blob: 1d7645b0a97ca034552d0e43ac39b475b0513a61 [file] [log] [blame]
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
Catalin Marinas4698c1f2009-06-26 17:38:27 +010051 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
Catalin Marinas3c7b4e62009-06-11 13:22:39 +010055 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
Joe Perchesae281062009-06-23 14:40:26 +010064#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
Catalin Marinas3c7b4e62009-06-11 13:22:39 +010066#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/module.h>
73#include <linux/kthread.h>
74#include <linux/prio_tree.h>
75#include <linux/gfp.h>
76#include <linux/fs.h>
77#include <linux/debugfs.h>
78#include <linux/seq_file.h>
79#include <linux/cpumask.h>
80#include <linux/spinlock.h>
81#include <linux/mutex.h>
82#include <linux/rcupdate.h>
83#include <linux/stacktrace.h>
84#include <linux/cache.h>
85#include <linux/percpu.h>
86#include <linux/hardirq.h>
87#include <linux/mmzone.h>
88#include <linux/slab.h>
89#include <linux/thread_info.h>
90#include <linux/err.h>
91#include <linux/uaccess.h>
92#include <linux/string.h>
93#include <linux/nodemask.h>
94#include <linux/mm.h>
95
96#include <asm/sections.h>
97#include <asm/processor.h>
98#include <asm/atomic.h>
99
100#include <linux/kmemleak.h>
101
102/*
103 * Kmemleak configuration and common defines.
104 */
105#define MAX_TRACE 16 /* stack trace length */
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100106#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100107#define SECS_FIRST_SCAN 60 /* delay before the first scan */
108#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
Catalin Marinas25873622009-07-07 10:32:58 +0100109#define GRAY_LIST_PASSES 25 /* maximum number of gray list scans */
Catalin Marinasaf986032009-08-27 14:29:12 +0100110#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100111
112#define BYTES_PER_POINTER sizeof(void *)
113
Catalin Marinas216c04b2009-06-17 18:29:02 +0100114/* GFP bitmask for kmemleak internal allocations */
115#define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
116
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100117/* scanning area inside a memory block */
118struct kmemleak_scan_area {
119 struct hlist_node node;
120 unsigned long offset;
121 size_t length;
122};
123
124/*
125 * Structure holding the metadata for each allocated memory block.
126 * Modifications to such objects should be made while holding the
127 * object->lock. Insertions or deletions from object_list, gray_list or
128 * tree_node are already protected by the corresponding locks or mutex (see
129 * the notes on locking above). These objects are reference-counted
130 * (use_count) and freed using the RCU mechanism.
131 */
132struct kmemleak_object {
133 spinlock_t lock;
134 unsigned long flags; /* object status flags */
135 struct list_head object_list;
136 struct list_head gray_list;
137 struct prio_tree_node tree_node;
138 struct rcu_head rcu; /* object_list lockless traversal */
139 /* object usage count; object freed when use_count == 0 */
140 atomic_t use_count;
141 unsigned long pointer;
142 size_t size;
143 /* minimum number of a pointers found before it is considered leak */
144 int min_count;
145 /* the total number of pointers found pointing to this object */
146 int count;
147 /* memory ranges to be scanned inside an object (empty for all) */
148 struct hlist_head area_list;
149 unsigned long trace[MAX_TRACE];
150 unsigned int trace_len;
151 unsigned long jiffies; /* creation timestamp */
152 pid_t pid; /* pid of the current task */
153 char comm[TASK_COMM_LEN]; /* executable name */
154};
155
156/* flag representing the memory block allocation status */
157#define OBJECT_ALLOCATED (1 << 0)
158/* flag set after the first reporting of an unreference object */
159#define OBJECT_REPORTED (1 << 1)
160/* flag set to not scan the object */
161#define OBJECT_NO_SCAN (1 << 2)
Catalin Marinas25873622009-07-07 10:32:58 +0100162/* flag set on newly allocated objects */
163#define OBJECT_NEW (1 << 3)
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100164
Sergey Senozhatsky0494e082009-08-27 14:29:18 +0100165/* number of bytes to print per line; must be 16 or 32 */
166#define HEX_ROW_SIZE 16
167/* number of bytes to print at a time (1, 2, 4, 8) */
168#define HEX_GROUP_SIZE 1
169/* include ASCII after the hex output */
170#define HEX_ASCII 1
171/* max number of lines to be printed */
172#define HEX_MAX_LINES 2
173
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100174/* the list of all allocated objects */
175static LIST_HEAD(object_list);
176/* the list of gray-colored objects (see color_gray comment below) */
177static LIST_HEAD(gray_list);
178/* prio search tree for object boundaries */
179static struct prio_tree_root object_tree_root;
180/* rw_lock protecting the access to object_list and prio_tree_root */
181static DEFINE_RWLOCK(kmemleak_lock);
182
183/* allocation caches for kmemleak internal data */
184static struct kmem_cache *object_cache;
185static struct kmem_cache *scan_area_cache;
186
187/* set if tracing memory operations is enabled */
188static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
189/* set in the late_initcall if there were no errors */
190static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
191/* enables or disables early logging of the memory operations */
192static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
193/* set if a fata kmemleak error has occurred */
194static atomic_t kmemleak_error = ATOMIC_INIT(0);
195
196/* minimum and maximum address that may be valid pointers */
197static unsigned long min_addr = ULONG_MAX;
198static unsigned long max_addr;
199
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100200static struct task_struct *scan_thread;
Catalin Marinasacf49682009-06-26 17:38:29 +0100201/* used to avoid reporting of recently allocated objects */
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100202static unsigned long jiffies_min_age;
Catalin Marinasacf49682009-06-26 17:38:29 +0100203static unsigned long jiffies_last_scan;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100204/* delay between automatic memory scannings */
205static signed long jiffies_scan_wait;
206/* enables or disables the task stacks scanning */
Catalin Marinase0a2a162009-06-26 17:38:25 +0100207static int kmemleak_stack_scan = 1;
Catalin Marinas4698c1f2009-06-26 17:38:27 +0100208/* protects the memory scanning, parameters and debug/kmemleak file access */
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100209static DEFINE_MUTEX(scan_mutex);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100210
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100211/*
Catalin Marinas20301172009-06-17 18:29:04 +0100212 * Early object allocation/freeing logging. Kmemleak is initialized after the
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100213 * kernel allocator. However, both the kernel allocator and kmemleak may
Catalin Marinas20301172009-06-17 18:29:04 +0100214 * allocate memory blocks which need to be tracked. Kmemleak defines an
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100215 * arbitrary buffer to hold the allocation/freeing information before it is
216 * fully initialized.
217 */
218
219/* kmemleak operation type for early logging */
220enum {
221 KMEMLEAK_ALLOC,
222 KMEMLEAK_FREE,
Catalin Marinas53238a62009-07-07 10:33:00 +0100223 KMEMLEAK_FREE_PART,
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100224 KMEMLEAK_NOT_LEAK,
225 KMEMLEAK_IGNORE,
226 KMEMLEAK_SCAN_AREA,
227 KMEMLEAK_NO_SCAN
228};
229
230/*
231 * Structure holding the information passed to kmemleak callbacks during the
232 * early logging.
