| /* |
| * SPI init/core code |
| * |
| * Copyright (C) 2005 David Brownell |
| * Copyright (C) 2008 Secret Lab Technologies Ltd. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/device.h> |
| #include <linux/init.h> |
| #include <linux/cache.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/mutex.h> |
| #include <linux/of_device.h> |
| #include <linux/of_irq.h> |
| #include <linux/clk/clk-conf.h> |
| #include <linux/slab.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/spi/spi.h> |
| #include <linux/of_gpio.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/pm_domain.h> |
| #include <linux/export.h> |
| #include <linux/sched/rt.h> |
| #include <linux/delay.h> |
| #include <linux/kthread.h> |
| #include <linux/ioport.h> |
| #include <linux/acpi.h> |
| #include <linux/highmem.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/spi.h> |
| |
| static void spidev_release(struct device *dev) |
| { |
| struct spi_device *spi = to_spi_device(dev); |
| |
| /* spi masters may cleanup for released devices */ |
| if (spi->master->cleanup) |
| spi->master->cleanup(spi); |
| |
| spi_master_put(spi->master); |
| kfree(spi); |
| } |
| |
| static ssize_t |
| modalias_show(struct device *dev, struct device_attribute *a, char *buf) |
| { |
| const struct spi_device *spi = to_spi_device(dev); |
| int len; |
| |
| len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); |
| if (len != -ENODEV) |
| return len; |
| |
| return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); |
| } |
| static DEVICE_ATTR_RO(modalias); |
| |
| #define SPI_STATISTICS_ATTRS(field, file) \ |
| static ssize_t spi_master_##field##_show(struct device *dev, \ |
| struct device_attribute *attr, \ |
| char *buf) \ |
| { \ |
| struct spi_master *master = container_of(dev, \ |
| struct spi_master, dev); \ |
| return spi_statistics_##field##_show(&master->statistics, buf); \ |
| } \ |
| static struct device_attribute dev_attr_spi_master_##field = { \ |
| .attr = { .name = file, .mode = S_IRUGO }, \ |
| .show = spi_master_##field##_show, \ |
| }; \ |
| static ssize_t spi_device_##field##_show(struct device *dev, \ |
| struct device_attribute *attr, \ |
| char *buf) \ |
| { \ |
| struct spi_device *spi = to_spi_device(dev); \ |
| return spi_statistics_##field##_show(&spi->statistics, buf); \ |
| } \ |
| static struct device_attribute dev_attr_spi_device_##field = { \ |
| .attr = { .name = file, .mode = S_IRUGO }, \ |
| .show = spi_device_##field##_show, \ |
| } |
| |
| #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ |
| static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ |
| char *buf) \ |
| { \ |
| unsigned long flags; \ |
| ssize_t len; \ |
| spin_lock_irqsave(&stat->lock, flags); \ |
| len = sprintf(buf, format_string, stat->field); \ |
| spin_unlock_irqrestore(&stat->lock, flags); \ |
| return len; \ |
| } \ |
| SPI_STATISTICS_ATTRS(name, file) |
| |
| #define SPI_STATISTICS_SHOW(field, format_string) \ |
| SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ |
| field, format_string) |
| |
| SPI_STATISTICS_SHOW(messages, "%lu"); |
| SPI_STATISTICS_SHOW(transfers, "%lu"); |
| SPI_STATISTICS_SHOW(errors, "%lu"); |
| SPI_STATISTICS_SHOW(timedout, "%lu"); |
| |
| SPI_STATISTICS_SHOW(spi_sync, "%lu"); |
| SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); |
| SPI_STATISTICS_SHOW(spi_async, "%lu"); |
| |
| SPI_STATISTICS_SHOW(bytes, "%llu"); |
| SPI_STATISTICS_SHOW(bytes_rx, "%llu"); |
| SPI_STATISTICS_SHOW(bytes_tx, "%llu"); |
| |
| #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ |
| SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ |
| "transfer_bytes_histo_" number, \ |
| transfer_bytes_histo[index], "%lu") |
| SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); |
| SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); |
| SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); |
| SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); |
| SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); |
| SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); |
| SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); |
| SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); |
| SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); |
| SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); |
| SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); |
| SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); |
| SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); |
| SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); |
| SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); |
| SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); |
| SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); |
| |
| SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); |
| |
| static struct attribute *spi_dev_attrs[] = { |
| &dev_attr_modalias.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group spi_dev_group = { |
| .attrs = spi_dev_attrs, |
| }; |
| |
| static struct attribute *spi_device_statistics_attrs[] = { |
| &dev_attr_spi_device_messages.attr, |
| &dev_attr_spi_device_transfers.attr, |
| &dev_attr_spi_device_errors.attr, |
| &dev_attr_spi_device_timedout.attr, |
| &dev_attr_spi_device_spi_sync.attr, |
| &dev_attr_spi_device_spi_sync_immediate.attr, |
| &dev_attr_spi_device_spi_async.attr, |
| &dev_attr_spi_device_bytes.attr, |
| &dev_attr_spi_device_bytes_rx.attr, |
| &dev_attr_spi_device_bytes_tx.attr, |
| &dev_attr_spi_device_transfer_bytes_histo0.attr, |
| &dev_attr_spi_device_transfer_bytes_histo1.attr, |
| &dev_attr_spi_device_transfer_bytes_histo2.attr, |
| &dev_attr_spi_device_transfer_bytes_histo3.attr, |
| &dev_attr_spi_device_transfer_bytes_histo4.attr, |
| &dev_attr_spi_device_transfer_bytes_histo5.attr, |
| &dev_attr_spi_device_transfer_bytes_histo6.attr, |
| &dev_attr_spi_device_transfer_bytes_histo7.attr, |
| &dev_attr_spi_device_transfer_bytes_histo8.attr, |
| &dev_attr_spi_device_transfer_bytes_histo9.attr, |
| &dev_attr_spi_device_transfer_bytes_histo10.attr, |
| &dev_attr_spi_device_transfer_bytes_histo11.attr, |
| &dev_attr_spi_device_transfer_bytes_histo12.attr, |
| &dev_attr_spi_device_transfer_bytes_histo13.attr, |
| &dev_attr_spi_device_transfer_bytes_histo14.attr, |
| &dev_attr_spi_device_transfer_bytes_histo15.attr, |
| &dev_attr_spi_device_transfer_bytes_histo16.attr, |
| &dev_attr_spi_device_transfers_split_maxsize.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group spi_device_statistics_group = { |
| .name = "statistics", |
