| /* |
| * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/vmalloc.h> |
| #include <linux/export.h> |
| #include <asm/tlbflush.h> |
| #include <asm/homecache.h> |
| |
| /* Generic DMA mapping functions: */ |
| |
| /* |
| * Allocate what Linux calls "coherent" memory. On TILEPro this is |
| * uncached memory; on TILE-Gx it is hash-for-home memory. |
| */ |
| #ifdef __tilepro__ |
| #define PAGE_HOME_DMA PAGE_HOME_UNCACHED |
| #else |
| #define PAGE_HOME_DMA PAGE_HOME_HASH |
| #endif |
| |
| void *dma_alloc_coherent(struct device *dev, |
| size_t size, |
| dma_addr_t *dma_handle, |
| gfp_t gfp) |
| { |
| u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32); |
| int node = dev_to_node(dev); |
| int order = get_order(size); |
| struct page *pg; |
| dma_addr_t addr; |
| |
| gfp |= __GFP_ZERO; |
| |
| /* |
| * If the mask specifies that the memory be in the first 4 GB, then |
| * we force the allocation to come from the DMA zone. We also |
| * force the node to 0 since that's the only node where the DMA |
| * zone isn't empty. If the mask size is smaller than 32 bits, we |
| * may still not be able to guarantee a suitable memory address, in |
| * which case we will return NULL. But such devices are uncommon. |
| */ |
| if (dma_mask <= DMA_BIT_MASK(32)) { |
| gfp |= GFP_DMA; |
| node = 0; |
| } |
| |
| pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA); |
| if (pg == NULL) |
| return NULL; |
| |
| addr = page_to_phys(pg); |
| if (addr + size > dma_mask) { |
| __homecache_free_pages(pg, order); |
| return NULL; |
| } |
| |
| *dma_handle = addr; |
| return page_address(pg); |
| } |
| EXPORT_SYMBOL(dma_alloc_coherent); |
| |
| /* |
| * Free memory that was allocated with dma_alloc_coherent. |
| */ |
| void dma_free_coherent(struct device *dev, size_t size, |
| void *vaddr, dma_addr_t dma_handle) |
| { |
| homecache_free_pages((unsigned long)vaddr, get_order(size)); |
| } |
| EXPORT_SYMBOL(dma_free_coherent); |
| |
| /* |
| * The map routines "map" the specified address range for DMA |
| * accesses. The memory belongs to the device after this call is |
| * issued, until it is unmapped with dma_unmap_single. |
| * |
| * We don't need to do any mapping, we just flush the address range |
| * out of the cache and return a DMA address. |
| * |
| * The unmap routines do whatever is necessary before the processor |
| * accesses the memory again, and must be called before the driver |
| * touches the memory. We can get away with a cache invalidate if we |
| * can count on nothing having been touched. |
| */ |
| |
| /* Set up a single page for DMA access. */ |
| static void __dma_prep_page(struct page *page, unsigned long offset, |
| size_t size, enum dma_data_direction direction) |
| { |
| /* |
| * Flush the page from cache if necessary. |
| * On tilegx, data is delivered to hash-for-home L3; on tilepro, |
| * data is delivered direct to memory. |
| * |
| * NOTE: If we were just doing DMA_TO_DEVICE we could optimize |
| * this to be a "flush" not a "finv" and keep some of the |
| * state in cache across the DMA operation, but it doesn't seem |
| * worth creating the necessary flush_buffer_xxx() infrastructure. |
| */ |
| int home = page_home(page); |
| switch (home) { |
| case PAGE_HOME_HASH: |
| #ifdef __tilegx__ |
| return; |
| #endif |
| break; |
| case PAGE_HOME_UNCACHED: |
| #ifdef __tilepro__ |
| return; |
| #endif |
| break; |
| case PAGE_HOME_IMMUTABLE: |
| /* Should be going to the device only. */ |
