| /* memcontrol.c - Memory Controller |
| * |
| * Copyright IBM Corporation, 2007 |
| * Author Balbir Singh <balbir@linux.vnet.ibm.com> |
| * |
| * Copyright 2007 OpenVZ SWsoft Inc |
| * Author: Pavel Emelianov <xemul@openvz.org> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/res_counter.h> |
| #include <linux/memcontrol.h> |
| #include <linux/cgroup.h> |
| #include <linux/mm.h> |
| #include <linux/page-flags.h> |
| #include <linux/backing-dev.h> |
| #include <linux/bit_spinlock.h> |
| #include <linux/rcupdate.h> |
| #include <linux/swap.h> |
| #include <linux/spinlock.h> |
| #include <linux/fs.h> |
| |
| #include <asm/uaccess.h> |
| |
| struct cgroup_subsys mem_cgroup_subsys; |
| static const int MEM_CGROUP_RECLAIM_RETRIES = 5; |
| |
| /* |
| * The memory controller data structure. The memory controller controls both |
| * page cache and RSS per cgroup. We would eventually like to provide |
| * statistics based on the statistics developed by Rik Van Riel for clock-pro, |
| * to help the administrator determine what knobs to tune. |
| * |
| * TODO: Add a water mark for the memory controller. Reclaim will begin when |
| * we hit the water mark. May be even add a low water mark, such that |
| * no reclaim occurs from a cgroup at it's low water mark, this is |
| * a feature that will be implemented much later in the future. |
| */ |
| struct mem_cgroup { |
| struct cgroup_subsys_state css; |
| /* |
| * the counter to account for memory usage |
| */ |
| struct res_counter res; |
| /* |
| * Per cgroup active and inactive list, similar to the |
| * per zone LRU lists. |
| * TODO: Consider making these lists per zone |
| */ |
| struct list_head active_list; |
| struct list_head inactive_list; |
| /* |
| * spin_lock to protect the per cgroup LRU |
| */ |
| spinlock_t lru_lock; |
| unsigned long control_type; /* control RSS or RSS+Pagecache */ |
| }; |
| |
| /* |
| * We use the lower bit of the page->page_cgroup pointer as a bit spin |
| * lock. We need to ensure that page->page_cgroup is atleast two |
| * byte aligned (based on comments from Nick Piggin) |
| */ |
| #define PAGE_CGROUP_LOCK_BIT 0x0 |
| #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT) |
| |
| /* |
| * A page_cgroup page is associated with every page descriptor. The |
| * page_cgroup helps us identify information about the cgroup |
| */ |
| struct page_cgroup { |
| struct list_head lru; /* per cgroup LRU list */ |
| struct page *page; |
| struct mem_cgroup *mem_cgroup; |
| atomic_t ref_cnt; /* Helpful when pages move b/w */ |
| /* mapped and cached states */ |
| }; |
| |
| enum { |
| MEM_CGROUP_TYPE_UNSPEC = 0, |
| MEM_CGROUP_TYPE_MAPPED, |
| MEM_CGROUP_TYPE_CACHED, |
| MEM_CGROUP_TYPE_ALL, |
| MEM_CGROUP_TYPE_MAX, |
| }; |
| |
| static struct mem_cgroup init_mem_cgroup; |
| |
| static inline |
| struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) |
| { |
| return container_of(cgroup_subsys_state(cont, |
| mem_cgroup_subsys_id), struct mem_cgroup, |
| css); |
| } |
| |
| static inline |
| struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
| { |
| return container_of(task_subsys_state(p, mem_cgroup_subsys_id), |
| struct mem_cgroup, css); |
| } |
| |
| void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p) |
| { |
| struct mem_cgroup *mem; |
| |
| mem = mem_cgroup_from_task(p); |
| css_get(&mem->css); |
| mm->mem_cgroup = mem; |
| } |
| |
| void mm_free_cgroup(struct mm_struct *mm) |
| { |
| css_put(&mm->mem_cgroup->css); |
| } |
| |
| static inline int page_cgroup_locked(struct page *page) |
| { |
| return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, |
| &page->page_cgroup); |
| } |
| |
| void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc) |
| { |
| int locked; |
| |
| /* |
| * While resetting the page_cgroup we might not hold the |
