Vincent Guittot | c9018aa | 2011-08-08 13:21:59 +0100 | [diff] [blame] | 1 | /* |
| 2 | * arch/arm/kernel/topology.c |
| 3 | * |
| 4 | * Copyright (C) 2011 Linaro Limited. |
| 5 | * Written by: Vincent Guittot |
| 6 | * |
| 7 | * based on arch/sh/kernel/topology.c |
| 8 | * |
| 9 | * This file is subject to the terms and conditions of the GNU General Public |
| 10 | * License. See the file "COPYING" in the main directory of this archive |
| 11 | * for more details. |
| 12 | */ |
| 13 | |
| 14 | #include <linux/cpu.h> |
| 15 | #include <linux/cpumask.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/percpu.h> |
| 18 | #include <linux/node.h> |
| 19 | #include <linux/nodemask.h> |
Vincent Guittot | 339ca09 | 2012-07-10 14:13:12 +0100 | [diff] [blame] | 20 | #include <linux/of.h> |
Vincent Guittot | c9018aa | 2011-08-08 13:21:59 +0100 | [diff] [blame] | 21 | #include <linux/sched.h> |
Vincent Guittot | 339ca09 | 2012-07-10 14:13:12 +0100 | [diff] [blame] | 22 | #include <linux/slab.h> |
Vincent Guittot | c9018aa | 2011-08-08 13:21:59 +0100 | [diff] [blame] | 23 | |
| 24 | #include <asm/cputype.h> |
| 25 | #include <asm/topology.h> |
| 26 | |
Vincent Guittot | 130d9aa | 2012-07-10 14:08:40 +0100 | [diff] [blame] | 27 | /* |
| 28 | * cpu power scale management |
| 29 | */ |
| 30 | |
| 31 | /* |
| 32 | * cpu power table |
| 33 | * This per cpu data structure describes the relative capacity of each core. |
| 34 | * On a heteregenous system, cores don't have the same computation capacity |
| 35 | * and we reflect that difference in the cpu_power field so the scheduler can |
| 36 | * take this difference into account during load balance. A per cpu structure |
| 37 | * is preferred because each CPU updates its own cpu_power field during the |
| 38 | * load balance except for idle cores. One idle core is selected to run the |
| 39 | * rebalance_domains for all idle cores and the cpu_power can be updated |
| 40 | * during this sequence. |
| 41 | */ |
| 42 | static DEFINE_PER_CPU(unsigned long, cpu_scale); |
| 43 | |
| 44 | unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu) |
| 45 | { |
| 46 | return per_cpu(cpu_scale, cpu); |
| 47 | } |
| 48 | |
| 49 | static void set_power_scale(unsigned int cpu, unsigned long power) |
| 50 | { |
| 51 | per_cpu(cpu_scale, cpu) = power; |
| 52 | } |
| 53 | |
Vincent Guittot | 339ca09 | 2012-07-10 14:13:12 +0100 | [diff] [blame] | 54 | #ifdef CONFIG_OF |
| 55 | struct cpu_efficiency { |
| 56 | const char *compatible; |
| 57 | unsigned long efficiency; |
| 58 | }; |
| 59 | |
| 60 | /* |
| 61 | * Table of relative efficiency of each processors |
| 62 | * The efficiency value must fit in 20bit and the final |
| 63 | * cpu_scale value must be in the range |
| 64 | * 0 < cpu_scale < 3*SCHED_POWER_SCALE/2 |
| 65 | * in order to return at most 1 when DIV_ROUND_CLOSEST |
| 66 | * is used to compute the capacity of a CPU. |
| 67 | * Processors that are not defined in the table, |
| 68 | * use the default SCHED_POWER_SCALE value for cpu_scale. |
| 69 | */ |
| 70 | struct cpu_efficiency table_efficiency[] = { |
| 71 | {"arm,cortex-a15", 3891}, |
| 72 | {"arm,cortex-a7", 2048}, |
| 73 | {NULL, }, |
| 74 | }; |
| 75 | |
| 76 | struct cpu_capacity { |
| 77 | unsigned long hwid; |
| 78 | unsigned long capacity; |
| 79 | }; |
| 80 | |
| 81 | struct cpu_capacity *cpu_capacity; |
| 82 | |
| 83 | unsigned long middle_capacity = 1; |
| 84 | |
| 85 | /* |
| 86 | * Iterate all CPUs' descriptor in DT and compute the efficiency |
| 87 | * (as per table_efficiency). Also calculate a middle efficiency |
