blob: 2f03a36a931294d24a6ed06cccc866407e6d4359 [file] [log] [blame]
Andre Przywaraa0675c22014-06-07 00:54:51 +02001/*
2 * GICv3 distributor and redistributor emulation
3 *
4 * GICv3 emulation is currently only supported on a GICv3 host (because
5 * we rely on the hardware's CPU interface virtualization support), but
6 * supports both hardware with or without the optional GICv2 backwards
7 * compatibility features.
8 *
9 * Limitations of the emulation:
10 * (RAZ/WI: read as zero, write ignore, RAO/WI: read as one, write ignore)
11 * - We do not support LPIs (yet). TYPER.LPIS is reported as 0 and is RAZ/WI.
12 * - We do not support the message based interrupts (MBIs) triggered by
13 * writes to the GICD_{SET,CLR}SPI_* registers. TYPER.MBIS is reported as 0.
14 * - We do not support the (optional) backwards compatibility feature.
15 * GICD_CTLR.ARE resets to 1 and is RAO/WI. If the _host_ GIC supports
16 * the compatiblity feature, you can use a GICv2 in the guest, though.
17 * - We only support a single security state. GICD_CTLR.DS is 1 and is RAO/WI.
18 * - Priorities are not emulated (same as the GICv2 emulation). Linux
19 * as a guest is fine with this, because it does not use priorities.
20 * - We only support Group1 interrupts. Again Linux uses only those.
21 *
22 * Copyright (C) 2014 ARM Ltd.
23 * Author: Andre Przywara <andre.przywara@arm.com>
24 *
25 * This program is free software; you can redistribute it and/or modify
26 * it under the terms of the GNU General Public License version 2 as
27 * published by the Free Software Foundation.
28 *
29 * This program is distributed in the hope that it will be useful,
30 * but WITHOUT ANY WARRANTY; without even the implied warranty of
31 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32 * GNU General Public License for more details.
33 *
34 * You should have received a copy of the GNU General Public License
35 * along with this program. If not, see <http://www.gnu.org/licenses/>.
36 */
37
38#include <linux/cpu.h>
39#include <linux/kvm.h>
40#include <linux/kvm_host.h>
41#include <linux/interrupt.h>
42
43#include <linux/irqchip/arm-gic-v3.h>
44#include <kvm/arm_vgic.h>
45
46#include <asm/kvm_emulate.h>
47#include <asm/kvm_arm.h>
48#include <asm/kvm_mmu.h>
49
50#include "vgic.h"
51
52static bool handle_mmio_rao_wi(struct kvm_vcpu *vcpu,
53 struct kvm_exit_mmio *mmio, phys_addr_t offset)
54{
55 u32 reg = 0xffffffff;
56
57 vgic_reg_access(mmio, &reg, offset,
58 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
59
60 return false;
61}
62
63static bool handle_mmio_ctlr(struct kvm_vcpu *vcpu,
64 struct kvm_exit_mmio *mmio, phys_addr_t offset)
65{
66 u32 reg = 0;
67
68 /*
69 * Force ARE and DS to 1, the guest cannot change this.
70 * For the time being we only support Group1 interrupts.
71 */
72 if (vcpu->kvm->arch.vgic.enabled)
73 reg = GICD_CTLR_ENABLE_SS_G1;
74 reg |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
75
76 vgic_reg_access(mmio, &reg, offset,
77 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
78 if (mmio->is_write) {
79 if (reg & GICD_CTLR_ENABLE_SS_G0)
80 kvm_info("guest tried to enable unsupported Group0 interrupts\n");
81 vcpu->kvm->arch.vgic.enabled = !!(reg & GICD_CTLR_ENABLE_SS_G1);
82 vgic_update_state(vcpu->kvm);
83 return true;
84 }
85 return false;
86}
87
88/*
89 * As this implementation does not provide compatibility
90 * with GICv2 (ARE==1), we report zero CPUs in bits [5..7].
91 * Also LPIs and MBIs are not supported, so we set the respective bits to 0.
92 * Also we report at most 2**10=1024 interrupt IDs (to match 1024 SPIs).