| * page_cgroup lock. free_hot_cold_page() is an example |
| * of such a scenario |
| */ |
| if (pc) |
| VM_BUG_ON(!page_cgroup_locked(page)); |
| locked = (page->page_cgroup & PAGE_CGROUP_LOCK); |
| page->page_cgroup = ((unsigned long)pc | locked); |
| } |
| |
| struct page_cgroup *page_get_page_cgroup(struct page *page) |
| { |
| return (struct page_cgroup *) |
| (page->page_cgroup & ~PAGE_CGROUP_LOCK); |
| } |
| |
| static void __always_inline lock_page_cgroup(struct page *page) |
| { |
| bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); |
| VM_BUG_ON(!page_cgroup_locked(page)); |
| } |
| |
| static void __always_inline unlock_page_cgroup(struct page *page) |
| { |
| bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); |
| } |
| |
| /* |
| * Tie new page_cgroup to struct page under lock_page_cgroup() |
| * This can fail if the page has been tied to a page_cgroup. |
| * If success, returns 0. |
| */ |
| static inline int |
| page_cgroup_assign_new_page_cgroup(struct page *page, struct page_cgroup *pc) |
| { |
| int ret = 0; |
| |
| lock_page_cgroup(page); |
| if (!page_get_page_cgroup(page)) |
| page_assign_page_cgroup(page, pc); |
| else /* A page is tied to other pc. */ |
| ret = 1; |
| unlock_page_cgroup(page); |
| return ret; |
| } |
| |
| /* |
| * Clear page->page_cgroup member under lock_page_cgroup(). |
| * If given "pc" value is different from one page->page_cgroup, |
| * page->cgroup is not cleared. |
| * Returns a value of page->page_cgroup at lock taken. |
| * A can can detect failure of clearing by following |
| * clear_page_cgroup(page, pc) == pc |
| */ |
| |
| static inline struct page_cgroup * |
| clear_page_cgroup(struct page *page, struct page_cgroup *pc) |
| { |
| struct page_cgroup *ret; |
| /* lock and clear */ |
| lock_page_cgroup(page); |
| ret = page_get_page_cgroup(page); |
| if (likely(ret == pc)) |
| page_assign_page_cgroup(page, NULL); |
| unlock_page_cgroup(page); |
| return ret; |
| } |
| |
| |
| static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active) |
| { |
| if (active) |
| list_move(&pc->lru, &pc->mem_cgroup->active_list); |
| else |
| list_move(&pc->lru, &pc->mem_cgroup->inactive_list); |
| } |
| |
| int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) |
| { |
| int ret; |
| |
| task_lock(task); |
| ret = task->mm && mm_cgroup(task->mm) == mem; |
| task_unlock(task); |
| return ret; |
| } |
| |
| /* |
| * This routine assumes that the appropriate zone's lru lock is already held |
| */ |
| void mem_cgroup_move_lists(struct page_cgroup *pc, bool active) |
| { |
| struct mem_cgroup *mem; |
| if (!pc) |
| return; |
| |
| mem = pc->mem_cgroup; |
| |
| spin_lock(&mem->lru_lock); |
| __mem_cgroup_move_lists(pc, active); |
| spin_unlock(&mem->lru_lock); |
| } |
| |
| unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, |
| struct list_head *dst, |
| unsigned long *scanned, int order, |
| int mode, struct zone *z, |
| struct mem_cgroup *mem_cont, |
| int active) |
| { |
| unsigned long nr_taken = 0; |
| struct page *page; |
| unsigned long scan; |
| LIST_HEAD(pc_list); |
| struct list_head *src; |
| struct page_cgroup *pc, *tmp; |
| |
| if (active) |
| src = &mem_cont->active_list; |
| else |
| src = &mem_cont->inactive_list; |
| |
| spin_lock(&mem_cont->lru_lock); |
| scan = 0; |
| list_for_each_entry_safe_reverse(pc, tmp, src, lru) { |
| if (scan++ > nr_to_scan) |
| break; |
| page = pc->page; |
| VM_BUG_ON(!pc); |
| |
| if (unlikely(!PageLRU(page))) { |
| scan--; |
| continue; |
| } |
| |
| if (PageActive(page) && !active) { |
| __mem_cgroup_move_lists(pc, true); |
| scan--; |
| continue; |
| } |
| if (!PageActive(page) && active) { |
| __mem_cgroup_move_lists(pc, false); |
| scan--; |
| continue; |
| } |
| |
| /* |
| * Reclaim, per zone |
| * TODO: make the active/inactive lists per zone |