| .attrs = spi_device_statistics_attrs, |
| }; |
| |
| static const struct attribute_group *spi_dev_groups[] = { |
| &spi_dev_group, |
| &spi_device_statistics_group, |
| NULL, |
| }; |
| |
| static struct attribute *spi_master_statistics_attrs[] = { |
| &dev_attr_spi_master_messages.attr, |
| &dev_attr_spi_master_transfers.attr, |
| &dev_attr_spi_master_errors.attr, |
| &dev_attr_spi_master_timedout.attr, |
| &dev_attr_spi_master_spi_sync.attr, |
| &dev_attr_spi_master_spi_sync_immediate.attr, |
| &dev_attr_spi_master_spi_async.attr, |
| &dev_attr_spi_master_bytes.attr, |
| &dev_attr_spi_master_bytes_rx.attr, |
| &dev_attr_spi_master_bytes_tx.attr, |
| &dev_attr_spi_master_transfer_bytes_histo0.attr, |
| &dev_attr_spi_master_transfer_bytes_histo1.attr, |
| &dev_attr_spi_master_transfer_bytes_histo2.attr, |
| &dev_attr_spi_master_transfer_bytes_histo3.attr, |
| &dev_attr_spi_master_transfer_bytes_histo4.attr, |
| &dev_attr_spi_master_transfer_bytes_histo5.attr, |
| &dev_attr_spi_master_transfer_bytes_histo6.attr, |
| &dev_attr_spi_master_transfer_bytes_histo7.attr, |
| &dev_attr_spi_master_transfer_bytes_histo8.attr, |
| &dev_attr_spi_master_transfer_bytes_histo9.attr, |
| &dev_attr_spi_master_transfer_bytes_histo10.attr, |
| &dev_attr_spi_master_transfer_bytes_histo11.attr, |
| &dev_attr_spi_master_transfer_bytes_histo12.attr, |
| &dev_attr_spi_master_transfer_bytes_histo13.attr, |
| &dev_attr_spi_master_transfer_bytes_histo14.attr, |
| &dev_attr_spi_master_transfer_bytes_histo15.attr, |
| &dev_attr_spi_master_transfer_bytes_histo16.attr, |
| &dev_attr_spi_master_transfers_split_maxsize.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group spi_master_statistics_group = { |
| .name = "statistics", |
| .attrs = spi_master_statistics_attrs, |
| }; |
| |
| static const struct attribute_group *spi_master_groups[] = { |
| &spi_master_statistics_group, |
| NULL, |
| }; |
| |
| void spi_statistics_add_transfer_stats(struct spi_statistics *stats, |
| struct spi_transfer *xfer, |
| struct spi_master *master) |
| { |
| unsigned long flags; |
| int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; |
| |
| if (l2len < 0) |
| l2len = 0; |
| |
| spin_lock_irqsave(&stats->lock, flags); |
| |
| stats->transfers++; |
| stats->transfer_bytes_histo[l2len]++; |
| |
| stats->bytes += xfer->len; |
| if ((xfer->tx_buf) && |
| (xfer->tx_buf != master->dummy_tx)) |
| stats->bytes_tx += xfer->len; |
| if ((xfer->rx_buf) && |
| (xfer->rx_buf != master->dummy_rx)) |
| stats->bytes_rx += xfer->len; |
| |
| spin_unlock_irqrestore(&stats->lock, flags); |
| } |
| EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); |
| |
| /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, |
| * and the sysfs version makes coldplug work too. |
| */ |
| |
| static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, |
| const struct spi_device *sdev) |
| { |
| while (id->name[0]) { |
| if (!strcmp(sdev->modalias, id->name)) |
| return id; |
| id++; |
| } |
| return NULL; |
| } |
| |
| const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) |
| { |
| const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); |
| |
| return spi_match_id(sdrv->id_table, sdev); |
| } |
| EXPORT_SYMBOL_GPL(spi_get_device_id); |
| |
| static int spi_match_device(struct device *dev, struct device_driver *drv) |
| { |
| const struct spi_device *spi = to_spi_device(dev); |
| const struct spi_driver *sdrv = to_spi_driver(drv); |
| |
| /* Attempt an OF style match */ |
| if (of_driver_match_device(dev, drv)) |
| return 1; |
| |
| /* Then try ACPI */ |
| if (acpi_driver_match_device(dev, drv)) |
| return 1; |
| |
| if (sdrv->id_table) |
| return !!spi_match_id(sdrv->id_table, spi); |
| |
| return strcmp(spi->modalias, drv->name) == 0; |
| } |
| |
| static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) |
| { |
| const struct spi_device *spi = to_spi_device(dev); |
| int rc; |
| |
| rc = acpi_device_uevent_modalias(dev, env); |
| if (rc != -ENODEV) |
| return rc; |
| |
| add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); |
| return 0; |
| } |
| |
| struct bus_type spi_bus_type = { |
| .name = "spi", |
| .dev_groups = spi_dev_groups, |
| .match = spi_match_device, |
| .uevent = spi_uevent, |
| }; |
| EXPORT_SYMBOL_GPL(spi_bus_type); |
| |
| |
| static int spi_drv_probe(struct device *dev) |
| { |
| const struct spi_driver *sdrv = to_spi_driver(dev->driver); |
| struct spi_device *spi = to_spi_device(dev); |
| int ret; |
| |
| ret = of_clk_set_defaults(dev->of_node, false); |
| if (ret) |
| return ret; |
| |
| if (dev->of_node) { |
| spi->irq = of_irq_get(dev->of_node, 0); |
| if (spi->irq == -EPROBE_DEFER) |
| return -EPROBE_DEFER; |
| if (spi->irq < 0) |
| spi->irq = 0; |
| } |
| |
| ret = dev_pm_domain_attach(dev, true); |
| if (ret != -EPROBE_DEFER) { |
| ret = sdrv->probe(spi); |
| if (ret) |
| dev_pm_domain_detach(dev, true); |
| } |
| |
| return ret; |
| } |
| |
| static int spi_drv_remove(struct device *dev) |
| { |
| const struct spi_driver *sdrv = to_spi_driver(dev->driver); |
| int ret; |
| |
| ret = sdrv->remove(to_spi_device(dev)); |
| dev_pm_domain_detach(dev, true); |
| |
| return ret; |
| } |
| |
| static void spi_drv_shutdown(struct device *dev) |
| { |
| const struct spi_driver *sdrv = to_spi_driver(dev->driver); |
| |
| sdrv->shutdown(to_spi_device(dev)); |
| } |
| |
| /** |
| * __spi_register_driver - register a SPI driver |
| * @owner: owner module of the driver to register |
| * @sdrv: the driver to register |
| * Context: can sleep |
| * |
| * Return: zero on success, else a negative error code. |
| */ |
| int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) |
| { |
| sdrv->driver.owner = owner; |
| sdrv->driver.bus = &spi_bus_type; |
| if (sdrv->probe) |
| sdrv->driver.probe = spi_drv_probe; |
| if (sdrv->remove) |
| sdrv->driver.remove = spi_drv_remove; |
| if (sdrv->shutdown) |
| sdrv->driver.shutdown = spi_drv_shutdown; |
| return driver_register(&sdrv->driver); |
| } |
| EXPORT_SYMBOL_GPL(__spi_register_driver); |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* SPI devices should normally not be created by SPI device drivers; that |
| * would make them board-specific. Similarly with SPI master drivers. |
| * Device registration normally goes into like arch/.../mach.../board-YYY.c |
| * with other readonly (flashable) information about mainboard devices. |
| */ |
| |
| struct boardinfo { |
| struct list_head list; |
| struct spi_board_info board_info; |
| }; |
| |
| static LIST_HEAD(board_list); |
| static LIST_HEAD(spi_master_list); |