| BUG_ON(direction == DMA_FROM_DEVICE || |
| direction == DMA_BIDIRECTIONAL); |
| return; |
| case PAGE_HOME_INCOHERENT: |
| /* Incoherent anyway, so no need to work hard here. */ |
| return; |
| default: |
| BUG_ON(home < 0 || home >= NR_CPUS); |
| break; |
| } |
| homecache_finv_page(page); |
| |
| #ifdef DEBUG_ALIGNMENT |
| /* Warn if the region isn't cacheline aligned. */ |
| if (offset & (L2_CACHE_BYTES - 1) || (size & (L2_CACHE_BYTES - 1))) |
| pr_warn("Unaligned DMA to non-hfh memory: PA %#llx/%#lx\n", |
| PFN_PHYS(page_to_pfn(page)) + offset, size); |
| #endif |
| } |
| |
| /* Make the page ready to be read by the core. */ |
| static void __dma_complete_page(struct page *page, unsigned long offset, |
| size_t size, enum dma_data_direction direction) |
| { |
| #ifdef __tilegx__ |
| switch (page_home(page)) { |
| case PAGE_HOME_HASH: |
| /* I/O device delivered data the way the cpu wanted it. */ |
| break; |
| case PAGE_HOME_INCOHERENT: |
| /* Incoherent anyway, so no need to work hard here. */ |
| break; |
| case PAGE_HOME_IMMUTABLE: |
| /* Extra read-only copies are not a problem. */ |
| break; |
| default: |
| /* Flush the bogus hash-for-home I/O entries to memory. */ |
| homecache_finv_map_page(page, PAGE_HOME_HASH); |
| break; |
| } |
| #endif |
| } |
| |
| static void __dma_prep_pa_range(dma_addr_t dma_addr, size_t size, |
| enum dma_data_direction direction) |
| { |
| struct page *page = pfn_to_page(PFN_DOWN(dma_addr)); |
| unsigned long offset = dma_addr & (PAGE_SIZE - 1); |
| size_t bytes = min(size, (size_t)(PAGE_SIZE - offset)); |
| |
| while (size != 0) { |
| __dma_prep_page(page, offset, bytes, direction); |
| size -= bytes; |
| ++page; |
| offset = 0; |
| bytes = min((size_t)PAGE_SIZE, size); |
| } |
| } |
| |
| static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size, |
| enum dma_data_direction direction) |
| { |
| struct page *page = pfn_to_page(PFN_DOWN(dma_addr)); |
| unsigned long offset = dma_addr & (PAGE_SIZE - 1); |
| size_t bytes = min(size, (size_t)(PAGE_SIZE - offset)); |
| |
| while (size != 0) { |
| __dma_complete_page(page, offset, bytes, direction); |
| size -= bytes; |
| ++page; |
| offset = 0; |
| bytes = min((size_t)PAGE_SIZE, size); |
| } |
| } |
| |
| |
| /* |
| * dma_map_single can be passed any memory address, and there appear |
| * to be no alignment constraints. |
| * |
| * There is a chance that the start of the buffer will share a cache |
| * line with some other data that has been touched in the meantime. |
| */ |
| dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size, |
| enum dma_data_direction direction) |
| { |
| dma_addr_t dma_addr = __pa(ptr); |
| |
| BUG_ON(!valid_dma_direction(direction)); |
| WARN_ON(size == 0); |
| |
| __dma_prep_pa_range(dma_addr, size, direction); |
| |
| return dma_addr; |
| } |
| EXPORT_SYMBOL(dma_map_single); |
| |
| void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, |
| enum dma_data_direction direction) |
| { |
| BUG_ON(!valid_dma_direction(direction)); |
| __dma_complete_pa_range(dma_addr, size, direction); |
| } |
| EXPORT_SYMBOL(dma_unmap_single); |
| |
| int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents, |
| enum dma_data_direction direction) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| BUG_ON(!valid_dma_direction(direction)); |
| |
| WARN_ON(nents == 0 || sglist->length == 0); |
| |
| for_each_sg(sglist, sg, nents, i) { |
| sg->dma_address = sg_phys(sg); |
