| /* |
| * Suspend support specific for i386/x86-64. |
| * |
| * Distribute under GPLv2 |
| * |
| * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> |
| * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> |
| * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> |
| */ |
| |
| #include <linux/suspend.h> |
| #include <linux/export.h> |
| #include <linux/smp.h> |
| #include <linux/perf_event.h> |
| #include <linux/tboot.h> |
| #include <linux/dmi.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/proto.h> |
| #include <asm/mtrr.h> |
| #include <asm/page.h> |
| #include <asm/mce.h> |
| #include <asm/suspend.h> |
| #include <asm/fpu/internal.h> |
| #include <asm/debugreg.h> |
| #include <asm/cpu.h> |
| #include <asm/mmu_context.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/microcode.h> |
| |
| #ifdef CONFIG_X86_32 |
| __visible unsigned long saved_context_ebx; |
| __visible unsigned long saved_context_esp, saved_context_ebp; |
| __visible unsigned long saved_context_esi, saved_context_edi; |
| __visible unsigned long saved_context_eflags; |
| #endif |
| struct saved_context saved_context; |
| |
| static void msr_save_context(struct saved_context *ctxt) |
| { |
| struct saved_msr *msr = ctxt->saved_msrs.array; |
| struct saved_msr *end = msr + ctxt->saved_msrs.num; |
| |
| while (msr < end) { |
| if (msr->valid) |
| rdmsrl(msr->info.msr_no, msr->info.reg.q); |
| msr++; |
| } |
| } |
| |
| static void msr_restore_context(struct saved_context *ctxt) |
| { |
| struct saved_msr *msr = ctxt->saved_msrs.array; |
| struct saved_msr *end = msr + ctxt->saved_msrs.num; |
| |
| while (msr < end) { |
| if (msr->valid) |
| wrmsrl(msr->info.msr_no, msr->info.reg.q); |
| msr++; |
| } |
| } |
| |
| /** |
| * __save_processor_state - save CPU registers before creating a |
| * hibernation image and before restoring the memory state from it |
| * @ctxt - structure to store the registers contents in |
| * |
| * NOTE: If there is a CPU register the modification of which by the |
| * boot kernel (ie. the kernel used for loading the hibernation image) |
| * might affect the operations of the restored target kernel (ie. the one |
| * saved in the hibernation image), then its contents must be saved by this |
| * function. In other words, if kernel A is hibernated and different |
| * kernel B is used for loading the hibernation image into memory, the |
| * kernel A's __save_processor_state() function must save all registers |
| * needed by kernel A, so that it can operate correctly after the resume |
| * regardless of what kernel B does in the meantime. |
| */ |
| static void __save_processor_state(struct saved_context *ctxt) |
| { |
| #ifdef CONFIG_X86_32 |
| mtrr_save_fixed_ranges(NULL); |
| #endif |
| kernel_fpu_begin(); |
| |
| /* |
| * descriptor tables |
| */ |
| store_idt(&ctxt->idt); |
| |
| /* |
| * We save it here, but restore it only in the hibernate case. |
| * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit |
| * mode in "secondary_startup_64". In 32-bit mode it is done via |
| * 'pmode_gdt' in wakeup_start. |
| */ |
| ctxt->gdt_desc.size = GDT_SIZE - 1; |
| ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_table(smp_processor_id()); |
| |
| store_tr(ctxt->tr); |
| |
| /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ |
| /* |
| * segment registers |
| */ |
| #ifdef CONFIG_X86_32_LAZY_GS |
| savesegment(gs, ctxt->gs); |
| #endif |
| #ifdef CONFIG_X86_64 |
| savesegment(gs, ctxt->gs); |
| savesegment(fs, ctxt->fs); |
| savesegment(ds, ctxt->ds); |
| savesegment(es, ctxt->es); |
| |
| rdmsrl(MSR_FS_BASE, ctxt->fs_base); |
| rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); |
| rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); |
| mtrr_save_fixed_ranges(NULL); |
| |
| rdmsrl(MSR_EFER, ctxt->efer); |
| #endif |
| |
| /* |
| * control registers |
| */ |
| ctxt->cr0 = read_cr0(); |
| ctxt->cr2 = read_cr2(); |
| ctxt->cr3 = read_cr3(); |
| ctxt->cr4 = __read_cr4(); |
| #ifdef CONFIG_X86_64 |
| ctxt->cr8 = read_cr8(); |