| |
| /* |
| * Used to protect add/del opertion for board_info list and |
| * spi_master list, and their matching process |
| */ |
| static DEFINE_MUTEX(board_lock); |
| |
| /* |
| * Prevents addition of devices with same chip select and |
| * addition of devices below an unregistering controller. |
| */ |
| static DEFINE_MUTEX(spi_add_lock); |
| |
| /** |
| * spi_alloc_device - Allocate a new SPI device |
| * @master: Controller to which device is connected |
| * Context: can sleep |
| * |
| * Allows a driver to allocate and initialize a spi_device without |
| * registering it immediately. This allows a driver to directly |
| * fill the spi_device with device parameters before calling |
| * spi_add_device() on it. |
| * |
| * Caller is responsible to call spi_add_device() on the returned |
| * spi_device structure to add it to the SPI master. If the caller |
| * needs to discard the spi_device without adding it, then it should |
| * call spi_dev_put() on it. |
| * |
| * Return: a pointer to the new device, or NULL. |
| */ |
| struct spi_device *spi_alloc_device(struct spi_master *master) |
| { |
| struct spi_device *spi; |
| |
| if (!spi_master_get(master)) |
| return NULL; |
| |
| spi = kzalloc(sizeof(*spi), GFP_KERNEL); |
| if (!spi) { |
| spi_master_put(master); |
| return NULL; |
| } |
| |
| spi->master = master; |
| spi->dev.parent = &master->dev; |
| spi->dev.bus = &spi_bus_type; |
| spi->dev.release = spidev_release; |
| spi->cs_gpio = -ENOENT; |
| |
| spin_lock_init(&spi->statistics.lock); |
| |
| device_initialize(&spi->dev); |
| return spi; |
| } |
| EXPORT_SYMBOL_GPL(spi_alloc_device); |
| |
| static void spi_dev_set_name(struct spi_device *spi) |
| { |
| struct acpi_device *adev = ACPI_COMPANION(&spi->dev); |
| |
| if (adev) { |
| dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); |
| return; |
| } |
| |
| dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), |
| spi->chip_select); |
| } |
| |
| static int spi_dev_check(struct device *dev, void *data) |
| { |
| struct spi_device *spi = to_spi_device(dev); |
| struct spi_device *new_spi = data; |
| |
| if (spi->master == new_spi->master && |
| spi->chip_select == new_spi->chip_select) |
| return -EBUSY; |
| return 0; |
| } |
| |
| /** |
| * spi_add_device - Add spi_device allocated with spi_alloc_device |
| * @spi: spi_device to register |
| * |
| * Companion function to spi_alloc_device. Devices allocated with |
| * spi_alloc_device can be added onto the spi bus with this function. |
| * |
| * Return: 0 on success; negative errno on failure |
| */ |
| int spi_add_device(struct spi_device *spi) |
| { |
| struct spi_master *master = spi->master; |
| struct device *dev = master->dev.parent; |
| int status; |
| |
| /* Chipselects are numbered 0..max; validate. */ |
| if (spi->chip_select >= master->num_chipselect) { |
| dev_err(dev, "cs%d >= max %d\n", |
| spi->chip_select, |
| master->num_chipselect); |
| return -EINVAL; |
| } |
| |
| /* Set the bus ID string */ |
| spi_dev_set_name(spi); |
| |
| /* We need to make sure there's no other device with this |
| * chipselect **BEFORE** we call setup(), else we'll trash |
| * its configuration. Lock against concurrent add() calls. |
| */ |
| mutex_lock(&spi_add_lock); |
| |
| status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); |
| if (status) { |
| dev_err(dev, "chipselect %d already in use\n", |
| spi->chip_select); |
| goto done; |
| } |
| |
| /* Controller may unregister concurrently */ |
| if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && |
| !device_is_registered(&master->dev)) { |
| status = -ENODEV; |
| goto done; |
| } |
| |
| if (master->cs_gpios) |
| spi->cs_gpio = master->cs_gpios[spi->chip_select]; |
| |
| /* Drivers may modify this initial i/o setup, but will |
| * normally rely on the device being setup. Devices |
| * using SPI_CS_HIGH can't coexist well otherwise... |
| */ |
| status = spi_setup(spi); |
| if (status < 0) { |
| dev_err(dev, "can't setup %s, status %d\n", |
| dev_name(&spi->dev), status); |
| goto done; |
| } |
| |
| /* Device may be bound to an active driver when this returns */ |
| status = device_add(&spi->dev); |
| if (status < 0) |
| dev_err(dev, "can't add %s, status %d\n", |
| dev_name(&spi->dev), status); |
| else |
| dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); |
| |
| done: |
| mutex_unlock(&spi_add_lock); |
| return status; |
| } |
| EXPORT_SYMBOL_GPL(spi_add_device); |
| |
| /** |
| * spi_new_device - instantiate one new SPI device |
| * @master: Controller to which device is connected |
| * @chip: Describes the SPI device |
| * Context: can sleep |
| * |
| * On typical mainboards, this is purely internal; and it's not needed |
| * after board init creates the hard-wired devices. Some development |
| * platforms may not be able to use spi_register_board_info though, and |
| * this is exported so that for example a USB or parport based adapter |
| * driver could add devices (which it would learn about out-of-band). |
| * |
| * Return: the new device, or NULL. |
| */ |
| struct spi_device *spi_new_device(struct spi_master *master, |
| struct spi_board_info *chip) |
| { |
| struct spi_device *proxy; |
| int status; |
| |
| /* NOTE: caller did any chip->bus_num checks necessary. |
| * |
| * Also, unless we change the return value convention to use |
| * error-or-pointer (not NULL-or-pointer), troubleshootability |
| * suggests syslogged diagnostics are best here (ugh). |
| */ |
| |
| proxy = spi_alloc_device(master); |
| if (!proxy) |
| return NULL; |
| |
| WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); |
| |
| proxy->chip_select = chip->chip_select; |
| proxy->max_speed_hz = chip->max_speed_hz; |
| proxy->mode = chip->mode; |
| proxy->irq = chip->irq; |
| strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); |
| proxy->dev.platform_data = (void *) chip->platform_data; |
| proxy->controller_data = chip->controller_data; |
| proxy->controller_state = NULL; |
| |
| status = spi_add_device(proxy); |
| if (status < 0) { |
| spi_dev_put(proxy); |
| return NULL; |
| } |
| |
| return proxy; |
| } |
| EXPORT_SYMBOL_GPL(spi_new_device); |
| |
| /** |
| * spi_unregister_device - unregister a single SPI device |
| * @spi: spi_device to unregister |
| * |
| * Start making the passed SPI device vanish. Normally this would be handled |
| * by spi_unregister_master(). |
| */ |
| void spi_unregister_device(struct spi_device *spi) |
| { |
| if (!spi) |
| return; |
| |
| if (spi->dev.of_node) { |