| __dma_prep_pa_range(sg->dma_address, sg->length, direction); |
| } |
| |
| return nents; |
| } |
| EXPORT_SYMBOL(dma_map_sg); |
| |
| void dma_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, |
| enum dma_data_direction direction) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| BUG_ON(!valid_dma_direction(direction)); |
| for_each_sg(sglist, sg, nents, i) { |
| sg->dma_address = sg_phys(sg); |
| __dma_complete_pa_range(sg->dma_address, sg->length, |
| direction); |
| } |
| } |
| EXPORT_SYMBOL(dma_unmap_sg); |
| |
| dma_addr_t dma_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, |
| enum dma_data_direction direction) |
| { |
| BUG_ON(!valid_dma_direction(direction)); |
| |
| BUG_ON(offset + size > PAGE_SIZE); |
| __dma_prep_page(page, offset, size, direction); |
| return page_to_pa(page) + offset; |
| } |
| EXPORT_SYMBOL(dma_map_page); |
| |
| void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size, |
| enum dma_data_direction direction) |
| { |
| BUG_ON(!valid_dma_direction(direction)); |
| __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)), |
| dma_address & PAGE_OFFSET, size, direction); |
| } |
| EXPORT_SYMBOL(dma_unmap_page); |
| |
| void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, |
| size_t size, enum dma_data_direction direction) |
| { |
| BUG_ON(!valid_dma_direction(direction)); |
| __dma_complete_pa_range(dma_handle, size, direction); |
| } |
| EXPORT_SYMBOL(dma_sync_single_for_cpu); |
| |
| void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, |
| size_t size, enum dma_data_direction direction) |
| { |
| __dma_prep_pa_range(dma_handle, size, direction); |
| } |
| EXPORT_SYMBOL(dma_sync_single_for_device); |
| |
| void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist, |
| int nelems, enum dma_data_direction direction) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| BUG_ON(!valid_dma_direction(direction)); |
| WARN_ON(nelems == 0 || sglist->length == 0); |
| |
| for_each_sg(sglist, sg, nelems, i) { |
| dma_sync_single_for_cpu(dev, sg->dma_address, |
| sg_dma_len(sg), direction); |
| } |
| } |
| EXPORT_SYMBOL(dma_sync_sg_for_cpu); |
| |
| void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, |
| int nelems, enum dma_data_direction direction) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| BUG_ON(!valid_dma_direction(direction)); |
| WARN_ON(nelems == 0 || sglist->length == 0); |
| |
| for_each_sg(sglist, sg, nelems, i) { |
| dma_sync_single_for_device(dev, sg->dma_address, |
| sg_dma_len(sg), direction); |
| } |
| } |
| EXPORT_SYMBOL(dma_sync_sg_for_device); |
| |
| void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle, |
| unsigned long offset, size_t size, |
| enum dma_data_direction direction) |
| { |
| dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction); |
| } |
| EXPORT_SYMBOL(dma_sync_single_range_for_cpu); |
| |
| void dma_sync_single_range_for_device(struct device *dev, |
| dma_addr_t dma_handle, |
| unsigned long offset, size_t size, |
| enum dma_data_direction direction) |
| { |
| dma_sync_single_for_device(dev, dma_handle + offset, size, direction); |
| } |
| EXPORT_SYMBOL(dma_sync_single_range_for_device); |
| |
| /* |
| * dma_alloc_noncoherent() is #defined to return coherent memory, |
| * so there's no need to do any flushing here. |
| */ |
| void dma_cache_sync(struct device *dev, void *vaddr, size_t size, |
| enum dma_data_direction direction) |
| { |
| } |
| EXPORT_SYMBOL(dma_cache_sync); |