| #endif |
| ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, |
| &ctxt->misc_enable); |
| msr_save_context(ctxt); |
| } |
| |
| /* Needed by apm.c */ |
| void save_processor_state(void) |
| { |
| __save_processor_state(&saved_context); |
| x86_platform.save_sched_clock_state(); |
| } |
| #ifdef CONFIG_X86_32 |
| EXPORT_SYMBOL(save_processor_state); |
| #endif |
| |
| static void do_fpu_end(void) |
| { |
| /* |
| * Restore FPU regs if necessary. |
| */ |
| kernel_fpu_end(); |
| } |
| |
| static void fix_processor_context(void) |
| { |
| int cpu = smp_processor_id(); |
| struct tss_struct *t = &per_cpu(cpu_tss, cpu); |
| #ifdef CONFIG_X86_64 |
| struct desc_struct *desc = get_cpu_gdt_table(cpu); |
| tss_desc tss; |
| #endif |
| set_tss_desc(cpu, t); /* |
| * This just modifies memory; should not be |
| * necessary. But... This is necessary, because |
| * 386 hardware has concept of busy TSS or some |
| * similar stupidity. |
| */ |
| |
| #ifdef CONFIG_X86_64 |
| memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); |
| tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ |
| write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); |
| |
| syscall_init(); /* This sets MSR_*STAR and related */ |
| #else |
| if (boot_cpu_has(X86_FEATURE_SEP)) |
| enable_sep_cpu(); |
| #endif |
| load_TR_desc(); /* This does ltr */ |
| load_mm_ldt(current->active_mm); /* This does lldt */ |
| |
| fpu__resume_cpu(); |
| } |
| |
| /** |
| * __restore_processor_state - restore the contents of CPU registers saved |
| * by __save_processor_state() |
| * @ctxt - structure to load the registers contents from |
| * |
| * The asm code that gets us here will have restored a usable GDT, although |
| * it will be pointing to the wrong alias. |
| */ |
| static void notrace __restore_processor_state(struct saved_context *ctxt) |
| { |
| if (ctxt->misc_enable_saved) |
| wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); |
| /* |
| * control registers |
| */ |
| /* cr4 was introduced in the Pentium CPU */ |
| #ifdef CONFIG_X86_32 |
| if (ctxt->cr4) |
| __write_cr4(ctxt->cr4); |
| #else |
| /* CONFIG X86_64 */ |
| wrmsrl(MSR_EFER, ctxt->efer); |
| write_cr8(ctxt->cr8); |
| __write_cr4(ctxt->cr4); |
| #endif |
| write_cr3(ctxt->cr3); |
| write_cr2(ctxt->cr2); |
| write_cr0(ctxt->cr0); |
| |
| /* Restore the IDT. */ |
| load_idt(&ctxt->idt); |
| |
| /* |
| * Just in case the asm code got us here with the SS, DS, or ES |
| * out of sync with the GDT, update them. |
| */ |
| loadsegment(ss, __KERNEL_DS); |
| loadsegment(ds, __USER_DS); |
| loadsegment(es, __USER_DS); |
| |
| /* |
| * Restore percpu access. Percpu access can happen in exception |
| * handlers or in complicated helpers like load_gs_index(). |
| */ |
| #ifdef CONFIG_X86_64 |
| wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); |
| #else |
| loadsegment(fs, __KERNEL_PERCPU); |
| loadsegment(gs, __KERNEL_STACK_CANARY); |
| #endif |
| |
| /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */ |
| fix_processor_context(); |
| |
| /* |
| * Now that we have descriptor tables fully restored and working |
| * exception handling, restore the usermode segments. |
| */ |
| #ifdef CONFIG_X86_64 |
| loadsegment(ds, ctxt->es); |
| loadsegment(es, ctxt->es); |
| loadsegment(fs, ctxt->fs); |
| load_gs_index(ctxt->gs); |
| |
| /* |
| * Restore FSBASE and GSBASE after restoring the selectors, since |
| * restoring the selectors clobbers the bases. Keep in mind |
| * that MSR_KERNEL_GS_BASE is horribly misnamed. |
| */ |
| wrmsrl(MSR_FS_BASE, ctxt->fs_base); |
| wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); |
| #elif defined(CONFIG_X86_32_LAZY_GS) |
| loadsegment(gs, ctxt->gs); |
| #endif |
| |
| do_fpu_end(); |
| x86_platform.restore_sched_clock_state(); |
| mtrr_bp_restore(); |
| perf_restore_debug_store(); |
| |
| microcode_bsp_resume(); |
| |
| /* |
| * This needs to happen after the microcode has been updated upon resume |
| * because some of the MSRs are "emulated" in microcode. |
| */ |