233 */
234struct early_log {
235 int op_type; /* kmemleak operation type */
236 const void *ptr; /* allocated/freed memory block */
237 size_t size; /* memory block size */
238 int min_count; /* minimum reference count */
239 unsigned long offset; /* scan area offset */
240 size_t length; /* scan area length */
Catalin Marinasfd678962009-08-27 14:29:17 +0100241 unsigned long trace[MAX_TRACE]; /* stack trace */
242 unsigned int trace_len; /* stack trace length */
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100243};
244
245/* early logging buffer and current position */
Catalin Marinasa6186d82009-08-27 14:29:16 +0100246static struct early_log
247 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
248static int crt_early_log __initdata;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100249
250static void kmemleak_disable(void);
251
252/*
253 * Print a warning and dump the stack trace.
254 */
255#define kmemleak_warn(x...) do { \
256 pr_warning(x); \
257 dump_stack(); \
258} while (0)
259
260/*
261 * Macro invoked when a serious kmemleak condition occured and cannot be
Catalin Marinas20301172009-06-17 18:29:04 +0100262 * recovered from. Kmemleak will be disabled and further allocation/freeing
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100263 * tracing no longer available.
264 */
Catalin Marinas000814f2009-06-17 18:29:03 +0100265#define kmemleak_stop(x...) do { \
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100266 kmemleak_warn(x); \
267 kmemleak_disable(); \
268} while (0)
269
270/*
Sergey Senozhatsky0494e082009-08-27 14:29:18 +0100271 * Printing of the objects hex dump to the seq file. The number of lines to be
272 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
273 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
274 * with the object->lock held.
275 */
276static void hex_dump_object(struct seq_file *seq,
277 struct kmemleak_object *object)
278{
279 const u8 *ptr = (const u8 *)object->pointer;
280 int i, len, remaining;
281 unsigned char linebuf[HEX_ROW_SIZE * 5];
282
283 /* limit the number of lines to HEX_MAX_LINES */
284 remaining = len =
285 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
286
287 seq_printf(seq, " hex dump (first %d bytes):\n", len);
288 for (i = 0; i < len; i += HEX_ROW_SIZE) {
289 int linelen = min(remaining, HEX_ROW_SIZE);
290
291 remaining -= HEX_ROW_SIZE;
292 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
293 HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
294 HEX_ASCII);
295 seq_printf(seq, " %s\n", linebuf);
296 }
297}
298
299/*
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100300 * Object colors, encoded with count and min_count:
301 * - white - orphan object, not enough references to it (count < min_count)
302 * - gray - not orphan, not marked as false positive (min_count == 0) or
303 * sufficient references to it (count >= min_count)
304 * - black - ignore, it doesn't contain references (e.g. text section)
305 * (min_count == -1). No function defined for this color.
306 * Newly created objects don't have any color assigned (object->count == -1)
307 * before the next memory scan when they become white.
308 */
309static int color_white(const struct kmemleak_object *object)
310{
311 return object->count != -1 && object->count < object->min_count;
312}
313
314static int color_gray(const struct kmemleak_object *object)
315{
316 return object->min_count != -1 && object->count >= object->min_count;
317}
318
Catalin Marinas25873622009-07-07 10:32:58 +0100319static int color_black(const struct kmemleak_object *object)
320{
321 return object->min_count == -1;
322}
323
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100324/*
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100325 * Objects are considered unreferenced only if their color is white, they have
326 * not be deleted and have a minimum age to avoid false positives caused by
327 * pointers temporarily stored in CPU registers.
328 */
329static int unreferenced_object(struct kmemleak_object *object)
330{
331 return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
Catalin Marinasacf49682009-06-26 17:38:29 +0100332 time_before_eq(object->jiffies + jiffies_min_age,
333 jiffies_last_scan);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100334}
335
336/*
Catalin Marinasbab4a342009-06-26 17:38:26 +0100337 * Printing of the unreferenced objects information to the seq file. The
338 * print_unreferenced function must be called with the object->lock held.
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100339 */
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100340static void print_unreferenced(struct seq_file *seq,
341 struct kmemleak_object *object)
342{
343 int i;
344
Catalin Marinasbab4a342009-06-26 17:38:26 +0100345 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
346 object->pointer, object->size);
347 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n",
348 object->comm, object->pid, object->jiffies);
Sergey Senozhatsky0494e082009-08-27 14:29:18 +0100349 hex_dump_object(seq, object);
Catalin Marinasbab4a342009-06-26 17:38:26 +0100350 seq_printf(seq, " backtrace:\n");
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100351
352 for (i = 0; i < object->trace_len; i++) {
353 void *ptr = (void *)object->trace[i];
Catalin Marinasbab4a342009-06-26 17:38:26 +0100354 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100355 }
356}
357
358/*
359 * Print the kmemleak_object information. This function is used mainly for
360 * debugging special cases when kmemleak operations. It must be called with
361 * the object->lock held.
362 */
363static void dump_object_info(struct kmemleak_object *object)
364{
365 struct stack_trace trace;
366
367 trace.nr_entries = object->trace_len;
368 trace.entries = object->trace;
369
Joe Perchesae281062009-06-23 14:40:26 +0100370 pr_notice("Object 0x%08lx (size %zu):\n",
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100371 object->tree_node.start, object->size);
372 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
373 object->comm, object->pid, object->jiffies);
374 pr_notice(" min_count = %d\n", object->min_count);
375 pr_notice(" count = %d\n", object->count);
Catalin Marinas189d84e2009-08-27 14:29:15 +0100376 pr_notice(" flags = 0x%lx\n", object->flags);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100377 pr_notice(" backtrace:\n");
378 print_stack_trace(&trace, 4);
379}
380
381/*
382 * Look-up a memory block metadata (kmemleak_object) in the priority search
383 * tree based on a pointer value. If alias is 0, only values pointing to the
384 * beginning of the memory block are allowed. The kmemleak_lock must be held
385 * when calling this function.
386 */
387static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
388{
389 struct prio_tree_node *node;
390 struct prio_tree_iter iter;
391 struct kmemleak_object *object;
392
393 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
394 node = prio_tree_next(&iter);
395 if (node) {
396 object = prio_tree_entry(node, struct kmemleak_object,
397 tree_node);
398 if (!alias && object->pointer != ptr) {
Joe Perchesae281062009-06-23 14:40:26 +0100399 kmemleak_warn("Found object by alias");
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100400 object = NULL;
401 }
402 } else
403 object = NULL;
404
405 return object;
406}
407
408/*
409 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
410 * that once an object's use_count reached 0, the RCU freeing was already
411 * registered and the object should no longer be used. This function must be
412 * called under the protection of rcu_read_lock().
413 */
414static int get_object(struct kmemleak_object *object)
415{
416 return atomic_inc_not_zero(&object->use_count);
417}
418
419/*
420 * RCU callback to free a kmemleak_object.
421 */
422static void free_object_rcu(struct rcu_head *rcu)
423{
424 struct hlist_node *elem, *tmp;
425 struct kmemleak_scan_area *area;
426 struct kmemleak_object *object =
427 container_of(rcu, struct kmemleak_object, rcu);
428
429 /*
430 * Once use_count is 0 (guaranteed by put_object), there is no other
431 * code accessing this object, hence no need for locking.