| 88 | * as close as possible to (max{eff_i} - min{eff_i}) / 2 |
| 89 | * This is later used to scale the cpu_power field such that an |
| 90 | * 'average' CPU is of middle power. Also see the comments near |
| 91 | * table_efficiency[] and update_cpu_power(). |
| 92 | */ |
| 93 | static void __init parse_dt_topology(void) |
| 94 | { |
| 95 | struct cpu_efficiency *cpu_eff; |
| 96 | struct device_node *cn = NULL; |
| 97 | unsigned long min_capacity = (unsigned long)(-1); |
| 98 | unsigned long max_capacity = 0; |
| 99 | unsigned long capacity = 0; |
| 100 | int alloc_size, cpu = 0; |
| 101 | |
| 102 | alloc_size = nr_cpu_ids * sizeof(struct cpu_capacity); |
| 103 | cpu_capacity = (struct cpu_capacity *)kzalloc(alloc_size, GFP_NOWAIT); |
| 104 | |
| 105 | while ((cn = of_find_node_by_type(cn, "cpu"))) { |
| 106 | const u32 *rate, *reg; |
| 107 | int len; |
| 108 | |
| 109 | if (cpu >= num_possible_cpus()) |
| 110 | break; |
| 111 | |
| 112 | for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++) |
| 113 | if (of_device_is_compatible(cn, cpu_eff->compatible)) |
| 114 | break; |
| 115 | |
| 116 | if (cpu_eff->compatible == NULL) |
| 117 | continue; |
| 118 | |
| 119 | rate = of_get_property(cn, "clock-frequency", &len); |
| 120 | if (!rate || len != 4) { |
| 121 | pr_err("%s missing clock-frequency property\n", |
| 122 | cn->full_name); |
| 123 | continue; |
| 124 | } |
| 125 | |
| 126 | reg = of_get_property(cn, "reg", &len); |
| 127 | if (!reg || len != 4) { |
| 128 | pr_err("%s missing reg property\n", cn->full_name); |
| 129 | continue; |
| 130 | } |
| 131 | |
| 132 | capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency; |
| 133 | |
| 134 | /* Save min capacity of the system */ |
| 135 | if (capacity < min_capacity) |
| 136 | min_capacity = capacity; |
| 137 | |
| 138 | /* Save max capacity of the system */ |
| 139 | if (capacity > max_capacity) |
| 140 | max_capacity = capacity; |
| 141 | |
| 142 | cpu_capacity[cpu].capacity = capacity; |
| 143 | cpu_capacity[cpu++].hwid = be32_to_cpup(reg); |
| 144 | } |
| 145 | |
| 146 | if (cpu < num_possible_cpus()) |
| 147 | cpu_capacity[cpu].hwid = (unsigned long)(-1); |
| 148 | |
| 149 | /* If min and max capacities are equals, we bypass the update of the |
| 150 | * cpu_scale because all CPUs have the same capacity. Otherwise, we |
| 151 | * compute a middle_capacity factor that will ensure that the capacity |
| 152 | * of an 'average' CPU of the system will be as close as possible to |
| 153 | * SCHED_POWER_SCALE, which is the default value, but with the |
| 154 | * constraint explained near table_efficiency[]. |
| 155 | */ |
| 156 | if (min_capacity == max_capacity) |
| 157 | cpu_capacity[0].hwid = (unsigned long)(-1); |
| 158 | else if (4*max_capacity < (3*(max_capacity + min_capacity))) |
| 159 | middle_capacity = (min_capacity + max_capacity) |
| 160 | >> (SCHED_POWER_SHIFT+1); |
| 161 | else |
| 162 | middle_capacity = ((max_capacity / 3) |
| 163 | >> (SCHED_POWER_SHIFT-1)) + 1; |
| 164 | |
| 165 | } |
| 166 | |
| 167 | /* |
| 168 | * Look for a customed capacity of a CPU in the cpu_capacity table during the |
| 169 | * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the |
| 170 | * function returns directly for SMP system. |
| 171 | */ |
| 172 | void update_cpu_power(unsigned int cpu, unsigned long hwid) |
| 173 | { |
| 174 | unsigned int idx = 0; |
| 175 | |
| 176 | /* look for the cpu's hwid in the cpu capacity table */ |
| 177 | for (idx = 0; idx < num_possible_cpus(); idx++) { |
| 178 | if (cpu_capacity[idx].hwid == hwid) |
| 179 | break; |
| 180 | |
