_cpu(i) { |
| 1040 | if (cpu_capacity(i) != max_capacity) |
| 1041 | boost_kick(i); |
| 1042 | } |
| 1043 | } |
| 1044 | |
| 1045 | int sched_boost(void) |
| 1046 | { |
| 1047 | return boost_refcount > 0; |
| 1048 | } |
| 1049 | |
| 1050 | int sched_set_boost(int enable) |
| 1051 | { |
| 1052 | unsigned long flags; |
| 1053 | int ret = 0; |
| 1054 | int old_refcount; |
| 1055 | |
| 1056 | spin_lock_irqsave(&boost_lock, flags); |
| 1057 | |
| 1058 | old_refcount = boost_refcount; |
| 1059 | |
| 1060 | if (enable == 1) { |
| 1061 | boost_refcount++; |
| 1062 | } else if (!enable) { |
| 1063 | if (boost_refcount >= 1) |
| 1064 | boost_refcount--; |
| 1065 | else |
| 1066 | ret = -EINVAL; |
| 1067 | } else { |
| 1068 | ret = -EINVAL; |
| 1069 | } |
| 1070 | |
| 1071 | if (!old_refcount && boost_refcount) |
| 1072 | boost_kick_cpus(); |
| 1073 | |
| 1074 | trace_sched_set_boost(boost_refcount); |
| 1075 | spin_unlock_irqrestore(&boost_lock, flags); |
| 1076 | |
| 1077 | return ret; |
| 1078 | } |
| 1079 | |
| 1080 | int sched_boost_handler(struct ctl_table *table, int write, |
| 1081 | void __user *buffer, size_t *lenp, |
| 1082 | loff_t *ppos) |
| 1083 | { |
| 1084 | int ret; |
| 1085 | |
| 1086 | mutex_lock(&boost_mutex); |
| 1087 | if (!write) |
| 1088 | sysctl_sched_boost = sched_boost(); |
| 1089 | |
| 1090 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
| 1091 | if (ret || !write) |
| 1092 | goto done; |
| 1093 | |
| 1094 | ret = (sysctl_sched_boost <= 1) ? |
| 1095 | sched_set_boost(sysctl_sched_boost) : -EINVAL; |
| 1096 | |
| 1097 | done: |
| 1098 | mutex_unlock(&boost_mutex); |
| 1099 | return ret; |
| 1100 | } |
| 1101 | |
| 1102 | /* |
| 1103 | * Task will fit on a cpu if it's bandwidth consumption on that cpu |
| 1104 | * will be less than sched_upmigrate. A big task that was previously |
| 1105 | * "up" migrated will be considered fitting on "little" cpu if its |
| 1106 | * bandwidth consumption on "little" cpu will be less than |
| 1107 | * sched_downmigrate. This will help avoid frequenty migrations for |
| 1108 | * tasks with load close to the upmigrate threshold |
| 1109 | */ |
| 1110 | int task_load_will_fit(struct task_struct *p, u64 task_load, int cpu, |
| 1111 | enum sched_boost_type boost_type) |
| 1112 | { |
| 1113 | int upmigrate; |
| 1114 | |
| 1115 | if (cpu_capacity(cpu) == max_capacity) |
| 1116 | return 1; |
| 1117 | |
| 1118 | if (boost_type != SCHED_BOOST_ON_BIG) { |
| 1119 | if (task_nice(p) > SCHED_UPMIGRATE_MIN_NICE || |
| 1120 | upmigrate_discouraged(p)) |
| 1121 | return 1; |
| 1122 | |
| 1123 | upmigrate = sched_upmigrate; |
| 1124 | if (cpu_capacity(task_cpu(p)) > cpu_capacity(cpu)) |
| 1125 | upmigrate = sched_downmigrate; |
| 1126 | |
| 1127 | if (task_load < upmigrate) |
| 1128 | return 1; |
| 1129 | } |
| 1130 | |
| 1131 | return 0; |
| 1132 | } |
| 1133 | |
| 1134 | enum sched_boost_type sched_boost_type(void) |
| 1135 | { |
| 1136 | if (sched_boost()) { |
| 1137 | if (min_possible_efficiency != max_possible_efficiency) |
| 1138 | return SCHED_BOOST_ON_BIG; |
| 1139 | else |
| 1140 | return SCHED_BOOST_ON_ALL; |
| 1141 | } |
| 1142 | return SCHED_BOOST_NONE; |
| 1143 | } |
| 1144 | |
| 1145 | int task_will_fit(struct task_struct *p, int cpu) |
| 1146 | { |
| 1147 | u64 tload = scale_load_to_cpu(task_load(p), cpu); |
| 1148 | |
| 1149 | return task_load_will_fit(p, tload, cpu, sched_boost_type()); |
| 1150 | } |
| 1151 | |
| 1152 | int group_will_fit(struct sched_cluster *cluster, |
| 1153 | struct related_thread_group *grp, u64 demand) |
| 1154 | { |
| 1155 | int cpu = cluster_first_cpu(cluster); |
| 1156 | int prev_capacity = 0; |
| 1157 | unsigned int threshold = sched_upmigrate; |
| 1158 | u64 load; |
| 1159 | |
| 1160 | if (cluster->capacity == max_capacity) |
| 1161 | return 1; |
| 1162 | |
| 1163 | if (grp->preferred_cluster) |
| 1164 | prev_capacity = grp->preferred_cluster->capacity; |
| 1165 | |
| 1166 | if (cluster->capacity < prev_capacity) |
| 1167 | threshold = sched_downmigrate; |
| 1168 | |
| 1169 | load = scale_load_to_cpu(demand, cpu); |
| 1170 | if (load < threshold) |
| 1171 | return 1; |
| 1172 | |
| 1173 | return 0; |
| 1174 | } |
| 1175 | |
| 1176 | /* |
| 1177 | * Return the cost of running task p on CPU cpu. This function |
| 1178 | * currently assumes that task p is the only task which will run on |
| 1179 | * the CPU. |
| 1180 | */ |
| 1181 | unsigned int power_cost(int cpu, u64 demand) |
| 1182 | { |
| 1183 | int first, mid, last; |
| 1184 | struct cpu_pwr_stats *per_cpu_info = get_cpu_pwr_stats(); |
| 1185 | struct cpu_pstate_pwr *costs; |
| 1186 | struct freq_max_load *max_load; |
| 1187 | int total_static_pwr_cost = 0; |
| 1188 | struct rq *rq = cpu_rq(cpu); |
| 1189 | unsigned int pc; |
| 1190 | |
| 1191 | if (!per_cpu_info || !per_cpu_info[cpu].ptable) |
| 1192 | /* |
| 1193 | * When power aware scheduling is not in use, or CPU |
| 1194 | * power data is not available, just use the CPU |
| 1195 | * capacity as a rough stand-in for real CPU power |
| 1196 | * numbers, assuming bigger CPUs are more power |
| 1197 | * hungry. |
| 1198 | */ |
| 1199 | return cpu_max_possible_capacity(cpu); |
| 1200 | |
| 1201 | rcu_read_lock(); |
| 1202 | max_load = rcu_dereference(per_cpu(freq_max_load, cpu)); |
| 1203 | if (!max_load) { |
| 1204 | pc = cpu_max_possible_capacity(cpu); |
| 1205 | goto unlock; |
| 1206 | } |
| 1207 | |
| 1208 | costs = per_cpu_info[cpu].ptable; |
| 1209 | |
| 1210 | if (demand <= max_load->freqs[0].hdemand) { |
| 1211 | pc = costs[0].power; |
| 1212 | goto unlock; |
| 1213 | } else if (demand > max_load->freqs[max_load->length - 1].hdemand) { |
| 1214 | pc = costs[max_load->length - 1].power; |
| 1215 | goto unlock; |
| 1216 | } |
| 1217 | |
| 1218 | first = 0; |
| 1219 | last = max_load->length - 1; |
| 1220 | mid = (last - first) >> 1; |
| 1221 | while (1) { |
| 1222 | if (demand <= max_load->freqs[mid].hdemand) |
| 1223 | last = mid; |
| 1224 | else |
| 1225 | first = mid; |
| 1226 | |
| 1227 | if (last - first == 1) |
| 1228 | break; |
| 1229 | mid = first + ((last - first) >> 1); |
| 1230 | } |
| 1231 | |
| 1232 | pc = costs[last].power; |
| 1233 | |
| 1234 | unlock: |
| 1235 | rcu_read_unlock(); |
| 1236 | |
| 1237 | if (idle_cpu(cpu) && rq->cstate) { |
| 1238 | total_static_pwr_cost += rq->static_cpu_pwr_cost; |
| 1239 | if (rq->cluster->dstate) |
| 1240 | total_static_pwr_cost += |
| 1241 | rq->cluster->static_cluster_pwr_cost; |
| 1242 | } |
| 1243 | |
| 1244 | return pc + total_static_pwr_cost; |
| 1245 | |
| 1246 | } |
| 1247 | |
| 1248 | void inc_nr_big_task(struct hmp_sched_stats *stats, struct task_struct *p) |
| 1249 | { |
| 1250 | if (sched_disable_window_stats) |
| 1251 | return; |
| 1252 | |
| 1253 | if (is_big_task(p)) |
| 1254 | stats->nr_big_tasks++; |
| 1255 | } |
| 1256 | |
| 1257 | void dec_nr_big_task(struct hmp_sched_stats *stats, struct task_struct *p) |
| 1258 | { |
| 1259 | if (sched_disable_window_stats) |
| 1260 | return; |
| 1261 | |
| 1262 | if (is_big_task(p)) |
| 1263 | stats->nr_big_tasks--; |
| 1264 | |
| 1265 | BUG_ON(stats->nr_big_tasks < 0); |
| 1266 | } |
| 1267 | |
| 1268 | void inc_rq_hmp_stats(struct rq *rq, struct task_struct *p, int change_cra) |
| 1269 | { |
| 1270 | inc_nr_big_task(&rq->hmp_stats, p); |
| 1271 | if (change_cra) |
| 1272 | inc_cumulative_runnable_avg(&rq->hmp_stats, p); |
| 1273 | } |
| 1274 | |
| 1275 | void dec_rq_hmp_stats(struct rq *rq, struct task_struct *p, int change_cra) |
| 1276 | { |
| 1277 | dec_nr_big_task(&rq->hmp_stats, p); |
| 1278 | if (change_cra) |
| 1279 | dec_cumulative_runnable_avg(&rq->hmp_stats, p); |
| 1280 | } |
| 1281 | |
| 1282 | static void reset_hmp_stats(struct hmp_sched_stats *stats, int reset_cra) |
| 1283 | { |
| 1284 | stats->nr_big_tasks = 0; |
| 1285 | if (reset_cra) { |
| 1286 | stats->cumulative_runnable_avg = 0; |
| 1287 | stats->pred_demands_sum = 0; |
| 1288 | } |
| 1289 | } |
| 1290 | |
| 1291 | /* |
| 1292 | * Invoked from three places: |
| 1293 | * 1) try_to_wake_up() -> ... -> select_best_cpu() |
| 1294 | * 2) scheduler_tick() -> ... -> migration_needed() -> select_best_cpu() |
| 1295 | * 3) can_migrate_task() |
| 1296 | * |
| 1297 | * Its safe to de-reference p->grp in first case (since p->pi_lock is held) |
| 1298 | * but not in other cases. p->grp is hence freed after a RCU grace period and |
| 1299 | * accessed under rcu_read_lock() |
| 1300 | */ |
| 1301 | int preferred_cluster(struct sched_cluster *cluster, struct task_struct *p) |
| 1302 | { |
| 1303 | struct related_thread_group *grp; |
| 1304 | int rc = 0; |
| 1305 | |
| 1306 | rcu_read_lock(); |
| 1307 | |
| 1308 | grp = task_related_thread_group(p); |
| 1309 | if (!grp || !sysctl_sched_enable_colocation) |
| 1310 | rc = 1; |
| 1311 | else |
| 1312 | rc = (grp->preferred_cluster == cluster); |
| 1313 | |
| 1314 | rcu_read_unlock(); |
| 1315 | return rc; |
| 1316 | } |
| 1317 | |
| 1318 | struct sched_cluster *rq_cluster(struct rq *rq) |
| 1319 | { |
| 1320 | return rq->cluster; |
| 1321 | } |
| 1322 | |
| 1323 | /* |
| 1324 | * reset_cpu_hmp_stats - reset HMP stats for a cpu |
| 1325 | * nr_big_tasks |
| 1326 | * cumulative_runnable_avg (iff reset_cra is true) |
| 1327 | */ |
| 1328 | void reset_cpu_hmp_stats(int cpu, int reset_cra) |
| 1329 | { |
| 1330 | reset_cfs_rq_hmp_stats(cpu, reset_cra); |
| 1331 | reset_hmp_stats(&cpu_rq(cpu)->hmp_stats, reset_cra); |
| 1332 | } |
| 1333 | |
| 1334 | void fixup_nr_big_tasks(struct hmp_sched_stats *stats, |
| 1335 | struct task_struct *p, s64 delta) |
| 1336 | { |
| 1337 | u64 new_task_load; |
| 1338 | u64 old_task_load; |
| 1339 | |
| 1340 | if (sched_disable_window_stats) |
| 1341 | return; |
| 1342 | |
| 1343 | old_task_load = scale_load_to_cpu(task_load(p), task_cpu(p)); |
| 1344 | new_task_load = scale_load_to_cpu(delta + task_load(p), task_cpu(p)); |
| 1345 | |
| 1346 | if (__is_big_task(p, old_task_load) && !__is_big_task(p, new_task_load)) |
| 1347 | stats->nr_big_tasks--; |
| 1348 | else if (!__is_big_task(p, old_task_load) && |
| 1349 | __is_big_task(p, new_task_load)) |
| 1350 | stats->nr_big_tasks++; |
| 1351 | |
| 1352 | BUG_ON(stats->nr_big_tasks < 0); |
| 1353 | } |
| 1354 | |
| 1355 | /* |
| 1356 | * Walk runqueue of cpu and re-initialize 'nr_big_tasks' counters. |
| 1357 | */ |
| 1358 | static void update_nr_big_tasks(int cpu) |
| 1359 | { |
| 1360 | struct rq *rq = cpu_rq(cpu); |
| 1361 | struct task_struct *p; |
| 1362 | |
| 1363 | /* Do not reset cumulative_runnable_avg */ |
| 1364 | reset_cpu_hmp_stats(cpu, 0); |
| 1365 | |
| 1366 | list_for_each_entry(p, &rq->cfs_tasks, se.group_node) |
| 1367 | inc_hmp_sched_stats_fair(rq, p, 0); |
| 1368 | } |
| 1369 | |
| 1370 | /* Disable interrupts and grab runqueue lock of all cpus listed in @cpus */ |
| 1371 | void pre_big_task_count_change(const struct cpumask *cpus) |
| 1372 | { |
| 1373 | int i; |
| 1374 | |
| 1375 | local_irq_disable(); |
| 1376 | |
| 1377 | for_each_cpu(i, cpus) |
| 1378 | raw_spin_lock(&cpu_rq(i)->lock); |
| 1379 | } |
| 1380 | |
| 1381 | /* |
| 1382 | * Reinitialize 'nr_big_tasks' counters on all affected cpus |
| 1383 | */ |
| 1384 | void post_big_task_count_change(const struct cpumask *cpus) |
| 1385 | { |
| 1386 | int i; |
| 1387 | |
| 1388 | /* Assumes local_irq_disable() keeps online cpumap stable */ |
| 1389 | for_each_cpu(i, cpus) |
| 1390 | update_nr_big_tasks(i); |
| 1391 | |
| 1392 | for_each_cpu(i, cpus) |
| 1393 | raw_spin_unlock(&cpu_rq(i)->lock); |
| 1394 | |
| 1395 | local_irq_enable(); |
| 1396 | } |
| 1397 | |
| 1398 | DEFINE_MUTEX(policy_mutex); |
| 1399 | |
| 1400 | static inline int invalid_value_freq_input(unsigned int *data) |
| 1401 | { |
| 1402 | if (data == &sysctl_sched_freq_aggregate) |
| 1403 | return !(*data == 0 || *data == 1); |
| 1404 | |
| 1405 | return 0; |
| 1406 | } |
| 1407 | |
| 1408 | static inline int invalid_value(unsigned int *data) |
| 1409 | { |
| 1410 | unsigned int val = *data; |
| 1411 | |
| 1412 | if (data == &sysctl_sched_ravg_hist_size) |
| 1413 | return (val < 2 || val > RAVG_HIST_SIZE_MAX); |
| 1414 | |
| 1415 | if (data == &sysctl_sched_window_stats_policy) |
| 1416 | return val >= WINDOW_STATS_INVALID_POLICY; |
| 1417 | |
| 1418 | return invalid_value_freq_input(data); |
| 1419 | } |
| 1420 | |
| 1421 | /* |
| 1422 | * Handle "atomic" update of sysctl_sched_window_stats_policy, |
| 1423 | * sysctl_sched_ravg_hist_size and sched_freq_legacy_mode variables. |
| 1424 | */ |
| 1425 | int sched_window_update_handler(struct ctl_table *table, int write, |
| 1426 | void __user *buffer, size_t *lenp, |
| 1427 | loff_t *ppos) |
| 1428 | { |
| 1429 | int ret; |
| 1430 | unsigned int *data = (unsigned int *)table->data; |
| 1431 | unsigned int old_val; |
| 1432 | |
| 1433 | mutex_lock(&policy_mutex); |
| 1434 | |
| 1435 | old_val = *data; |