432 */
433 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
434 hlist_del(elem);
435 kmem_cache_free(scan_area_cache, area);
436 }
437 kmem_cache_free(object_cache, object);
438}
439
440/*
441 * Decrement the object use_count. Once the count is 0, free the object using
442 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
443 * delete_object() path, the delayed RCU freeing ensures that there is no
444 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
445 * is also possible.
446 */
447static void put_object(struct kmemleak_object *object)
448{
449 if (!atomic_dec_and_test(&object->use_count))
450 return;
451
452 /* should only get here after delete_object was called */
453 WARN_ON(object->flags & OBJECT_ALLOCATED);
454
455 call_rcu(&object->rcu, free_object_rcu);
456}
457
458/*
459 * Look up an object in the prio search tree and increase its use_count.
460 */
461static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
462{
463 unsigned long flags;
464 struct kmemleak_object *object = NULL;
465
466 rcu_read_lock();
467 read_lock_irqsave(&kmemleak_lock, flags);
468 if (ptr >= min_addr && ptr < max_addr)
469 object = lookup_object(ptr, alias);
470 read_unlock_irqrestore(&kmemleak_lock, flags);
471
472 /* check whether the object is still available */
473 if (object && !get_object(object))
474 object = NULL;
475 rcu_read_unlock();
476
477 return object;
478}
479
480/*
Catalin Marinasfd678962009-08-27 14:29:17 +0100481 * Save stack trace to the given array of MAX_TRACE size.
482 */
483static int __save_stack_trace(unsigned long *trace)
484{
485 struct stack_trace stack_trace;
486
487 stack_trace.max_entries = MAX_TRACE;
488 stack_trace.nr_entries = 0;
489 stack_trace.entries = trace;
490 stack_trace.skip = 2;
491 save_stack_trace(&stack_trace);
492
493 return stack_trace.nr_entries;
494}
495
496/*
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100497 * Create the metadata (struct kmemleak_object) corresponding to an allocated
498 * memory block and add it to the object_list and object_tree_root.
499 */
Catalin Marinasfd678962009-08-27 14:29:17 +0100500static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
501 int min_count, gfp_t gfp)
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100502{
503 unsigned long flags;
504 struct kmemleak_object *object;
505 struct prio_tree_node *node;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100506
Catalin Marinas216c04b2009-06-17 18:29:02 +0100507 object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100508 if (!object) {
Joe Perchesae281062009-06-23 14:40:26 +0100509 kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
Catalin Marinasfd678962009-08-27 14:29:17 +0100510 return NULL;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100511 }
512
513 INIT_LIST_HEAD(&object->object_list);
514 INIT_LIST_HEAD(&object->gray_list);
515 INIT_HLIST_HEAD(&object->area_list);
516 spin_lock_init(&object->lock);
517 atomic_set(&object->use_count, 1);
Catalin Marinas25873622009-07-07 10:32:58 +0100518 object->flags = OBJECT_ALLOCATED | OBJECT_NEW;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100519 object->pointer = ptr;
520 object->size = size;
521 object->min_count = min_count;
522 object->count = -1; /* no color initially */
523 object->jiffies = jiffies;
524
525 /* task information */
526 if (in_irq()) {
527 object->pid = 0;
528 strncpy(object->comm, "hardirq", sizeof(object->comm));
529 } else if (in_softirq()) {
530 object->pid = 0;
531 strncpy(object->comm, "softirq", sizeof(object->comm));
532 } else {
533 object->pid = current->pid;
534 /*
535 * There is a small chance of a race with set_task_comm(),
536 * however using get_task_comm() here may cause locking
537 * dependency issues with current->alloc_lock. In the worst
538 * case, the command line is not correct.
539 */
540 strncpy(object->comm, current->comm, sizeof(object->comm));
541 }
542
543 /* kernel backtrace */
Catalin Marinasfd678962009-08-27 14:29:17 +0100544 object->trace_len = __save_stack_trace(object->trace);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100545
546 INIT_PRIO_TREE_NODE(&object->tree_node);
547 object->tree_node.start = ptr;
548 object->tree_node.last = ptr + size - 1;
549
550 write_lock_irqsave(&kmemleak_lock, flags);
551 min_addr = min(min_addr, ptr);
552 max_addr = max(max_addr, ptr + size);
553 node = prio_tree_insert(&object_tree_root, &object->tree_node);
554 /*
555 * The code calling the kernel does not yet have the pointer to the
556 * memory block to be able to free it. However, we still hold the
557 * kmemleak_lock here in case parts of the kernel started freeing
558 * random memory blocks.
559 */
560 if (node != &object->tree_node) {
561 unsigned long flags;
562
Joe Perchesae281062009-06-23 14:40:26 +0100563 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
564 "(already existing)\n", ptr);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100565 object = lookup_object(ptr, 1);
566 spin_lock_irqsave(&object->lock, flags);
567 dump_object_info(object);
568 spin_unlock_irqrestore(&object->lock, flags);
569
570 goto out;
571 }
572 list_add_tail_rcu(&object->object_list, &object_list);
573out:
574 write_unlock_irqrestore(&kmemleak_lock, flags);
Catalin Marinasfd678962009-08-27 14:29:17 +0100575 return object;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100576}
577
578/*
579 * Remove the metadata (struct kmemleak_object) for a memory block from the
580 * object_list and object_tree_root and decrement its use_count.
581 */
Catalin Marinas53238a62009-07-07 10:33:00 +0100582static void __delete_object(struct kmemleak_object *object)
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100583{
584 unsigned long flags;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100585
586 write_lock_irqsave(&kmemleak_lock, flags);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100587 prio_tree_remove(&object_tree_root, &object->tree_node);
588 list_del_rcu(&object->object_list);
589 write_unlock_irqrestore(&kmemleak_lock, flags);
590
591 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
Catalin Marinas53238a62009-07-07 10:33:00 +0100592 WARN_ON(atomic_read(&object->use_count) < 2);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100593
594 /*
595 * Locking here also ensures that the corresponding memory block
596 * cannot be freed when it is being scanned.
597 */
598 spin_lock_irqsave(&object->lock, flags);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100599 object->flags &= ~OBJECT_ALLOCATED;
600 spin_unlock_irqrestore(&object->lock, flags);
601 put_object(object);
602}
603
604/*
Catalin Marinas53238a62009-07-07 10:33:00 +0100605 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
606 * delete it.
607 */
608static void delete_object_full(unsigned long ptr)
609{
610 struct kmemleak_object *object;
611
612 object = find_and_get_object(ptr, 0);
613 if (!object) {
614#ifdef DEBUG
615 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
616 ptr);
617#endif
618 return;
619 }
620 __delete_object(object);
621 put_object(object);
622}
623
624/*
625 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
626 * delete it. If the memory block is partially freed, the function may create
627 * additional metadata for the remaining parts of the block.
628 */
629static void delete_object_part(unsigned long ptr, size_t size)
630{
631 struct kmemleak_object *object;
632 unsigned long start, end;
633
634 object = find_and_get_object(ptr, 1);
635 if (!object) {
636#ifdef DEBUG
637 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
638 "(size %zu)\n", ptr, size);
639#endif
640 return;
641 }
642 __delete_object(object);
643
644 /*
645 * Create one or two objects that may result from the memory block
646 * split. Note that partial freeing is only done by free_bootmem() and
647 * this happens before kmemleak_init() is called. The path below is
648 * only executed during early log recording in kmemleak_init(), so
649 * GFP_KERNEL is enough.