93 */
94#define INTERRUPT_ID_BITS 10
95static bool handle_mmio_typer(struct kvm_vcpu *vcpu,
96 struct kvm_exit_mmio *mmio, phys_addr_t offset)
97{
98 u32 reg;
99
100 reg = (min(vcpu->kvm->arch.vgic.nr_irqs, 1024) >> 5) - 1;
101
102 reg |= (INTERRUPT_ID_BITS - 1) << 19;
103
104 vgic_reg_access(mmio, &reg, offset,
105 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
106
107 return false;
108}
109
110static bool handle_mmio_iidr(struct kvm_vcpu *vcpu,
111 struct kvm_exit_mmio *mmio, phys_addr_t offset)
112{
113 u32 reg;
114
115 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
116 vgic_reg_access(mmio, &reg, offset,
117 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
118
119 return false;
120}
121
122static bool handle_mmio_set_enable_reg_dist(struct kvm_vcpu *vcpu,
123 struct kvm_exit_mmio *mmio,
124 phys_addr_t offset)
125{
126 if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
127 return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
128 vcpu->vcpu_id,
129 ACCESS_WRITE_SETBIT);
130
131 vgic_reg_access(mmio, NULL, offset,
132 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
133 return false;
134}
135
136static bool handle_mmio_clear_enable_reg_dist(struct kvm_vcpu *vcpu,
137 struct kvm_exit_mmio *mmio,
138 phys_addr_t offset)
139{
140 if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
141 return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
142 vcpu->vcpu_id,
143 ACCESS_WRITE_CLEARBIT);
144
145 vgic_reg_access(mmio, NULL, offset,
146 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
147 return false;
148}
149
150static bool handle_mmio_set_pending_reg_dist(struct kvm_vcpu *vcpu,
151 struct kvm_exit_mmio *mmio,
152 phys_addr_t offset)
153{
154 if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
155 return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
156 vcpu->vcpu_id);
157
158 vgic_reg_access(mmio, NULL, offset,
159 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
160 return false;
161}
162
163static bool handle_mmio_clear_pending_reg_dist(struct kvm_vcpu *vcpu,
164 struct kvm_exit_mmio *mmio,
165 phys_addr_t offset)
166{
167 if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
168 return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
169 vcpu->vcpu_id);
170
171 vgic_reg_access(mmio, NULL, offset,
172 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
173 return false;
174}
175
176static bool handle_mmio_priority_reg_dist(struct kvm_vcpu *vcpu,
177 struct kvm_exit_mmio *mmio,
178 phys_addr_t offset)
179{
180 u32 *reg;
181
182 if (unlikely(offset < VGIC_NR_PRIVATE_IRQS)) {
183 vgic_reg_access(mmio, NULL, offset,
184 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
185 return false;
186 }
187
188 reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
189 vcpu->vcpu_id, offset);
190 vgic_reg_access(mmio, reg, offset,
191 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
192 return false;
193}
194
195static bool handle_mmio_cfg_reg_dist(struct kvm_vcpu *vcpu,
196 struct kvm_exit_mmio *mmio,
197 phys_addr_t offset)
198{
199 u32 *reg;
200
201 if (unlikely(offset < VGIC_NR_PRIVATE_IRQS / 4)) {
202 vgic_reg_access(mmio, NULL, offset,
203 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
204 return false;
205 }
206
207 reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
208 vcpu->vcpu_id, offset >> 1);
209
210 return vgic_handle_cfg_reg(reg, mmio, offset);
211}
212
213/*
214 * We use a compressed version of the MPIDR (all 32 bits in one 32-bit word)
215 * when we store the target MPIDR written by the guest.
216 */
217static u32 compress_mpidr(unsigned long mpidr)
218{
219 u32 ret;
220
221 ret = MPIDR_AFFINITY_LEVEL(mpidr, 0);
222 ret |= MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8;
223 ret |= MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16;
224 ret |= MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24;
225
226 return ret;
227}
228
229static unsigned long uncompress_mpidr(u32 value)
230{
231 unsigned long mpidr;
232
233 mpidr = ((value >> 0) & 0xFF) << MPIDR_LEVEL_SHIFT(0);
234 mpidr |= ((value >> 8) & 0xFF) << MPIDR_LEVEL_SHIFT(1);
235 mpidr |= ((value >> 16) & 0xFF) << MPIDR_LEVEL_SHIFT(2);
236 mpidr |= (u64)((value >> 24) & 0xFF) << MPIDR_LEVEL_SHIFT(3);
237
238 return mpidr;
239}
240
241/*
242 * Lookup the given MPIDR value to get the vcpu_id (if there is one)
243 * and store that in the irq_spi_cpu[] array.
244 * This limits the number of VCPUs to 255 for now, extending the data
245 * type (or storing kvm_vcpu pointers) should lift the limit.