| 1436 | |
| 1437 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
| 1438 | if (ret || !write || (write && (old_val == *data))) |
| 1439 | goto done; |
| 1440 | |
| 1441 | if (invalid_value(data)) { |
| 1442 | *data = old_val; |
| 1443 | ret = -EINVAL; |
| 1444 | goto done; |
| 1445 | } |
| 1446 | |
| 1447 | reset_all_window_stats(0, 0); |
| 1448 | |
| 1449 | done: |
| 1450 | mutex_unlock(&policy_mutex); |
| 1451 | |
| 1452 | return ret; |
| 1453 | } |
| 1454 | |
| 1455 | /* |
| 1456 | * Convert percentage value into absolute form. This will avoid div() operation |
| 1457 | * in fast path, to convert task load in percentage scale. |
| 1458 | */ |
| 1459 | int sched_hmp_proc_update_handler(struct ctl_table *table, int write, |
| 1460 | void __user *buffer, size_t *lenp, |
| 1461 | loff_t *ppos) |
| 1462 | { |
| 1463 | int ret; |
| 1464 | unsigned int old_val; |
| 1465 | unsigned int *data = (unsigned int *)table->data; |
| 1466 | int update_min_nice = 0; |
| 1467 | |
| 1468 | mutex_lock(&policy_mutex); |
| 1469 | |
| 1470 | old_val = *data; |
| 1471 | |
| 1472 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 1473 | |
| 1474 | if (ret || !write) |
| 1475 | goto done; |
| 1476 | |
| 1477 | if (write && (old_val == *data)) |
| 1478 | goto done; |
| 1479 | |
| 1480 | if (sysctl_sched_downmigrate_pct > sysctl_sched_upmigrate_pct) { |
| 1481 | *data = old_val; |
| 1482 | ret = -EINVAL; |
| 1483 | goto done; |
| 1484 | } |
| 1485 | |
| 1486 | /* |
| 1487 | * Big task tunable change will need to re-classify tasks on |
| 1488 | * runqueue as big and set their counters appropriately. |
| 1489 | * sysctl interface affects secondary variables (*_pct), which is then |
| 1490 | * "atomically" carried over to the primary variables. Atomic change |
| 1491 | * includes taking runqueue lock of all online cpus and re-initiatizing |
| 1492 | * their big counter values based on changed criteria. |
| 1493 | */ |
| 1494 | if ((data == &sysctl_sched_upmigrate_pct || update_min_nice)) { |
| 1495 | get_online_cpus(); |
| 1496 | pre_big_task_count_change(cpu_online_mask); |
| 1497 | } |
| 1498 | |
| 1499 | set_hmp_defaults(); |
| 1500 | |
| 1501 | if ((data == &sysctl_sched_upmigrate_pct || update_min_nice)) { |
| 1502 | post_big_task_count_change(cpu_online_mask); |
| 1503 | put_online_cpus(); |
| 1504 | } |
| 1505 | |
| 1506 | done: |
| 1507 | mutex_unlock(&policy_mutex); |
| 1508 | return ret; |
| 1509 | } |
| 1510 | |
| 1511 | inline int nr_big_tasks(struct rq *rq) |
| 1512 | { |
| 1513 | return rq->hmp_stats.nr_big_tasks; |
| 1514 | } |
| 1515 | |
| 1516 | unsigned int cpu_temp(int cpu) |
| 1517 | { |
| 1518 | struct cpu_pwr_stats *per_cpu_info = get_cpu_pwr_stats(); |
| 1519 | |
| 1520 | if (per_cpu_info) |
| 1521 | return per_cpu_info[cpu].temp; |
| 1522 | else |
| 1523 | return 0; |
| 1524 | } |
| 1525 | |
| 1526 | void init_new_task_load(struct task_struct *p) |
| 1527 | { |
| 1528 | int i; |
| 1529 | u32 init_load_windows = sched_init_task_load_windows; |
| 1530 | u32 init_load_pct = current->init_load_pct; |
| 1531 | |
| 1532 | p->init_load_pct = 0; |
| 1533 | rcu_assign_pointer(p->grp, NULL); |
| 1534 | INIT_LIST_HEAD(&p->grp_list); |
| 1535 | memset(&p->ravg, 0, sizeof(struct ravg)); |
| 1536 | p->cpu_cycles = 0; |
| 1537 | |
| 1538 | if (init_load_pct) |
| 1539 | init_load_windows = div64_u64((u64)init_load_pct * |
| 1540 | (u64)sched_ravg_window, 100); |
| 1541 | |
| 1542 | p->ravg.demand = init_load_windows; |
| 1543 | p->ravg.pred_demand = 0; |
| 1544 | for (i = 0; i < RAVG_HIST_SIZE_MAX; ++i) |
| 1545 | p->ravg.sum_history[i] = init_load_windows; |
| 1546 | } |
| 1547 | |
| 1548 | /* Return task demand in percentage scale */ |
| 1549 | unsigned int pct_task_load(struct task_struct *p) |
| 1550 | { |
| 1551 | unsigned int load; |
| 1552 | |
| 1553 | load = div64_u64((u64)task_load(p) * 100, (u64)max_task_load()); |
| 1554 | |
| 1555 | return load; |
| 1556 | } |
| 1557 | |
| 1558 | /* |
| 1559 | * Return total number of tasks "eligible" to run on highest capacity cpu |
| 1560 | * |
| 1561 | * This is simply nr_big_tasks for cpus which are not of max_capacity and |
| 1562 | * nr_running for cpus of max_capacity |
| 1563 | */ |
| 1564 | unsigned int nr_eligible_big_tasks(int cpu) |
| 1565 | { |
| 1566 | struct rq *rq = cpu_rq(cpu); |
| 1567 | int nr_big = rq->hmp_stats.nr_big_tasks; |
| 1568 | int nr = rq->nr_running; |
| 1569 | |
| 1570 | if (cpu_max_possible_capacity(cpu) != max_possible_capacity) |
| 1571 | return nr_big; |
| 1572 | |
| 1573 | return nr; |
| 1574 | } |
| 1575 | |
| 1576 | static inline int exiting_task(struct task_struct *p) |
| 1577 | { |
| 1578 | return (p->ravg.sum_history[0] == EXITING_TASK_MARKER); |
| 1579 | } |
| 1580 | |
| 1581 | static int __init set_sched_ravg_window(char *str) |
| 1582 | { |
| 1583 | unsigned int window_size; |
| 1584 | |
| 1585 | get_option(&str, &window_size); |
| 1586 | |
| 1587 | if (window_size < MIN_SCHED_RAVG_WINDOW || |
| 1588 | window_size > MAX_SCHED_RAVG_WINDOW) { |
| 1589 | WARN_ON(1); |
| 1590 | return -EINVAL; |
| 1591 | } |
| 1592 | |
| 1593 | sched_ravg_window = window_size; |
| 1594 | return 0; |
| 1595 | } |
| 1596 | |
| 1597 | early_param("sched_ravg_window", set_sched_ravg_window); |
| 1598 | |
| 1599 | static inline void |
| 1600 | update_window_start(struct rq *rq, u64 wallclock) |
| 1601 | { |
| 1602 | s64 delta; |
| 1603 | int nr_windows; |
| 1604 | |
| 1605 | delta = wallclock - rq->window_start; |
| 1606 | BUG_ON(delta < 0); |
| 1607 | if (delta < sched_ravg_window) |
| 1608 | return; |
| 1609 | |
| 1610 | nr_windows = div64_u64(delta, sched_ravg_window); |
| 1611 | rq->window_start += (u64)nr_windows * (u64)sched_ravg_window; |
| 1612 | } |
| 1613 | |
| 1614 | #define DIV64_U64_ROUNDUP(X, Y) div64_u64((X) + (Y - 1), Y) |
| 1615 | |
| 1616 | static inline u64 scale_exec_time(u64 delta, struct rq *rq) |
| 1617 | { |
| 1618 | u32 freq; |
| 1619 | |
| 1620 | freq = cpu_cycles_to_freq(rq->cc.cycles, rq->cc.time); |
| 1621 | delta = DIV64_U64_ROUNDUP(delta * freq, max_possible_freq); |
| 1622 | delta *= rq->cluster->exec_scale_factor; |
| 1623 | delta >>= 10; |
| 1624 | |
| 1625 | return delta; |
| 1626 | } |
| 1627 | |
| 1628 | static inline int cpu_is_waiting_on_io(struct rq *rq) |
| 1629 | { |
| 1630 | if (!sched_io_is_busy) |
| 1631 | return 0; |
| 1632 | |
| 1633 | return atomic_read(&rq->nr_iowait); |
| 1634 | } |
| 1635 | |
| 1636 | /* Does freq_required sufficiently exceed or fall behind cur_freq? */ |
| 1637 | static inline int |
| 1638 | nearly_same_freq(unsigned int cur_freq, unsigned int freq_required) |
| 1639 | { |
| 1640 | int delta = freq_required - cur_freq; |
| 1641 | |
| 1642 | if (freq_required > cur_freq) |
| 1643 | return delta < sysctl_sched_freq_inc_notify; |
| 1644 | |
| 1645 | delta = -delta; |
| 1646 | |
| 1647 | return delta < sysctl_sched_freq_dec_notify; |
| 1648 | } |
| 1649 | |
| 1650 | /* Convert busy time to frequency equivalent */ |
| 1651 | static inline unsigned int load_to_freq(struct rq *rq, u64 load) |
| 1652 | { |
| 1653 | unsigned int freq; |
| 1654 | |
| 1655 | load = scale_load_to_cpu(load, cpu_of(rq)); |
| 1656 | load *= 128; |
| 1657 | load = div64_u64(load, max_task_load()); |
| 1658 | |
| 1659 | freq = load * cpu_max_possible_freq(cpu_of(rq)); |
| 1660 | freq /= 128; |
| 1661 | |
| 1662 | return freq; |
| 1663 | } |
| 1664 | |
| 1665 | static inline struct group_cpu_time * |
| 1666 | _group_cpu_time(struct related_thread_group *grp, int cpu); |
| 1667 | |
| 1668 | /* |
| 1669 | * Return load from all related group in given cpu. |
| 1670 | * Caller must ensure that related_thread_group_lock is held. |
| 1671 | */ |
| 1672 | static void _group_load_in_cpu(int cpu, u64 *grp_load, u64 *new_grp_load) |
| 1673 | { |
| 1674 | struct related_thread_group *grp; |
| 1675 | |
| 1676 | for_each_related_thread_group(grp) { |
| 1677 | struct group_cpu_time *cpu_time; |
| 1678 | |
| 1679 | cpu_time = _group_cpu_time(grp, cpu); |
| 1680 | *grp_load += cpu_time->prev_runnable_sum; |
| 1681 | if (new_grp_load) |
| 1682 | *new_grp_load += cpu_time->nt_prev_runnable_sum; |
| 1683 | } |
| 1684 | } |
| 1685 | |
| 1686 | /* |
| 1687 | * Return load from all related groups in given frequency domain. |
| 1688 | * Caller must ensure that related_thread_group_lock is held. |
| 1689 | */ |
| 1690 | static void group_load_in_freq_domain(struct cpumask *cpus, |
| 1691 | u64 *grp_load, u64 *new_grp_load) |
| 1692 | { |
| 1693 | struct related_thread_group *grp; |
| 1694 | int j; |
| 1695 | |
| 1696 | for_each_related_thread_group(grp) { |
| 1697 | for_each_cpu(j, cpus) { |
| 1698 | struct group_cpu_time *cpu_time; |
| 1699 | |
| 1700 | cpu_time = _group_cpu_time(grp, j); |
| 1701 | *grp_load += cpu_time->prev_runnable_sum; |
| 1702 | *new_grp_load += cpu_time->nt_prev_runnable_sum; |
| 1703 | } |
| 1704 | } |
| 1705 | } |
| 1706 | |
| 1707 | /* |
| 1708 | * Should scheduler alert governor for changing frequency? |
| 1709 | * |
| 1710 | * @check_pred - evaluate frequency based on the predictive demand |
| 1711 | * @check_groups - add load from all related groups on given cpu |
| 1712 | * |
| 1713 | * check_groups is set to 1 if a "related" task movement/wakeup is triggering |
| 1714 | * the notification check. To avoid "re-aggregation" of demand in such cases, |
| 1715 | * we check whether the migrated/woken tasks demand (along with demand from |
| 1716 | * existing tasks on the cpu) can be met on target cpu |
| 1717 | * |
| 1718 | */ |
| 1719 | |
| 1720 | static int send_notification(struct rq *rq, int check_pred, int check_groups) |
| 1721 | { |
| 1722 | unsigned int cur_freq, freq_required; |
| 1723 | unsigned long flags; |
| 1724 | int rc = 0; |
| 1725 | u64 group_load = 0, new_load = 0; |
| 1726 | |
| 1727 | if (check_pred) { |
| 1728 | u64 prev = rq->old_busy_time; |
| 1729 | u64 predicted = rq->hmp_stats.pred_demands_sum; |
| 1730 | |
| 1731 | if (rq->cluster->cur_freq == cpu_max_freq(cpu_of(rq))) |
| 1732 | return 0; |
| 1733 | |
| 1734 | prev = max(prev, rq->old_estimated_time); |
| 1735 | if (prev > predicted) |
| 1736 | return 0; |
| 1737 | |
| 1738 | cur_freq = load_to_freq(rq, prev); |
| 1739 | freq_required = load_to_freq(rq, predicted); |
| 1740 | |
| 1741 | if (freq_required < cur_freq + sysctl_sched_pred_alert_freq) |
| 1742 | return 0; |
| 1743 | } else { |
| 1744 | read_lock(&related_thread_group_lock); |
| 1745 | /* |
| 1746 | * Protect from concurrent update of rq->prev_runnable_sum and |
| 1747 | * group cpu load |
| 1748 | */ |
| 1749 | raw_spin_lock_irqsave(&rq->lock, flags); |
| 1750 | if (check_groups) |
| 1751 | _group_load_in_cpu(cpu_of(rq), &group_load, NULL); |
| 1752 | |
| 1753 | new_load = rq->prev_runnable_sum + group_load; |
| 1754 | |
| 1755 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
| 1756 | read_unlock(&related_thread_group_lock); |
| 1757 | |
| 1758 | cur_freq = load_to_freq(rq, rq->old_busy_time); |
| 1759 | freq_required = load_to_freq(rq, new_load); |
| 1760 | |
| 1761 | if (nearly_same_freq(cur_freq, freq_required)) |
| 1762 | return 0; |
| 1763 | } |
| 1764 | |
| 1765 | raw_spin_lock_irqsave(&rq->lock, flags); |
| 1766 | if (!rq->cluster->notifier_sent) { |
| 1767 | rq->cluster->notifier_sent = 1; |
| 1768 | rc = 1; |
| 1769 | trace_sched_freq_alert(cpu_of(rq), check_pred, check_groups, rq, |
| 1770 | new_load); |
| 1771 | } |
| 1772 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
| 1773 | |
| 1774 | return rc; |
| 1775 | } |
| 1776 | |
| 1777 | /* Alert governor if there is a need to change frequency */ |
| 1778 | void check_for_freq_change(struct rq *rq, bool check_pred, bool check_groups) |
| 1779 | { |
| 1780 | int cpu = cpu_of(rq); |
| 1781 | |
| 1782 | if (!send_notification(rq, check_pred, check_groups)) |
| 1783 | return; |
| 1784 | |
| 1785 | atomic_notifier_call_chain( |
| 1786 | &load_alert_notifier_head, 0, |
| 1787 | (void *)(long)cpu); |
| 1788 | } |
| 1789 | |
| 1790 | void notify_migration(int src_cpu, int dest_cpu, bool src_cpu_dead, |
| 1791 | struct task_struct *p) |
| 1792 | { |
| 1793 | bool check_groups; |
| 1794 | |
| 1795 | rcu_read_lock(); |
| 1796 | check_groups = task_in_related_thread_group(p); |
| 1797 | rcu_read_unlock(); |
| 1798 | |
| 1799 | if (!same_freq_domain(src_cpu, dest_cpu)) { |
| 1800 | if (!src_cpu_dead) |
| 1801 | check_for_freq_change(cpu_rq(src_cpu), false, |
| 1802 | check_groups); |
| 1803 | check_for_freq_change(cpu_rq(dest_cpu), false, check_groups); |
| 1804 | } else { |
| 1805 | check_for_freq_change(cpu_rq(dest_cpu), true, check_groups); |
| 1806 | } |
| 1807 | } |
| 1808 | |
| 1809 | static int account_busy_for_cpu_time(struct rq *rq, struct task_struct *p, |
| 1810 | u64 irqtime, int event) |
| 1811 | { |
| 1812 | if (is_idle_task(p)) { |
| 1813 | /* TASK_WAKE && TASK_MIGRATE is not possible on idle task! */ |