650 */
651 start = object->pointer;
652 end = object->pointer + object->size;
653 if (ptr > start)
654 create_object(start, ptr - start, object->min_count,
655 GFP_KERNEL);
656 if (ptr + size < end)
657 create_object(ptr + size, end - ptr - size, object->min_count,
658 GFP_KERNEL);
659
660 put_object(object);
661}
662/*
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100663 * Make a object permanently as gray-colored so that it can no longer be
664 * reported as a leak. This is used in general to mark a false positive.
665 */
666static void make_gray_object(unsigned long ptr)
667{
668 unsigned long flags;
669 struct kmemleak_object *object;
670
671 object = find_and_get_object(ptr, 0);
672 if (!object) {
Joe Perchesae281062009-06-23 14:40:26 +0100673 kmemleak_warn("Graying unknown object at 0x%08lx\n", ptr);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100674 return;
675 }
676
677 spin_lock_irqsave(&object->lock, flags);
678 object->min_count = 0;
679 spin_unlock_irqrestore(&object->lock, flags);
680 put_object(object);
681}
682
683/*
684 * Mark the object as black-colored so that it is ignored from scans and
685 * reporting.
686 */
687static void make_black_object(unsigned long ptr)
688{
689 unsigned long flags;
690 struct kmemleak_object *object;
691
692 object = find_and_get_object(ptr, 0);
693 if (!object) {
Joe Perchesae281062009-06-23 14:40:26 +0100694 kmemleak_warn("Blacking unknown object at 0x%08lx\n", ptr);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100695 return;
696 }
697
698 spin_lock_irqsave(&object->lock, flags);
699 object->min_count = -1;
Catalin Marinasaf986032009-08-27 14:29:12 +0100700 object->flags |= OBJECT_NO_SCAN;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100701 spin_unlock_irqrestore(&object->lock, flags);
702 put_object(object);
703}
704
705/*
706 * Add a scanning area to the object. If at least one such area is added,
707 * kmemleak will only scan these ranges rather than the whole memory block.
708 */
709static void add_scan_area(unsigned long ptr, unsigned long offset,
710 size_t length, gfp_t gfp)
711{
712 unsigned long flags;
713 struct kmemleak_object *object;
714 struct kmemleak_scan_area *area;
715
716 object = find_and_get_object(ptr, 0);
717 if (!object) {
Joe Perchesae281062009-06-23 14:40:26 +0100718 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
719 ptr);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100720 return;
721 }
722
Catalin Marinas216c04b2009-06-17 18:29:02 +0100723 area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100724 if (!area) {
Joe Perchesae281062009-06-23 14:40:26 +0100725 kmemleak_warn("Cannot allocate a scan area\n");
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100726 goto out;
727 }
728
729 spin_lock_irqsave(&object->lock, flags);
730 if (offset + length > object->size) {
Joe Perchesae281062009-06-23 14:40:26 +0100731 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100732 dump_object_info(object);
733 kmem_cache_free(scan_area_cache, area);
734 goto out_unlock;
735 }
736
737 INIT_HLIST_NODE(&area->node);
738 area->offset = offset;
739 area->length = length;
740
741 hlist_add_head(&area->node, &object->area_list);
742out_unlock:
743 spin_unlock_irqrestore(&object->lock, flags);
744out:
745 put_object(object);
746}
747
748/*
749 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
750 * pointer. Such object will not be scanned by kmemleak but references to it
751 * are searched.
752 */
753static void object_no_scan(unsigned long ptr)
754{
755 unsigned long flags;
756 struct kmemleak_object *object;
757
758 object = find_and_get_object(ptr, 0);
759 if (!object) {
Joe Perchesae281062009-06-23 14:40:26 +0100760 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100761 return;
762 }
763
764 spin_lock_irqsave(&object->lock, flags);
765 object->flags |= OBJECT_NO_SCAN;
766 spin_unlock_irqrestore(&object->lock, flags);
767 put_object(object);
768}
769
770/*
771 * Log an early kmemleak_* call to the early_log buffer. These calls will be
772 * processed later once kmemleak is fully initialized.
773 */
Catalin Marinasa6186d82009-08-27 14:29:16 +0100774static void __init log_early(int op_type, const void *ptr, size_t size,
775 int min_count, unsigned long offset, size_t length)
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100776{
777 unsigned long flags;
778 struct early_log *log;
779
780 if (crt_early_log >= ARRAY_SIZE(early_log)) {
Catalin Marinasa9d90582009-06-25 10:16:11 +0100781 pr_warning("Early log buffer exceeded\n");
782 kmemleak_disable();
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100783 return;
784 }
785
786 /*
787 * There is no need for locking since the kernel is still in UP mode
788 * at this stage. Disabling the IRQs is enough.
789 */
790 local_irq_save(flags);
791 log = &early_log[crt_early_log];
792 log->op_type = op_type;
793 log->ptr = ptr;
794 log->size = size;
795 log->min_count = min_count;
796 log->offset = offset;
797 log->length = length;
Catalin Marinasfd678962009-08-27 14:29:17 +0100798 if (op_type == KMEMLEAK_ALLOC)
799 log->trace_len = __save_stack_trace(log->trace);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100800 crt_early_log++;
801 local_irq_restore(flags);
802}
803
804/*
Catalin Marinasfd678962009-08-27 14:29:17 +0100805 * Log an early allocated block and populate the stack trace.
806 */
807static void early_alloc(struct early_log *log)
808{
809 struct kmemleak_object *object;
810 unsigned long flags;
811 int i;
812
813 if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
814 return;
815
816 /*
817 * RCU locking needed to ensure object is not freed via put_object().
818 */
819 rcu_read_lock();
820 object = create_object((unsigned long)log->ptr, log->size,
821 log->min_count, GFP_KERNEL);
822 spin_lock_irqsave(&object->lock, flags);
823 for (i = 0; i < log->trace_len; i++)
824 object->trace[i] = log->trace[i];
825 object->trace_len = log->trace_len;
826 spin_unlock_irqrestore(&object->lock, flags);
827 rcu_read_unlock();
828}
829
830/*
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100831 * Memory allocation function callback. This function is called from the
832 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
833 * vmalloc etc.).
834 */
Catalin Marinasa6186d82009-08-27 14:29:16 +0100835void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
836 gfp_t gfp)
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100837{
838 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
839
840 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
841 create_object((unsigned long)ptr, size, min_count, gfp);
842 else if (atomic_read(&kmemleak_early_log))
843 log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
844}
845EXPORT_SYMBOL_GPL(kmemleak_alloc);
846
847/*
848 * Memory freeing function callback. This function is called from the kernel
849 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
850 */
Catalin Marinasa6186d82009-08-27 14:29:16 +0100851void __ref kmemleak_free(const void *ptr)
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100852{
853 pr_debug("%s(0x%p)\n", __func__, ptr);
854
855 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
Catalin Marinas53238a62009-07-07 10:33:00 +0100856 delete_object_full((unsigned long)ptr);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100857 else if (atomic_read(&kmemleak_early_log))
858 log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
859}
860EXPORT_SYMBOL_GPL(kmemleak_free);
861
862/*
Catalin Marinas53238a62009-07-07 10:33:00 +0100863 * Partial memory freeing function callback. This function is usually called
864 * from bootmem allocator when (part of) a memory block is freed.