246 * Store the original MPIDR value in an extra array to support read-as-written.
247 * Unallocated MPIDRs are translated to a special value and caught
248 * before any array accesses.
249 */
250static bool handle_mmio_route_reg(struct kvm_vcpu *vcpu,
251 struct kvm_exit_mmio *mmio,
252 phys_addr_t offset)
253{
254 struct kvm *kvm = vcpu->kvm;
255 struct vgic_dist *dist = &kvm->arch.vgic;
256 int spi;
257 u32 reg;
258 int vcpu_id;
259 unsigned long *bmap, mpidr;
260
261 /*
262 * The upper 32 bits of each 64 bit register are zero,
263 * as we don't support Aff3.
264 */
265 if ((offset & 4)) {
266 vgic_reg_access(mmio, NULL, offset,
267 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
268 return false;
269 }
270
271 /* This region only covers SPIs, so no handling of private IRQs here. */
272 spi = offset / 8;
273
274 /* get the stored MPIDR for this IRQ */
275 mpidr = uncompress_mpidr(dist->irq_spi_mpidr[spi]);
276 reg = mpidr;
277
278 vgic_reg_access(mmio, &reg, offset,
279 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
280
281 if (!mmio->is_write)
282 return false;
283
284 /*
285 * Now clear the currently assigned vCPU from the map, making room
286 * for the new one to be written below
287 */
288 vcpu = kvm_mpidr_to_vcpu(kvm, mpidr);
289 if (likely(vcpu)) {
290 vcpu_id = vcpu->vcpu_id;
291 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]);
292 __clear_bit(spi, bmap);
293 }
294
295 dist->irq_spi_mpidr[spi] = compress_mpidr(reg);
296 vcpu = kvm_mpidr_to_vcpu(kvm, reg & MPIDR_HWID_BITMASK);
297
298 /*
299 * The spec says that non-existent MPIDR values should not be
300 * forwarded to any existent (v)CPU, but should be able to become
301 * pending anyway. We simply keep the irq_spi_target[] array empty, so
302 * the interrupt will never be injected.
303 * irq_spi_cpu[irq] gets a magic value in this case.
304 */
305 if (likely(vcpu)) {
306 vcpu_id = vcpu->vcpu_id;
307 dist->irq_spi_cpu[spi] = vcpu_id;
308 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]);
309 __set_bit(spi, bmap);
310 } else {
311 dist->irq_spi_cpu[spi] = VCPU_NOT_ALLOCATED;
312 }
313
314 vgic_update_state(kvm);
315
316 return true;
317}
318
319/*
320 * We should be careful about promising too much when a guest reads
321 * this register. Don't claim to be like any hardware implementation,
322 * but just report the GIC as version 3 - which is what a Linux guest
323 * would check.
324 */
325static bool handle_mmio_idregs(struct kvm_vcpu *vcpu,
326 struct kvm_exit_mmio *mmio,
327 phys_addr_t offset)
328{
329 u32 reg = 0;
330
331 switch (offset + GICD_IDREGS) {
332 case GICD_PIDR2:
333 reg = 0x3b;
334 break;
335 }
336
337 vgic_reg_access(mmio, &reg, offset,
338 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
339
340 return false;
341}
342
Andre Przywaracf50a1e2015-03-26 14:39:32 +0000343static const struct vgic_io_range vgic_v3_dist_ranges[] = {
Andre Przywaraa0675c22014-06-07 00:54:51 +0200344 {
345 .base = GICD_CTLR,
346 .len = 0x04,
347 .bits_per_irq = 0,
348 .handle_mmio = handle_mmio_ctlr,
349 },
350 {
351 .base = GICD_TYPER,
352 .len = 0x04,
353 .bits_per_irq = 0,
354 .handle_mmio = handle_mmio_typer,
355 },
356 {
357 .base = GICD_IIDR,
358 .len = 0x04,
359 .bits_per_irq = 0,
360 .handle_mmio = handle_mmio_iidr,
361 },
362 {
363 /* this register is optional, it is RAZ/WI if not implemented */
364 .base = GICD_STATUSR,
365 .len = 0x04,
366 .bits_per_irq = 0,
367 .handle_mmio = handle_mmio_raz_wi,
368 },
369 {
370 /* this write only register is WI when TYPER.MBIS=0 */
371 .base = GICD_SETSPI_NSR,
372 .len = 0x04,
373 .bits_per_irq = 0,
