blob: 26c12c6440fcde02a3829f1ed3e1035f16ed6338 [file] [log] [blame]
Vincent Guittotc9018aa2011-08-08 13:21:59 +01001/*
2 * arch/arm/kernel/topology.c
3 *
4 * Copyright (C) 2011 Linaro Limited.
5 * Written by: Vincent Guittot
6 *
7 * based on arch/sh/kernel/topology.c
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13
14#include <linux/cpu.h>
15#include <linux/cpumask.h>
16#include <linux/init.h>
17#include <linux/percpu.h>
18#include <linux/node.h>
19#include <linux/nodemask.h>
Vincent Guittot339ca092012-07-10 14:13:12 +010020#include <linux/of.h>
Vincent Guittotc9018aa2011-08-08 13:21:59 +010021#include <linux/sched.h>
Vincent Guittot339ca092012-07-10 14:13:12 +010022#include <linux/slab.h>
Vincent Guittotc9018aa2011-08-08 13:21:59 +010023
24#include <asm/cputype.h>
25#include <asm/topology.h>
26
Vincent Guittot130d9aa2012-07-10 14:08:40 +010027/*
28 * cpu power scale management
29 */
30
31/*
32 * cpu power table
33 * This per cpu data structure describes the relative capacity of each core.
34 * On a heteregenous system, cores don't have the same computation capacity
35 * and we reflect that difference in the cpu_power field so the scheduler can
36 * take this difference into account during load balance. A per cpu structure
37 * is preferred because each CPU updates its own cpu_power field during the
38 * load balance except for idle cores. One idle core is selected to run the
39 * rebalance_domains for all idle cores and the cpu_power can be updated
40 * during this sequence.
41 */
42static DEFINE_PER_CPU(unsigned long, cpu_scale);
43
44unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu)
45{
46 return per_cpu(cpu_scale, cpu);
47}
48
49static void set_power_scale(unsigned int cpu, unsigned long power)
50{
51 per_cpu(cpu_scale, cpu) = power;
52}
53
Vincent Guittot339ca092012-07-10 14:13:12 +010054#ifdef CONFIG_OF
55struct cpu_efficiency {
56 const char *compatible;
57 unsigned long efficiency;
58};
59
60/*
61 * Table of relative efficiency of each processors
62 * The efficiency value must fit in 20bit and the final
63 * cpu_scale value must be in the range
64 * 0 < cpu_scale < 3*SCHED_POWER_SCALE/2
65 * in order to return at most 1 when DIV_ROUND_CLOSEST
66 * is used to compute the capacity of a CPU.
67 * Processors that are not defined in the table,
68 * use the default SCHED_POWER_SCALE value for cpu_scale.
69 */
70struct cpu_efficiency table_efficiency[] = {
71 {"arm,cortex-a15", 3891},
72 {"arm,cortex-a7", 2048},
73 {NULL, },
74};
75
76struct cpu_capacity {
77 unsigned long hwid;
78 unsigned long capacity;
79};
80
81struct cpu_capacity *cpu_capacity;
82
83unsigned long middle_capacity = 1;
84
85/*
86 * Iterate all CPUs' descriptor in DT and compute the efficiency
87 * (as per table_efficiency). Also calculate a middle efficiency
88 * as close as possible to (max{eff_i} - min{eff_i}) / 2
89 * This is later used to scale the cpu_power field such that an
90 * 'average' CPU is of middle power. Also see the comments near
91 * table_efficiency[] and update_cpu_power().