| msr_restore_context(ctxt); |
| } |
| |
| /* Needed by apm.c */ |
| void notrace restore_processor_state(void) |
| { |
| __restore_processor_state(&saved_context); |
| } |
| #ifdef CONFIG_X86_32 |
| EXPORT_SYMBOL(restore_processor_state); |
| #endif |
| |
| #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) |
| static void resume_play_dead(void) |
| { |
| play_dead_common(); |
| tboot_shutdown(TB_SHUTDOWN_WFS); |
| hlt_play_dead(); |
| } |
| |
| int hibernate_resume_nonboot_cpu_disable(void) |
| { |
| void (*play_dead)(void) = smp_ops.play_dead; |
| int ret; |
| |
| /* |
| * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop |
| * during hibernate image restoration, because it is likely that the |
| * monitored address will be actually written to at that time and then |
| * the "dead" CPU will attempt to execute instructions again, but the |
| * address in its instruction pointer may not be possible to resolve |
| * any more at that point (the page tables used by it previously may |
| * have been overwritten by hibernate image data). |
| * |
| * First, make sure that we wake up all the potentially disabled SMT |
| * threads which have been initially brought up and then put into |
| * mwait/cpuidle sleep. |
| * Those will be put to proper (not interfering with hibernation |
| * resume) sleep afterwards, and the resumed kernel will decide itself |
| * what to do with them. |
| */ |
| ret = cpuhp_smt_enable(); |
| if (ret) |
| return ret; |
| smp_ops.play_dead = resume_play_dead; |
| ret = disable_nonboot_cpus(); |
| smp_ops.play_dead = play_dead; |
| return ret; |
| } |
| #endif |
| |
| /* |
| * When bsp_check() is called in hibernate and suspend, cpu hotplug |
| * is disabled already. So it's unnessary to handle race condition between |
| * cpumask query and cpu hotplug. |
| */ |
| static int bsp_check(void) |
| { |
| if (cpumask_first(cpu_online_mask) != 0) { |
| pr_warn("CPU0 is offline.\n"); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, |
| void *ptr) |
| { |
| int ret = 0; |
| |
| switch (action) { |
| case PM_SUSPEND_PREPARE: |
| case PM_HIBERNATION_PREPARE: |
| ret = bsp_check(); |
| break; |
| #ifdef CONFIG_DEBUG_HOTPLUG_CPU0 |
| case PM_RESTORE_PREPARE: |
| /* |
| * When system resumes from hibernation, online CPU0 because |
| * 1. it's required for resume and |
| * 2. the CPU was online before hibernation |
| */ |
| if (!cpu_online(0)) |
| _debug_hotplug_cpu(0, 1); |
| break; |
| case PM_POST_RESTORE: |
| /* |
| * When a resume really happens, this code won't be called. |
| * |
| * This code is called only when user space hibernation software |
| * prepares for snapshot device during boot time. So we just |
| * call _debug_hotplug_cpu() to restore to CPU0's state prior to |
| * preparing the snapshot device. |
| * |
| * This works for normal boot case in our CPU0 hotplug debug |
| * mode, i.e. CPU0 is offline and user mode hibernation |
| * software initializes during boot time. |
| * |
| * If CPU0 is online and user application accesses snapshot |
| * device after boot time, this will offline CPU0 and user may |
| * see different CPU0 state before and after accessing |
| * the snapshot device. But hopefully this is not a case when |
| * user debugging CPU0 hotplug. Even if users hit this case, |
| * they can easily online CPU0 back. |
| * |
| * To simplify this debug code, we only consider normal boot |
| * case. Otherwise we need to remember CPU0's state and restore |
| * to that state and resolve racy conditions etc. |
| */ |
| _debug_hotplug_cpu(0, 0); |
| break; |
| #endif |
| default: |
| break; |
| } |
| return notifier_from_errno(ret); |
| } |
| |
| static int __init bsp_pm_check_init(void) |
| { |
| /* |
| * Set this bsp_pm_callback as lower priority than |
| * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called |
| * earlier to disable cpu hotplug before bsp online check. |
| */ |
| pm_notifier(bsp_pm_callback, -INT_MAX); |
| return 0; |
| } |
| |
| core_initcall(bsp_pm_check_init); |
| |