865 */
Catalin Marinasa6186d82009-08-27 14:29:16 +0100866void __ref kmemleak_free_part(const void *ptr, size_t size)
Catalin Marinas53238a62009-07-07 10:33:00 +0100867{
868 pr_debug("%s(0x%p)\n", __func__, ptr);
869
870 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
871 delete_object_part((unsigned long)ptr, size);
872 else if (atomic_read(&kmemleak_early_log))
873 log_early(KMEMLEAK_FREE_PART, ptr, size, 0, 0, 0);
874}
875EXPORT_SYMBOL_GPL(kmemleak_free_part);
876
877/*
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100878 * Mark an already allocated memory block as a false positive. This will cause
879 * the block to no longer be reported as leak and always be scanned.
880 */
Catalin Marinasa6186d82009-08-27 14:29:16 +0100881void __ref kmemleak_not_leak(const void *ptr)
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100882{
883 pr_debug("%s(0x%p)\n", __func__, ptr);
884
885 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
886 make_gray_object((unsigned long)ptr);
887 else if (atomic_read(&kmemleak_early_log))
888 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
889}
890EXPORT_SYMBOL(kmemleak_not_leak);
891
892/*
893 * Ignore a memory block. This is usually done when it is known that the
894 * corresponding block is not a leak and does not contain any references to
895 * other allocated memory blocks.
896 */
Catalin Marinasa6186d82009-08-27 14:29:16 +0100897void __ref kmemleak_ignore(const void *ptr)
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100898{
899 pr_debug("%s(0x%p)\n", __func__, ptr);
900
901 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
902 make_black_object((unsigned long)ptr);
903 else if (atomic_read(&kmemleak_early_log))
904 log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
905}
906EXPORT_SYMBOL(kmemleak_ignore);
907
908/*
909 * Limit the range to be scanned in an allocated memory block.
910 */
Catalin Marinasa6186d82009-08-27 14:29:16 +0100911void __ref kmemleak_scan_area(const void *ptr, unsigned long offset,
912 size_t length, gfp_t gfp)
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100913{
914 pr_debug("%s(0x%p)\n", __func__, ptr);
915
916 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
917 add_scan_area((unsigned long)ptr, offset, length, gfp);
918 else if (atomic_read(&kmemleak_early_log))
919 log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
920}
921EXPORT_SYMBOL(kmemleak_scan_area);
922
923/*
924 * Inform kmemleak not to scan the given memory block.
925 */
Catalin Marinasa6186d82009-08-27 14:29:16 +0100926void __ref kmemleak_no_scan(const void *ptr)
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100927{
928 pr_debug("%s(0x%p)\n", __func__, ptr);
929
930 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
931 object_no_scan((unsigned long)ptr);
932 else if (atomic_read(&kmemleak_early_log))
933 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
934}
935EXPORT_SYMBOL(kmemleak_no_scan);
936
937/*
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100938 * Memory scanning is a long process and it needs to be interruptable. This
939 * function checks whether such interrupt condition occured.
940 */
941static int scan_should_stop(void)
942{
943 if (!atomic_read(&kmemleak_enabled))
944 return 1;
945
946 /*
947 * This function may be called from either process or kthread context,
948 * hence the need to check for both stop conditions.
949 */
950 if (current->mm)
951 return signal_pending(current);
952 else
953 return kthread_should_stop();
954
955 return 0;
956}
957
958/*
959 * Scan a memory block (exclusive range) for valid pointers and add those
960 * found to the gray list.
961 */
962static void scan_block(void *_start, void *_end,
Catalin Marinas4b8a9672009-07-07 10:32:56 +0100963 struct kmemleak_object *scanned, int allow_resched)
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100964{
965 unsigned long *ptr;
966 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
967 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
968
969 for (ptr = start; ptr < end; ptr++) {
970 unsigned long flags;
971 unsigned long pointer = *ptr;
972 struct kmemleak_object *object;
973
Catalin Marinas4b8a9672009-07-07 10:32:56 +0100974 if (allow_resched)
975 cond_resched();
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100976 if (scan_should_stop())
977 break;
978
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100979 object = find_and_get_object(pointer, 1);
980 if (!object)
981 continue;
982 if (object == scanned) {
983 /* self referenced, ignore */
984 put_object(object);
985 continue;
986 }
987
988 /*
989 * Avoid the lockdep recursive warning on object->lock being
990 * previously acquired in scan_object(). These locks are
991 * enclosed by scan_mutex.
992 */
993 spin_lock_irqsave_nested(&object->lock, flags,
994 SINGLE_DEPTH_NESTING);
995 if (!color_white(object)) {
996 /* non-orphan, ignored or new */
997 spin_unlock_irqrestore(&object->lock, flags);
998 put_object(object);
999 continue;
1000 }
1001
1002 /*
1003 * Increase the object's reference count (number of pointers
1004 * to the memory block). If this count reaches the required
1005 * minimum, the object's color will become gray and it will be
1006 * added to the gray_list.
1007 */
1008 object->count++;
1009 if (color_gray(object))
1010 list_add_tail(&object->gray_list, &gray_list);
1011 else
1012 put_object(object);
1013 spin_unlock_irqrestore(&object->lock, flags);
1014 }
1015}
1016
1017/*
1018 * Scan a memory block corresponding to a kmemleak_object. A condition is
1019 * that object->use_count >= 1.
1020 */
1021static void scan_object(struct kmemleak_object *object)
1022{
1023 struct kmemleak_scan_area *area;
1024 struct hlist_node *elem;
1025 unsigned long flags;
1026
1027 /*
1028 * Once the object->lock is aquired, the corresponding memory block
1029 * cannot be freed (the same lock is aquired in delete_object).
1030 */
1031 spin_lock_irqsave(&object->lock, flags);
1032 if (object->flags & OBJECT_NO_SCAN)
1033 goto out;
1034 if (!(object->flags & OBJECT_ALLOCATED))
1035 /* already freed object */
1036 goto out;
Catalin Marinasaf986032009-08-27 14:29:12 +01001037 if (hlist_empty(&object->area_list)) {
1038 void *start = (void *)object->pointer;
1039 void *end = (void *)(object->pointer + object->size);
1040
1041 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1042 !(object->flags & OBJECT_NO_SCAN)) {
1043 scan_block(start, min(start + MAX_SCAN_SIZE, end),
1044 object, 0);
1045 start += MAX_SCAN_SIZE;
1046
1047 spin_unlock_irqrestore(&object->lock, flags);
1048 cond_resched();
1049 spin_lock_irqsave(&object->lock, flags);
1050 }
1051 } else
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001052 hlist_for_each_entry(area, elem, &object->area_list, node)
1053 scan_block((void *)(object->pointer + area->offset),
1054 (void *)(object->pointer + area->offset
Catalin Marinas4b8a9672009-07-07 10:32:56 +01001055 + area->length), object, 0);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001056out:
1057 spin_unlock_irqrestore(&object->lock, flags);
1058}
1059
1060/*
1061 * Scan data sections and all the referenced memory blocks allocated via the
1062 * kernel's standard allocators. This function must be called with the
1063 * scan_mutex held.