92 */
93static void __init parse_dt_topology(void)
94{
95 struct cpu_efficiency *cpu_eff;
96 struct device_node *cn = NULL;
97 unsigned long min_capacity = (unsigned long)(-1);
98 unsigned long max_capacity = 0;
99 unsigned long capacity = 0;
100 int alloc_size, cpu = 0;
101
102 alloc_size = nr_cpu_ids * sizeof(struct cpu_capacity);
103 cpu_capacity = (struct cpu_capacity *)kzalloc(alloc_size, GFP_NOWAIT);
104
105 while ((cn = of_find_node_by_type(cn, "cpu"))) {
106 const u32 *rate, *reg;
107 int len;
108
109 if (cpu >= num_possible_cpus())
110 break;
111
112 for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
113 if (of_device_is_compatible(cn, cpu_eff->compatible))
114 break;
115
116 if (cpu_eff->compatible == NULL)
117 continue;
118
119 rate = of_get_property(cn, "clock-frequency", &len);
120 if (!rate || len != 4) {
121 pr_err("%s missing clock-frequency property\n",
122 cn->full_name);
123 continue;
124 }
125
126 reg = of_get_property(cn, "reg", &len);
127 if (!reg || len != 4) {
128 pr_err("%s missing reg property\n", cn->full_name);
129 continue;
130 }
131
132 capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
133
134 /* Save min capacity of the system */
135 if (capacity < min_capacity)
136 min_capacity = capacity;
137
138 /* Save max capacity of the system */
139 if (capacity > max_capacity)
140 max_capacity = capacity;
141
142 cpu_capacity[cpu].capacity = capacity;
143 cpu_capacity[cpu++].hwid = be32_to_cpup(reg);
144 }
145
146 if (cpu < num_possible_cpus())
147 cpu_capacity[cpu].hwid = (unsigned long)(-1);
148
149 /* If min and max capacities are equals, we bypass the update of the
150 * cpu_scale because all CPUs have the same capacity. Otherwise, we
151 * compute a middle_capacity factor that will ensure that the capacity
152 * of an 'average' CPU of the system will be as close as possible to
153 * SCHED_POWER_SCALE, which is the default value, but with the
154 * constraint explained near table_efficiency[].
155 */
156 if (min_capacity == max_capacity)
157 cpu_capacity[0].hwid = (unsigned long)(-1);
158 else if (4*max_capacity < (3*(max_capacity + min_capacity)))
159 middle_capacity = (min_capacity + max_capacity)
160 >> (SCHED_POWER_SHIFT+1);
161 else
162 middle_capacity = ((max_capacity / 3)
163 >> (SCHED_POWER_SHIFT-1)) + 1;
164
165}
166
167/*
168 * Look for a customed capacity of a CPU in the cpu_capacity table during the
169 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
170 * function returns directly for SMP system.
171 */
172void update_cpu_power(unsigned int cpu, unsigned long hwid)
173{
174 unsigned int idx = 0;
175
176 /* look for the cpu's hwid in the cpu capacity table */
177 for (idx = 0; idx < num_possible_cpus(); idx++) {
178 if (cpu_capacity[idx].hwid == hwid)
179 break;
180
181 if (cpu_capacity[idx].hwid == -1)
182 return;
183 }
184
185 if (idx == num_possible_cpus())
186 return;
187
188 set_power_scale(cpu, cpu_capacity[idx].capacity / middle_capacity);
189
190 printk(KERN_INFO "CPU%u: update cpu_power %lu\n",
191 cpu, arch_scale_freq_power(NULL, cpu));
192}
193
194#else
195static inline void parse_dt_topology(void) {}
196static inline void update_cpu_power(unsigned int cpuid, unsigned int mpidr) {}
197#endif
198
199
Vincent Guittot130d9aa2012-07-10 14:08:40 +0100200/*
201 * cpu topology management
202 */
203
Vincent Guittotc9018aa2011-08-08 13:21:59 +0100204#define MPIDR_SMP_BITMASK (0x3 << 30)
205#define MPIDR_SMP_VALUE (0x2 << 30)
206
207#define MPIDR_MT_BITMASK (0x1 << 24)
208
209/*
210 * These masks reflect the current use of the affinity levels.