374 .handle_mmio = handle_mmio_raz_wi,
375 },
376 {
377 /* this write only register is WI when TYPER.MBIS=0 */
378 .base = GICD_CLRSPI_NSR,
379 .len = 0x04,
380 .bits_per_irq = 0,
381 .handle_mmio = handle_mmio_raz_wi,
382 },
383 {
384 /* this is RAZ/WI when DS=1 */
385 .base = GICD_SETSPI_SR,
386 .len = 0x04,
387 .bits_per_irq = 0,
388 .handle_mmio = handle_mmio_raz_wi,
389 },
390 {
391 /* this is RAZ/WI when DS=1 */
392 .base = GICD_CLRSPI_SR,
393 .len = 0x04,
394 .bits_per_irq = 0,
395 .handle_mmio = handle_mmio_raz_wi,
396 },
397 {
398 .base = GICD_IGROUPR,
399 .len = 0x80,
400 .bits_per_irq = 1,
401 .handle_mmio = handle_mmio_rao_wi,
402 },
403 {
404 .base = GICD_ISENABLER,
405 .len = 0x80,
406 .bits_per_irq = 1,
407 .handle_mmio = handle_mmio_set_enable_reg_dist,
408 },
409 {
410 .base = GICD_ICENABLER,
411 .len = 0x80,
412 .bits_per_irq = 1,
413 .handle_mmio = handle_mmio_clear_enable_reg_dist,
414 },
415 {
416 .base = GICD_ISPENDR,
417 .len = 0x80,
418 .bits_per_irq = 1,
419 .handle_mmio = handle_mmio_set_pending_reg_dist,
420 },
421 {
422 .base = GICD_ICPENDR,
423 .len = 0x80,
424 .bits_per_irq = 1,
425 .handle_mmio = handle_mmio_clear_pending_reg_dist,
426 },
427 {
428 .base = GICD_ISACTIVER,
429 .len = 0x80,
430 .bits_per_irq = 1,
431 .handle_mmio = handle_mmio_raz_wi,
432 },
433 {
434 .base = GICD_ICACTIVER,
435 .len = 0x80,
436 .bits_per_irq = 1,
437 .handle_mmio = handle_mmio_raz_wi,
438 },
439 {
440 .base = GICD_IPRIORITYR,
441 .len = 0x400,
442 .bits_per_irq = 8,
443 .handle_mmio = handle_mmio_priority_reg_dist,
444 },
445 {
446 /* TARGETSRn is RES0 when ARE=1 */
447 .base = GICD_ITARGETSR,
448 .len = 0x400,
449 .bits_per_irq = 8,
450 .handle_mmio = handle_mmio_raz_wi,
451 },
452 {
453 .base = GICD_ICFGR,
454 .len = 0x100,
455 .bits_per_irq = 2,
456 .handle_mmio = handle_mmio_cfg_reg_dist,
457 },
458 {
459 /* this is RAZ/WI when DS=1 */
460 .base = GICD_IGRPMODR,
461 .len = 0x80,
462 .bits_per_irq = 1,
463 .handle_mmio = handle_mmio_raz_wi,
464 },
465 {
466 /* this is RAZ/WI when DS=1 */
467 .base = GICD_NSACR,
468 .len = 0x100,
469 .bits_per_irq = 2,
470 .handle_mmio = handle_mmio_raz_wi,
471 },
472 {
473 /* this is RAZ/WI when ARE=1 */
474 .base = GICD_SGIR,
475 .len = 0x04,
476 .handle_mmio = handle_mmio_raz_wi,
477 },
478 {
479 /* this is RAZ/WI when ARE=1 */
480 .base = GICD_CPENDSGIR,
481 .len = 0x10,
482 .handle_mmio = handle_mmio_raz_wi,
483 },
484 {
485 /* this is RAZ/WI when ARE=1 */
486 .base = GICD_SPENDSGIR,
487 .len = 0x10,
488 .handle_mmio = handle_mmio_raz_wi,
489 },
490 {
491 .base = GICD_IROUTER + 0x100,
492 .len = 0x1ee0,
493 .bits_per_irq = 64,
494 .handle_mmio = handle_mmio_route_reg,
495 },
496 {
497 .base = GICD_IDREGS,
498 .len = 0x30,
499 .bits_per_irq = 0,
500 .handle_mmio = handle_mmio_idregs,
501 },
502 {},
503};
504
Andre Przywara0ba10d52015-03-26 14:39:36 +0000505static bool handle_mmio_ctlr_redist(struct kvm_vcpu *vcpu,
506 struct kvm_exit_mmio *mmio,
507 phys_addr_t offset)
508{
509 /* since we don't support LPIs, this register is zero for now */
510 vgic_reg_access(mmio, NULL, offset,
511 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
512 return false;
513}
514
515static bool handle_mmio_typer_redist(struct kvm_vcpu *vcpu,
516 struct kvm_exit_mmio *mmio,
517 phys_addr_t offset)
518{
519 u32 reg;
520 u64 mpidr;
521 struct kvm_vcpu *redist_vcpu = mmio->private;
522 int target_vcpu_id = redist_vcpu->vcpu_id;
523
524 /* the upper 32 bits contain the affinity value */
525 if ((offset & ~3) == 4) {
526 mpidr = kvm_vcpu_get_mpidr_aff(redist_vcpu);
527 reg = compress_mpidr(mpidr);