| of_node_clear_flag(spi->dev.of_node, OF_POPULATED); |
| of_node_put(spi->dev.of_node); |
| } |
| if (ACPI_COMPANION(&spi->dev)) |
| acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); |
| device_unregister(&spi->dev); |
| } |
| EXPORT_SYMBOL_GPL(spi_unregister_device); |
| |
| static void spi_match_master_to_boardinfo(struct spi_master *master, |
| struct spi_board_info *bi) |
| { |
| struct spi_device *dev; |
| |
| if (master->bus_num != bi->bus_num) |
| return; |
| |
| dev = spi_new_device(master, bi); |
| if (!dev) |
| dev_err(master->dev.parent, "can't create new device for %s\n", |
| bi->modalias); |
| } |
| |
| /** |
| * spi_register_board_info - register SPI devices for a given board |
| * @info: array of chip descriptors |
| * @n: how many descriptors are provided |
| * Context: can sleep |
| * |
| * Board-specific early init code calls this (probably during arch_initcall) |
| * with segments of the SPI device table. Any device nodes are created later, |
| * after the relevant parent SPI controller (bus_num) is defined. We keep |
| * this table of devices forever, so that reloading a controller driver will |
| * not make Linux forget about these hard-wired devices. |
| * |
| * Other code can also call this, e.g. a particular add-on board might provide |
| * SPI devices through its expansion connector, so code initializing that board |
| * would naturally declare its SPI devices. |
| * |
| * The board info passed can safely be __initdata ... but be careful of |
| * any embedded pointers (platform_data, etc), they're copied as-is. |
| * |
| * Return: zero on success, else a negative error code. |
| */ |
| int spi_register_board_info(struct spi_board_info const *info, unsigned n) |
| { |
| struct boardinfo *bi; |
| int i; |
| |
| if (!n) |
| return -EINVAL; |
| |
| bi = kzalloc(n * sizeof(*bi), GFP_KERNEL); |
| if (!bi) |
| return -ENOMEM; |
| |
| for (i = 0; i < n; i++, bi++, info++) { |
| struct spi_master *master; |
| |
| memcpy(&bi->board_info, info, sizeof(*info)); |
| mutex_lock(&board_lock); |
| list_add_tail(&bi->list, &board_list); |
| list_for_each_entry(master, &spi_master_list, list) |
| spi_match_master_to_boardinfo(master, &bi->board_info); |
| mutex_unlock(&board_lock); |
| } |
| |
| return 0; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static void spi_set_cs(struct spi_device *spi, bool enable) |
| { |
| if (spi->mode & SPI_CS_HIGH) |
| enable = !enable; |
| |
| if (gpio_is_valid(spi->cs_gpio)) |
| gpio_set_value(spi->cs_gpio, !enable); |
| else if (spi->master->set_cs) |
| spi->master->set_cs(spi, !enable); |
| } |
| |
| #ifdef CONFIG_HAS_DMA |
| static int spi_map_buf(struct spi_master *master, struct device *dev, |
| struct sg_table *sgt, void *buf, size_t len, |
| enum dma_data_direction dir) |
| { |
| const bool vmalloced_buf = is_vmalloc_addr(buf); |
| unsigned int max_seg_size = dma_get_max_seg_size(dev); |
| #ifdef CONFIG_HIGHMEM |
| const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && |
| (unsigned long)buf < (PKMAP_BASE + |
| (LAST_PKMAP * PAGE_SIZE))); |
| #else |
| const bool kmap_buf = false; |
| #endif |
| int desc_len; |
| int sgs; |
| struct page *vm_page; |
| void *sg_buf; |
| size_t min; |
| int i, ret; |
| |
| if (vmalloced_buf || kmap_buf) { |
| desc_len = min_t(int, max_seg_size, PAGE_SIZE); |
| sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); |
| } else if (virt_addr_valid(buf)) { |
| desc_len = min_t(int, max_seg_size, master->max_dma_len); |
| sgs = DIV_ROUND_UP(len, desc_len); |
| } else { |
| return -EINVAL; |
| } |
| |
| ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); |
| if (ret != 0) |
| return ret; |
| |
| for (i = 0; i < sgs; i++) { |
| |
| if (vmalloced_buf || kmap_buf) { |
| /* |
| * Next scatterlist entry size is the minimum between |
| * the desc_len and the remaining buffer length that |
| * fits in a page. |
| */ |
| min = min_t(size_t, desc_len, |
| min_t(size_t, len, |
| PAGE_SIZE - offset_in_page(buf))); |
| if (vmalloced_buf) |
| vm_page = vmalloc_to_page(buf); |
| else |
| vm_page = kmap_to_page(buf); |
| if (!vm_page) { |
| sg_free_table(sgt); |
| return -ENOMEM; |
| } |
| sg_set_page(&sgt->sgl[i], vm_page, |
| min, offset_in_page(buf)); |
| } else { |
| min = min_t(size_t, len, desc_len); |
| sg_buf = buf; |
| sg_set_buf(&sgt->sgl[i], sg_buf, min); |
| } |
| |
| buf += min; |
| len -= min; |
| } |
| |
| ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); |
| if (!ret) |
| ret = -ENOMEM; |
| if (ret < 0) { |
| sg_free_table(sgt); |
| return ret; |
| } |
| |
| sgt->nents = ret; |
| |
| return 0; |
| } |
| |
| static void spi_unmap_buf(struct spi_master *master, struct device *dev, |
| struct sg_table *sgt, enum dma_data_direction dir) |
| { |
| if (sgt->orig_nents) { |
| dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); |
| sg_free_table(sgt); |
| } |
| } |
| |
| static int __spi_map_msg(struct spi_master *master, struct spi_message *msg) |
| { |
| struct device *tx_dev, *rx_dev; |
| struct spi_transfer *xfer; |
| int ret; |
| |
| if (!master->can_dma) |
| return 0; |
| |
| if (master->dma_tx) |
| tx_dev = master->dma_tx->device->dev; |
| else |
| tx_dev = master->dev.parent; |
| |
| if (master->dma_rx) |
| rx_dev = master->dma_rx->device->dev; |
| else |
| rx_dev = master->dev.parent; |
| |
| list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
| if (!master->can_dma(master, msg->spi, xfer)) |
| continue; |
| |
| if (xfer->tx_buf != NULL) { |
| ret = spi_map_buf(master, tx_dev, &xfer->tx_sg, |
| (void *)xfer->tx_buf, xfer->len, |
| DMA_TO_DEVICE); |
| if (ret != 0) |
| return ret; |
| } |
| |
| if (xfer->rx_buf != NULL) { |
| ret = spi_map_buf(master, rx_dev, &xfer->rx_sg, |
| xfer->rx_buf, xfer->len, |
| DMA_FROM_DEVICE); |
| if (ret != 0) { |
| spi_unmap_buf(master, tx_dev, &xfer->tx_sg, |
| DMA_TO_DEVICE); |
| return ret; |
| } |
| } |
| } |
| |
| master->cur_msg_mapped = true; |
| |
| return 0; |
| } |
| |
| static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg) |
| { |
| struct spi_transfer *xfer; |
| struct device *tx_dev, *rx_dev; |
| |
| if (!master->cur_msg_mapped || !master->can_dma) |
| return 0; |
| |
| if (master->dma_tx) |
| tx_dev = master->dma_tx->device->dev; |
| else |
| tx_dev = master->dev.parent; |
| |
| if (master->dma_rx) |
| rx_dev = master->dma_rx->device->dev; |
| else |
| rx_dev = master->dev.parent; |
| |
| list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
| if (!master->can_dma(master, msg->spi, xfer)) |
| continue; |
| |
| spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); |
| spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); |
| } |
| |
| return 0; |
| } |
| #else /* !CONFIG_HAS_DMA */ |
| static inline int spi_map_buf(struct spi_master *master, |
| struct device *dev, struct sg_table *sgt, |
| void *buf, size_t len, |
| enum dma_data_direction dir) |
| { |
| return -EINVAL; |
| } |
| |
| static inline void spi_unmap_buf(struct spi_master *master, |
| struct device *dev, struct sg_table *sgt, |
| enum dma_data_direction dir) |
| { |
| } |
| |
| static inline int __spi_map_msg(struct spi_master *master, |
| struct spi_message *msg) |
| { |
| return 0; |
| } |
| |
| static inline int __spi_unmap_msg(struct spi_master *master, |
| struct spi_message *msg) |
| { |
| return 0; |
| } |
| #endif /* !CONFIG_HAS_DMA */ |
| |
| static inline int spi_unmap_msg(struct spi_master *master, |
| struct spi_message *msg) |
| { |
| struct spi_transfer *xfer; |
| |
| list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
| /* |
| * Restore the original value of tx_buf or rx_buf if they are |
| * NULL. |
| */ |
| if (xfer->tx_buf == master->dummy_tx) |
| xfer->tx_buf = NULL; |
| if (xfer->rx_buf == master->dummy_rx) |
| xfer->rx_buf = NULL; |
| } |
| |
| return __spi_unmap_msg(master, msg); |
| } |
| |
| static int spi_map_msg(struct spi_master *master, struct spi_message *msg) |
| { |
| struct spi_transfer *xfer; |
| void *tmp; |
| unsigned int max_tx, max_rx; |
| |
| if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) { |
| max_tx = 0; |
| max_rx = 0; |
| |
| list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
| if ((master->flags & SPI_MASTER_MUST_TX) && |
| !xfer->tx_buf) |
| max_tx = max(xfer->len, max_tx); |
| if ((master->flags & SPI_MASTER_MUST_RX) && |
| !xfer->rx_buf) |
| max_rx = max(xfer->len, max_rx); |
| } |
| |
| if (max_tx) { |
| tmp = krealloc(master->dummy_tx, max_tx, |
| GFP_KERNEL | GFP_DMA); |
| if (!tmp) |
| return -ENOMEM; |
| master->dummy_tx = tmp; |
| memset(tmp, 0, max_tx); |
| } |
| |
| if (max_rx) { |
| tmp = krealloc(master->dummy_rx, max_rx, |
| GFP_KERNEL | GFP_DMA); |
| if (!tmp) |
| return -ENOMEM; |
| master->dummy_rx = tmp; |
| } |
| |
| if (max_tx || max_rx) { |
| list_for_each_entry(xfer, &msg->transfers, |
| transfer_list) { |
| if (!xfer->len) |
| continue; |
| if (!xfer->tx_buf) |
| xfer->tx_buf = master->dummy_tx; |
| if (!xfer->rx_buf) |
| xfer->rx_buf = master->dummy_rx; |
| } |
| } |
| } |
| |
| return __spi_map_msg(master, msg); |
| } |
| |
| /* |
| * spi_transfer_one_message - Default implementation of transfer_one_message() |
| * |
| * This is a standard implementation of transfer_one_message() for |
| * drivers which implement a transfer_one() operation. It provides |
| * standard handling of delays and chip select management. |
| */ |
| static int spi_transfer_one_message(struct spi_master *master, |
| struct spi_message *msg) |
| { |
| struct spi_transfer *xfer; |
| bool keep_cs = false; |
| int ret = 0; |
| unsigned long long ms = 1; |
| struct spi_statistics *statm = &master->statistics; |
| struct spi_statistics *stats = &msg->spi->statistics; |
| |
| spi_set_cs(msg->spi, true); |
| |
| SPI_STATISTICS_INCREMENT_FIELD(statm, messages); |
| SPI_STATISTICS_INCREMENT_FIELD(stats, messages); |
| |
| list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
| trace_spi_transfer_start(msg, xfer); |
| |
| spi_statistics_add_transfer_stats(statm, xfer, master); |
| spi_statistics_add_transfer_stats(stats, xfer, master); |
| |
| if (xfer->tx_buf || xfer->rx_buf) { |
| reinit_completion(&master->xfer_completion); |
| |
| ret = master->transfer_one(master, msg->spi, xfer); |
| if (ret < 0) { |
| SPI_STATISTICS_INCREMENT_FIELD(statm, |
| errors); |
| SPI_STATISTICS_INCREMENT_FIELD(stats, |
| errors); |
| dev_err(&msg->spi->dev, |
| "SPI transfer failed: %d\n", ret); |
| goto out; |
| } |
| |
| if (ret > 0) { |
| ret = 0; |
| ms = 8LL * 1000LL * xfer->len; |
| do_div(ms, xfer->speed_hz); |
| ms += ms + 200; /* some tolerance */ |
| |
| if (ms > UINT_MAX) |
| ms = UINT_MAX; |
| |
| ms = wait_for_completion_timeout(&master->xfer_completion, |
| msecs_to_jiffies(ms)); |
| } |
| |
| if (ms == 0) { |
| SPI_STATISTICS_INCREMENT_FIELD(statm, |
| timedout); |
| SPI_STATISTICS_INCREMENT_FIELD(stats, |
| timedout); |
| dev_err(&msg->spi->dev, |
| "SPI transfer timed out\n"); |
| msg->status = -ETIMEDOUT; |
| } |
| } else { |
| if (xfer->len) |
| dev_err(&msg->spi->dev, |
| "Bufferless transfer has length %u\n", |
| xfer->len); |
| } |
| |
| trace_spi_transfer_stop(msg, xfer); |
| |
| if (msg->status != -EINPROGRESS) |
| goto out; |
| |
| if (xfer->delay_usecs) |
| udelay(xfer->delay_usecs); |
| |
| if (xfer->cs_change) { |
| if (list_is_last(&xfer->transfer_list, |
| &msg->transfers)) { |
| keep_cs = true; |
| } else { |
| spi_set_cs(msg->spi, false); |
| udelay(10); |
| spi_set_cs(msg->spi, true); |
| } |
| } |
| |
| msg->actual_length += xfer->len; |
| } |
| |
| out: |
| if (ret != 0 || !keep_cs) |
| spi_set_cs(msg->spi, false); |
| |
| if (msg->status == -EINPROGRESS) |
| msg->status = ret; |
| |
| if (msg->status && master->handle_err) |
| master->handle_err(master, msg); |
| |
| spi_res_release(master, msg); |
| |
| spi_finalize_current_message(master); |
| |
| return ret; |
| } |
| |
| /** |
| * spi_finalize_current_transfer - report completion of a transfer |
| * @master: the master reporting completion |
| * |
| * Called by SPI drivers using the core transfer_one_message() |
| * implementation to notify it that the current interrupt driven |
| * transfer has finished and the next one may be scheduled. |
| */ |
| void spi_finalize_current_transfer(struct spi_master *master) |
| { |
| complete(&master->xfer_completion); |
| } |
| EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); |
| |
| /** |
| * __spi_pump_messages - function which processes spi message queue |
| * @master: master to process queue for |
| * @in_kthread: true if we are in the context of the message pump thread |
| * |
| * This function checks if there is any spi message in the queue that |
| * needs processing and if so call out to the driver to initialize hardware |
| * and transfer each message. |
| * |
| * Note that it is called both from the kthread itself and also from |
| * inside spi_sync(); the queue extraction handling at the top of the |
| * function should deal with this safely. |
| */ |
| static void __spi_pump_messages(struct spi_master *master, bool in_kthread) |
| { |
| unsigned long flags; |
| bool was_busy = false; |
| int ret; |
| |
| /* Lock queue */ |