| 1814 | if (event == PICK_NEXT_TASK) |
| 1815 | return 0; |
| 1816 | |
| 1817 | /* PUT_PREV_TASK, TASK_UPDATE && IRQ_UPDATE are left */ |
| 1818 | return irqtime || cpu_is_waiting_on_io(rq); |
| 1819 | } |
| 1820 | |
| 1821 | if (event == TASK_WAKE) |
| 1822 | return 0; |
| 1823 | |
| 1824 | if (event == PUT_PREV_TASK || event == IRQ_UPDATE) |
| 1825 | return 1; |
| 1826 | |
| 1827 | /* |
| 1828 | * TASK_UPDATE can be called on sleeping task, when its moved between |
| 1829 | * related groups |
| 1830 | */ |
| 1831 | if (event == TASK_UPDATE) { |
| 1832 | if (rq->curr == p) |
| 1833 | return 1; |
| 1834 | |
| 1835 | return p->on_rq ? SCHED_FREQ_ACCOUNT_WAIT_TIME : 0; |
| 1836 | } |
| 1837 | |
| 1838 | /* TASK_MIGRATE, PICK_NEXT_TASK left */ |
| 1839 | return SCHED_FREQ_ACCOUNT_WAIT_TIME; |
| 1840 | } |
| 1841 | |
| 1842 | static inline bool is_new_task(struct task_struct *p) |
| 1843 | { |
| 1844 | return p->ravg.active_windows < sysctl_sched_new_task_windows; |
| 1845 | } |
| 1846 | |
| 1847 | #define INC_STEP 8 |
| 1848 | #define DEC_STEP 2 |
| 1849 | #define CONSISTENT_THRES 16 |
| 1850 | #define INC_STEP_BIG 16 |
| 1851 | /* |
| 1852 | * bucket_increase - update the count of all buckets |
| 1853 | * |
| 1854 | * @buckets: array of buckets tracking busy time of a task |
| 1855 | * @idx: the index of bucket to be incremented |
| 1856 | * |
| 1857 | * Each time a complete window finishes, count of bucket that runtime |
| 1858 | * falls in (@idx) is incremented. Counts of all other buckets are |
| 1859 | * decayed. The rate of increase and decay could be different based |
| 1860 | * on current count in the bucket. |
| 1861 | */ |
| 1862 | static inline void bucket_increase(u8 *buckets, int idx) |
| 1863 | { |
| 1864 | int i, step; |
| 1865 | |
| 1866 | for (i = 0; i < NUM_BUSY_BUCKETS; i++) { |
| 1867 | if (idx != i) { |
| 1868 | if (buckets[i] > DEC_STEP) |
| 1869 | buckets[i] -= DEC_STEP; |
| 1870 | else |
| 1871 | buckets[i] = 0; |
| 1872 | } else { |
| 1873 | step = buckets[i] >= CONSISTENT_THRES ? |
| 1874 | INC_STEP_BIG : INC_STEP; |
| 1875 | if (buckets[i] > U8_MAX - step) |
| 1876 | buckets[i] = U8_MAX; |
| 1877 | else |
| 1878 | buckets[i] += step; |
| 1879 | } |
| 1880 | } |
| 1881 | } |
| 1882 | |
| 1883 | static inline int busy_to_bucket(u32 normalized_rt) |
| 1884 | { |
| 1885 | int bidx; |
| 1886 | |
| 1887 | bidx = mult_frac(normalized_rt, NUM_BUSY_BUCKETS, max_task_load()); |
| 1888 | bidx = min(bidx, NUM_BUSY_BUCKETS - 1); |
| 1889 | |
| 1890 | /* |
| 1891 | * Combine lowest two buckets. The lowest frequency falls into |
| 1892 | * 2nd bucket and thus keep predicting lowest bucket is not |
| 1893 | * useful. |
| 1894 | */ |
| 1895 | if (!bidx) |
| 1896 | bidx++; |
| 1897 | |
| 1898 | return bidx; |
| 1899 | } |
| 1900 | |
| 1901 | static inline u64 |
| 1902 | scale_load_to_freq(u64 load, unsigned int src_freq, unsigned int dst_freq) |
| 1903 | { |
| 1904 | return div64_u64(load * (u64)src_freq, (u64)dst_freq); |
| 1905 | } |
| 1906 | |
| 1907 | #define HEAVY_TASK_SKIP 2 |
| 1908 | #define HEAVY_TASK_SKIP_LIMIT 4 |
| 1909 | /* |
| 1910 | * get_pred_busy - calculate predicted demand for a task on runqueue |
| 1911 | * |
| 1912 | * @rq: runqueue of task p |
| 1913 | * @p: task whose prediction is being updated |
| 1914 | * @start: starting bucket. returned prediction should not be lower than |
| 1915 | * this bucket. |
| 1916 | * @runtime: runtime of the task. returned prediction should not be lower |
| 1917 | * than this runtime. |
| 1918 | * Note: @start can be derived from @runtime. It's passed in only to |
| 1919 | * avoid duplicated calculation in some cases. |
| 1920 | * |
| 1921 | * A new predicted busy time is returned for task @p based on @runtime |
| 1922 | * passed in. The function searches through buckets that represent busy |
| 1923 | * time equal to or bigger than @runtime and attempts to find the bucket to |
| 1924 | * to use for prediction. Once found, it searches through historical busy |
| 1925 | * time and returns the latest that falls into the bucket. If no such busy |
| 1926 | * time exists, it returns the medium of that bucket. |
| 1927 | */ |
| 1928 | static u32 get_pred_busy(struct rq *rq, struct task_struct *p, |
| 1929 | int start, u32 runtime) |
| 1930 | { |
| 1931 | int i; |
| 1932 | u8 *buckets = p->ravg.busy_buckets; |
| 1933 | u32 *hist = p->ravg.sum_history; |
| 1934 | u32 dmin, dmax; |
| 1935 | u64 cur_freq_runtime = 0; |
| 1936 | int first = NUM_BUSY_BUCKETS, final, skip_to; |
| 1937 | u32 ret = runtime; |
| 1938 | |
| 1939 | /* skip prediction for new tasks due to lack of history */ |
| 1940 | if (unlikely(is_new_task(p))) |
| 1941 | goto out; |
| 1942 | |
| 1943 | /* find minimal bucket index to pick */ |
| 1944 | for (i = start; i < NUM_BUSY_BUCKETS; i++) { |
| 1945 | if (buckets[i]) { |
| 1946 | first = i; |
| 1947 | break; |
| 1948 | } |
| 1949 | } |
| 1950 | /* if no higher buckets are filled, predict runtime */ |
| 1951 | if (first >= NUM_BUSY_BUCKETS) |
| 1952 | goto out; |
| 1953 | |
| 1954 | /* compute the bucket for prediction */ |
| 1955 | final = first; |
| 1956 | if (first < HEAVY_TASK_SKIP_LIMIT) { |
| 1957 | /* compute runtime at current CPU frequency */ |
| 1958 | cur_freq_runtime = mult_frac(runtime, max_possible_efficiency, |
| 1959 | rq->cluster->efficiency); |
| 1960 | cur_freq_runtime = scale_load_to_freq(cur_freq_runtime, |
| 1961 | max_possible_freq, rq->cluster->cur_freq); |
| 1962 | /* |
| 1963 | * if the task runs for majority of the window, try to |
| 1964 | * pick higher buckets. |
| 1965 | */ |
| 1966 | if (cur_freq_runtime >= sched_major_task_runtime) { |
| 1967 | int next = NUM_BUSY_BUCKETS; |
| 1968 | /* |
| 1969 | * if there is a higher bucket that's consistently |
| 1970 | * hit, don't jump beyond that. |
| 1971 | */ |
| 1972 | for (i = start + 1; i <= HEAVY_TASK_SKIP_LIMIT && |
| 1973 | i < NUM_BUSY_BUCKETS; i++) { |
| 1974 | if (buckets[i] > CONSISTENT_THRES) { |
| 1975 | next = i; |
| 1976 | break; |
| 1977 | } |
| 1978 | } |
| 1979 | skip_to = min(next, start + HEAVY_TASK_SKIP); |
| 1980 | /* don't jump beyond HEAVY_TASK_SKIP_LIMIT */ |
| 1981 | skip_to = min(HEAVY_TASK_SKIP_LIMIT, skip_to); |
| 1982 | /* don't go below first non-empty bucket, if any */ |
| 1983 | final = max(first, skip_to); |
| 1984 | } |
| 1985 | } |
| 1986 | |
| 1987 | /* determine demand range for the predicted bucket */ |
| 1988 | if (final < 2) { |
| 1989 | /* lowest two buckets are combined */ |
| 1990 | dmin = 0; |
| 1991 | final = 1; |
| 1992 | } else { |
| 1993 | dmin = mult_frac(final, max_task_load(), NUM_BUSY_BUCKETS); |
| 1994 | } |
| 1995 | dmax = mult_frac(final + 1, max_task_load(), NUM_BUSY_BUCKETS); |
| 1996 | |
| 1997 | /* |
| 1998 | * search through runtime history and return first runtime that falls |
| 1999 | * into the range of predicted bucket. |
| 2000 | */ |
| 2001 | for (i = 0; i < sched_ravg_hist_size; i++) { |
| 2002 | if (hist[i] >= dmin && hist[i] < dmax) { |
| 2003 | ret = hist[i]; |
| 2004 | break; |
| 2005 | } |
| 2006 | } |
| 2007 | /* no historical runtime within bucket found, use average of the bin */ |
| 2008 | if (ret < dmin) |
| 2009 | ret = (dmin + dmax) / 2; |
| 2010 | /* |
| 2011 | * when updating in middle of a window, runtime could be higher |
| 2012 | * than all recorded history. Always predict at least runtime. |
| 2013 | */ |
| 2014 | ret = max(runtime, ret); |
| 2015 | out: |
| 2016 | trace_sched_update_pred_demand(rq, p, runtime, |
| 2017 | mult_frac((unsigned int)cur_freq_runtime, 100, |
| 2018 | sched_ravg_window), ret); |
| 2019 | return ret; |
| 2020 | } |
| 2021 | |
| 2022 | static inline u32 calc_pred_demand(struct rq *rq, struct task_struct *p) |
| 2023 | { |
| 2024 | if (p->ravg.pred_demand >= p->ravg.curr_window) |
| 2025 | return p->ravg.pred_demand; |
| 2026 | |
| 2027 | return get_pred_busy(rq, p, busy_to_bucket(p->ravg.curr_window), |
| 2028 | p->ravg.curr_window); |
| 2029 | } |
| 2030 | |
| 2031 | /* |
| 2032 | * predictive demand of a task is calculated at the window roll-over. |
| 2033 | * if the task current window busy time exceeds the predicted |
| 2034 | * demand, update it here to reflect the task needs. |
| 2035 | */ |
| 2036 | void update_task_pred_demand(struct rq *rq, struct task_struct *p, int event) |
| 2037 | { |
| 2038 | u32 new, old; |
| 2039 | |
| 2040 | if (is_idle_task(p) || exiting_task(p)) |
| 2041 | return; |
| 2042 | |
| 2043 | if (event != PUT_PREV_TASK && event != TASK_UPDATE && |
| 2044 | (!SCHED_FREQ_ACCOUNT_WAIT_TIME || |
| 2045 | (event != TASK_MIGRATE && |
| 2046 | event != PICK_NEXT_TASK))) |
| 2047 | return; |
| 2048 | |
| 2049 | /* |
| 2050 | * TASK_UPDATE can be called on sleeping task, when its moved between |
| 2051 | * related groups |
| 2052 | */ |
| 2053 | if (event == TASK_UPDATE) { |
| 2054 | if (!p->on_rq && !SCHED_FREQ_ACCOUNT_WAIT_TIME) |
| 2055 | return; |
| 2056 | } |
| 2057 | |
| 2058 | new = calc_pred_demand(rq, p); |
| 2059 | old = p->ravg.pred_demand; |
| 2060 | |
| 2061 | if (old >= new) |
| 2062 | return; |
| 2063 | |
| 2064 | if (task_on_rq_queued(p) && (!task_has_dl_policy(p) || |
| 2065 | !p->dl.dl_throttled)) |
| 2066 | p->sched_class->fixup_hmp_sched_stats(rq, p, |
| 2067 | p->ravg.demand, |
| 2068 | new); |
| 2069 | |
| 2070 | p->ravg.pred_demand = new; |
| 2071 | } |
| 2072 | |
| 2073 | /* |
| 2074 | * Account cpu activity in its busy time counters (rq->curr/prev_runnable_sum) |
| 2075 | */ |
| 2076 | static void update_cpu_busy_time(struct task_struct *p, struct rq *rq, |
| 2077 | int event, u64 wallclock, u64 irqtime) |
| 2078 | { |
| 2079 | int new_window, full_window = 0; |
| 2080 | int p_is_curr_task = (p == rq->curr); |
| 2081 | u64 mark_start = p->ravg.mark_start; |
| 2082 | u64 window_start = rq->window_start; |
| 2083 | u32 window_size = sched_ravg_window; |
| 2084 | u64 delta; |
| 2085 | u64 *curr_runnable_sum = &rq->curr_runnable_sum; |
| 2086 | u64 *prev_runnable_sum = &rq->prev_runnable_sum; |
| 2087 | u64 *nt_curr_runnable_sum = &rq->nt_curr_runnable_sum; |
| 2088 | u64 *nt_prev_runnable_sum = &rq->nt_prev_runnable_sum; |
| 2089 | int flip_counters = 0; |
| 2090 | int prev_sum_reset = 0; |
| 2091 | bool new_task; |
| 2092 | struct related_thread_group *grp; |
| 2093 | |
| 2094 | new_window = mark_start < window_start; |
| 2095 | if (new_window) { |
| 2096 | full_window = (window_start - mark_start) >= window_size; |
| 2097 | if (p->ravg.active_windows < USHRT_MAX) |
| 2098 | p->ravg.active_windows++; |
| 2099 | } |
| 2100 | |
| 2101 | new_task = is_new_task(p); |
| 2102 | |
| 2103 | grp = p->grp; |
| 2104 | if (grp && sched_freq_aggregate) { |
| 2105 | /* cpu_time protected by rq_lock */ |
| 2106 | struct group_cpu_time *cpu_time = |
| 2107 | _group_cpu_time(grp, cpu_of(rq)); |
| 2108 | |
| 2109 | curr_runnable_sum = &cpu_time->curr_runnable_sum; |
| 2110 | prev_runnable_sum = &cpu_time->prev_runnable_sum; |
| 2111 | |
| 2112 | nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum; |
| 2113 | nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum; |
| 2114 | |
| 2115 | if (cpu_time->window_start != rq->window_start) { |
| 2116 | int nr_windows; |
| 2117 | |
| 2118 | delta = rq->window_start - cpu_time->window_start; |
| 2119 | nr_windows = div64_u64(delta, window_size); |
| 2120 | if (nr_windows > 1) |
| 2121 | prev_sum_reset = 1; |
| 2122 | |
| 2123 | cpu_time->window_start = rq->window_start; |
| 2124 | flip_counters = 1; |
| 2125 | } |
| 2126 | |
| 2127 | if (p_is_curr_task && new_window) { |
| 2128 | u64 curr_sum = rq->curr_runnable_sum; |
| 2129 | u64 nt_curr_sum = rq->nt_curr_runnable_sum; |
| 2130 | |
| 2131 | if (full_window) |
| 2132 | curr_sum = nt_curr_sum = 0; |
| 2133 | |
| 2134 | rq->prev_runnable_sum = curr_sum; |
| 2135 | rq->nt_prev_runnable_sum = nt_curr_sum; |
| 2136 | |
| 2137 | rq->curr_runnable_sum = 0; |
| 2138 | rq->nt_curr_runnable_sum = 0; |
| 2139 | } |
| 2140 | } else { |
| 2141 | if (p_is_curr_task && new_window) { |
| 2142 | flip_counters = 1; |
| 2143 | if (full_window) |
| 2144 | prev_sum_reset = 1; |
| 2145 | } |
| 2146 | } |
| 2147 | |
| 2148 | /* |
| 2149 | * Handle per-task window rollover. We don't care about the idle |
| 2150 | * task or exiting tasks. |
| 2151 | */ |
| 2152 | if (new_window && !is_idle_task(p) && !exiting_task(p)) { |
| 2153 | u32 curr_window = 0; |
| 2154 | |
| 2155 | if (!full_window) |
| 2156 | curr_window = p->ravg.curr_window; |
| 2157 | |
| 2158 | p->ravg.prev_window = curr_window; |
| 2159 | p->ravg.curr_window = 0; |
| 2160 | } |
| 2161 | |
| 2162 | if (flip_counters) { |
| 2163 | u64 curr_sum = *curr_runnable_sum; |
| 2164 | u64 nt_curr_sum = *nt_curr_runnable_sum; |
| 2165 | |
| 2166 | if (prev_sum_reset) |
| 2167 | curr_sum = nt_curr_sum = 0; |
| 2168 | |
| 2169 | *prev_runnable_sum = curr_sum; |