| */ |
| if (page_zone(page) != z) |
| continue; |
| |
| /* |
| * Check if the meta page went away from under us |
| */ |
| if (!list_empty(&pc->lru)) |
| list_move(&pc->lru, &pc_list); |
| else |
| continue; |
| |
| if (__isolate_lru_page(page, mode) == 0) { |
| list_move(&page->lru, dst); |
| nr_taken++; |
| } |
| } |
| |
| list_splice(&pc_list, src); |
| spin_unlock(&mem_cont->lru_lock); |
| |
| *scanned = scan; |
| return nr_taken; |
| } |
| |
| /* |
| * Charge the memory controller for page usage. |
| * Return |
| * 0 if the charge was successful |
| * < 0 if the cgroup is over its limit |
| */ |
| int mem_cgroup_charge(struct page *page, struct mm_struct *mm, |
| gfp_t gfp_mask) |
| { |
| struct mem_cgroup *mem; |
| struct page_cgroup *pc; |
| unsigned long flags; |
| unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES; |
| |
| /* |
| * Should page_cgroup's go to their own slab? |
| * One could optimize the performance of the charging routine |
| * by saving a bit in the page_flags and using it as a lock |
| * to see if the cgroup page already has a page_cgroup associated |
| * with it |
| */ |
| retry: |
| lock_page_cgroup(page); |
| pc = page_get_page_cgroup(page); |
| /* |
| * The page_cgroup exists and the page has already been accounted |
| */ |
| if (pc) { |
| if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) { |
| /* this page is under being uncharged ? */ |
| unlock_page_cgroup(page); |
| cpu_relax(); |
| goto retry; |
| } else { |
| unlock_page_cgroup(page); |
| goto done; |
| } |
| } |
| |
| unlock_page_cgroup(page); |
| |
| pc = kzalloc(sizeof(struct page_cgroup), gfp_mask); |
| if (pc == NULL) |
| goto err; |
| |
| rcu_read_lock(); |
| /* |
| * We always charge the cgroup the mm_struct belongs to |
| * the mm_struct's mem_cgroup changes on task migration if the |
| * thread group leader migrates. It's possible that mm is not |
| * set, if so charge the init_mm (happens for pagecache usage). |
| */ |
| if (!mm) |
| mm = &init_mm; |
| |
| mem = rcu_dereference(mm->mem_cgroup); |
| /* |
| * For every charge from the cgroup, increment reference |
| * count |
| */ |
| css_get(&mem->css); |
| rcu_read_unlock(); |
| |
| /* |
| * If we created the page_cgroup, we should free it on exceeding |
| * the cgroup limit. |
| */ |
| while (res_counter_charge(&mem->res, PAGE_SIZE)) { |
| bool is_atomic = gfp_mask & GFP_ATOMIC; |
| /* |
| * We cannot reclaim under GFP_ATOMIC, fail the charge |
| */ |
| if (is_atomic) |
| goto noreclaim; |
| |
| if (try_to_free_mem_cgroup_pages(mem, gfp_mask)) |
| continue; |
| |
| /* |
| * try_to_free_mem_cgroup_pages() might not give us a full |
| * picture of reclaim. Some pages are reclaimed and might be |
| * moved to swap cache or just unmapped from the cgroup. |
| * Check the limit again to see if the reclaim reduced the |
| * current usage of the cgroup before giving up |
| */ |
| if (res_counter_check_under_limit(&mem->res)) |
| continue; |
| /* |
| * Since we control both RSS and cache, we end up with a |
| * very interesting scenario where we end up reclaiming |
| * memory (essentially RSS), since the memory is pushed |
| * to swap cache, we eventually end up adding those |
| * pages back to our list. Hence we give ourselves a |
| * few chances before we fail |
| */ |
| else if (nr_retries--) { |
| congestion_wait(WRITE, HZ/10); |
| continue; |
| } |
| noreclaim: |
| css_put(&mem->css); |
| if (!is_atomic) |
| mem_cgroup_out_of_memory(mem, GFP_KERNEL); |
| goto free_pc; |
| } |
| |
| atomic_set(&pc->ref_cnt, 1); |
| pc->mem_cgroup = mem; |
| pc->page = page; |
| if (page_cgroup_assign_new_page_cgroup(page, pc)) { |
| /* |
| * an another charge is added to this page already. |
| * we do take lock_page_cgroup(page) again and read |
| * page->cgroup, increment refcnt.... just retry is OK. |