| spin_lock_irqsave(&master->queue_lock, flags); |
| |
| /* Make sure we are not already running a message */ |
| if (master->cur_msg) { |
| spin_unlock_irqrestore(&master->queue_lock, flags); |
| return; |
| } |
| |
| /* If another context is idling the device then defer */ |
| if (master->idling) { |
| kthread_queue_work(&master->kworker, &master->pump_messages); |
| spin_unlock_irqrestore(&master->queue_lock, flags); |
| return; |
| } |
| |
| /* Check if the queue is idle */ |
| if (list_empty(&master->queue) || !master->running) { |
| if (!master->busy) { |
| spin_unlock_irqrestore(&master->queue_lock, flags); |
| return; |
| } |
| |
| /* Only do teardown in the thread */ |
| if (!in_kthread) { |
| kthread_queue_work(&master->kworker, |
| &master->pump_messages); |
| spin_unlock_irqrestore(&master->queue_lock, flags); |
| return; |
| } |
| |
| master->busy = false; |
| master->idling = true; |
| spin_unlock_irqrestore(&master->queue_lock, flags); |
| |
| kfree(master->dummy_rx); |
| master->dummy_rx = NULL; |
| kfree(master->dummy_tx); |
| master->dummy_tx = NULL; |
| if (master->unprepare_transfer_hardware && |
| master->unprepare_transfer_hardware(master)) |
| dev_err(&master->dev, |
| "failed to unprepare transfer hardware\n"); |
| if (master->auto_runtime_pm) { |
| pm_runtime_mark_last_busy(master->dev.parent); |
| pm_runtime_put_autosuspend(master->dev.parent); |
| } |
| trace_spi_master_idle(master); |
| |
| spin_lock_irqsave(&master->queue_lock, flags); |
| master->idling = false; |
| spin_unlock_irqrestore(&master->queue_lock, flags); |
| return; |
| } |
| |
| /* Extract head of queue */ |
| master->cur_msg = |
| list_first_entry(&master->queue, struct spi_message, queue); |
| |
| list_del_init(&master->cur_msg->queue); |
| if (master->busy) |
| was_busy = true; |
| else |
| master->busy = true; |
| spin_unlock_irqrestore(&master->queue_lock, flags); |
| |
| mutex_lock(&master->io_mutex); |
| |
| if (!was_busy && master->auto_runtime_pm) { |
| ret = pm_runtime_get_sync(master->dev.parent); |
| if (ret < 0) { |
| dev_err(&master->dev, "Failed to power device: %d\n", |
| ret); |
| mutex_unlock(&master->io_mutex); |
| return; |
| } |
| } |
| |
| if (!was_busy) |
| trace_spi_master_busy(master); |
| |
| if (!was_busy && master->prepare_transfer_hardware) { |
| ret = master->prepare_transfer_hardware(master); |
| if (ret) { |
| dev_err(&master->dev, |
| "failed to prepare transfer hardware\n"); |
| |
| if (master->auto_runtime_pm) |
| pm_runtime_put(master->dev.parent); |
| mutex_unlock(&master->io_mutex); |
| return; |
| } |
| } |
| |
| trace_spi_message_start(master->cur_msg); |
| |
| if (master->prepare_message) { |
| ret = master->prepare_message(master, master->cur_msg); |
| if (ret) { |
| dev_err(&master->dev, |
| "failed to prepare message: %d\n", ret); |
| master->cur_msg->status = ret; |
| spi_finalize_current_message(master); |
| goto out; |
| } |
| master->cur_msg_prepared = true; |
| } |
| |
| ret = spi_map_msg(master, master->cur_msg); |
| if (ret) { |
| master->cur_msg->status = ret; |
| spi_finalize_current_message(master); |
| goto out; |
| } |
| |
| ret = master->transfer_one_message(master, master->cur_msg); |
| if (ret) { |
| dev_err(&master->dev, |
| "failed to transfer one message from queue\n"); |
| goto out; |
| } |
| |
| out: |
| mutex_unlock(&master->io_mutex); |
| |
| /* Prod the scheduler in case transfer_one() was busy waiting */ |
| if (!ret) |
| cond_resched(); |
| } |
| |
| /** |
| * spi_pump_messages - kthread work function which processes spi message queue |
| * @work: pointer to kthread work struct contained in the master struct |
| */ |
| static void spi_pump_messages(struct kthread_work *work) |
| { |
| struct spi_master *master = |
| container_of(work, struct spi_master, pump_messages); |
| |
| __spi_pump_messages(master, true); |
| } |
| |
| static int spi_init_queue(struct spi_master *master) |
| { |
| struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; |
| |
| master->running = false; |
| master->busy = false; |
| |
| kthread_init_worker(&master->kworker); |
| master->kworker_task = kthread_run(kthread_worker_fn, |
| &master->kworker, "%s", |
| dev_name(&master->dev)); |
| if (IS_ERR(master->kworker_task)) { |
| dev_err(&master->dev, "failed to create message pump task\n"); |
| return PTR_ERR(master->kworker_task); |
| } |
| kthread_init_work(&master->pump_messages, spi_pump_messages); |
| |
| /* |
| * Master config will indicate if this controller should run the |
| * message pump with high (realtime) priority to reduce the transfer |
| * latency on the bus by minimising the delay between a transfer |
| * request and the scheduling of the message pump thread. Without this |
| * setting the message pump thread will remain at default priority. |
| */ |
| if (master->rt) { |
| dev_info(&master->dev, |
| "will run message pump with realtime priority\n"); |
| sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * spi_get_next_queued_message() - called by driver to check for queued |
| * messages |
| * @master: the master to check for queued messages |
| * |
| * If there are more messages in the queue, the next message is returned from |
| * this call. |
| * |
| * Return: the next message in the queue, else NULL if the queue is empty. |
| */ |
| struct spi_message *spi_get_next_queued_message(struct spi_master *master) |
| { |
| struct spi_message *next; |
| unsigned long flags; |
| |
| /* get a pointer to the next message, if any */ |
| spin_lock_irqsave(&master->queue_lock, flags); |
| next = list_first_entry_or_null(&master->queue, struct spi_message, |
| queue); |
| spin_unlock_irqrestore(&master->queue_lock, flags); |
| |
| return next; |
| } |
| EXPORT_SYMBOL_GPL(spi_get_next_queued_message); |
| |
| /** |
| * spi_finalize_current_message() - the current message is complete |
| * @master: the master to return the message to |
| * |
| * Called by the driver to notify the core that the message in the front of the |
| * queue is complete and can be removed from the queue. |
| */ |
| void spi_finalize_current_message(struct spi_master *master) |
| { |
| struct spi_message *mesg; |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&master->queue_lock, flags); |
| mesg = master->cur_msg; |
| spin_unlock_irqrestore(&master->queue_lock, flags); |
| |
| spi_unmap_msg(master, mesg); |
| |
| if (master->cur_msg_prepared && master->unprepare_message) { |
| ret = master->unprepare_message(master, mesg); |
| if (ret) { |
| dev_err(&master->dev, |