| 2170 | *nt_prev_runnable_sum = nt_curr_sum; |
| 2171 | |
| 2172 | *curr_runnable_sum = 0; |
| 2173 | *nt_curr_runnable_sum = 0; |
| 2174 | } |
| 2175 | |
| 2176 | if (!account_busy_for_cpu_time(rq, p, irqtime, event)) { |
| 2177 | /* |
| 2178 | * account_busy_for_cpu_time() = 0, so no update to the |
| 2179 | * task's current window needs to be made. This could be |
| 2180 | * for example |
| 2181 | * |
| 2182 | * - a wakeup event on a task within the current |
| 2183 | * window (!new_window below, no action required), |
| 2184 | * - switching to a new task from idle (PICK_NEXT_TASK) |
| 2185 | * in a new window where irqtime is 0 and we aren't |
| 2186 | * waiting on IO |
| 2187 | */ |
| 2188 | |
| 2189 | if (!new_window) |
| 2190 | return; |
| 2191 | |
| 2192 | /* |
| 2193 | * A new window has started. The RQ demand must be rolled |
| 2194 | * over if p is the current task. |
| 2195 | */ |
| 2196 | if (p_is_curr_task) { |
| 2197 | /* p is idle task */ |
| 2198 | BUG_ON(p != rq->idle); |
| 2199 | } |
| 2200 | |
| 2201 | return; |
| 2202 | } |
| 2203 | |
| 2204 | if (!new_window) { |
| 2205 | /* |
| 2206 | * account_busy_for_cpu_time() = 1 so busy time needs |
| 2207 | * to be accounted to the current window. No rollover |
| 2208 | * since we didn't start a new window. An example of this is |
| 2209 | * when a task starts execution and then sleeps within the |
| 2210 | * same window. |
| 2211 | */ |
| 2212 | |
| 2213 | if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq)) |
| 2214 | delta = wallclock - mark_start; |
| 2215 | else |
| 2216 | delta = irqtime; |
| 2217 | delta = scale_exec_time(delta, rq); |
| 2218 | *curr_runnable_sum += delta; |
| 2219 | if (new_task) |
| 2220 | *nt_curr_runnable_sum += delta; |
| 2221 | |
| 2222 | if (!is_idle_task(p) && !exiting_task(p)) |
| 2223 | p->ravg.curr_window += delta; |
| 2224 | |
| 2225 | return; |
| 2226 | } |
| 2227 | |
| 2228 | if (!p_is_curr_task) { |
| 2229 | /* |
| 2230 | * account_busy_for_cpu_time() = 1 so busy time needs |
| 2231 | * to be accounted to the current window. A new window |
| 2232 | * has also started, but p is not the current task, so the |
| 2233 | * window is not rolled over - just split up and account |
| 2234 | * as necessary into curr and prev. The window is only |
| 2235 | * rolled over when a new window is processed for the current |
| 2236 | * task. |
| 2237 | * |
| 2238 | * Irqtime can't be accounted by a task that isn't the |
| 2239 | * currently running task. |
| 2240 | */ |
| 2241 | |
| 2242 | if (!full_window) { |
| 2243 | /* |
| 2244 | * A full window hasn't elapsed, account partial |
| 2245 | * contribution to previous completed window. |
| 2246 | */ |
| 2247 | delta = scale_exec_time(window_start - mark_start, rq); |
| 2248 | if (!exiting_task(p)) |
| 2249 | p->ravg.prev_window += delta; |
| 2250 | } else { |
| 2251 | /* |
| 2252 | * Since at least one full window has elapsed, |
| 2253 | * the contribution to the previous window is the |
| 2254 | * full window (window_size). |
| 2255 | */ |
| 2256 | delta = scale_exec_time(window_size, rq); |
| 2257 | if (!exiting_task(p)) |
| 2258 | p->ravg.prev_window = delta; |
| 2259 | } |
| 2260 | |
| 2261 | *prev_runnable_sum += delta; |
| 2262 | if (new_task) |
| 2263 | *nt_prev_runnable_sum += delta; |
| 2264 | |
| 2265 | /* Account piece of busy time in the current window. */ |
| 2266 | delta = scale_exec_time(wallclock - window_start, rq); |
| 2267 | *curr_runnable_sum += delta; |
| 2268 | if (new_task) |
| 2269 | *nt_curr_runnable_sum += delta; |
| 2270 | |
| 2271 | if (!exiting_task(p)) |
| 2272 | p->ravg.curr_window = delta; |
| 2273 | |
| 2274 | return; |
| 2275 | } |
| 2276 | |
| 2277 | if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq)) { |
| 2278 | /* |
| 2279 | * account_busy_for_cpu_time() = 1 so busy time needs |
| 2280 | * to be accounted to the current window. A new window |
| 2281 | * has started and p is the current task so rollover is |
| 2282 | * needed. If any of these three above conditions are true |
| 2283 | * then this busy time can't be accounted as irqtime. |
| 2284 | * |
| 2285 | * Busy time for the idle task or exiting tasks need not |
| 2286 | * be accounted. |
| 2287 | * |
| 2288 | * An example of this would be a task that starts execution |
| 2289 | * and then sleeps once a new window has begun. |
| 2290 | */ |
| 2291 | |
| 2292 | if (!full_window) { |
| 2293 | /* |
| 2294 | * A full window hasn't elapsed, account partial |
| 2295 | * contribution to previous completed window. |
| 2296 | */ |
| 2297 | delta = scale_exec_time(window_start - mark_start, rq); |
| 2298 | if (!is_idle_task(p) && !exiting_task(p)) |
| 2299 | p->ravg.prev_window += delta; |
| 2300 | } else { |
| 2301 | /* |
| 2302 | * Since at least one full window has elapsed, |
| 2303 | * the contribution to the previous window is the |
| 2304 | * full window (window_size). |
| 2305 | */ |
| 2306 | delta = scale_exec_time(window_size, rq); |
| 2307 | if (!is_idle_task(p) && !exiting_task(p)) |
| 2308 | p->ravg.prev_window = delta; |
| 2309 | } |
| 2310 | |
| 2311 | /* |
| 2312 | * Rollover is done here by overwriting the values in |
| 2313 | * prev_runnable_sum and curr_runnable_sum. |
| 2314 | */ |
| 2315 | *prev_runnable_sum += delta; |
| 2316 | if (new_task) |
| 2317 | *nt_prev_runnable_sum += delta; |
| 2318 | |
| 2319 | /* Account piece of busy time in the current window. */ |
| 2320 | delta = scale_exec_time(wallclock - window_start, rq); |
| 2321 | *curr_runnable_sum += delta; |
| 2322 | if (new_task) |
| 2323 | *nt_curr_runnable_sum += delta; |
| 2324 | |
| 2325 | if (!is_idle_task(p) && !exiting_task(p)) |
| 2326 | p->ravg.curr_window = delta; |
| 2327 | |
| 2328 | return; |
| 2329 | } |
| 2330 | |
| 2331 | if (irqtime) { |
| 2332 | /* |
| 2333 | * account_busy_for_cpu_time() = 1 so busy time needs |
| 2334 | * to be accounted to the current window. A new window |
| 2335 | * has started and p is the current task so rollover is |
| 2336 | * needed. The current task must be the idle task because |
| 2337 | * irqtime is not accounted for any other task. |
| 2338 | * |
| 2339 | * Irqtime will be accounted each time we process IRQ activity |
| 2340 | * after a period of idleness, so we know the IRQ busy time |
| 2341 | * started at wallclock - irqtime. |
| 2342 | */ |
| 2343 | |
| 2344 | BUG_ON(!is_idle_task(p)); |
| 2345 | mark_start = wallclock - irqtime; |
| 2346 | |
| 2347 | /* |
| 2348 | * Roll window over. If IRQ busy time was just in the current |
| 2349 | * window then that is all that need be accounted. |
| 2350 | */ |
| 2351 | if (mark_start > window_start) { |
| 2352 | *curr_runnable_sum = scale_exec_time(irqtime, rq); |
| 2353 | return; |
| 2354 | } |
| 2355 | |
| 2356 | /* |
| 2357 | * The IRQ busy time spanned multiple windows. Process the |
| 2358 | * busy time preceding the current window start first. |
| 2359 | */ |
| 2360 | delta = window_start - mark_start; |
| 2361 | if (delta > window_size) |
| 2362 | delta = window_size; |
| 2363 | delta = scale_exec_time(delta, rq); |
| 2364 | *prev_runnable_sum += delta; |
| 2365 | |
| 2366 | /* Process the remaining IRQ busy time in the current window. */ |
| 2367 | delta = wallclock - window_start; |
| 2368 | rq->curr_runnable_sum = scale_exec_time(delta, rq); |
| 2369 | |
| 2370 | return; |
| 2371 | } |
| 2372 | |
| 2373 | BUG(); |
| 2374 | } |
| 2375 | |
| 2376 | static inline u32 predict_and_update_buckets(struct rq *rq, |
| 2377 | struct task_struct *p, u32 runtime) { |
| 2378 | |
| 2379 | int bidx; |
| 2380 | u32 pred_demand; |
| 2381 | |
| 2382 | bidx = busy_to_bucket(runtime); |
| 2383 | pred_demand = get_pred_busy(rq, p, bidx, runtime); |
| 2384 | bucket_increase(p->ravg.busy_buckets, bidx); |
| 2385 | |
| 2386 | return pred_demand; |
| 2387 | } |
| 2388 | |
| 2389 | static void update_task_cpu_cycles(struct task_struct *p, int cpu) |
| 2390 | { |
| 2391 | if (use_cycle_counter) |
| 2392 | p->cpu_cycles = cpu_cycle_counter_cb.get_cpu_cycle_counter(cpu); |
| 2393 | } |
| 2394 | |
| 2395 | static void |
| 2396 | update_task_rq_cpu_cycles(struct task_struct *p, struct rq *rq, int event, |
| 2397 | u64 wallclock, u64 irqtime) |
| 2398 | { |
| 2399 | u64 cur_cycles; |
| 2400 | int cpu = cpu_of(rq); |
| 2401 | |
| 2402 | lockdep_assert_held(&rq->lock); |
| 2403 | |
| 2404 | if (!use_cycle_counter) { |
| 2405 | rq->cc.cycles = cpu_cur_freq(cpu); |
| 2406 | rq->cc.time = 1; |
| 2407 | return; |
| 2408 | } |
| 2409 | |
| 2410 | cur_cycles = cpu_cycle_counter_cb.get_cpu_cycle_counter(cpu); |
| 2411 | |
| 2412 | /* |
| 2413 | * If current task is idle task and irqtime == 0 CPU was |
| 2414 | * indeed idle and probably its cycle counter was not |
| 2415 | * increasing. We still need estimatied CPU frequency |
| 2416 | * for IO wait time accounting. Use the previously |
| 2417 | * calculated frequency in such a case. |
| 2418 | */ |
| 2419 | if (!is_idle_task(rq->curr) || irqtime) { |
| 2420 | if (unlikely(cur_cycles < p->cpu_cycles)) |
| 2421 | rq->cc.cycles = cur_cycles + (U64_MAX - p->cpu_cycles); |
| 2422 | else |
| 2423 | rq->cc.cycles = cur_cycles - p->cpu_cycles; |
| 2424 | rq->cc.cycles = rq->cc.cycles * NSEC_PER_MSEC; |
| 2425 | |
| 2426 | if (event == IRQ_UPDATE && is_idle_task(p)) |
| 2427 | /* |
| 2428 | * Time between mark_start of idle task and IRQ handler |
| 2429 | * entry time is CPU cycle counter stall period. |
| 2430 | * Upon IRQ handler entry sched_account_irqstart() |
| 2431 | * replenishes idle task's cpu cycle counter so |
| 2432 | * rq->cc.cycles now represents increased cycles during |
| 2433 | * IRQ handler rather than time between idle entry and |
| 2434 | * IRQ exit. Thus use irqtime as time delta. |
| 2435 | */ |
| 2436 | rq->cc.time = irqtime; |
| 2437 | else |
| 2438 | rq->cc.time = wallclock - p->ravg.mark_start; |
| 2439 | BUG_ON((s64)rq->cc.time < 0); |
| 2440 | } |
| 2441 | |
| 2442 | p->cpu_cycles = cur_cycles; |
| 2443 | |
| 2444 | trace_sched_get_task_cpu_cycles(cpu, event, rq->cc.cycles, rq->cc.time); |
| 2445 | } |
| 2446 | |
| 2447 | static int account_busy_for_task_demand(struct task_struct *p, int event) |
| 2448 | { |
| 2449 | /* |
| 2450 | * No need to bother updating task demand for exiting tasks |
| 2451 | * or the idle task. |
| 2452 | */ |
| 2453 | if (exiting_task(p) || is_idle_task(p)) |
| 2454 | return 0; |
| 2455 | |
| 2456 | /* |
| 2457 | * When a task is waking up it is completing a segment of non-busy |
| 2458 | * time. Likewise, if wait time is not treated as busy time, then |
| 2459 | * when a task begins to run or is migrated, it is not running and |
| 2460 | * is completing a segment of non-busy time. |
| 2461 | */ |
| 2462 | if (event == TASK_WAKE || (!SCHED_ACCOUNT_WAIT_TIME && |
| 2463 | (event == PICK_NEXT_TASK || event == TASK_MIGRATE))) |
| 2464 | return 0; |
| 2465 | |
| 2466 | return 1; |
| 2467 | } |
| 2468 | |
| 2469 | /* |
| 2470 | * Called when new window is starting for a task, to record cpu usage over |
| 2471 | * recently concluded window(s). Normally 'samples' should be 1. It can be > 1 |
| 2472 | * when, say, a real-time task runs without preemption for several windows at a |
| 2473 | * stretch. |
| 2474 | */ |
| 2475 | static void update_history(struct rq *rq, struct task_struct *p, |
| 2476 | u32 runtime, int samples, int event) |
| 2477 | { |
| 2478 | u32 *hist = &p->ravg.sum_history[0]; |
| 2479 | int ridx, widx; |
| 2480 | u32 max = 0, avg, demand, pred_demand; |
| 2481 | u64 sum = 0; |
| 2482 | |
| 2483 | /* Ignore windows where task had no activity */ |
| 2484 | if (!runtime || is_idle_task(p) || exiting_task(p) || !samples) |
| 2485 | goto done; |
| 2486 | |
| 2487 | /* Push new 'runtime' value onto stack */ |
| 2488 | widx = sched_ravg_hist_size - 1; |
| 2489 | ridx = widx - samples; |
| 2490 | for (; ridx >= 0; --widx, --ridx) { |
| 2491 | hist[widx] = hist[ridx]; |
| 2492 | sum += hist[widx]; |
| 2493 | if (hist[widx] > max) |
| 2494 | max = hist[widx]; |
| 2495 | } |
| 2496 | |
| 2497 | for (widx = 0; widx < samples && widx < sched_ravg_hist_size; widx++) { |
| 2498 | hist[widx] = runtime; |
| 2499 | sum += hist[widx]; |
| 2500 | if (hist[widx] > max) |
| 2501 | max = hist[widx]; |
| 2502 | } |
| 2503 | |
| 2504 | p->ravg.sum = 0; |
| 2505 | |
| 2506 | if (sched_window_stats_policy == WINDOW_STATS_RECENT) { |
| 2507 | demand = runtime; |
| 2508 | } else if (sched_window_stats_policy == WINDOW_STATS_MAX) { |
| 2509 | demand = max; |
| 2510 | } else { |
| 2511 | avg = div64_u64(sum, sched_ravg_hist_size); |
| 2512 | if (sched_window_stats_policy == WINDOW_STATS_AVG) |
| 2513 | demand = avg; |
| 2514 | else |
| 2515 | demand = max(avg, runtime); |
| 2516 | } |
| 2517 | pred_demand = predict_and_update_buckets(rq, p, runtime); |
| 2518 | |
| 2519 | /* |