| static int msr_build_context(const u32 *msr_id, const int num) |
| { |
| struct saved_msrs *saved_msrs = &saved_context.saved_msrs; |
| struct saved_msr *msr_array; |
| int total_num; |
| int i, j; |
| |
| total_num = saved_msrs->num + num; |
| |
| msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); |
| if (!msr_array) { |
| pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); |
| return -ENOMEM; |
| } |
| |
| if (saved_msrs->array) { |
| /* |
| * Multiple callbacks can invoke this function, so copy any |
| * MSR save requests from previous invocations. |
| */ |
| memcpy(msr_array, saved_msrs->array, |
| sizeof(struct saved_msr) * saved_msrs->num); |
| |
| kfree(saved_msrs->array); |
| } |
| |
| for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) { |
| u64 dummy; |
| |
| msr_array[i].info.msr_no = msr_id[j]; |
| msr_array[i].valid = !rdmsrl_safe(msr_id[j], &dummy); |
| msr_array[i].info.reg.q = 0; |
| } |
| saved_msrs->num = total_num; |
| saved_msrs->array = msr_array; |
| |
| return 0; |
| } |
| |
| /* |
| * The following sections are a quirk framework for problematic BIOSen: |
| * Sometimes MSRs are modified by the BIOSen after suspended to |
| * RAM, this might cause unexpected behavior after wakeup. |
| * Thus we save/restore these specified MSRs across suspend/resume |
| * in order to work around it. |
| * |
| * For any further problematic BIOSen/platforms, |
| * please add your own function similar to msr_initialize_bdw. |
| */ |
| static int msr_initialize_bdw(const struct dmi_system_id *d) |
| { |
| /* Add any extra MSR ids into this array. */ |
| u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; |
| |
| pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); |
| return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); |
| } |
| |
| static struct dmi_system_id msr_save_dmi_table[] = { |
| { |
| .callback = msr_initialize_bdw, |
| .ident = "BROADWELL BDX_EP", |
| .matches = { |
| DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), |
| DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), |
| }, |
| }, |
| {} |
| }; |
| |
| static int msr_save_cpuid_features(const struct x86_cpu_id *c) |
| { |
| u32 cpuid_msr_id[] = { |
| MSR_AMD64_CPUID_FN_1, |
| }; |
| |
| pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n", |
| c->family); |
| |
| return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id)); |
| } |
| |
| static const struct x86_cpu_id msr_save_cpu_table[] = { |
| { |
| .vendor = X86_VENDOR_AMD, |
| .family = 0x15, |
| .model = X86_MODEL_ANY, |
| .feature = X86_FEATURE_ANY, |
| .driver_data = (kernel_ulong_t)msr_save_cpuid_features, |
| }, |
| { |
| .vendor = X86_VENDOR_AMD, |
| .family = 0x16, |
| .model = X86_MODEL_ANY, |
| .feature = X86_FEATURE_ANY, |
| .driver_data = (kernel_ulong_t)msr_save_cpuid_features, |
| }, |
| {} |
| }; |
| |
| typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *); |
| static int pm_cpu_check(const struct x86_cpu_id *c) |
| { |
| const struct x86_cpu_id *m; |
| int ret = 0; |
| |
| m = x86_match_cpu(msr_save_cpu_table); |
| if (m) { |
| pm_cpu_match_t fn; |
| |
| fn = (pm_cpu_match_t)m->driver_data; |
| ret = fn(m); |
| } |
| |
| return ret; |
| } |
| |
| static void pm_save_spec_msr(void) |
| { |
| struct msr_enumeration { |
| u32 msr_no; |
| u32 feature; |
| } msr_enum[] = { |
| { MSR_IA32_SPEC_CTRL, X86_FEATURE_MSR_SPEC_CTRL }, |
| { MSR_IA32_TSX_CTRL, X86_FEATURE_MSR_TSX_CTRL }, |
| { MSR_TSX_FORCE_ABORT, X86_FEATURE_TSX_FORCE_ABORT }, |
| { MSR_IA32_MCU_OPT_CTRL, X86_FEATURE_SRBDS_CTRL }, |
| { MSR_AMD64_LS_CFG, X86_FEATURE_LS_CFG_SSBD }, |
| { MSR_AMD64_DE_CFG, X86_FEATURE_LFENCE_RDTSC }, |
| }; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(msr_enum); i++) { |
| if (boot_cpu_has(msr_enum[i].feature)) |
| msr_build_context(&msr_enum[i].msr_no, 1); |
| } |
| } |
| |
| static int pm_check_save_msr(void) |
| { |
| dmi_check_system(msr_save_dmi_table); |
| pm_cpu_check(msr_save_cpu_table); |
| pm_save_spec_msr(); |
| |
| return 0; |
| } |
| |
| device_initcall(pm_check_save_msr); |