1064 */
1065static void kmemleak_scan(void)
1066{
1067 unsigned long flags;
1068 struct kmemleak_object *object, *tmp;
1069 struct task_struct *task;
1070 int i;
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001071 int new_leaks = 0;
Catalin Marinas25873622009-07-07 10:32:58 +01001072 int gray_list_pass = 0;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001073
Catalin Marinasacf49682009-06-26 17:38:29 +01001074 jiffies_last_scan = jiffies;
1075
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001076 /* prepare the kmemleak_object's */
1077 rcu_read_lock();
1078 list_for_each_entry_rcu(object, &object_list, object_list) {
1079 spin_lock_irqsave(&object->lock, flags);
1080#ifdef DEBUG
1081 /*
1082 * With a few exceptions there should be a maximum of
1083 * 1 reference to any object at this point.
1084 */
1085 if (atomic_read(&object->use_count) > 1) {
Joe Perchesae281062009-06-23 14:40:26 +01001086 pr_debug("object->use_count = %d\n",
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001087 atomic_read(&object->use_count));
1088 dump_object_info(object);
1089 }
1090#endif
1091 /* reset the reference count (whiten the object) */
1092 object->count = 0;
Catalin Marinas25873622009-07-07 10:32:58 +01001093 object->flags &= ~OBJECT_NEW;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001094 if (color_gray(object) && get_object(object))
1095 list_add_tail(&object->gray_list, &gray_list);
1096
1097 spin_unlock_irqrestore(&object->lock, flags);
1098 }
1099 rcu_read_unlock();
1100
1101 /* data/bss scanning */
Catalin Marinas4b8a9672009-07-07 10:32:56 +01001102 scan_block(_sdata, _edata, NULL, 1);
1103 scan_block(__bss_start, __bss_stop, NULL, 1);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001104
1105#ifdef CONFIG_SMP
1106 /* per-cpu sections scanning */
1107 for_each_possible_cpu(i)
1108 scan_block(__per_cpu_start + per_cpu_offset(i),
Catalin Marinas4b8a9672009-07-07 10:32:56 +01001109 __per_cpu_end + per_cpu_offset(i), NULL, 1);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001110#endif
1111
1112 /*
1113 * Struct page scanning for each node. The code below is not yet safe
1114 * with MEMORY_HOTPLUG.
1115 */
1116 for_each_online_node(i) {
1117 pg_data_t *pgdat = NODE_DATA(i);
1118 unsigned long start_pfn = pgdat->node_start_pfn;
1119 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1120 unsigned long pfn;
1121
1122 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1123 struct page *page;
1124
1125 if (!pfn_valid(pfn))
1126 continue;
1127 page = pfn_to_page(pfn);
1128 /* only scan if page is in use */
1129 if (page_count(page) == 0)
1130 continue;
Catalin Marinas4b8a9672009-07-07 10:32:56 +01001131 scan_block(page, page + 1, NULL, 1);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001132 }
1133 }
1134
1135 /*
1136 * Scanning the task stacks may introduce false negatives and it is
1137 * not enabled by default.
1138 */
1139 if (kmemleak_stack_scan) {
1140 read_lock(&tasklist_lock);
1141 for_each_process(task)
1142 scan_block(task_stack_page(task),
Catalin Marinas4b8a9672009-07-07 10:32:56 +01001143 task_stack_page(task) + THREAD_SIZE,
1144 NULL, 0);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001145 read_unlock(&tasklist_lock);
1146 }
1147
1148 /*
1149 * Scan the objects already referenced from the sections scanned
1150 * above. More objects will be referenced and, if there are no memory
1151 * leaks, all the objects will be scanned. The list traversal is safe
1152 * for both tail additions and removals from inside the loop. The
1153 * kmemleak objects cannot be freed from outside the loop because their
1154 * use_count was increased.
1155 */
Catalin Marinas25873622009-07-07 10:32:58 +01001156repeat:
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001157 object = list_entry(gray_list.next, typeof(*object), gray_list);
1158 while (&object->gray_list != &gray_list) {
Ingo Molnar57d81f62009-07-01 09:43:53 +02001159 cond_resched();
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001160
1161 /* may add new objects to the list */
1162 if (!scan_should_stop())
1163 scan_object(object);
1164
1165 tmp = list_entry(object->gray_list.next, typeof(*object),
1166 gray_list);
1167
1168 /* remove the object from the list and release it */
1169 list_del(&object->gray_list);
1170 put_object(object);
1171
1172 object = tmp;
1173 }
Catalin Marinas25873622009-07-07 10:32:58 +01001174
1175 if (scan_should_stop() || ++gray_list_pass >= GRAY_LIST_PASSES)
1176 goto scan_end;
1177
1178 /*
1179 * Check for new objects allocated during this scanning and add them
1180 * to the gray list.
1181 */
1182 rcu_read_lock();
1183 list_for_each_entry_rcu(object, &object_list, object_list) {
1184 spin_lock_irqsave(&object->lock, flags);
1185 if ((object->flags & OBJECT_NEW) && !color_black(object) &&
1186 get_object(object)) {
1187 object->flags &= ~OBJECT_NEW;
1188 list_add_tail(&object->gray_list, &gray_list);
1189 }
1190 spin_unlock_irqrestore(&object->lock, flags);
1191 }
1192 rcu_read_unlock();
1193
1194 if (!list_empty(&gray_list))
1195 goto repeat;
1196
1197scan_end:
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001198 WARN_ON(!list_empty(&gray_list));
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001199
1200 /*
Catalin Marinas25873622009-07-07 10:32:58 +01001201 * If scanning was stopped or new objects were being allocated at a
1202 * higher rate than gray list scanning, do not report any new
1203 * unreferenced objects.
Catalin Marinas17bb9e02009-06-29 17:13:56 +01001204 */
Catalin Marinas25873622009-07-07 10:32:58 +01001205 if (scan_should_stop() || gray_list_pass >= GRAY_LIST_PASSES)
Catalin Marinas17bb9e02009-06-29 17:13:56 +01001206 return;
1207
1208 /*
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001209 * Scanning result reporting.
1210 */
1211 rcu_read_lock();
1212 list_for_each_entry_rcu(object, &object_list, object_list) {
1213 spin_lock_irqsave(&object->lock, flags);
1214 if (unreferenced_object(object) &&
1215 !(object->flags & OBJECT_REPORTED)) {
1216 object->flags |= OBJECT_REPORTED;
1217 new_leaks++;
1218 }
1219 spin_unlock_irqrestore(&object->lock, flags);
1220 }
1221 rcu_read_unlock();
1222
1223 if (new_leaks)
1224 pr_info("%d new suspected memory leaks (see "
1225 "/sys/kernel/debug/kmemleak)\n", new_leaks);
1226
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001227}
1228
1229/*
1230 * Thread function performing automatic memory scanning. Unreferenced objects
1231 * at the end of a memory scan are reported but only the first time.
1232 */
1233static int kmemleak_scan_thread(void *arg)
1234{
1235 static int first_run = 1;
1236
Joe Perchesae281062009-06-23 14:40:26 +01001237 pr_info("Automatic memory scanning thread started\n");
Catalin Marinasbf2a76b2009-07-07 10:32:55 +01001238 set_user_nice(current, 10);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001239
1240 /*
1241 * Wait before the first scan to allow the system to fully initialize.