| 2520 | * A throttled deadline sched class task gets dequeued without |
| 2521 | * changing p->on_rq. Since the dequeue decrements hmp stats |
| 2522 | * avoid decrementing it here again. |
| 2523 | */ |
| 2524 | if (task_on_rq_queued(p) && (!task_has_dl_policy(p) || |
| 2525 | !p->dl.dl_throttled)) |
| 2526 | p->sched_class->fixup_hmp_sched_stats(rq, p, demand, |
| 2527 | pred_demand); |
| 2528 | |
| 2529 | p->ravg.demand = demand; |
| 2530 | p->ravg.pred_demand = pred_demand; |
| 2531 | |
| 2532 | done: |
| 2533 | trace_sched_update_history(rq, p, runtime, samples, event); |
| 2534 | } |
| 2535 | |
| 2536 | static void add_to_task_demand(struct rq *rq, struct task_struct *p, u64 delta) |
| 2537 | { |
| 2538 | delta = scale_exec_time(delta, rq); |
| 2539 | p->ravg.sum += delta; |
| 2540 | if (unlikely(p->ravg.sum > sched_ravg_window)) |
| 2541 | p->ravg.sum = sched_ravg_window; |
| 2542 | } |
| 2543 | |
| 2544 | /* |
| 2545 | * Account cpu demand of task and/or update task's cpu demand history |
| 2546 | * |
| 2547 | * ms = p->ravg.mark_start; |
| 2548 | * wc = wallclock |
| 2549 | * ws = rq->window_start |
| 2550 | * |
| 2551 | * Three possibilities: |
| 2552 | * |
| 2553 | * a) Task event is contained within one window. |
| 2554 | * window_start < mark_start < wallclock |
| 2555 | * |
| 2556 | * ws ms wc |
| 2557 | * | | | |
| 2558 | * V V V |
| 2559 | * |---------------| |
| 2560 | * |
| 2561 | * In this case, p->ravg.sum is updated *iff* event is appropriate |
| 2562 | * (ex: event == PUT_PREV_TASK) |
| 2563 | * |
| 2564 | * b) Task event spans two windows. |
| 2565 | * mark_start < window_start < wallclock |
| 2566 | * |
| 2567 | * ms ws wc |
| 2568 | * | | | |
| 2569 | * V V V |
| 2570 | * -----|------------------- |
| 2571 | * |
| 2572 | * In this case, p->ravg.sum is updated with (ws - ms) *iff* event |
| 2573 | * is appropriate, then a new window sample is recorded followed |
| 2574 | * by p->ravg.sum being set to (wc - ws) *iff* event is appropriate. |
| 2575 | * |
| 2576 | * c) Task event spans more than two windows. |
| 2577 | * |
| 2578 | * ms ws_tmp ws wc |
| 2579 | * | | | | |
| 2580 | * V V V V |
| 2581 | * ---|-------|-------|-------|-------|------ |
| 2582 | * | | |
| 2583 | * |<------ nr_full_windows ------>| |
| 2584 | * |
| 2585 | * In this case, p->ravg.sum is updated with (ws_tmp - ms) first *iff* |
| 2586 | * event is appropriate, window sample of p->ravg.sum is recorded, |
| 2587 | * 'nr_full_window' samples of window_size is also recorded *iff* |
| 2588 | * event is appropriate and finally p->ravg.sum is set to (wc - ws) |
| 2589 | * *iff* event is appropriate. |
| 2590 | * |
| 2591 | * IMPORTANT : Leave p->ravg.mark_start unchanged, as update_cpu_busy_time() |
| 2592 | * depends on it! |
| 2593 | */ |
| 2594 | static void update_task_demand(struct task_struct *p, struct rq *rq, |
| 2595 | int event, u64 wallclock) |
| 2596 | { |
| 2597 | u64 mark_start = p->ravg.mark_start; |
| 2598 | u64 delta, window_start = rq->window_start; |
| 2599 | int new_window, nr_full_windows; |
| 2600 | u32 window_size = sched_ravg_window; |
| 2601 | |
| 2602 | new_window = mark_start < window_start; |
| 2603 | if (!account_busy_for_task_demand(p, event)) { |
| 2604 | if (new_window) |
| 2605 | /* |
| 2606 | * If the time accounted isn't being accounted as |
| 2607 | * busy time, and a new window started, only the |
| 2608 | * previous window need be closed out with the |
| 2609 | * pre-existing demand. Multiple windows may have |
| 2610 | * elapsed, but since empty windows are dropped, |
| 2611 | * it is not necessary to account those. |
| 2612 | */ |
| 2613 | update_history(rq, p, p->ravg.sum, 1, event); |
| 2614 | return; |
| 2615 | } |
| 2616 | |
| 2617 | if (!new_window) { |
| 2618 | /* |
| 2619 | * The simple case - busy time contained within the existing |
| 2620 | * window. |
| 2621 | */ |
| 2622 | add_to_task_demand(rq, p, wallclock - mark_start); |
| 2623 | return; |
| 2624 | } |
| 2625 | |
| 2626 | /* |
| 2627 | * Busy time spans at least two windows. Temporarily rewind |
| 2628 | * window_start to first window boundary after mark_start. |
| 2629 | */ |
| 2630 | delta = window_start - mark_start; |
| 2631 | nr_full_windows = div64_u64(delta, window_size); |
| 2632 | window_start -= (u64)nr_full_windows * (u64)window_size; |
| 2633 | |
| 2634 | /* Process (window_start - mark_start) first */ |
| 2635 | add_to_task_demand(rq, p, window_start - mark_start); |
| 2636 | |
| 2637 | /* Push new sample(s) into task's demand history */ |
| 2638 | update_history(rq, p, p->ravg.sum, 1, event); |
| 2639 | if (nr_full_windows) |
| 2640 | update_history(rq, p, scale_exec_time(window_size, rq), |
| 2641 | nr_full_windows, event); |
| 2642 | |
| 2643 | /* |
| 2644 | * Roll window_start back to current to process any remainder |
| 2645 | * in current window. |
| 2646 | */ |
| 2647 | window_start += (u64)nr_full_windows * (u64)window_size; |
| 2648 | |
| 2649 | /* Process (wallclock - window_start) next */ |
| 2650 | mark_start = window_start; |
| 2651 | add_to_task_demand(rq, p, wallclock - mark_start); |
| 2652 | } |
| 2653 | |
| 2654 | /* Reflect task activity on its demand and cpu's busy time statistics */ |
| 2655 | void update_task_ravg(struct task_struct *p, struct rq *rq, int event, |
| 2656 | u64 wallclock, u64 irqtime) |
| 2657 | { |
| 2658 | if (!rq->window_start || sched_disable_window_stats) |
| 2659 | return; |
| 2660 | |
| 2661 | lockdep_assert_held(&rq->lock); |
| 2662 | |
| 2663 | update_window_start(rq, wallclock); |
| 2664 | |
| 2665 | if (!p->ravg.mark_start) { |
| 2666 | update_task_cpu_cycles(p, cpu_of(rq)); |
| 2667 | goto done; |
| 2668 | } |
| 2669 | |
| 2670 | update_task_rq_cpu_cycles(p, rq, event, wallclock, irqtime); |
| 2671 | update_task_demand(p, rq, event, wallclock); |
| 2672 | update_cpu_busy_time(p, rq, event, wallclock, irqtime); |
| 2673 | update_task_pred_demand(rq, p, event); |
| 2674 | done: |
| 2675 | trace_sched_update_task_ravg(p, rq, event, wallclock, irqtime, |
| 2676 | rq->cc.cycles, rq->cc.time, |
| 2677 | _group_cpu_time(p->grp, cpu_of(rq))); |
| 2678 | |
| 2679 | p->ravg.mark_start = wallclock; |
| 2680 | } |
| 2681 | |
| 2682 | void sched_account_irqtime(int cpu, struct task_struct *curr, |
| 2683 | u64 delta, u64 wallclock) |
| 2684 | { |
| 2685 | struct rq *rq = cpu_rq(cpu); |
| 2686 | unsigned long flags, nr_windows; |
| 2687 | u64 cur_jiffies_ts; |
| 2688 | |
| 2689 | raw_spin_lock_irqsave(&rq->lock, flags); |
| 2690 | |
| 2691 | /* |
| 2692 | * cputime (wallclock) uses sched_clock so use the same here for |
| 2693 | * consistency. |
| 2694 | */ |
| 2695 | delta += sched_clock() - wallclock; |
| 2696 | cur_jiffies_ts = get_jiffies_64(); |
| 2697 | |
| 2698 | if (is_idle_task(curr)) |
| 2699 | update_task_ravg(curr, rq, IRQ_UPDATE, sched_ktime_clock(), |
| 2700 | delta); |
| 2701 | |
| 2702 | nr_windows = cur_jiffies_ts - rq->irqload_ts; |
| 2703 | |
| 2704 | if (nr_windows) { |
| 2705 | if (nr_windows < 10) { |
| 2706 | /* Decay CPU's irqload by 3/4 for each window. */ |
| 2707 | rq->avg_irqload *= (3 * nr_windows); |
| 2708 | rq->avg_irqload = div64_u64(rq->avg_irqload, |
| 2709 | 4 * nr_windows); |
| 2710 | } else { |
| 2711 | rq->avg_irqload = 0; |
| 2712 | } |
| 2713 | rq->avg_irqload += rq->cur_irqload; |
| 2714 | rq->cur_irqload = 0; |
| 2715 | } |
| 2716 | |
| 2717 | rq->cur_irqload += delta; |
| 2718 | rq->irqload_ts = cur_jiffies_ts; |
| 2719 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
| 2720 | } |
| 2721 | |
| 2722 | void sched_account_irqstart(int cpu, struct task_struct *curr, u64 wallclock) |
| 2723 | { |
| 2724 | struct rq *rq = cpu_rq(cpu); |
| 2725 | |
| 2726 | if (!rq->window_start || sched_disable_window_stats) |
| 2727 | return; |
| 2728 | |
| 2729 | if (is_idle_task(curr)) { |
| 2730 | /* We're here without rq->lock held, IRQ disabled */ |
| 2731 | raw_spin_lock(&rq->lock); |
| 2732 | update_task_cpu_cycles(curr, cpu); |
| 2733 | raw_spin_unlock(&rq->lock); |
| 2734 | } |
| 2735 | } |
| 2736 | |
| 2737 | void reset_task_stats(struct task_struct *p) |
| 2738 | { |
| 2739 | u32 sum = 0; |
| 2740 | |
| 2741 | if (exiting_task(p)) |
| 2742 | sum = EXITING_TASK_MARKER; |
| 2743 | |
| 2744 | memset(&p->ravg, 0, sizeof(struct ravg)); |
| 2745 | /* Retain EXITING_TASK marker */ |
| 2746 | p->ravg.sum_history[0] = sum; |
| 2747 | } |
| 2748 | |
| 2749 | void mark_task_starting(struct task_struct *p) |
| 2750 | { |
| 2751 | u64 wallclock; |
| 2752 | struct rq *rq = task_rq(p); |
| 2753 | |
| 2754 | if (!rq->window_start || sched_disable_window_stats) { |
| 2755 | reset_task_stats(p); |
| 2756 | return; |
| 2757 | } |
| 2758 | |
| 2759 | wallclock = sched_ktime_clock(); |
| 2760 | p->ravg.mark_start = p->last_wake_ts = wallclock; |
| 2761 | p->last_cpu_selected_ts = wallclock; |
| 2762 | p->last_switch_out_ts = 0; |
| 2763 | update_task_cpu_cycles(p, cpu_of(rq)); |
| 2764 | } |
| 2765 | |
| 2766 | void set_window_start(struct rq *rq) |
| 2767 | { |
| 2768 | int cpu = cpu_of(rq); |
| 2769 | struct rq *sync_rq = cpu_rq(sync_cpu); |
| 2770 | |
| 2771 | if (rq->window_start) |
| 2772 | return; |
| 2773 | |
| 2774 | if (cpu == sync_cpu) { |
| 2775 | rq->window_start = sched_ktime_clock(); |
| 2776 | } else { |
| 2777 | raw_spin_unlock(&rq->lock); |
| 2778 | double_rq_lock(rq, sync_rq); |
| 2779 | rq->window_start = cpu_rq(sync_cpu)->window_start; |
| 2780 | rq->curr_runnable_sum = rq->prev_runnable_sum = 0; |
| 2781 | rq->nt_curr_runnable_sum = rq->nt_prev_runnable_sum = 0; |
| 2782 | raw_spin_unlock(&sync_rq->lock); |
| 2783 | } |
| 2784 | |
| 2785 | rq->curr->ravg.mark_start = rq->window_start; |
| 2786 | } |
| 2787 | |
| 2788 | void migrate_sync_cpu(int cpu) |
| 2789 | { |
| 2790 | if (cpu == sync_cpu) |
| 2791 | sync_cpu = smp_processor_id(); |
| 2792 | } |
| 2793 | |
| 2794 | static void reset_all_task_stats(void) |
| 2795 | { |
| 2796 | struct task_struct *g, *p; |
| 2797 | |
| 2798 | read_lock(&tasklist_lock); |
| 2799 | do_each_thread(g, p) { |
| 2800 | reset_task_stats(p); |
| 2801 | } while_each_thread(g, p); |
| 2802 | read_unlock(&tasklist_lock); |
| 2803 | } |
| 2804 | |
| 2805 | static void disable_window_stats(void) |
| 2806 | { |
| 2807 | unsigned long flags; |
| 2808 | int i; |
| 2809 | |
| 2810 | local_irq_save(flags); |
| 2811 | for_each_possible_cpu(i) |
| 2812 | raw_spin_lock(&cpu_rq(i)->lock); |
| 2813 | |
| 2814 | sched_disable_window_stats = 1; |
| 2815 | |
| 2816 | for_each_possible_cpu(i) |
| 2817 | raw_spin_unlock(&cpu_rq(i)->lock); |
| 2818 | |
| 2819 | local_irq_restore(flags); |
| 2820 | } |
| 2821 | |
| 2822 | /* Called with all cpu's rq->lock held */ |
| 2823 | static void enable_window_stats(void) |
| 2824 | { |
| 2825 | sched_disable_window_stats = 0; |
| 2826 | |
| 2827 | } |
| 2828 | |
| 2829 | enum reset_reason_code { |
| 2830 | WINDOW_CHANGE, |
| 2831 | POLICY_CHANGE, |
| 2832 | HIST_SIZE_CHANGE, |
| 2833 | FREQ_AGGREGATE_CHANGE, |
| 2834 | }; |
| 2835 | |
| 2836 | const char *sched_window_reset_reasons[] = { |
| 2837 | "WINDOW_CHANGE", |
| 2838 | "POLICY_CHANGE", |
| 2839 | "HIST_SIZE_CHANGE", |
| 2840 | }; |
| 2841 | |
| 2842 | /* Called with IRQs enabled */ |
| 2843 | void reset_all_window_stats(u64 window_start, unsigned int window_size) |
| 2844 | { |
| 2845 | int cpu; |
| 2846 | unsigned long flags; |
| 2847 | u64 start_ts = sched_ktime_clock(); |
| 2848 | int reason = WINDOW_CHANGE; |
| 2849 | unsigned int old = 0, new = 0; |
| 2850 | struct related_thread_group *grp; |
| 2851 | |
| 2852 | disable_window_stats(); |
| 2853 | |
| 2854 | reset_all_task_stats(); |
| 2855 | |
| 2856 | local_irq_save(flags); |
| 2857 | |
| 2858 | read_lock(&related_thread_group_lock); |
| 2859 | |
| 2860 | for_each_possible_cpu(cpu) |
| 2861 | raw_spin_lock(&cpu_rq(cpu)->lock); |
| 2862 | |
| 2863 | list_for_each_entry(grp, &related_thread_groups, list) { |
| 2864 | int j; |
| 2865 | |
| 2866 | for_each_possible_cpu(j) { |
| 2867 | struct group_cpu_time *cpu_time; |
| 2868 | /* Protected by rq lock */ |
| 2869 | cpu_time = _group_cpu_time(grp, j); |
| 2870 | memset(cpu_time, 0, sizeof(struct group_cpu_time)); |
| 2871 | if (window_start) |
| 2872 | cpu_time->window_start = window_start; |
| 2873 | } |
| 2874 | } |
| 2875 | |
| 2876 | if (window_size) { |
| 2877 | sched_ravg_window = window_size * TICK_NSEC; |
| 2878 | set_hmp_defaults(); |
| 2879 | } |
| 2880 | |
| 2881 | enable_window_stats(); |
| 2882 | |
| 2883 | for_each_possible_cpu(cpu) { |
| 2884 | struct rq *rq = cpu_rq(cpu); |
| 2885 | |
| 2886 | if (window_start) |
| 2887 | rq->window_start = window_start; |
| 2888 | rq->curr_runnable_sum = rq->prev_runnable_sum = 0; |
| 2889 | rq->nt_curr_runnable_sum = rq->nt_prev_runnable_sum = 0; |
| 2890 | reset_cpu_hmp_stats(cpu, 1); |
| 2891 | } |
| 2892 | |
| 2893 | if (sched_window_stats_policy != sysctl_sched_window_stats_policy) { |