528
529 vgic_reg_access(mmio, &reg, offset,
530 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
531 return false;
532 }
533
534 reg = redist_vcpu->vcpu_id << 8;
535 if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
536 reg |= GICR_TYPER_LAST;
537 vgic_reg_access(mmio, &reg, offset,
538 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
539 return false;
540}
541
Andre Przywaraa0675c22014-06-07 00:54:51 +0200542static bool handle_mmio_set_enable_reg_redist(struct kvm_vcpu *vcpu,
543 struct kvm_exit_mmio *mmio,
544 phys_addr_t offset)
545{
546 struct kvm_vcpu *redist_vcpu = mmio->private;
547
548 return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
549 redist_vcpu->vcpu_id,
550 ACCESS_WRITE_SETBIT);
551}
552
553static bool handle_mmio_clear_enable_reg_redist(struct kvm_vcpu *vcpu,
554 struct kvm_exit_mmio *mmio,
555 phys_addr_t offset)
556{
557 struct kvm_vcpu *redist_vcpu = mmio->private;
558
559 return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
560 redist_vcpu->vcpu_id,
561 ACCESS_WRITE_CLEARBIT);
562}
563
564static bool handle_mmio_set_pending_reg_redist(struct kvm_vcpu *vcpu,
565 struct kvm_exit_mmio *mmio,
566 phys_addr_t offset)
567{
568 struct kvm_vcpu *redist_vcpu = mmio->private;
569
570 return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
571 redist_vcpu->vcpu_id);
572}
573
574static bool handle_mmio_clear_pending_reg_redist(struct kvm_vcpu *vcpu,
575 struct kvm_exit_mmio *mmio,
576 phys_addr_t offset)
577{
578 struct kvm_vcpu *redist_vcpu = mmio->private;
579
580 return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
581 redist_vcpu->vcpu_id);
582}
583
584static bool handle_mmio_priority_reg_redist(struct kvm_vcpu *vcpu,
585 struct kvm_exit_mmio *mmio,
586 phys_addr_t offset)
587{
588 struct kvm_vcpu *redist_vcpu = mmio->private;
589 u32 *reg;
590
591 reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
592 redist_vcpu->vcpu_id, offset);
593 vgic_reg_access(mmio, reg, offset,
594 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
595 return false;
596}
597
598static bool handle_mmio_cfg_reg_redist(struct kvm_vcpu *vcpu,
599 struct kvm_exit_mmio *mmio,
600 phys_addr_t offset)
601{
602 struct kvm_vcpu *redist_vcpu = mmio->private;
603
604 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
605 redist_vcpu->vcpu_id, offset >> 1);
606
607 return vgic_handle_cfg_reg(reg, mmio, offset);
608}
609
Andre Przywara0ba10d52015-03-26 14:39:36 +0000610#define SGI_base(x) ((x) + SZ_64K)
Andre Przywaraa0675c22014-06-07 00:54:51 +0200611
Andre Przywaracf50a1e2015-03-26 14:39:32 +0000612static const struct vgic_io_range vgic_redist_ranges[] = {
Andre Przywaraa0675c22014-06-07 00:54:51 +0200613 {
614 .base = GICR_CTLR,
615 .len = 0x04,
616 .bits_per_irq = 0,
617 .handle_mmio = handle_mmio_ctlr_redist,
618 },
619 {
620 .base = GICR_TYPER,
621 .len = 0x08,
622 .bits_per_irq = 0,
623 .handle_mmio = handle_mmio_typer_redist,
624 },
625 {
626 .base = GICR_IIDR,
627 .len = 0x04,
628 .bits_per_irq = 0,
629 .handle_mmio = handle_mmio_iidr,
630 },
631 {
632 .base = GICR_WAKER,
633 .len = 0x04,
634 .bits_per_irq = 0,
635 .handle_mmio = handle_mmio_raz_wi,
636 },
637 {
638 .base = GICR_IDREGS,
639 .len = 0x30,
640 .bits_per_irq = 0,
641 .handle_mmio = handle_mmio_idregs,
642 },
Andre Przywara0ba10d52015-03-26 14:39:36 +0000643 {
644 .base = SGI_base(GICR_IGROUPR0),
645 .len = 0x04,
646 .bits_per_irq = 1,
647 .handle_mmio = handle_mmio_rao_wi,
648 },
649 {
650 .base = SGI_base(GICR_ISENABLER0),
651 .len = 0x04,
652 .bits_per_irq = 1,
653 .handle_mmio = handle_mmio_set_enable_reg_redist,