1242 */
1243 if (first_run) {
1244 first_run = 0;
1245 ssleep(SECS_FIRST_SCAN);
1246 }
1247
1248 while (!kthread_should_stop()) {
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001249 signed long timeout = jiffies_scan_wait;
1250
1251 mutex_lock(&scan_mutex);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001252 kmemleak_scan();
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001253 mutex_unlock(&scan_mutex);
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001254
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001255 /* wait before the next scan */
1256 while (timeout && !kthread_should_stop())
1257 timeout = schedule_timeout_interruptible(timeout);
1258 }
1259
Joe Perchesae281062009-06-23 14:40:26 +01001260 pr_info("Automatic memory scanning thread ended\n");
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001261
1262 return 0;
1263}
1264
1265/*
1266 * Start the automatic memory scanning thread. This function must be called
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001267 * with the scan_mutex held.
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001268 */
1269void start_scan_thread(void)
1270{
1271 if (scan_thread)
1272 return;
1273 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1274 if (IS_ERR(scan_thread)) {
Joe Perchesae281062009-06-23 14:40:26 +01001275 pr_warning("Failed to create the scan thread\n");
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001276 scan_thread = NULL;
1277 }
1278}
1279
1280/*
1281 * Stop the automatic memory scanning thread. This function must be called
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001282 * with the scan_mutex held.
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001283 */
1284void stop_scan_thread(void)
1285{
1286 if (scan_thread) {
1287 kthread_stop(scan_thread);
1288 scan_thread = NULL;
1289 }
1290}
1291
1292/*
1293 * Iterate over the object_list and return the first valid object at or after
1294 * the required position with its use_count incremented. The function triggers
1295 * a memory scanning when the pos argument points to the first position.
1296 */
1297static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1298{
1299 struct kmemleak_object *object;
1300 loff_t n = *pos;
Catalin Marinasb87324d2009-07-07 10:32:58 +01001301 int err;
1302
1303 err = mutex_lock_interruptible(&scan_mutex);
1304 if (err < 0)
1305 return ERR_PTR(err);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001306
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001307 rcu_read_lock();
1308 list_for_each_entry_rcu(object, &object_list, object_list) {
1309 if (n-- > 0)
1310 continue;
1311 if (get_object(object))
1312 goto out;
1313 }
1314 object = NULL;
1315out:
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001316 return object;
1317}
1318
1319/*
1320 * Return the next object in the object_list. The function decrements the
1321 * use_count of the previous object and increases that of the next one.
1322 */
1323static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1324{
1325 struct kmemleak_object *prev_obj = v;
1326 struct kmemleak_object *next_obj = NULL;
1327 struct list_head *n = &prev_obj->object_list;
1328
1329 ++(*pos);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001330
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001331 list_for_each_continue_rcu(n, &object_list) {
1332 next_obj = list_entry(n, struct kmemleak_object, object_list);
1333 if (get_object(next_obj))
1334 break;
1335 }
Catalin Marinas288c8572009-07-07 10:32:57 +01001336
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001337 put_object(prev_obj);
1338 return next_obj;
1339}
1340
1341/*
1342 * Decrement the use_count of the last object required, if any.
1343 */
1344static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1345{
Catalin Marinasb87324d2009-07-07 10:32:58 +01001346 if (!IS_ERR(v)) {
1347 /*
1348 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1349 * waiting was interrupted, so only release it if !IS_ERR.
1350 */
Catalin Marinasf5886c72009-07-29 16:26:57 +01001351 rcu_read_unlock();
Catalin Marinasb87324d2009-07-07 10:32:58 +01001352 mutex_unlock(&scan_mutex);
1353 if (v)
1354 put_object(v);
1355 }
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001356}
1357
1358/*
1359 * Print the information for an unreferenced object to the seq file.
1360 */
1361static int kmemleak_seq_show(struct seq_file *seq, void *v)
1362{
1363 struct kmemleak_object *object = v;
1364 unsigned long flags;
1365
1366 spin_lock_irqsave(&object->lock, flags);
Catalin Marinas288c8572009-07-07 10:32:57 +01001367 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
Catalin Marinas17bb9e02009-06-29 17:13:56 +01001368 print_unreferenced(seq, object);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001369 spin_unlock_irqrestore(&object->lock, flags);
1370 return 0;
1371}
1372
1373static const struct seq_operations kmemleak_seq_ops = {
1374 .start = kmemleak_seq_start,
1375 .next = kmemleak_seq_next,
1376 .stop = kmemleak_seq_stop,
1377 .show = kmemleak_seq_show,
1378};
1379
1380static int kmemleak_open(struct inode *inode, struct file *file)
1381{
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001382 if (!atomic_read(&kmemleak_enabled))
1383 return -EBUSY;
1384
Catalin Marinasb87324d2009-07-07 10:32:58 +01001385 return seq_open(file, &kmemleak_seq_ops);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001386}
1387
1388static int kmemleak_release(struct inode *inode, struct file *file)
1389{
Catalin Marinasb87324d2009-07-07 10:32:58 +01001390 return seq_release(inode, file);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001391}
1392
Catalin Marinas189d84e2009-08-27 14:29:15 +01001393static int dump_str_object_info(const char *str)
1394{
1395 unsigned long flags;
1396 struct kmemleak_object *object;
1397 unsigned long addr;
1398
1399 addr= simple_strtoul(str, NULL, 0);
1400 object = find_and_get_object(addr, 0);
1401 if (!object) {
1402 pr_info("Unknown object at 0x%08lx\n", addr);
1403 return -EINVAL;
1404 }
1405
1406 spin_lock_irqsave(&object->lock, flags);
1407 dump_object_info(object);
1408 spin_unlock_irqrestore(&object->lock, flags);
1409
1410 put_object(object);
1411 return 0;
1412}
1413
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001414/*
1415 * File write operation to configure kmemleak at run-time. The following
1416 * commands can be written to the /sys/kernel/debug/kmemleak file:
1417 * off - disable kmemleak (irreversible)
1418 * stack=on - enable the task stacks scanning
1419 * stack=off - disable the tasks stacks scanning
1420 * scan=on - start the automatic memory scanning thread
1421 * scan=off - stop the automatic memory scanning thread
1422 * scan=... - set the automatic memory scanning period in seconds (0 to
1423 * disable it)
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001424 * scan - trigger a memory scan
Catalin Marinas189d84e2009-08-27 14:29:15 +01001425 * dump=... - dump information about the object found at the given address
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001426 */
1427static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1428 size_t size, loff_t *ppos)
1429{
1430 char buf[64];
1431 int buf_size;
Catalin Marinasb87324d2009-07-07 10:32:58 +01001432 int ret;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001433
1434 buf_size = min(size, (sizeof(buf) - 1));
1435 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1436 return -EFAULT;
1437 buf[buf_size] = 0;
1438
Catalin Marinasb87324d2009-07-07 10:32:58 +01001439 ret = mutex_lock_interruptible(&scan_mutex);
1440 if (ret < 0)
1441 return ret;
1442
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001443 if (strncmp(buf, "off", 3) == 0)
1444 kmemleak_disable();
1445 else if (strncmp(buf, "stack=on", 8) == 0)
1446 kmemleak_stack_scan = 1;
1447 else if (strncmp(buf, "stack=off", 9) == 0)
1448 kmemleak_stack_scan = 0;
1449 else if (strncmp(buf, "scan=on", 7) == 0)
1450 start_scan_thread();
1451 else if (strncmp(buf, "scan=off", 8) == 0)
1452 stop_scan_thread();
1453 else if (strncmp(buf, "scan=", 5) == 0) {
1454 unsigned long secs;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001455
Catalin Marinasb87324d2009-07-07 10:32:58 +01001456 ret = strict_strtoul(buf + 5, 0, &secs);
1457 if (ret < 0)
1458 goto out;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001459 stop_scan_thread();
1460 if (secs) {
1461 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1462 start_scan_thread();
1463 }
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001464 } else if (strncmp(buf, "scan", 4) == 0)
1465 kmemleak_scan();
Catalin Marinas189d84e2009-08-27 14:29:15 +01001466 else if (strncmp(buf, "dump=", 5) == 0)
1467 ret = dump_str_object_info(buf + 5);
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001468 else
Catalin Marinasb87324d2009-07-07 10:32:58 +01001469 ret = -EINVAL;
1470
1471out:
1472 mutex_unlock(&scan_mutex);
1473 if (ret < 0)
1474 return ret;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001475
1476 /* ignore the rest of the buffer, only one command at a time */
1477 *ppos += size;
1478 return size;
1479}
1480
1481static const struct file_operations kmemleak_fops = {
1482 .owner = THIS_MODULE,
1483 .open = kmemleak_open,
1484 .read = seq_read,
1485 .write = kmemleak_write,
1486 .llseek = seq_lseek,
1487 .release = kmemleak_release,
1488};
1489
1490/*
1491 * Perform the freeing of the kmemleak internal objects after waiting for any
1492 * current memory scan to complete.