| 2894 | reason = POLICY_CHANGE; |
| 2895 | old = sched_window_stats_policy; |
| 2896 | new = sysctl_sched_window_stats_policy; |
| 2897 | sched_window_stats_policy = sysctl_sched_window_stats_policy; |
| 2898 | } else if (sched_ravg_hist_size != sysctl_sched_ravg_hist_size) { |
| 2899 | reason = HIST_SIZE_CHANGE; |
| 2900 | old = sched_ravg_hist_size; |
| 2901 | new = sysctl_sched_ravg_hist_size; |
| 2902 | sched_ravg_hist_size = sysctl_sched_ravg_hist_size; |
| 2903 | } else if (sched_freq_aggregate != |
| 2904 | sysctl_sched_freq_aggregate) { |
| 2905 | reason = FREQ_AGGREGATE_CHANGE; |
| 2906 | old = sched_freq_aggregate; |
| 2907 | new = sysctl_sched_freq_aggregate; |
| 2908 | sched_freq_aggregate = sysctl_sched_freq_aggregate; |
| 2909 | } |
| 2910 | |
| 2911 | for_each_possible_cpu(cpu) |
| 2912 | raw_spin_unlock(&cpu_rq(cpu)->lock); |
| 2913 | |
| 2914 | read_unlock(&related_thread_group_lock); |
| 2915 | |
| 2916 | local_irq_restore(flags); |
| 2917 | |
| 2918 | trace_sched_reset_all_window_stats(window_start, window_size, |
| 2919 | sched_ktime_clock() - start_ts, reason, old, new); |
| 2920 | } |
| 2921 | |
| 2922 | static inline void |
| 2923 | sync_window_start(struct rq *rq, struct group_cpu_time *cpu_time); |
| 2924 | |
| 2925 | void sched_get_cpus_busy(struct sched_load *busy, |
| 2926 | const struct cpumask *query_cpus) |
| 2927 | { |
| 2928 | unsigned long flags; |
| 2929 | struct rq *rq; |
| 2930 | const int cpus = cpumask_weight(query_cpus); |
| 2931 | u64 load[cpus], group_load[cpus]; |
| 2932 | u64 nload[cpus], ngload[cpus]; |
| 2933 | u64 pload[cpus]; |
| 2934 | unsigned int cur_freq[cpus], max_freq[cpus]; |
| 2935 | int notifier_sent = 0; |
| 2936 | int early_detection[cpus]; |
| 2937 | int cpu, i = 0; |
| 2938 | unsigned int window_size; |
| 2939 | u64 max_prev_sum = 0; |
| 2940 | int max_busy_cpu = cpumask_first(query_cpus); |
| 2941 | struct related_thread_group *grp; |
| 2942 | u64 total_group_load = 0, total_ngload = 0; |
| 2943 | bool aggregate_load = false; |
| 2944 | |
| 2945 | if (unlikely(cpus == 0)) |
| 2946 | return; |
| 2947 | |
| 2948 | /* |
| 2949 | * This function could be called in timer context, and the |
| 2950 | * current task may have been executing for a long time. Ensure |
| 2951 | * that the window stats are current by doing an update. |
| 2952 | */ |
| 2953 | read_lock(&related_thread_group_lock); |
| 2954 | |
| 2955 | local_irq_save(flags); |
| 2956 | for_each_cpu(cpu, query_cpus) |
| 2957 | raw_spin_lock(&cpu_rq(cpu)->lock); |
| 2958 | |
| 2959 | window_size = sched_ravg_window; |
| 2960 | |
| 2961 | for_each_cpu(cpu, query_cpus) { |
| 2962 | rq = cpu_rq(cpu); |
| 2963 | |
| 2964 | update_task_ravg(rq->curr, rq, TASK_UPDATE, sched_ktime_clock(), |
| 2965 | 0); |
| 2966 | cur_freq[i] = cpu_cycles_to_freq(rq->cc.cycles, rq->cc.time); |
| 2967 | |
| 2968 | load[i] = rq->old_busy_time = rq->prev_runnable_sum; |
| 2969 | nload[i] = rq->nt_prev_runnable_sum; |
| 2970 | pload[i] = rq->hmp_stats.pred_demands_sum; |
| 2971 | rq->old_estimated_time = pload[i]; |
| 2972 | |
| 2973 | if (load[i] > max_prev_sum) { |
| 2974 | max_prev_sum = load[i]; |
| 2975 | max_busy_cpu = cpu; |
| 2976 | } |
| 2977 | |
| 2978 | /* |
| 2979 | * sched_get_cpus_busy() is called for all CPUs in a |
| 2980 | * frequency domain. So the notifier_sent flag per |
| 2981 | * cluster works even when a frequency domain spans |
| 2982 | * more than 1 cluster. |
| 2983 | */ |
| 2984 | if (rq->cluster->notifier_sent) { |
| 2985 | notifier_sent = 1; |
| 2986 | rq->cluster->notifier_sent = 0; |
| 2987 | } |
| 2988 | early_detection[i] = (rq->ed_task != NULL); |
| 2989 | cur_freq[i] = cpu_cur_freq(cpu); |
| 2990 | max_freq[i] = cpu_max_freq(cpu); |
| 2991 | i++; |
| 2992 | } |
| 2993 | |
| 2994 | for_each_related_thread_group(grp) { |
| 2995 | for_each_cpu(cpu, query_cpus) { |
| 2996 | /* Protected by rq_lock */ |
| 2997 | struct group_cpu_time *cpu_time = |
| 2998 | _group_cpu_time(grp, cpu); |
| 2999 | sync_window_start(cpu_rq(cpu), cpu_time); |
| 3000 | } |
| 3001 | } |
| 3002 | |
| 3003 | group_load_in_freq_domain( |
| 3004 | &cpu_rq(max_busy_cpu)->freq_domain_cpumask, |
| 3005 | &total_group_load, &total_ngload); |
| 3006 | aggregate_load = !!(total_group_load > sched_freq_aggregate_threshold); |
| 3007 | |
| 3008 | i = 0; |
| 3009 | for_each_cpu(cpu, query_cpus) { |
| 3010 | group_load[i] = 0; |
| 3011 | ngload[i] = 0; |
| 3012 | |
| 3013 | if (early_detection[i]) |
| 3014 | goto skip_early; |
| 3015 | |
| 3016 | rq = cpu_rq(cpu); |
| 3017 | if (aggregate_load) { |
| 3018 | if (cpu == max_busy_cpu) { |
| 3019 | group_load[i] = total_group_load; |
| 3020 | ngload[i] = total_ngload; |
| 3021 | } |
| 3022 | } else { |
| 3023 | _group_load_in_cpu(cpu, &group_load[i], &ngload[i]); |
| 3024 | } |
| 3025 | |
| 3026 | load[i] += group_load[i]; |
| 3027 | nload[i] += ngload[i]; |
| 3028 | /* |
| 3029 | * Scale load in reference to cluster max_possible_freq. |
| 3030 | * |
| 3031 | * Note that scale_load_to_cpu() scales load in reference to |
| 3032 | * the cluster max_freq. |
| 3033 | */ |
| 3034 | load[i] = scale_load_to_cpu(load[i], cpu); |
| 3035 | nload[i] = scale_load_to_cpu(nload[i], cpu); |
| 3036 | pload[i] = scale_load_to_cpu(pload[i], cpu); |
| 3037 | skip_early: |
| 3038 | i++; |
| 3039 | } |
| 3040 | |
| 3041 | for_each_cpu(cpu, query_cpus) |
| 3042 | raw_spin_unlock(&(cpu_rq(cpu))->lock); |
| 3043 | local_irq_restore(flags); |
| 3044 | |
| 3045 | read_unlock(&related_thread_group_lock); |
| 3046 | |
| 3047 | i = 0; |
| 3048 | for_each_cpu(cpu, query_cpus) { |
| 3049 | rq = cpu_rq(cpu); |
| 3050 | |
| 3051 | if (early_detection[i]) { |
| 3052 | busy[i].prev_load = div64_u64(sched_ravg_window, |
| 3053 | NSEC_PER_USEC); |
| 3054 | busy[i].new_task_load = 0; |
| 3055 | goto exit_early; |
| 3056 | } |
| 3057 | |
| 3058 | /* |
| 3059 | * When the load aggregation is controlled by |
| 3060 | * sched_freq_aggregate_threshold, allow reporting loads |
| 3061 | * greater than 100 @ Fcur to ramp up the frequency |
| 3062 | * faster. |
| 3063 | */ |
| 3064 | if (notifier_sent || (aggregate_load && |
| 3065 | sched_freq_aggregate_threshold)) { |
| 3066 | load[i] = scale_load_to_freq(load[i], max_freq[i], |
| 3067 | cpu_max_possible_freq(cpu)); |
| 3068 | nload[i] = scale_load_to_freq(nload[i], max_freq[i], |
| 3069 | cpu_max_possible_freq(cpu)); |
| 3070 | } else { |
| 3071 | load[i] = scale_load_to_freq(load[i], max_freq[i], |
| 3072 | cur_freq[i]); |
| 3073 | nload[i] = scale_load_to_freq(nload[i], max_freq[i], |
| 3074 | cur_freq[i]); |
| 3075 | if (load[i] > window_size) |
| 3076 | load[i] = window_size; |
| 3077 | if (nload[i] > window_size) |
| 3078 | nload[i] = window_size; |
| 3079 | |
| 3080 | load[i] = scale_load_to_freq(load[i], cur_freq[i], |
| 3081 | cpu_max_possible_freq(cpu)); |
| 3082 | nload[i] = scale_load_to_freq(nload[i], cur_freq[i], |
| 3083 | cpu_max_possible_freq(cpu)); |
| 3084 | } |
| 3085 | pload[i] = scale_load_to_freq(pload[i], max_freq[i], |
| 3086 | rq->cluster->max_possible_freq); |
| 3087 | |
| 3088 | busy[i].prev_load = div64_u64(load[i], NSEC_PER_USEC); |
| 3089 | busy[i].new_task_load = div64_u64(nload[i], NSEC_PER_USEC); |
| 3090 | busy[i].predicted_load = div64_u64(pload[i], NSEC_PER_USEC); |
| 3091 | |
| 3092 | exit_early: |
| 3093 | trace_sched_get_busy(cpu, busy[i].prev_load, |
| 3094 | busy[i].new_task_load, |
| 3095 | busy[i].predicted_load, |
| 3096 | early_detection[i]); |
| 3097 | i++; |
| 3098 | } |
| 3099 | } |
| 3100 | |
| 3101 | void sched_set_io_is_busy(int val) |
| 3102 | { |
| 3103 | sched_io_is_busy = val; |
| 3104 | } |
| 3105 | |
| 3106 | int sched_set_window(u64 window_start, unsigned int window_size) |
| 3107 | { |
| 3108 | u64 now, cur_jiffies, jiffy_ktime_ns; |
| 3109 | s64 ws; |
| 3110 | unsigned long flags; |
| 3111 | |
| 3112 | if (window_size * TICK_NSEC < MIN_SCHED_RAVG_WINDOW) |
| 3113 | return -EINVAL; |
| 3114 | |
| 3115 | mutex_lock(&policy_mutex); |
| 3116 | |
| 3117 | /* |
| 3118 | * Get a consistent view of ktime, jiffies, and the time |
| 3119 | * since the last jiffy (based on last_jiffies_update). |
| 3120 | */ |
| 3121 | local_irq_save(flags); |
| 3122 | cur_jiffies = jiffy_to_ktime_ns(&now, &jiffy_ktime_ns); |
| 3123 | local_irq_restore(flags); |
| 3124 | |
| 3125 | /* translate window_start from jiffies to nanoseconds */ |
| 3126 | ws = (window_start - cur_jiffies); /* jiffy difference */ |
| 3127 | ws *= TICK_NSEC; |
| 3128 | ws += jiffy_ktime_ns; |
| 3129 | |
| 3130 | /* |
| 3131 | * Roll back calculated window start so that it is in |
| 3132 | * the past (window stats must have a current window). |
| 3133 | */ |
| 3134 | while (ws > now) |
| 3135 | ws -= (window_size * TICK_NSEC); |
| 3136 | |
| 3137 | BUG_ON(sched_ktime_clock() < ws); |
| 3138 | |
| 3139 | reset_all_window_stats(ws, window_size); |
| 3140 | |
| 3141 | sched_update_freq_max_load(cpu_possible_mask); |
| 3142 | |
| 3143 | mutex_unlock(&policy_mutex); |
| 3144 | |
| 3145 | return 0; |
| 3146 | } |
| 3147 | |
| 3148 | void fixup_busy_time(struct task_struct *p, int new_cpu) |
| 3149 | { |
| 3150 | struct rq *src_rq = task_rq(p); |
| 3151 | struct rq *dest_rq = cpu_rq(new_cpu); |
| 3152 | u64 wallclock; |
| 3153 | u64 *src_curr_runnable_sum, *dst_curr_runnable_sum; |
| 3154 | u64 *src_prev_runnable_sum, *dst_prev_runnable_sum; |
| 3155 | u64 *src_nt_curr_runnable_sum, *dst_nt_curr_runnable_sum; |
| 3156 | u64 *src_nt_prev_runnable_sum, *dst_nt_prev_runnable_sum; |
| 3157 | int migrate_type; |
| 3158 | struct migration_sum_data d; |
| 3159 | bool new_task; |
| 3160 | struct related_thread_group *grp; |
| 3161 | |
| 3162 | if (!p->on_rq && p->state != TASK_WAKING) |
| 3163 | return; |
| 3164 | |
| 3165 | if (exiting_task(p)) { |
| 3166 | clear_ed_task(p, src_rq); |
| 3167 | return; |
| 3168 | } |
| 3169 | |
| 3170 | if (p->state == TASK_WAKING) |
| 3171 | double_rq_lock(src_rq, dest_rq); |
| 3172 | |
| 3173 | if (sched_disable_window_stats) |
| 3174 | goto done; |
| 3175 | |
| 3176 | wallclock = sched_ktime_clock(); |
| 3177 | |
| 3178 | update_task_ravg(task_rq(p)->curr, task_rq(p), |
| 3179 | TASK_UPDATE, |
| 3180 | wallclock, 0); |
| 3181 | update_task_ravg(dest_rq->curr, dest_rq, |
| 3182 | TASK_UPDATE, wallclock, 0); |
| 3183 | |
| 3184 | update_task_ravg(p, task_rq(p), TASK_MIGRATE, |
| 3185 | wallclock, 0); |
| 3186 | |
| 3187 | update_task_cpu_cycles(p, new_cpu); |
| 3188 | |
| 3189 | new_task = is_new_task(p); |
| 3190 | /* Protected by rq_lock */ |
| 3191 | grp = p->grp; |
| 3192 | if (grp && sched_freq_aggregate) { |
| 3193 | struct group_cpu_time *cpu_time; |
| 3194 | |
| 3195 | migrate_type = GROUP_TO_GROUP; |
| 3196 | /* Protected by rq_lock */ |
| 3197 | cpu_time = _group_cpu_time(grp, cpu_of(src_rq)); |
| 3198 | d.src_rq = NULL; |
| 3199 | d.src_cpu_time = cpu_time; |
| 3200 | src_curr_runnable_sum = &cpu_time->curr_runnable_sum; |
| 3201 | src_prev_runnable_sum = &cpu_time->prev_runnable_sum; |
| 3202 | src_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum; |
| 3203 | src_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum; |
| 3204 | |
| 3205 | /* Protected by rq_lock */ |
| 3206 | cpu_time = _group_cpu_time(grp, cpu_of(dest_rq)); |
| 3207 | d.dst_rq = NULL; |
| 3208 | d.dst_cpu_time = cpu_time; |
| 3209 | dst_curr_runnable_sum = &cpu_time->curr_runnable_sum; |
| 3210 | dst_prev_runnable_sum = &cpu_time->prev_runnable_sum; |
| 3211 | dst_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum; |
| 3212 | dst_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum; |
| 3213 | sync_window_start(dest_rq, cpu_time); |
| 3214 | } else { |
| 3215 | migrate_type = RQ_TO_RQ; |
| 3216 | d.src_rq = src_rq; |
| 3217 | d.src_cpu_time = NULL; |
| 3218 | d.dst_rq = dest_rq; |
| 3219 | d.dst_cpu_time = NULL; |
| 3220 | src_curr_runnable_sum = &src_rq->curr_runnable_sum; |
| 3221 | src_prev_runnable_sum = &src_rq->prev_runnable_sum; |
| 3222 | src_nt_curr_runnable_sum = &src_rq->nt_curr_runnable_sum; |
| 3223 | src_nt_prev_runnable_sum = &src_rq->nt_prev_runnable_sum; |
| 3224 | |
| 3225 | dst_curr_runnable_sum = &dest_rq->curr_runnable_sum; |
| 3226 | dst_prev_runnable_sum = &dest_rq->prev_runnable_sum; |
| 3227 | dst_nt_curr_runnable_sum = &dest_rq->nt_curr_runnable_sum; |
| 3228 | dst_nt_prev_runnable_sum = &dest_rq->nt_prev_runnable_sum; |
| 3229 | } |
| 3230 | |
| 3231 | if (p->ravg.curr_window) { |
| 3232 | *src_curr_runnable_sum -= p->ravg.curr_window; |
| 3233 | *dst_curr_runnable_sum += p->ravg.curr_window; |
| 3234 | if (new_task) { |
| 3235 | *src_nt_curr_runnable_sum -= p->ravg.curr_window; |
| 3236 | *dst_nt_curr_runnable_sum += p->ravg.curr_window; |
| 3237 | } |
| 3238 | } |
| 3239 | |
| 3240 | if (p->ravg.prev_window) { |
| 3241 | *src_prev_runnable_sum -= p->ravg.prev_window; |