| */ |
| res_counter_uncharge(&mem->res, PAGE_SIZE); |
| css_put(&mem->css); |
| kfree(pc); |
| goto retry; |
| } |
| |
| spin_lock_irqsave(&mem->lru_lock, flags); |
| list_add(&pc->lru, &mem->active_list); |
| spin_unlock_irqrestore(&mem->lru_lock, flags); |
| |
| done: |
| return 0; |
| free_pc: |
| kfree(pc); |
| err: |
| return -ENOMEM; |
| } |
| |
| /* |
| * See if the cached pages should be charged at all? |
| */ |
| int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
| gfp_t gfp_mask) |
| { |
| struct mem_cgroup *mem; |
| if (!mm) |
| mm = &init_mm; |
| |
| mem = rcu_dereference(mm->mem_cgroup); |
| if (mem->control_type == MEM_CGROUP_TYPE_ALL) |
| return mem_cgroup_charge(page, mm, gfp_mask); |
| else |
| return 0; |
| } |
| |
| /* |
| * Uncharging is always a welcome operation, we never complain, simply |
| * uncharge. |
| */ |
| void mem_cgroup_uncharge(struct page_cgroup *pc) |
| { |
| struct mem_cgroup *mem; |
| struct page *page; |
| unsigned long flags; |
| |
| /* |
| * This can handle cases when a page is not charged at all and we |
| * are switching between handling the control_type. |
| */ |
| if (!pc) |
| return; |
| |
| if (atomic_dec_and_test(&pc->ref_cnt)) { |
| page = pc->page; |
| /* |
| * get page->cgroup and clear it under lock. |
| */ |
| if (clear_page_cgroup(page, pc) == pc) { |
| mem = pc->mem_cgroup; |
| css_put(&mem->css); |
| res_counter_uncharge(&mem->res, PAGE_SIZE); |
| spin_lock_irqsave(&mem->lru_lock, flags); |
| list_del_init(&pc->lru); |
| spin_unlock_irqrestore(&mem->lru_lock, flags); |
| kfree(pc); |
| } else { |
| /* |
| * Note:This will be removed when force-empty patch is |
| * applied. just show warning here. |
| */ |
| printk(KERN_ERR "Race in mem_cgroup_uncharge() ?"); |
| dump_stack(); |
| } |
| } |
| } |
| /* |
| * Returns non-zero if a page (under migration) has valid page_cgroup member. |
| * Refcnt of page_cgroup is incremented. |
| */ |
| |
| int mem_cgroup_prepare_migration(struct page *page) |
| { |
| struct page_cgroup *pc; |
| int ret = 0; |
| lock_page_cgroup(page); |
| pc = page_get_page_cgroup(page); |
| if (pc && atomic_inc_not_zero(&pc->ref_cnt)) |
| ret = 1; |
| unlock_page_cgroup(page); |
| return ret; |
| } |
| |
| void mem_cgroup_end_migration(struct page *page) |
| { |
| struct page_cgroup *pc = page_get_page_cgroup(page); |
| mem_cgroup_uncharge(pc); |
| } |
| /* |
| * We know both *page* and *newpage* are now not-on-LRU and Pg_locked. |
| * And no race with uncharge() routines because page_cgroup for *page* |
| * has extra one reference by mem_cgroup_prepare_migration. |
| */ |
| |
| void mem_cgroup_page_migration(struct page *page, struct page *newpage) |
| { |
| struct page_cgroup *pc; |
| retry: |
| pc = page_get_page_cgroup(page); |
| if (!pc) |
| return; |
| if (clear_page_cgroup(page, pc) != pc) |
| goto retry; |
| pc->page = newpage; |
| lock_page_cgroup(newpage); |
| page_assign_page_cgroup(newpage, pc); |
| unlock_page_cgroup(newpage); |
| return; |
| } |
| |
| int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp) |
| { |
| *tmp = memparse(buf, &buf); |
| if (*buf != '\0') |
| return -EINVAL; |
| |
| /* |
| * Round up the value to the closest page size |
| */ |
| *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT; |
| return 0; |
| } |
| |
| static ssize_t mem_cgroup_read(struct cgroup *cont, |
| struct cftype *cft, struct file *file, |
| char __user *userbuf, size_t nbytes, loff_t *ppos) |
| { |
| return res_counter_read(&mem_cgroup_from_cont(cont)->res, |
| cft->private, userbuf, nbytes, ppos, |
| NULL); |
| } |
| |
| static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft, |
| struct file *file, const char __user *userbuf, |
| size_t nbytes, loff_t *ppos) |
| { |
| return res_counter_write(&mem_cgroup_from_cont(cont)->res, |