654 },
655 {
656 .base = SGI_base(GICR_ICENABLER0),
657 .len = 0x04,
658 .bits_per_irq = 1,
659 .handle_mmio = handle_mmio_clear_enable_reg_redist,
660 },
661 {
662 .base = SGI_base(GICR_ISPENDR0),
663 .len = 0x04,
664 .bits_per_irq = 1,
665 .handle_mmio = handle_mmio_set_pending_reg_redist,
666 },
667 {
668 .base = SGI_base(GICR_ICPENDR0),
669 .len = 0x04,
670 .bits_per_irq = 1,
671 .handle_mmio = handle_mmio_clear_pending_reg_redist,
672 },
673 {
674 .base = SGI_base(GICR_ISACTIVER0),
675 .len = 0x04,
676 .bits_per_irq = 1,
677 .handle_mmio = handle_mmio_raz_wi,
678 },
679 {
680 .base = SGI_base(GICR_ICACTIVER0),
681 .len = 0x04,
682 .bits_per_irq = 1,
683 .handle_mmio = handle_mmio_raz_wi,
684 },
685 {
686 .base = SGI_base(GICR_IPRIORITYR0),
687 .len = 0x20,
688 .bits_per_irq = 8,
689 .handle_mmio = handle_mmio_priority_reg_redist,
690 },
691 {
692 .base = SGI_base(GICR_ICFGR0),
693 .len = 0x08,
694 .bits_per_irq = 2,
695 .handle_mmio = handle_mmio_cfg_reg_redist,
696 },
697 {
698 .base = SGI_base(GICR_IGRPMODR0),
699 .len = 0x04,
700 .bits_per_irq = 1,
701 .handle_mmio = handle_mmio_raz_wi,
702 },
703 {
704 .base = SGI_base(GICR_NSACR),
705 .len = 0x04,
706 .handle_mmio = handle_mmio_raz_wi,
707 },
Andre Przywaraa0675c22014-06-07 00:54:51 +0200708 {},
709};
710
711/*
712 * This function splits accesses between the distributor and the two
713 * redistributor parts (private/SPI). As each redistributor is accessible
714 * from any CPU, we have to determine the affected VCPU by taking the faulting
715 * address into account. We then pass this VCPU to the handler function via
716 * the private parameter.
717 */
718#define SGI_BASE_OFFSET SZ_64K
719static bool vgic_v3_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
720 struct kvm_exit_mmio *mmio)
721{
722 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
723 unsigned long dbase = dist->vgic_dist_base;
724 unsigned long rdbase = dist->vgic_redist_base;
725 int nrcpus = atomic_read(&vcpu->kvm->online_vcpus);
726 int vcpu_id;
Andre Przywaraa0675c22014-06-07 00:54:51 +0200727
728 if (is_in_range(mmio->phys_addr, mmio->len, dbase, GIC_V3_DIST_SIZE)) {
729 return vgic_handle_mmio_range(vcpu, run, mmio,
730 vgic_v3_dist_ranges, dbase);
731 }
732
733 if (!is_in_range(mmio->phys_addr, mmio->len, rdbase,
734 GIC_V3_REDIST_SIZE * nrcpus))
735 return false;
736
737 vcpu_id = (mmio->phys_addr - rdbase) / GIC_V3_REDIST_SIZE;
738 rdbase += (vcpu_id * GIC_V3_REDIST_SIZE);
739 mmio->private = kvm_get_vcpu(vcpu->kvm, vcpu_id);
740
Andre Przywara0ba10d52015-03-26 14:39:36 +0000741 return vgic_handle_mmio_range(vcpu, run, mmio, vgic_redist_ranges,
742 rdbase);
Andre Przywaraa0675c22014-06-07 00:54:51 +0200743}
744
745static bool vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, int irq)
746{
747 if (vgic_queue_irq(vcpu, 0, irq)) {
748 vgic_dist_irq_clear_pending(vcpu, irq);
749 vgic_cpu_irq_clear(vcpu, irq);
750 return true;
751 }
752
753 return false;
754}
755
756static int vgic_v3_map_resources(struct kvm *kvm,
757 const struct vgic_params *params)
758{
759 int ret = 0;
760 struct vgic_dist *dist = &kvm->arch.vgic;
761
762 if (!irqchip_in_kernel(kvm))
763 return 0;
764
765 mutex_lock(&kvm->lock);
766
767 if (vgic_ready(kvm))
768 goto out;
769
770 if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
771 IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) {
772 kvm_err("Need to set vgic distributor addresses first\n");
773 ret = -ENXIO;
774 goto out;
775 }
776
777 /*
778 * For a VGICv3 we require the userland to explicitly initialize
779 * the VGIC before we need to use it.