| 3242 | *dst_prev_runnable_sum += p->ravg.prev_window; |
| 3243 | if (new_task) { |
| 3244 | *src_nt_prev_runnable_sum -= p->ravg.prev_window; |
| 3245 | *dst_nt_prev_runnable_sum += p->ravg.prev_window; |
| 3246 | } |
| 3247 | } |
| 3248 | |
| 3249 | if (p == src_rq->ed_task) { |
| 3250 | src_rq->ed_task = NULL; |
| 3251 | if (!dest_rq->ed_task) |
| 3252 | dest_rq->ed_task = p; |
| 3253 | } |
| 3254 | |
| 3255 | trace_sched_migration_update_sum(p, migrate_type, &d); |
| 3256 | BUG_ON((s64)*src_prev_runnable_sum < 0); |
| 3257 | BUG_ON((s64)*src_curr_runnable_sum < 0); |
| 3258 | BUG_ON((s64)*src_nt_prev_runnable_sum < 0); |
| 3259 | BUG_ON((s64)*src_nt_curr_runnable_sum < 0); |
| 3260 | |
| 3261 | done: |
| 3262 | if (p->state == TASK_WAKING) |
| 3263 | double_rq_unlock(src_rq, dest_rq); |
| 3264 | } |
| 3265 | |
| 3266 | #define sched_up_down_migrate_auto_update 1 |
| 3267 | static void check_for_up_down_migrate_update(const struct cpumask *cpus) |
| 3268 | { |
| 3269 | int i = cpumask_first(cpus); |
| 3270 | |
| 3271 | if (!sched_up_down_migrate_auto_update) |
| 3272 | return; |
| 3273 | |
| 3274 | if (cpu_max_possible_capacity(i) == max_possible_capacity) |
| 3275 | return; |
| 3276 | |
| 3277 | if (cpu_max_possible_freq(i) == cpu_max_freq(i)) |
| 3278 | up_down_migrate_scale_factor = 1024; |
| 3279 | else |
| 3280 | up_down_migrate_scale_factor = (1024 * |
| 3281 | cpu_max_possible_freq(i)) / cpu_max_freq(i); |
| 3282 | |
| 3283 | update_up_down_migrate(); |
| 3284 | } |
| 3285 | |
| 3286 | /* Return cluster which can offer required capacity for group */ |
| 3287 | static struct sched_cluster * |
| 3288 | best_cluster(struct related_thread_group *grp, u64 total_demand) |
| 3289 | { |
| 3290 | struct sched_cluster *cluster = NULL; |
| 3291 | |
| 3292 | for_each_sched_cluster(cluster) { |
| 3293 | if (group_will_fit(cluster, grp, total_demand)) |
| 3294 | return cluster; |
| 3295 | } |
| 3296 | |
| 3297 | return NULL; |
| 3298 | } |
| 3299 | |
| 3300 | static void _set_preferred_cluster(struct related_thread_group *grp) |
| 3301 | { |
| 3302 | struct task_struct *p; |
| 3303 | u64 combined_demand = 0; |
| 3304 | |
| 3305 | if (!sysctl_sched_enable_colocation) { |
| 3306 | grp->last_update = sched_ktime_clock(); |
| 3307 | grp->preferred_cluster = NULL; |
| 3308 | return; |
| 3309 | } |
| 3310 | |
| 3311 | /* |
| 3312 | * wakeup of two or more related tasks could race with each other and |
| 3313 | * could result in multiple calls to _set_preferred_cluster being issued |
| 3314 | * at same time. Avoid overhead in such cases of rechecking preferred |
| 3315 | * cluster |
| 3316 | */ |
| 3317 | if (sched_ktime_clock() - grp->last_update < sched_ravg_window / 10) |
| 3318 | return; |
| 3319 | |
| 3320 | list_for_each_entry(p, &grp->tasks, grp_list) |
| 3321 | combined_demand += p->ravg.demand; |
| 3322 | |
| 3323 | grp->preferred_cluster = best_cluster(grp, combined_demand); |
| 3324 | grp->last_update = sched_ktime_clock(); |
| 3325 | trace_sched_set_preferred_cluster(grp, combined_demand); |
| 3326 | } |
| 3327 | |
| 3328 | void set_preferred_cluster(struct related_thread_group *grp) |
| 3329 | { |
| 3330 | raw_spin_lock(&grp->lock); |
| 3331 | _set_preferred_cluster(grp); |
| 3332 | raw_spin_unlock(&grp->lock); |
| 3333 | } |
| 3334 | |
| 3335 | #define ADD_TASK 0 |
| 3336 | #define REM_TASK 1 |
| 3337 | |
| 3338 | static inline void free_group_cputime(struct related_thread_group *grp) |
| 3339 | { |
| 3340 | free_percpu(grp->cpu_time); |
| 3341 | } |
| 3342 | |
| 3343 | static int alloc_group_cputime(struct related_thread_group *grp) |
| 3344 | { |
| 3345 | int i; |
| 3346 | struct group_cpu_time *cpu_time; |
| 3347 | int cpu = raw_smp_processor_id(); |
| 3348 | struct rq *rq = cpu_rq(cpu); |
| 3349 | u64 window_start = rq->window_start; |
| 3350 | |
| 3351 | grp->cpu_time = alloc_percpu(struct group_cpu_time); |
| 3352 | if (!grp->cpu_time) |
| 3353 | return -ENOMEM; |
| 3354 | |
| 3355 | for_each_possible_cpu(i) { |
| 3356 | cpu_time = per_cpu_ptr(grp->cpu_time, i); |
| 3357 | memset(cpu_time, 0, sizeof(struct group_cpu_time)); |
| 3358 | cpu_time->window_start = window_start; |
| 3359 | } |
| 3360 | |
| 3361 | return 0; |
| 3362 | } |
| 3363 | |
| 3364 | /* |
| 3365 | * A group's window_start may be behind. When moving it forward, flip prev/curr |
| 3366 | * counters. When moving forward > 1 window, prev counter is set to 0 |
| 3367 | */ |
| 3368 | static inline void |
| 3369 | sync_window_start(struct rq *rq, struct group_cpu_time *cpu_time) |
| 3370 | { |
| 3371 | u64 delta; |
| 3372 | int nr_windows; |
| 3373 | u64 curr_sum = cpu_time->curr_runnable_sum; |
| 3374 | u64 nt_curr_sum = cpu_time->nt_curr_runnable_sum; |
| 3375 | |
| 3376 | delta = rq->window_start - cpu_time->window_start; |
| 3377 | if (!delta) |
| 3378 | return; |
| 3379 | |
| 3380 | nr_windows = div64_u64(delta, sched_ravg_window); |
| 3381 | if (nr_windows > 1) |
| 3382 | curr_sum = nt_curr_sum = 0; |
| 3383 | |
| 3384 | cpu_time->prev_runnable_sum = curr_sum; |
| 3385 | cpu_time->curr_runnable_sum = 0; |
| 3386 | |
| 3387 | cpu_time->nt_prev_runnable_sum = nt_curr_sum; |
| 3388 | cpu_time->nt_curr_runnable_sum = 0; |
| 3389 | |
| 3390 | cpu_time->window_start = rq->window_start; |
| 3391 | } |
| 3392 | |
| 3393 | /* |
| 3394 | * Task's cpu usage is accounted in: |
| 3395 | * rq->curr/prev_runnable_sum, when its ->grp is NULL |
| 3396 | * grp->cpu_time[cpu]->curr/prev_runnable_sum, when its ->grp is !NULL |
| 3397 | * |
| 3398 | * Transfer task's cpu usage between those counters when transitioning between |
| 3399 | * groups |
| 3400 | */ |
| 3401 | static void transfer_busy_time(struct rq *rq, struct related_thread_group *grp, |
| 3402 | struct task_struct *p, int event) |
| 3403 | { |
| 3404 | u64 wallclock; |
| 3405 | struct group_cpu_time *cpu_time; |
| 3406 | u64 *src_curr_runnable_sum, *dst_curr_runnable_sum; |
| 3407 | u64 *src_prev_runnable_sum, *dst_prev_runnable_sum; |
| 3408 | u64 *src_nt_curr_runnable_sum, *dst_nt_curr_runnable_sum; |
| 3409 | u64 *src_nt_prev_runnable_sum, *dst_nt_prev_runnable_sum; |
| 3410 | struct migration_sum_data d; |
| 3411 | int migrate_type; |
| 3412 | |
| 3413 | if (!sched_freq_aggregate) |
| 3414 | return; |
| 3415 | |
| 3416 | wallclock = sched_ktime_clock(); |
| 3417 | |
| 3418 | update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0); |
| 3419 | update_task_ravg(p, rq, TASK_UPDATE, wallclock, 0); |
| 3420 | |
| 3421 | /* cpu_time protected by related_thread_group_lock, grp->lock rq_lock */ |
| 3422 | cpu_time = _group_cpu_time(grp, cpu_of(rq)); |
| 3423 | if (event == ADD_TASK) { |
| 3424 | sync_window_start(rq, cpu_time); |
| 3425 | migrate_type = RQ_TO_GROUP; |
| 3426 | d.src_rq = rq; |
| 3427 | d.src_cpu_time = NULL; |
| 3428 | d.dst_rq = NULL; |
| 3429 | d.dst_cpu_time = cpu_time; |
| 3430 | src_curr_runnable_sum = &rq->curr_runnable_sum; |
| 3431 | dst_curr_runnable_sum = &cpu_time->curr_runnable_sum; |
| 3432 | src_prev_runnable_sum = &rq->prev_runnable_sum; |
| 3433 | dst_prev_runnable_sum = &cpu_time->prev_runnable_sum; |
| 3434 | |
| 3435 | src_nt_curr_runnable_sum = &rq->nt_curr_runnable_sum; |
| 3436 | dst_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum; |
| 3437 | src_nt_prev_runnable_sum = &rq->nt_prev_runnable_sum; |
| 3438 | dst_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum; |
| 3439 | } else { |
| 3440 | migrate_type = GROUP_TO_RQ; |
| 3441 | d.src_rq = NULL; |
| 3442 | d.src_cpu_time = cpu_time; |
| 3443 | d.dst_rq = rq; |
| 3444 | d.dst_cpu_time = NULL; |
| 3445 | |
| 3446 | /* |
| 3447 | * In case of REM_TASK, cpu_time->window_start would be |
| 3448 | * uptodate, because of the update_task_ravg() we called |
| 3449 | * above on the moving task. Hence no need for |
| 3450 | * sync_window_start() |
| 3451 | */ |
| 3452 | src_curr_runnable_sum = &cpu_time->curr_runnable_sum; |
| 3453 | dst_curr_runnable_sum = &rq->curr_runnable_sum; |
| 3454 | src_prev_runnable_sum = &cpu_time->prev_runnable_sum; |
| 3455 | dst_prev_runnable_sum = &rq->prev_runnable_sum; |
| 3456 | |
| 3457 | src_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum; |
| 3458 | dst_nt_curr_runnable_sum = &rq->nt_curr_runnable_sum; |
| 3459 | src_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum; |
| 3460 | dst_nt_prev_runnable_sum = &rq->nt_prev_runnable_sum; |
| 3461 | } |
| 3462 | |
| 3463 | *src_curr_runnable_sum -= p->ravg.curr_window; |
| 3464 | *dst_curr_runnable_sum += p->ravg.curr_window; |
| 3465 | |
| 3466 | *src_prev_runnable_sum -= p->ravg.prev_window; |
| 3467 | *dst_prev_runnable_sum += p->ravg.prev_window; |
| 3468 | |
| 3469 | if (is_new_task(p)) { |
| 3470 | *src_nt_curr_runnable_sum -= p->ravg.curr_window; |
| 3471 | *dst_nt_curr_runnable_sum += p->ravg.curr_window; |
| 3472 | *src_nt_prev_runnable_sum -= p->ravg.prev_window; |
| 3473 | *dst_nt_prev_runnable_sum += p->ravg.prev_window; |
| 3474 | } |
| 3475 | |
| 3476 | trace_sched_migration_update_sum(p, migrate_type, &d); |
| 3477 | |
| 3478 | BUG_ON((s64)*src_curr_runnable_sum < 0); |
| 3479 | BUG_ON((s64)*src_prev_runnable_sum < 0); |
| 3480 | } |
| 3481 | |
| 3482 | static inline struct group_cpu_time * |
| 3483 | task_group_cpu_time(struct task_struct *p, int cpu) |
| 3484 | { |
| 3485 | return _group_cpu_time(rcu_dereference(p->grp), cpu); |
| 3486 | } |
| 3487 | |
| 3488 | static inline struct group_cpu_time * |
| 3489 | _group_cpu_time(struct related_thread_group *grp, int cpu) |
| 3490 | { |
| 3491 | return grp ? per_cpu_ptr(grp->cpu_time, cpu) : NULL; |
| 3492 | } |
| 3493 | |
| 3494 | struct related_thread_group *alloc_related_thread_group(int group_id) |
| 3495 | { |
| 3496 | struct related_thread_group *grp; |
| 3497 | |
| 3498 | grp = kzalloc(sizeof(*grp), GFP_KERNEL); |
| 3499 | if (!grp) |
| 3500 | return ERR_PTR(-ENOMEM); |
| 3501 | |
| 3502 | if (alloc_group_cputime(grp)) { |
| 3503 | kfree(grp); |
| 3504 | return ERR_PTR(-ENOMEM); |
| 3505 | } |
| 3506 | |
| 3507 | grp->id = group_id; |
| 3508 | INIT_LIST_HEAD(&grp->tasks); |
| 3509 | INIT_LIST_HEAD(&grp->list); |
| 3510 | raw_spin_lock_init(&grp->lock); |
| 3511 | |
| 3512 | return grp; |
| 3513 | } |
| 3514 | |
| 3515 | struct related_thread_group *lookup_related_thread_group(unsigned int group_id) |
| 3516 | { |
| 3517 | struct related_thread_group *grp; |
| 3518 | |
| 3519 | list_for_each_entry(grp, &related_thread_groups, list) { |
| 3520 | if (grp->id == group_id) |
| 3521 | return grp; |
| 3522 | } |
| 3523 | |
| 3524 | return NULL; |
| 3525 | } |
| 3526 | |
| 3527 | /* See comments before preferred_cluster() */ |
| 3528 | static void free_related_thread_group(struct rcu_head *rcu) |
| 3529 | { |
| 3530 | struct related_thread_group *grp = container_of(rcu, struct |
| 3531 | related_thread_group, rcu); |
| 3532 | |
| 3533 | free_group_cputime(grp); |
| 3534 | kfree(grp); |
| 3535 | } |
| 3536 | |
| 3537 | static void remove_task_from_group(struct task_struct *p) |
| 3538 | { |
| 3539 | struct related_thread_group *grp = p->grp; |
| 3540 | struct rq *rq; |
| 3541 | int empty_group = 1; |
| 3542 | struct rq_flags rf; |
| 3543 | |
| 3544 | raw_spin_lock(&grp->lock); |
| 3545 | |
| 3546 | rq = __task_rq_lock(p, &rf); |
| 3547 | transfer_busy_time(rq, p->grp, p, REM_TASK); |
| 3548 | list_del_init(&p->grp_list); |
| 3549 | rcu_assign_pointer(p->grp, NULL); |
| 3550 | __task_rq_unlock(rq, &rf); |
| 3551 | |
| 3552 | if (!list_empty(&grp->tasks)) { |
| 3553 | empty_group = 0; |
| 3554 | _set_preferred_cluster(grp); |
| 3555 | } |
| 3556 | |
| 3557 | raw_spin_unlock(&grp->lock); |
| 3558 | |
| 3559 | if (empty_group) { |
| 3560 | list_del(&grp->list); |
| 3561 | call_rcu(&grp->rcu, free_related_thread_group); |
| 3562 | } |
| 3563 | } |
| 3564 | |
| 3565 | static int |
| 3566 | add_task_to_group(struct task_struct *p, struct related_thread_group *grp) |
| 3567 | { |
| 3568 | struct rq *rq; |
| 3569 | struct rq_flags rf; |
| 3570 | |
| 3571 | raw_spin_lock(&grp->lock); |
| 3572 | |
| 3573 | /* |
| 3574 | * Change p->grp under rq->lock. Will prevent races with read-side |
| 3575 | * reference of p->grp in various hot-paths |
| 3576 | */ |
| 3577 | rq = __task_rq_lock(p, &rf); |
| 3578 | transfer_busy_time(rq, grp, p, ADD_TASK); |
| 3579 | list_add(&p->grp_list, &grp->tasks); |
| 3580 | rcu_assign_pointer(p->grp, grp); |
| 3581 | __task_rq_unlock(rq, &rf); |
| 3582 | |
| 3583 | _set_preferred_cluster(grp); |
| 3584 | |
| 3585 | raw_spin_unlock(&grp->lock); |
| 3586 | |
| 3587 | return 0; |
| 3588 | } |
| 3589 | |
| 3590 | void add_new_task_to_grp(struct task_struct *new) |
| 3591 | { |
| 3592 | unsigned long flags; |
| 3593 | struct related_thread_group *grp; |
| 3594 | struct task_struct *parent; |
| 3595 | |
| 3596 | if (!sysctl_sched_enable_thread_grouping) |
| 3597 | return; |