| "failed to unprepare message: %d\n", ret); |
| } |
| } |
| |
| spin_lock_irqsave(&master->queue_lock, flags); |
| master->cur_msg = NULL; |
| master->cur_msg_prepared = false; |
| kthread_queue_work(&master->kworker, &master->pump_messages); |
| spin_unlock_irqrestore(&master->queue_lock, flags); |
| |
| trace_spi_message_done(mesg); |
| |
| mesg->state = NULL; |
| if (mesg->complete) |
| mesg->complete(mesg->context); |
| } |
| EXPORT_SYMBOL_GPL(spi_finalize_current_message); |
| |
| static int spi_start_queue(struct spi_master *master) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&master->queue_lock, flags); |
| |
| if (master->running || master->busy) { |
| spin_unlock_irqrestore(&master->queue_lock, flags); |
| return -EBUSY; |
| } |
| |
| master->running = true; |
| master->cur_msg = NULL; |
| spin_unlock_irqrestore(&master->queue_lock, flags); |
| |
| kthread_queue_work(&master->kworker, &master->pump_messages); |
| |
| return 0; |
| } |
| |
| static int spi_stop_queue(struct spi_master *master) |
| { |
| unsigned long flags; |
| unsigned limit = 500; |
| int ret = 0; |
| |
| spin_lock_irqsave(&master->queue_lock, flags); |
| |
| /* |
| * This is a bit lame, but is optimized for the common execution path. |
| * A wait_queue on the master->busy could be used, but then the common |
| * execution path (pump_messages) would be required to call wake_up or |
| * friends on every SPI message. Do this instead. |
| */ |
| while ((!list_empty(&master->queue) || master->busy) && limit--) { |
| spin_unlock_irqrestore(&master->queue_lock, flags); |
| usleep_range(10000, 11000); |
| spin_lock_irqsave(&master->queue_lock, flags); |
| } |
| |
| if (!list_empty(&master->queue) || master->busy) |
| ret = -EBUSY; |
| else |
| master->running = false; |
| |
| spin_unlock_irqrestore(&master->queue_lock, flags); |
| |
| if (ret) { |
| dev_warn(&master->dev, |
| "could not stop message queue\n"); |
| return ret; |
| } |
| return ret; |
| } |
| |
| static int spi_destroy_queue(struct spi_master *master) |
| { |
| int ret; |
| |
| ret = spi_stop_queue(master); |
| |
| /* |
| * kthread_flush_worker will block until all work is done. |
| * If the reason that stop_queue timed out is that the work will never |
| * finish, then it does no good to call flush/stop thread, so |
| * return anyway. |
| */ |
| if (ret) { |
| dev_err(&master->dev, "problem destroying queue\n"); |
| return ret; |
| } |
| |
| kthread_flush_worker(&master->kworker); |
| kthread_stop(master->kworker_task); |
| |
| return 0; |
| } |
| |
| static int __spi_queued_transfer(struct spi_device *spi, |
| struct spi_message *msg, |
| bool need_pump) |
| { |
| struct spi_master *master = spi->master; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&master->queue_lock, flags); |
| |
| if (!master->running) { |
| spin_unlock_irqrestore(&master->queue_lock, flags); |
| return -ESHUTDOWN; |
| } |
| msg->actual_length = 0; |
| msg->status = -EINPROGRESS; |
| |
| list_add_tail(&msg->queue, &master->queue); |
| if (!master->busy && need_pump) |
| kthread_queue_work(&master->kworker, &master->pump_messages); |
| |
| spin_unlock_irqrestore(&master->queue_lock, flags); |
| return 0; |
| } |
| |
| /** |
| * spi_queued_transfer - transfer function for queued transfers |
| * @spi: spi device which is requesting transfer |
| * @msg: spi message which is to handled is queued to driver queue |
| * |
| * Return: zero on success, else a negative error code. |
| */ |
| static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) |
| { |
| return __spi_queued_transfer(spi, msg, true); |
| } |
| |
| static int spi_master_initialize_queue(struct spi_master *master) |
| { |
| int ret; |
| |
| master->transfer = spi_queued_transfer; |
| if (!master->transfer_one_message) |
| master->transfer_one_message = spi_transfer_one_message; |
| |
| /* Initialize and start queue */ |
| ret = spi_init_queue(master); |
| if (ret) { |
| dev_err(&master->dev, "problem initializing queue\n"); |
| goto err_init_queue; |
| } |
| master->queued = true; |
| ret = spi_start_queue(master); |
| if (ret) { |
| dev_err(&master->dev, "problem starting queue\n"); |
| goto err_start_queue; |
| } |
| |
| return 0; |
| |
| err_start_queue: |
| spi_destroy_queue(master); |
| err_init_queue: |
| return ret; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| #if defined(CONFIG_OF) |
| static struct spi_device * |
| of_register_spi_device(struct spi_master *master, struct device_node *nc) |
| { |
| struct spi_device *spi; |
| int rc; |
| u32 value; |
| |
| /* Alloc an spi_device */ |
| spi = spi_alloc_device(master); |
| if (!spi) { |
| dev_err(&master->dev, "spi_device alloc error for %s\n", |
| nc->full_name); |
| rc = -ENOMEM; |
| goto err_out; |
| } |
| |
| /* Select device driver */ |
| rc = of_modalias_node(nc, spi->modalias, |
| sizeof(spi->modalias)); |
| if (rc < 0) { |
| dev_err(&master->dev, "cannot find modalias for %s\n", |
| nc->full_name); |
| goto err_out; |
| } |
| |
| /* Device address */ |
| rc = of_property_read_u32(nc, "reg", &value); |
| if (rc) { |
| dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n", |
| nc->full_name, rc); |
| goto err_out; |
| } |
| spi->chip_select = value; |
| |
| /* Mode (clock phase/polarity/etc.) */ |
| if (of_find_property(nc, "spi-cpha", NULL)) |
| spi->mode |= SPI_CPHA; |
| if (of_find_property(nc, "spi-cpol", NULL)) |
| spi->mode |= SPI_CPOL; |
| if (of_find_property(nc, "spi-cs-high", NULL)) |
| spi->mode |= SPI_CS_HIGH; |
| if (of_find_property(nc, "spi-3wire", NULL)) |
| spi->mode |= SPI_3WIRE; |
| if (of_find_property(nc, "spi-lsb-first", NULL)) |
| spi->mode |= SPI_LSB_FIRST; |
| |
| /* Device DUAL/QUAD mode */ |
| if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { |
| switch (value) { |
| case 1: |
| break; |
| case 2: |
| spi->mode |= SPI_TX_DUAL; |
| break; |
| case 4: |
| spi->mode |= SPI_TX_QUAD; |
| break; |
| default: |
| dev_warn(&master->dev, |
| "spi-tx-bus-width %d not supported\n", |
| value); |
| break; |
| } |
| } |
| |
| if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { |
| switch (value) { |
| case 1: |
| break; |
| case 2: |
| spi->mode |= SPI_RX_DUAL; |
| break; |
| case 4: |
| spi->mode |= SPI_RX_QUAD; |
| break; |
| default: |
| dev_warn(&master->dev, |
| "spi-rx-bus-width %d not supported\n", |
| value); |
| break; |
| } |
| } |
| |
| /* Device speed */ |
| rc = of_property_read_u32(nc, "spi-max-frequency", &value); |
| if (rc) { |
| dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n", |
| nc->full_name, rc); |
| goto err_out; |