780 */
781 if (!vgic_initialized(kvm)) {
782 ret = -EBUSY;
783 goto out;
784 }
785
786 kvm->arch.vgic.ready = true;
787out:
788 if (ret)
789 kvm_vgic_destroy(kvm);
790 mutex_unlock(&kvm->lock);
791 return ret;
792}
793
794static int vgic_v3_init_model(struct kvm *kvm)
795{
796 int i;
797 u32 mpidr;
798 struct vgic_dist *dist = &kvm->arch.vgic;
799 int nr_spis = dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
800
801 dist->irq_spi_mpidr = kcalloc(nr_spis, sizeof(dist->irq_spi_mpidr[0]),
802 GFP_KERNEL);
803
804 if (!dist->irq_spi_mpidr)
805 return -ENOMEM;
806
807 /* Initialize the target VCPUs for each IRQ to VCPU 0 */
808 mpidr = compress_mpidr(kvm_vcpu_get_mpidr_aff(kvm_get_vcpu(kvm, 0)));
809 for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i++) {
810 dist->irq_spi_cpu[i - VGIC_NR_PRIVATE_IRQS] = 0;
811 dist->irq_spi_mpidr[i - VGIC_NR_PRIVATE_IRQS] = mpidr;
812 vgic_bitmap_set_irq_val(dist->irq_spi_target, 0, i, 1);
813 }
814
815 return 0;
816}
817
818/* GICv3 does not keep track of SGI sources anymore. */
819static void vgic_v3_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
820{
821}
822
823void vgic_v3_init_emulation(struct kvm *kvm)
824{
825 struct vgic_dist *dist = &kvm->arch.vgic;
826
827 dist->vm_ops.handle_mmio = vgic_v3_handle_mmio;
828 dist->vm_ops.queue_sgi = vgic_v3_queue_sgi;
829 dist->vm_ops.add_sgi_source = vgic_v3_add_sgi_source;
830 dist->vm_ops.init_model = vgic_v3_init_model;
831 dist->vm_ops.map_resources = vgic_v3_map_resources;
832
833 kvm->arch.max_vcpus = KVM_MAX_VCPUS;
834}
835
Andre Przywara6d52f352014-06-03 10:13:13 +0200836/*
837 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
838 * generation register ICC_SGI1R_EL1) with a given VCPU.
839 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
840 * return -1.
841 */
842static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
843{
844 unsigned long affinity;
845 int level0;
846
847 /*
848 * Split the current VCPU's MPIDR into affinity level 0 and the
849 * rest as this is what we have to compare against.
850 */
851 affinity = kvm_vcpu_get_mpidr_aff(vcpu);
852 level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
853 affinity &= ~MPIDR_LEVEL_MASK;
854
855 /* bail out if the upper three levels don't match */
856 if (sgi_aff != affinity)
857 return -1;
858
859 /* Is this VCPU's bit set in the mask ? */
860 if (!(sgi_cpu_mask & BIT(level0)))
861 return -1;
862
863 return level0;
864}
865
866#define SGI_AFFINITY_LEVEL(reg, level) \
867 ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
868 >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
869
870/**
871 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
872 * @vcpu: The VCPU requesting a SGI
873 * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
874 *
875 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
876 * This will trap in sys_regs.c and call this function.
877 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
878 * target processors as well as a bitmask of 16 Aff0 CPUs.