211 * The affinity level can be up to 16 bits according to ARM ARM
212 */
Vincent Guittot339ca092012-07-10 14:13:12 +0100213#define MPIDR_HWID_BITMASK 0xFFFFFF
Vincent Guittotc9018aa2011-08-08 13:21:59 +0100214
215#define MPIDR_LEVEL0_MASK 0x3
216#define MPIDR_LEVEL0_SHIFT 0
217
218#define MPIDR_LEVEL1_MASK 0xF
219#define MPIDR_LEVEL1_SHIFT 8
220
221#define MPIDR_LEVEL2_MASK 0xFF
222#define MPIDR_LEVEL2_SHIFT 16
223
Vincent Guittot130d9aa2012-07-10 14:08:40 +0100224/*
225 * cpu topology table
226 */
Vincent Guittotc9018aa2011-08-08 13:21:59 +0100227struct cputopo_arm cpu_topology[NR_CPUS];
228
Vincent Guittot4cbd6b12011-11-29 15:50:20 +0100229const struct cpumask *cpu_coregroup_mask(int cpu)
Vincent Guittotc9018aa2011-08-08 13:21:59 +0100230{
231 return &cpu_topology[cpu].core_sibling;
232}
233
Vincent Guittotcb75dac2012-07-10 14:11:11 +0100234void update_siblings_masks(unsigned int cpuid)
235{
236 struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
237 int cpu;
238
239 /* update core and thread sibling masks */
240 for_each_possible_cpu(cpu) {
241 cpu_topo = &cpu_topology[cpu];
242
243 if (cpuid_topo->socket_id != cpu_topo->socket_id)
244 continue;
245
246 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
247 if (cpu != cpuid)
248 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
249
250 if (cpuid_topo->core_id != cpu_topo->core_id)
251 continue;
252
253 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
254 if (cpu != cpuid)
255 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
256 }
257 smp_wmb();
258}
259
Vincent Guittotc9018aa2011-08-08 13:21:59 +0100260/*
261 * store_cpu_topology is called at boot when only one cpu is running
262 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
263 * which prevents simultaneous write access to cpu_topology array
264 */
265void store_cpu_topology(unsigned int cpuid)
266{
267 struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
268 unsigned int mpidr;
Vincent Guittotc9018aa2011-08-08 13:21:59 +0100269
270 /* If the cpu topology has been already set, just return */
271 if (cpuid_topo->core_id != -1)
272 return;
273
274 mpidr = read_cpuid_mpidr();
275
276 /* create cpu topology mapping */
277 if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
278 /*
279 * This is a multiprocessor system
280 * multiprocessor format & multiprocessor mode field are set
281 */
282
283 if (mpidr & MPIDR_MT_BITMASK) {
284 /* core performance interdependency */
285 cpuid_topo->thread_id = (mpidr >> MPIDR_LEVEL0_SHIFT)
286 & MPIDR_LEVEL0_MASK;
287 cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL1_SHIFT)
288 & MPIDR_LEVEL1_MASK;
289 cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL2_SHIFT)
290 & MPIDR_LEVEL2_MASK;
291 } else {
292 /* largely independent cores */
293 cpuid_topo->thread_id = -1;
294 cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL0_SHIFT)
295 & MPIDR_LEVEL0_MASK;
296 cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL1_SHIFT)
297 & MPIDR_LEVEL1_MASK;
298 }
299 } else {
300 /*
301 * This is an uniprocessor system
302 * we are in multiprocessor format but uniprocessor system
303 * or in the old uniprocessor format
304 */
305 cpuid_topo->thread_id = -1;
306 cpuid_topo->core_id = 0;
307 cpuid_topo->socket_id = -1;
308 }
309
Vincent Guittotcb75dac2012-07-10 14:11:11 +0100310 update_siblings_masks(cpuid);
Vincent Guittotc9018aa2011-08-08 13:21:59 +0100311
Vincent Guittot339ca092012-07-10 14:13:12 +0100312 update_cpu_power(cpuid, mpidr & MPIDR_HWID_BITMASK);
313
Vincent Guittotc9018aa2011-08-08 13:21:59 +0100314 printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
315 cpuid, cpu_topology[cpuid].thread_id,
316 cpu_topology[cpuid].core_id,
317 cpu_topology[cpuid].socket_id, mpidr);
318}
319
320/*
321 * init_cpu_topology is called at boot when only one cpu is running
322 * which prevent simultaneous write access to cpu_topology array
323 */
Venkatraman Sathiyamoorthyf7e416e2012-08-03 07:58:33 +0100324void __init init_cpu_topology(void)
Vincent Guittotc9018aa2011-08-08 13:21:59 +0100325{
326 unsigned int cpu;
327
Vincent Guittot130d9aa2012-07-10 14:08:40 +0100328 /* init core mask and power*/
Vincent Guittotc9018aa2011-08-08 13:21:59 +0100329 for_each_possible_cpu(cpu) {
330 struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
331
332 cpu_topo->thread_id = -1;
333 cpu_topo->core_id = -1;
334 cpu_topo->socket_id = -1;
335 cpumask_clear(&cpu_topo->core_sibling);
336 cpumask_clear(&cpu_topo->thread_sibling);
Vincent Guittot130d9aa2012-07-10 14:08:40 +0100337
338 set_power_scale(cpu, SCHED_POWER_SCALE);
Vincent Guittotc9018aa2011-08-08 13:21:59 +0100339 }
340 smp_wmb();
Vincent Guittot339ca092012-07-10 14:13:12 +0100341
342 parse_dt_topology();
Vincent Guittotc9018aa2011-08-08 13:21:59 +0100343}