1493 */
1494static int kmemleak_cleanup_thread(void *arg)
1495{
1496 struct kmemleak_object *object;
1497
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001498 mutex_lock(&scan_mutex);
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001499 stop_scan_thread();
1500
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001501 rcu_read_lock();
1502 list_for_each_entry_rcu(object, &object_list, object_list)
Catalin Marinas53238a62009-07-07 10:33:00 +01001503 delete_object_full(object->pointer);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001504 rcu_read_unlock();
1505 mutex_unlock(&scan_mutex);
1506
1507 return 0;
1508}
1509
1510/*
1511 * Start the clean-up thread.
1512 */
1513static void kmemleak_cleanup(void)
1514{
1515 struct task_struct *cleanup_thread;
1516
1517 cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL,
1518 "kmemleak-clean");
1519 if (IS_ERR(cleanup_thread))
Joe Perchesae281062009-06-23 14:40:26 +01001520 pr_warning("Failed to create the clean-up thread\n");
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001521}
1522
1523/*
1524 * Disable kmemleak. No memory allocation/freeing will be traced once this
1525 * function is called. Disabling kmemleak is an irreversible operation.
1526 */
1527static void kmemleak_disable(void)
1528{
1529 /* atomically check whether it was already invoked */
1530 if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1531 return;
1532
1533 /* stop any memory operation tracing */
1534 atomic_set(&kmemleak_early_log, 0);
1535 atomic_set(&kmemleak_enabled, 0);
1536
1537 /* check whether it is too early for a kernel thread */
1538 if (atomic_read(&kmemleak_initialized))
1539 kmemleak_cleanup();
1540
1541 pr_info("Kernel memory leak detector disabled\n");
1542}
1543
1544/*
1545 * Allow boot-time kmemleak disabling (enabled by default).
1546 */
1547static int kmemleak_boot_config(char *str)
1548{
1549 if (!str)
1550 return -EINVAL;
1551 if (strcmp(str, "off") == 0)
1552 kmemleak_disable();
1553 else if (strcmp(str, "on") != 0)
1554 return -EINVAL;
1555 return 0;
1556}
1557early_param("kmemleak", kmemleak_boot_config);
1558
1559/*
Catalin Marinas20301172009-06-17 18:29:04 +01001560 * Kmemleak initialization.
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001561 */
1562void __init kmemleak_init(void)
1563{
1564 int i;
1565 unsigned long flags;
1566
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001567 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1568 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1569
1570 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1571 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1572 INIT_PRIO_TREE_ROOT(&object_tree_root);
1573
1574 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1575 local_irq_save(flags);
1576 if (!atomic_read(&kmemleak_error)) {
1577 atomic_set(&kmemleak_enabled, 1);
1578 atomic_set(&kmemleak_early_log, 0);
1579 }
1580 local_irq_restore(flags);
1581
1582 /*
1583 * This is the point where tracking allocations is safe. Automatic
1584 * scanning is started during the late initcall. Add the early logged
1585 * callbacks to the kmemleak infrastructure.
1586 */
1587 for (i = 0; i < crt_early_log; i++) {
1588 struct early_log *log = &early_log[i];
1589
1590 switch (log->op_type) {
1591 case KMEMLEAK_ALLOC:
Catalin Marinasfd678962009-08-27 14:29:17 +01001592 early_alloc(log);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001593 break;
1594 case KMEMLEAK_FREE:
1595 kmemleak_free(log->ptr);
1596 break;
Catalin Marinas53238a62009-07-07 10:33:00 +01001597 case KMEMLEAK_FREE_PART:
1598 kmemleak_free_part(log->ptr, log->size);
1599 break;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001600 case KMEMLEAK_NOT_LEAK:
1601 kmemleak_not_leak(log->ptr);
1602 break;
1603 case KMEMLEAK_IGNORE:
1604 kmemleak_ignore(log->ptr);
1605 break;
1606 case KMEMLEAK_SCAN_AREA:
1607 kmemleak_scan_area(log->ptr, log->offset, log->length,
1608 GFP_KERNEL);
1609 break;
1610 case KMEMLEAK_NO_SCAN:
1611 kmemleak_no_scan(log->ptr);
1612 break;
1613 default:
1614 WARN_ON(1);
1615 }
1616 }
1617}
1618
1619/*
1620 * Late initialization function.
1621 */
1622static int __init kmemleak_late_init(void)
1623{
1624 struct dentry *dentry;
1625
1626 atomic_set(&kmemleak_initialized, 1);
1627
1628 if (atomic_read(&kmemleak_error)) {
1629 /*
1630 * Some error occured and kmemleak was disabled. There is a
1631 * small chance that kmemleak_disable() was called immediately
1632 * after setting kmemleak_initialized and we may end up with
1633 * two clean-up threads but serialized by scan_mutex.
1634 */
1635 kmemleak_cleanup();
1636 return -ENOMEM;
1637 }
1638
1639 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1640 &kmemleak_fops);
1641 if (!dentry)
Joe Perchesae281062009-06-23 14:40:26 +01001642 pr_warning("Failed to create the debugfs kmemleak file\n");
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001643 mutex_lock(&scan_mutex);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001644 start_scan_thread();
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001645 mutex_unlock(&scan_mutex);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001646
1647 pr_info("Kernel memory leak detector initialized\n");
1648
1649 return 0;
1650}
1651late_initcall(kmemleak_late_init);