| 3598 | |
| 3599 | if (thread_group_leader(new)) |
| 3600 | return; |
| 3601 | |
| 3602 | parent = new->group_leader; |
| 3603 | |
| 3604 | /* |
| 3605 | * The parent's pi_lock is required here to protect race |
| 3606 | * against the parent task being removed from the |
| 3607 | * group. |
| 3608 | */ |
| 3609 | raw_spin_lock_irqsave(&parent->pi_lock, flags); |
| 3610 | |
| 3611 | /* protected by pi_lock. */ |
| 3612 | grp = task_related_thread_group(parent); |
| 3613 | if (!grp) { |
| 3614 | raw_spin_unlock_irqrestore(&parent->pi_lock, flags); |
| 3615 | return; |
| 3616 | } |
| 3617 | raw_spin_lock(&grp->lock); |
| 3618 | |
| 3619 | rcu_assign_pointer(new->grp, grp); |
| 3620 | list_add(&new->grp_list, &grp->tasks); |
| 3621 | |
| 3622 | raw_spin_unlock(&grp->lock); |
| 3623 | raw_spin_unlock_irqrestore(&parent->pi_lock, flags); |
| 3624 | } |
| 3625 | |
| 3626 | int sched_set_group_id(struct task_struct *p, unsigned int group_id) |
| 3627 | { |
| 3628 | int rc = 0, destroy = 0; |
| 3629 | unsigned long flags; |
| 3630 | struct related_thread_group *grp = NULL, *new = NULL; |
| 3631 | |
| 3632 | redo: |
| 3633 | raw_spin_lock_irqsave(&p->pi_lock, flags); |
| 3634 | |
| 3635 | if ((current != p && p->flags & PF_EXITING) || |
| 3636 | (!p->grp && !group_id) || |
| 3637 | (p->grp && p->grp->id == group_id)) |
| 3638 | goto done; |
| 3639 | |
| 3640 | write_lock(&related_thread_group_lock); |
| 3641 | |
| 3642 | if (!group_id) { |
| 3643 | remove_task_from_group(p); |
| 3644 | write_unlock(&related_thread_group_lock); |
| 3645 | goto done; |
| 3646 | } |
| 3647 | |
| 3648 | if (p->grp && p->grp->id != group_id) |
| 3649 | remove_task_from_group(p); |
| 3650 | |
| 3651 | grp = lookup_related_thread_group(group_id); |
| 3652 | if (!grp && !new) { |
| 3653 | /* New group */ |
| 3654 | write_unlock(&related_thread_group_lock); |
| 3655 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
| 3656 | new = alloc_related_thread_group(group_id); |
| 3657 | if (IS_ERR(new)) |
| 3658 | return -ENOMEM; |
| 3659 | destroy = 1; |
| 3660 | /* Rerun checks (like task exiting), since we dropped pi_lock */ |
| 3661 | goto redo; |
| 3662 | } else if (!grp && new) { |
| 3663 | /* New group - use object allocated before */ |
| 3664 | destroy = 0; |
| 3665 | list_add(&new->list, &related_thread_groups); |
| 3666 | grp = new; |
| 3667 | } |
| 3668 | |
| 3669 | BUG_ON(!grp); |
| 3670 | rc = add_task_to_group(p, grp); |
| 3671 | write_unlock(&related_thread_group_lock); |
| 3672 | done: |
| 3673 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
| 3674 | |
| 3675 | if (new && destroy) { |
| 3676 | free_group_cputime(new); |
| 3677 | kfree(new); |
| 3678 | } |
| 3679 | |
| 3680 | return rc; |
| 3681 | } |
| 3682 | |
| 3683 | unsigned int sched_get_group_id(struct task_struct *p) |
| 3684 | { |
| 3685 | unsigned int group_id; |
| 3686 | struct related_thread_group *grp; |
| 3687 | |
| 3688 | rcu_read_lock(); |
| 3689 | grp = task_related_thread_group(p); |
| 3690 | group_id = grp ? grp->id : 0; |
| 3691 | rcu_read_unlock(); |
| 3692 | |
| 3693 | return group_id; |
| 3694 | } |
| 3695 | |
| 3696 | static void update_cpu_cluster_capacity(const cpumask_t *cpus) |
| 3697 | { |
| 3698 | int i; |
| 3699 | struct sched_cluster *cluster; |
| 3700 | struct cpumask cpumask; |
| 3701 | |
| 3702 | cpumask_copy(&cpumask, cpus); |
| 3703 | pre_big_task_count_change(cpu_possible_mask); |
| 3704 | |
| 3705 | for_each_cpu(i, &cpumask) { |
| 3706 | cluster = cpu_rq(i)->cluster; |
| 3707 | cpumask_andnot(&cpumask, &cpumask, &cluster->cpus); |
| 3708 | |
| 3709 | cluster->capacity = compute_capacity(cluster); |
| 3710 | cluster->load_scale_factor = compute_load_scale_factor(cluster); |
| 3711 | |
| 3712 | /* 'cpus' can contain cpumask more than one cluster */ |
| 3713 | check_for_up_down_migrate_update(&cluster->cpus); |
| 3714 | } |
| 3715 | |
| 3716 | __update_min_max_capacity(); |
| 3717 | |
| 3718 | post_big_task_count_change(cpu_possible_mask); |
| 3719 | } |
| 3720 | |
| 3721 | static DEFINE_SPINLOCK(cpu_freq_min_max_lock); |
| 3722 | void sched_update_cpu_freq_min_max(const cpumask_t *cpus, u32 fmin, u32 fmax) |
| 3723 | { |
| 3724 | struct cpumask cpumask; |
| 3725 | struct sched_cluster *cluster; |
| 3726 | int i, update_capacity = 0; |
| 3727 | unsigned long flags; |
| 3728 | |
| 3729 | spin_lock_irqsave(&cpu_freq_min_max_lock, flags); |
| 3730 | cpumask_copy(&cpumask, cpus); |
| 3731 | for_each_cpu(i, &cpumask) { |
| 3732 | cluster = cpu_rq(i)->cluster; |
| 3733 | cpumask_andnot(&cpumask, &cpumask, &cluster->cpus); |
| 3734 | |
| 3735 | update_capacity += (cluster->max_mitigated_freq != fmax); |
| 3736 | cluster->max_mitigated_freq = fmax; |
| 3737 | } |
| 3738 | spin_unlock_irqrestore(&cpu_freq_min_max_lock, flags); |
| 3739 | |
| 3740 | if (update_capacity) |
| 3741 | update_cpu_cluster_capacity(cpus); |
| 3742 | } |
| 3743 | |
| 3744 | static int cpufreq_notifier_policy(struct notifier_block *nb, |
| 3745 | unsigned long val, void *data) |
| 3746 | { |
| 3747 | struct cpufreq_policy *policy = (struct cpufreq_policy *)data; |
| 3748 | struct sched_cluster *cluster = NULL; |
| 3749 | struct cpumask policy_cluster = *policy->related_cpus; |
| 3750 | unsigned int orig_max_freq = 0; |
| 3751 | int i, j, update_capacity = 0; |
| 3752 | |
| 3753 | if (val != CPUFREQ_NOTIFY && val != CPUFREQ_REMOVE_POLICY && |
| 3754 | val != CPUFREQ_CREATE_POLICY) |
| 3755 | return 0; |
| 3756 | |
| 3757 | if (val == CPUFREQ_REMOVE_POLICY || val == CPUFREQ_CREATE_POLICY) { |
| 3758 | update_min_max_capacity(); |
| 3759 | return 0; |
| 3760 | } |
| 3761 | |
| 3762 | max_possible_freq = max(max_possible_freq, policy->cpuinfo.max_freq); |
| 3763 | if (min_max_freq == 1) |
| 3764 | min_max_freq = UINT_MAX; |
| 3765 | min_max_freq = min(min_max_freq, policy->cpuinfo.max_freq); |
| 3766 | BUG_ON(!min_max_freq); |
| 3767 | BUG_ON(!policy->max); |
| 3768 | |
| 3769 | for_each_cpu(i, &policy_cluster) { |
| 3770 | cluster = cpu_rq(i)->cluster; |
| 3771 | cpumask_andnot(&policy_cluster, &policy_cluster, |
| 3772 | &cluster->cpus); |
| 3773 | |
| 3774 | orig_max_freq = cluster->max_freq; |
| 3775 | cluster->min_freq = policy->min; |
| 3776 | cluster->max_freq = policy->max; |
| 3777 | cluster->cur_freq = policy->cur; |
| 3778 | |
| 3779 | if (!cluster->freq_init_done) { |
| 3780 | mutex_lock(&cluster_lock); |
| 3781 | for_each_cpu(j, &cluster->cpus) |
| 3782 | cpumask_copy(&cpu_rq(j)->freq_domain_cpumask, |
| 3783 | policy->related_cpus); |
| 3784 | cluster->max_possible_freq = policy->cpuinfo.max_freq; |
| 3785 | cluster->max_possible_capacity = |
| 3786 | compute_max_possible_capacity(cluster); |
| 3787 | cluster->freq_init_done = true; |
| 3788 | |
| 3789 | sort_clusters(); |
| 3790 | update_all_clusters_stats(); |
| 3791 | mutex_unlock(&cluster_lock); |
| 3792 | continue; |
| 3793 | } |
| 3794 | |
| 3795 | update_capacity += (orig_max_freq != cluster->max_freq); |
| 3796 | } |
| 3797 | |
| 3798 | if (update_capacity) |
| 3799 | update_cpu_cluster_capacity(policy->related_cpus); |
| 3800 | |
| 3801 | return 0; |
| 3802 | } |
| 3803 | |
| 3804 | static int cpufreq_notifier_trans(struct notifier_block *nb, |
| 3805 | unsigned long val, void *data) |
| 3806 | { |
| 3807 | struct cpufreq_freqs *freq = (struct cpufreq_freqs *)data; |
| 3808 | unsigned int cpu = freq->cpu, new_freq = freq->new; |
| 3809 | unsigned long flags; |
| 3810 | struct sched_cluster *cluster; |
| 3811 | struct cpumask policy_cpus = cpu_rq(cpu)->freq_domain_cpumask; |
| 3812 | int i, j; |
| 3813 | |
| 3814 | if (val != CPUFREQ_POSTCHANGE) |
| 3815 | return 0; |
| 3816 | |
| 3817 | BUG_ON(!new_freq); |
| 3818 | |
| 3819 | if (cpu_cur_freq(cpu) == new_freq) |
| 3820 | return 0; |
| 3821 | |
| 3822 | for_each_cpu(i, &policy_cpus) { |
| 3823 | cluster = cpu_rq(i)->cluster; |
| 3824 | |
| 3825 | for_each_cpu(j, &cluster->cpus) { |
| 3826 | struct rq *rq = cpu_rq(j); |
| 3827 | |
| 3828 | raw_spin_lock_irqsave(&rq->lock, flags); |
| 3829 | update_task_ravg(rq->curr, rq, TASK_UPDATE, |
| 3830 | sched_ktime_clock(), 0); |
| 3831 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
| 3832 | } |
| 3833 | |
| 3834 | cluster->cur_freq = new_freq; |
| 3835 | cpumask_andnot(&policy_cpus, &policy_cpus, &cluster->cpus); |
| 3836 | } |
| 3837 | |
| 3838 | return 0; |
| 3839 | } |
| 3840 | |
| 3841 | static int pwr_stats_ready_notifier(struct notifier_block *nb, |
| 3842 | unsigned long cpu, void *data) |
| 3843 | { |
| 3844 | cpumask_t mask = CPU_MASK_NONE; |
| 3845 | |
| 3846 | cpumask_set_cpu(cpu, &mask); |
| 3847 | sched_update_freq_max_load(&mask); |
| 3848 | |
| 3849 | mutex_lock(&cluster_lock); |
| 3850 | sort_clusters(); |
| 3851 | mutex_unlock(&cluster_lock); |
| 3852 | |
| 3853 | return 0; |
| 3854 | } |
| 3855 | |
| 3856 | static struct notifier_block notifier_policy_block = { |
| 3857 | .notifier_call = cpufreq_notifier_policy |
| 3858 | }; |
| 3859 | |
| 3860 | static struct notifier_block notifier_trans_block = { |
| 3861 | .notifier_call = cpufreq_notifier_trans |
| 3862 | }; |
| 3863 | |
| 3864 | static struct notifier_block notifier_pwr_stats_ready = { |
| 3865 | .notifier_call = pwr_stats_ready_notifier |
| 3866 | }; |
| 3867 | |
| 3868 | int __weak register_cpu_pwr_stats_ready_notifier(struct notifier_block *nb) |
| 3869 | { |
| 3870 | return -EINVAL; |
| 3871 | } |
| 3872 | |
| 3873 | static int register_sched_callback(void) |
| 3874 | { |
| 3875 | int ret; |
| 3876 | |
| 3877 | ret = cpufreq_register_notifier(¬ifier_policy_block, |
| 3878 | CPUFREQ_POLICY_NOTIFIER); |
| 3879 | |
| 3880 | if (!ret) |
| 3881 | ret = cpufreq_register_notifier(¬ifier_trans_block, |
| 3882 | CPUFREQ_TRANSITION_NOTIFIER); |
| 3883 | |
| 3884 | register_cpu_pwr_stats_ready_notifier(¬ifier_pwr_stats_ready); |
| 3885 | |
| 3886 | return 0; |
| 3887 | } |
| 3888 | |
| 3889 | /* |
| 3890 | * cpufreq callbacks can be registered at core_initcall or later time. |
| 3891 | * Any registration done prior to that is "forgotten" by cpufreq. See |
| 3892 | * initialization of variable init_cpufreq_transition_notifier_list_called |
| 3893 | * for further information. |
| 3894 | */ |
| 3895 | core_initcall(register_sched_callback); |
| 3896 | |
| 3897 | int update_preferred_cluster(struct related_thread_group *grp, |
| 3898 | struct task_struct *p, u32 old_load) |
| 3899 | { |
| 3900 | u32 new_load = task_load(p); |
| 3901 | |
| 3902 | if (!grp) |
| 3903 | return 0; |
| 3904 | |
| 3905 | /* |
| 3906 | * Update if task's load has changed significantly or a complete window |
| 3907 | * has passed since we last updated preference |
| 3908 | */ |
| 3909 | if (abs(new_load - old_load) > sched_ravg_window / 4 || |
| 3910 | sched_ktime_clock() - grp->last_update > sched_ravg_window) |
| 3911 | return 1; |
| 3912 | |
| 3913 | return 0; |
| 3914 | } |
| 3915 | |
| 3916 | bool early_detection_notify(struct rq *rq, u64 wallclock) |
| 3917 | { |
| 3918 | struct task_struct *p; |
| 3919 | int loop_max = 10; |
| 3920 | |
| 3921 | if (!sched_boost() || !rq->cfs.h_nr_running) |
| 3922 | return 0; |
| 3923 | |
| 3924 | rq->ed_task = NULL; |
| 3925 | list_for_each_entry(p, &rq->cfs_tasks, se.group_node) { |
| 3926 | if (!loop_max) |
| 3927 | break; |
| 3928 | |
| 3929 | if (wallclock - p->last_wake_ts >= EARLY_DETECTION_DURATION) { |
| 3930 | rq->ed_task = p; |
| 3931 | return 1; |
| 3932 | } |
| 3933 | |
| 3934 | loop_max--; |
| 3935 | } |
| 3936 | |
| 3937 | return 0; |
| 3938 | } |
| 3939 | |
| 3940 | #ifdef CONFIG_CGROUP_SCHED |
| 3941 | u64 cpu_upmigrate_discourage_read_u64(struct cgroup_subsys_state *css, |
| 3942 | struct cftype *cft) |
| 3943 | { |
| 3944 | struct task_group *tg = css_tg(css); |
| 3945 | |
| 3946 | return tg->upmigrate_discouraged; |
| 3947 | } |
| 3948 | |
| 3949 | int cpu_upmigrate_discourage_write_u64(struct cgroup_subsys_state *css, |
| 3950 | struct cftype *cft, u64 upmigrate_discourage) |
| 3951 | { |
| 3952 | struct task_group *tg = css_tg(css); |
| 3953 | int discourage = upmigrate_discourage > 0; |
| 3954 | |
| 3955 | if (tg->upmigrate_discouraged == discourage) |
| 3956 | return 0; |
| 3957 | |
| 3958 | /* |
| 3959 | * Revisit big-task classification for tasks of this cgroup. It would |
| 3960 | * have been efficient to walk tasks of just this cgroup in running |
| 3961 | * state, but we don't have easy means to do that. Walk all tasks in |
| 3962 | * running state on all cpus instead and re-visit their big task |
| 3963 | * classification. |
| 3964 | */ |
| 3965 | get_online_cpus(); |
| 3966 | pre_big_task_count_change(cpu_online_mask); |
| 3967 | |
| 3968 | tg->upmigrate_discouraged = discourage; |
| 3969 | |
| 3970 | post_big_task_count_change(cpu_online_mask); |
| 3971 | put_online_cpus(); |
| 3972 | |
| 3973 | return 0; |
| 3974 | } |
| 3975 | #endif /* CONFIG_CGROUP_SCHED */ |