879 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
880 * check for matching ones. If this bit is set, we signal all, but not the
881 * calling VCPU.
882 */
883void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
884{
885 struct kvm *kvm = vcpu->kvm;
886 struct kvm_vcpu *c_vcpu;
887 struct vgic_dist *dist = &kvm->arch.vgic;
888 u16 target_cpus;
889 u64 mpidr;
890 int sgi, c;
891 int vcpu_id = vcpu->vcpu_id;
892 bool broadcast;
893 int updated = 0;
894
895 sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
896 broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
897 target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
898 mpidr = SGI_AFFINITY_LEVEL(reg, 3);
899 mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
900 mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
901
902 /*
903 * We take the dist lock here, because we come from the sysregs
904 * code path and not from the MMIO one (which already takes the lock).
905 */
906 spin_lock(&dist->lock);
907
908 /*
909 * We iterate over all VCPUs to find the MPIDRs matching the request.
910 * If we have handled one CPU, we clear it's bit to detect early
911 * if we are already finished. This avoids iterating through all
912 * VCPUs when most of the times we just signal a single VCPU.
913 */
914 kvm_for_each_vcpu(c, c_vcpu, kvm) {
915
916 /* Exit early if we have dealt with all requested CPUs */
917 if (!broadcast && target_cpus == 0)
918 break;
919
920 /* Don't signal the calling VCPU */
921 if (broadcast && c == vcpu_id)
922 continue;
923
924 if (!broadcast) {
925 int level0;
926
927 level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
928 if (level0 == -1)
929 continue;
930
931 /* remove this matching VCPU from the mask */
932 target_cpus &= ~BIT(level0);
933 }
934
935 /* Flag the SGI as pending */
936 vgic_dist_irq_set_pending(c_vcpu, sgi);
937 updated = 1;
938 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
939 }
940 if (updated)
941 vgic_update_state(vcpu->kvm);
942 spin_unlock(&dist->lock);
943 if (updated)
944 vgic_kick_vcpus(vcpu->kvm);
945}
946
Andre Przywaraa0675c22014-06-07 00:54:51 +0200947static int vgic_v3_create(struct kvm_device *dev, u32 type)
948{
949 return kvm_vgic_create(dev->kvm, type);
950}
951
952static void vgic_v3_destroy(struct kvm_device *dev)
953{
954 kfree(dev);
955}
956
957static int vgic_v3_set_attr(struct kvm_device *dev,
958 struct kvm_device_attr *attr)
959{
960 int ret;
961
962 ret = vgic_set_common_attr(dev, attr);
963 if (ret != -ENXIO)
964 return ret;
965
966 switch (attr->group) {
967 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
968 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
969 return -ENXIO;
970 }
971
972 return -ENXIO;
973}
974
975static int vgic_v3_get_attr(struct kvm_device *dev,
976 struct kvm_device_attr *attr)
977{
978 int ret;
979
980 ret = vgic_get_common_attr(dev, attr);
981 if (ret != -ENXIO)
982 return ret;
983
984 switch (attr->group) {
985 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
986 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
987 return -ENXIO;
988 }
989
990 return -ENXIO;
991}
992
993static int vgic_v3_has_attr(struct kvm_device *dev,
994 struct kvm_device_attr *attr)
995{
996 switch (attr->group) {
997 case KVM_DEV_ARM_VGIC_GRP_ADDR:
998 switch (attr->attr) {
999 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1000 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1001 return -ENXIO;
Andre Przywaraac3d3732014-06-03 10:26:30 +02001002 case KVM_VGIC_V3_ADDR_TYPE_DIST:
1003 case KVM_VGIC_V3_ADDR_TYPE_REDIST:
1004 return 0;
Andre Przywaraa0675c22014-06-07 00:54:51 +02001005 }
1006 break;
1007 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1008 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1009 return -ENXIO;
1010 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
1011 return 0;
1012 case KVM_DEV_ARM_VGIC_GRP_CTRL:
1013 switch (attr->attr) {
1014 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1015 return 0;
1016 }
1017 }
1018 return -ENXIO;
1019}
1020
1021struct kvm_device_ops kvm_arm_vgic_v3_ops = {
1022 .name = "kvm-arm-vgic-v3",
1023 .create = vgic_v3_create,
1024 .destroy = vgic_v3_destroy,
1025 .set_attr = vgic_v3_set_attr,
1026 .get_attr = vgic_v3_get_attr,
1027 .has_attr = vgic_v3_has_attr,
1028};