| cft->private, userbuf, nbytes, ppos, |
| mem_cgroup_write_strategy); |
| } |
| |
| static ssize_t mem_control_type_write(struct cgroup *cont, |
| struct cftype *cft, struct file *file, |
| const char __user *userbuf, |
| size_t nbytes, loff_t *pos) |
| { |
| int ret; |
| char *buf, *end; |
| unsigned long tmp; |
| struct mem_cgroup *mem; |
| |
| mem = mem_cgroup_from_cont(cont); |
| buf = kmalloc(nbytes + 1, GFP_KERNEL); |
| ret = -ENOMEM; |
| if (buf == NULL) |
| goto out; |
| |
| buf[nbytes] = 0; |
| ret = -EFAULT; |
| if (copy_from_user(buf, userbuf, nbytes)) |
| goto out_free; |
| |
| ret = -EINVAL; |
| tmp = simple_strtoul(buf, &end, 10); |
| if (*end != '\0') |
| goto out_free; |
| |
| if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX) |
| goto out_free; |
| |
| mem->control_type = tmp; |
| ret = nbytes; |
| out_free: |
| kfree(buf); |
| out: |
| return ret; |
| } |
| |
| static ssize_t mem_control_type_read(struct cgroup *cont, |
| struct cftype *cft, |
| struct file *file, char __user *userbuf, |
| size_t nbytes, loff_t *ppos) |
| { |
| unsigned long val; |
| char buf[64], *s; |
| struct mem_cgroup *mem; |
| |
| mem = mem_cgroup_from_cont(cont); |
| s = buf; |
| val = mem->control_type; |
| s += sprintf(s, "%lu\n", val); |
| return simple_read_from_buffer((void __user *)userbuf, nbytes, |
| ppos, buf, s - buf); |
| } |
| |
| static struct cftype mem_cgroup_files[] = { |
| { |
| .name = "usage_in_bytes", |
| .private = RES_USAGE, |
| .read = mem_cgroup_read, |
| }, |
| { |
| .name = "limit_in_bytes", |
| .private = RES_LIMIT, |
| .write = mem_cgroup_write, |
| .read = mem_cgroup_read, |
| }, |
| { |
| .name = "failcnt", |
| .private = RES_FAILCNT, |
| .read = mem_cgroup_read, |
| }, |
| { |
| .name = "control_type", |
| .write = mem_control_type_write, |
| .read = mem_control_type_read, |
| }, |
| }; |
| |
| static struct mem_cgroup init_mem_cgroup; |
| |
| static struct cgroup_subsys_state * |
| mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) |
| { |
| struct mem_cgroup *mem; |
| |
| if (unlikely((cont->parent) == NULL)) { |
| mem = &init_mem_cgroup; |
| init_mm.mem_cgroup = mem; |
| } else |
| mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL); |
| |
| if (mem == NULL) |
| return NULL; |
| |
| res_counter_init(&mem->res); |
| INIT_LIST_HEAD(&mem->active_list); |
| INIT_LIST_HEAD(&mem->inactive_list); |
| spin_lock_init(&mem->lru_lock); |
| mem->control_type = MEM_CGROUP_TYPE_ALL; |
| return &mem->css; |
| } |
| |
| static void mem_cgroup_destroy(struct cgroup_subsys *ss, |
| struct cgroup *cont) |
| { |
| kfree(mem_cgroup_from_cont(cont)); |
| } |
| |
| static int mem_cgroup_populate(struct cgroup_subsys *ss, |
| struct cgroup *cont) |
| { |
| return cgroup_add_files(cont, ss, mem_cgroup_files, |
| ARRAY_SIZE(mem_cgroup_files)); |
| } |
| |
| static void mem_cgroup_move_task(struct cgroup_subsys *ss, |
| struct cgroup *cont, |
| struct cgroup *old_cont, |
| struct task_struct *p) |
| { |
| struct mm_struct *mm; |
| struct mem_cgroup *mem, *old_mem; |
| |
| mm = get_task_mm(p); |
| if (mm == NULL) |
| return; |
| |
| mem = mem_cgroup_from_cont(cont); |
| old_mem = mem_cgroup_from_cont(old_cont); |
| |
| if (mem == old_mem) |
| goto out; |
| |
| /* |
| * Only thread group leaders are allowed to migrate, the mm_struct is |
| * in effect owned by the leader |
| */ |
| if (p->tgid != p->pid) |
| goto out; |
| |
| css_get(&mem->css); |
| rcu_assign_pointer(mm->mem_cgroup, mem); |
| css_put(&old_mem->css); |
| |
| out: |
| mmput(mm); |
| return; |
| } |
| |
| struct cgroup_subsys mem_cgroup_subsys = { |
| .name = "memory", |
| .subsys_id = mem_cgroup_subsys_id, |
| .create = mem_cgroup_create, |
| .destroy = mem_cgroup_destroy, |
| .populate = mem_cgroup_populate, |
| .attach = mem_cgroup_move_task, |
| .early_init = 1, |
| }; |