| 181 | if (cpu_capacity[idx].hwid == -1) |
| 182 | return; |
| 183 | } |
| 184 | |
| 185 | if (idx == num_possible_cpus()) |
| 186 | return; |
| 187 | |
| 188 | set_power_scale(cpu, cpu_capacity[idx].capacity / middle_capacity); |
| 189 | |
| 190 | printk(KERN_INFO "CPU%u: update cpu_power %lu\n", |
| 191 | cpu, arch_scale_freq_power(NULL, cpu)); |
| 192 | } |
| 193 | |
| 194 | #else |
| 195 | static inline void parse_dt_topology(void) {} |
| 196 | static inline void update_cpu_power(unsigned int cpuid, unsigned int mpidr) {} |
| 197 | #endif |
| 198 | |
| 199 | |
Vincent Guittot | 130d9aa | 2012-07-10 14:08:40 +0100 | [diff] [blame] | 200 | /* |
| 201 | * cpu topology management |
| 202 | */ |
| 203 | |
Vincent Guittot | c9018aa | 2011-08-08 13:21:59 +0100 | [diff] [blame] | 204 | #define MPIDR_SMP_BITMASK (0x3 << 30) |
| 205 | #define MPIDR_SMP_VALUE (0x2 << 30) |
| 206 | |
| 207 | #define MPIDR_MT_BITMASK (0x1 << 24) |
| 208 | |
| 209 | /* |
| 210 | * These masks reflect the current use of the affinity levels. |
| 211 | * The affinity level can be up to 16 bits according to ARM ARM |
| 212 | */ |
Vincent Guittot | 339ca09 | 2012-07-10 14:13:12 +0100 | [diff] [blame] | 213 | #define MPIDR_HWID_BITMASK 0xFFFFFF |
Vincent Guittot | c9018aa | 2011-08-08 13:21:59 +0100 | [diff] [blame] | 214 | |
| 215 | #define MPIDR_LEVEL0_MASK 0x3 |
| 216 | #define MPIDR_LEVEL0_SHIFT 0 |
| 217 | |
| 218 | #define MPIDR_LEVEL1_MASK 0xF |
| 219 | #define MPIDR_LEVEL1_SHIFT 8 |
| 220 | |
| 221 | #define MPIDR_LEVEL2_MASK 0xFF |
| 222 | #define MPIDR_LEVEL2_SHIFT 16 |
| 223 | |
Vincent Guittot | 130d9aa | 2012-07-10 14:08:40 +0100 | [diff] [blame] | 224 | /* |
| 225 | * cpu topology table |
| 226 | */ |
Vincent Guittot | c9018aa | 2011-08-08 13:21:59 +0100 | [diff] [blame] | 227 | struct cputopo_arm cpu_topology[NR_CPUS]; |
| 228 | |
Vincent Guittot | 4cbd6b1 | 2011-11-29 15:50:20 +0100 | [diff] [blame] | 229 | const struct cpumask *cpu_coregroup_mask(int cpu) |
Vincent Guittot | c9018aa | 2011-08-08 13:21:59 +0100 | [diff] [blame] | 230 | { |
| 231 | return &cpu_topology[cpu].core_sibling; |
| 232 | } |
| 233 | |
Vincent Guittot | cb75dac | 2012-07-10 14:11:11 +0100 | [diff] [blame] | 234 | void update_siblings_masks(unsigned int cpuid) |
| 235 | { |
| 236 | struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; |
| 237 | int cpu; |
| 238 | |
| 239 | /* update core and thread sibling masks */ |
| 240 | for_each_possible_cpu(cpu) { |
| 241 | cpu_topo = &cpu_topology[cpu]; |
| 242 | |
| 243 | if (cpuid_topo->socket_id != cpu_topo->socket_id) |
| 244 | continue; |
| 245 | |
| 246 | cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); |
| 247 | if (cpu != cpuid) |
| 248 | cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); |
| 249 | |
| 250 | if (cpuid_topo->core_id != cpu_topo->core_id) |
| 251 | continue; |
| 252 | |
| 253 | cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); |
| 254 | if (cpu != cpuid) |
| 255 | cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); |
| 256 | } |
| 257 | smp_wmb(); |
| 258 | } |
| 259 | |
Vincent Guittot | c9018aa | 2011-08-08 13:21:59 +0100 | [diff] [blame] | 260 | /* |
| 261 | * store_cpu_topology is called at boot when only one cpu is running |
| 262 | * and with the mutex cpu_hotplug.lock locked, when several cpus have booted, |
| 263 | * which prevents simultaneous write access to cpu_topology array |
| 264 | */ |
| 265 | void store_cpu_topology(unsigned int cpuid) |
| 266 | { |
| 267 | struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid]; |
| 268 | unsigned int mpidr; |
Vincent Guittot | c9018aa | 2011-08-08 13:21:59 +0100 | [diff] [blame] | 269 | |
| 270 | /* If the cpu topology has been already set, just return */ |
| 271 | if (cpuid_topo->core_id != -1) |
| 272 | return; |
| 273 | |
| 274 | mpidr = read_cpuid_mpidr(); |
| 275 | |
| 276 | /* create cpu topology mapping */ |
| 277 | if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) { |
| 278 | /* |
| 279 | * This is a multiprocessor system |
| 280 | * multiprocessor format & multiprocessor mode field are set |
| 281 | */ |
| 282 | |
| 283 | if (mpidr & MPIDR_MT_BITMASK) { |
| 284 | /* core performance interdependency */ |
| 285 | cpuid_topo->thread_id = (mpidr >> MPIDR_LEVEL0_SHIFT) |
| 286 | & MPIDR_LEVEL0_MASK; |
| 287 | cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL1_SHIFT) |
| 288 | & MPIDR_LEVEL1_MASK; |
| 289 | cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL2_SHIFT) |
| 290 | & MPIDR_LEVEL2_MASK; |
| 291 | } else { |
| 292 | /* largely independent cores */ |
| 293 | cpuid_topo->thread_id = -1; |
| 294 | cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL0_SHIFT) |
| 295 | & MPIDR_LEVEL0_MASK; |
| 296 | cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL1_SHIFT) |
| 297 | & MPIDR_LEVEL1_MASK; |
| 298 | } |
| 299 | } else { |
| 300 | /* |
| 301 | * This is an uniprocessor system |
| 302 | * we are in multiprocessor format but uniprocessor system |
| 303 | * or in the old uniprocessor format |
| 304 | */ |
| 305 | cpuid_topo->thread_id = -1; |
| 306 | cpuid_topo->core_id = 0; |
| 307 | cpuid_topo->socket_id = -1; |
| 308 | } |
| 309 | |
Vincent Guittot | cb75dac | 2012-07-10 14:11:11 +0100 | [diff] [blame] | 310 | update_siblings_masks(cpuid); |
Vincent Guittot | c9018aa | 2011-08-08 13:21:59 +0100 | [diff] [blame] | 311 | |
Vincent Guittot | 339ca09 | 2012-07-10 14:13:12 +0100 | [diff] [blame] | 312 | update_cpu_power(cpuid, mpidr & MPIDR_HWID_BITMASK); |
| 313 | |
Vincent Guittot | c9018aa | 2011-08-08 13:21:59 +0100 | [diff] [blame] | 314 | printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n", |
| 315 | cpuid, cpu_topology[cpuid].thread_id, |
| 316 | cpu_topology[cpuid].core_id, |
| 317 | cpu_topology[cpuid].socket_id, mpidr); |
| 318 | } |
| 319 | |
| 320 | /* |
| 321 | * init_cpu_topology is called at boot when only one cpu is running |
| 322 | * which prevent simultaneous write access to cpu_topology array |
| 323 | */ |
Venkatraman Sathiyamoorthy | f7e416e | 2012-08-03 07:58:33 +0100 | [diff] [blame] | 324 | void __init init_cpu_topology(void) |
Vincent Guittot | c9018aa | 2011-08-08 13:21:59 +0100 | [diff] [blame] | 325 | { |
| 326 | unsigned int cpu; |
| 327 | |
Vincent Guittot | 130d9aa | 2012-07-10 14:08:40 +0100 | [diff] [blame] | 328 | /* init core mask and power*/ |
Vincent Guittot | c9018aa | 2011-08-08 13:21:59 +0100 | [diff] [blame] | 329 | for_each_possible_cpu(cpu) { |
| 330 | struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]); |
| 331 | |
| 332 | cpu_topo->thread_id = -1; |
| 333 | cpu_topo->core_id = -1; |
| 334 | cpu_topo->socket_id = -1; |
| 335 | cpumask_clear(&cpu_topo->core_sibling); |
| 336 | cpumask_clear(&cpu_topo->thread_sibling); |
Vincent Guittot | 130d9aa | 2012-07-10 14:08:40 +0100 | [diff] [blame] | 337 | |
| 338 | set_power_scale(cpu, SCHED_POWER_SCALE); |
Vincent Guittot | c9018aa | 2011-08-08 13:21:59 +0100 | [diff] [blame] | 339 | } |
| 340 | smp_wmb(); |
Vincent Guittot | 339ca09 | 2012-07-10 14:13:12 +0100 | [diff] [blame] | 341 | |
| 342 | parse_dt_topology(); |
Vincent Guittot | c9018aa | 2011-08-08 13:21:59 +0100 | [diff] [blame] | 343 | } |