| } |
| spi->max_speed_hz = value; |
| |
| /* Store a pointer to the node in the device structure */ |
| of_node_get(nc); |
| spi->dev.of_node = nc; |
| |
| /* Register the new device */ |
| rc = spi_add_device(spi); |
| if (rc) { |
| dev_err(&master->dev, "spi_device register error %s\n", |
| nc->full_name); |
| goto err_of_node_put; |
| } |
| |
| return spi; |
| |
| err_of_node_put: |
| of_node_put(nc); |
| err_out: |
| spi_dev_put(spi); |
| return ERR_PTR(rc); |
| } |
| |
| /** |
| * of_register_spi_devices() - Register child devices onto the SPI bus |
| * @master: Pointer to spi_master device |
| * |
| * Registers an spi_device for each child node of master node which has a 'reg' |
| * property. |
| */ |
| static void of_register_spi_devices(struct spi_master *master) |
| { |
| struct spi_device *spi; |
| struct device_node *nc; |
| |
| if (!master->dev.of_node) |
| return; |
| |
| for_each_available_child_of_node(master->dev.of_node, nc) { |
| if (of_node_test_and_set_flag(nc, OF_POPULATED)) |
| continue; |
| spi = of_register_spi_device(master, nc); |
| if (IS_ERR(spi)) { |
| dev_warn(&master->dev, "Failed to create SPI device for %s\n", |
| nc->full_name); |
| of_node_clear_flag(nc, OF_POPULATED); |
| } |
| } |
| } |
| #else |
| static void of_register_spi_devices(struct spi_master *master) { } |
| #endif |
| |
| #ifdef CONFIG_ACPI |
| static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) |
| { |
| struct spi_device *spi = data; |
| struct spi_master *master = spi->master; |
| |
| if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { |
| struct acpi_resource_spi_serialbus *sb; |
| |
| sb = &ares->data.spi_serial_bus; |
| if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { |
| /* |
| * ACPI DeviceSelection numbering is handled by the |
| * host controller driver in Windows and can vary |
| * from driver to driver. In Linux we always expect |
| * 0 .. max - 1 so we need to ask the driver to |
| * translate between the two schemes. |
| */ |
| if (master->fw_translate_cs) { |
| int cs = master->fw_translate_cs(master, |
| sb->device_selection); |
| if (cs < 0) |
| return cs; |
| spi->chip_select = cs; |
| } else { |
| spi->chip_select = sb->device_selection; |
| } |
| |
| spi->max_speed_hz = sb->connection_speed; |
| |
| if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) |
| spi->mode |= SPI_CPHA; |
| if (sb->clock_polarity == ACPI_SPI_START_HIGH) |
| spi->mode |= SPI_CPOL; |
| if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) |
| spi->mode |= SPI_CS_HIGH; |
| } |
| } else if (spi->irq < 0) { |
| struct resource r; |
| |
| if (acpi_dev_resource_interrupt(ares, 0, &r)) |
| spi->irq = r.start; |
| } |
| |
| /* Always tell the ACPI core to skip this resource */ |
| return 1; |
| } |
| |
| static acpi_status acpi_register_spi_device(struct spi_master *master, |
| struct acpi_device *adev) |
| { |
| struct list_head resource_list; |
| struct spi_device *spi; |
| int ret; |
| |
| if (acpi_bus_get_status(adev) || !adev->status.present || |
| acpi_device_enumerated(adev)) |
| return AE_OK; |
| |
| spi = spi_alloc_device(master); |
| if (!spi) { |
| dev_err(&master->dev, "failed to allocate SPI device for %s\n", |
| dev_name(&adev->dev)); |
| return AE_NO_MEMORY; |
| } |
| |
| ACPI_COMPANION_SET(&spi->dev, adev); |
| spi->irq = -1; |
| |
| INIT_LIST_HEAD(&resource_list); |
| ret = acpi_dev_get_resources(adev, &resource_list, |
| acpi_spi_add_resource, spi); |
| acpi_dev_free_resource_list(&resource_list); |
| |
| if (ret < 0 || !spi->max_speed_hz) { |
| spi_dev_put(spi); |
| return AE_OK; |
| } |
| |
| if (spi->irq < 0) |
| spi->irq = acpi_dev_gpio_irq_get(adev, 0); |
| |
| acpi_device_set_enumerated(adev); |
| |
| adev->power.flags.ignore_parent = true; |
| strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias)); |
| if (spi_add_device(spi)) { |
| adev->power.flags.ignore_parent = false; |
| dev_err(&master->dev, "failed to add SPI device %s from ACPI\n", |
| dev_name(&adev->dev)); |
| spi_dev_put(spi); |
| } |
| |
| return AE_OK; |
| } |
| |
| static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, |
| void *data, void **return_value) |
| { |
| struct spi_master *master = data; |
| struct acpi_device *adev; |
| |
| if (acpi_bus_get_device(handle, &adev)) |
| return AE_OK; |
| |
| return acpi_register_spi_device(master, adev); |
| } |
| |
| static void acpi_register_spi_devices(struct spi_master *master) |
| { |
| acpi_status status; |
| acpi_handle handle; |
| |
| handle = ACPI_HANDLE(master->dev.parent); |
| if (!handle) |
| return; |
| |
| status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, |
| acpi_spi_add_device, NULL, |
| master, NULL); |
| if (ACPI_FAILURE(status)) |
| dev_warn(&master->dev, "failed to enumerate SPI slaves\n"); |
| } |
| #else |
| static inline void acpi_register_spi_devices(struct spi_master *master) {} |
| #endif /* CONFIG_ACPI */ |
| |
| static void spi_master_release(struct device *dev) |
| { |
| struct spi_master *master; |
| |
| master = container_of(dev, struct spi_master, dev); |
| kfree(master); |
| } |
| |
| static struct class spi_master_class = { |
| .name = "spi_master", |
| .owner = THIS_MODULE, |
| .dev_release = spi_master_release, |
| .dev_groups = spi_master_groups, |
| }; |
| |
| |
| /** |
| * spi_alloc_master - allocate SPI master controller |
| * @dev: the controller, possibly using the platform_bus |
| * @size: how much zeroed driver-private data to allocate; the pointer to this |
| * memory is in the driver_data field of the returned device, |
| * accessible with spi_master_get_devdata(). |
| * Context: can sleep |
| * |
| * This call is used only by SPI master controller drivers, which are the |
| * only ones directly touching chip registers. It's how they allocate |
| * an spi_master structure, prior to calling spi_register_master(). |
| * |
| * This must be called from context that can sleep. |
| * |
| * The caller is responsible for assigning the bus number and initializing |
| * the master's methods before calling spi_register_master(); and (after errors |
| * adding the device) calling spi_master_put() to prevent a memory leak. |
| * |
| * Return: the SPI master structure on success, else NULL. |
| */ |
| struct spi_master *spi_alloc_master(struct device *dev, unsigned size) |
| { |
| struct spi_master *master; |
| |
| if (!dev) |
| return NULL; |
| |
| master = kzalloc(size + sizeof(*master), GFP_KERNEL); |
| if (!master) |
| return NULL; |
| |
| device_initialize(&master->dev); |
| master->bus_num = -1; |
| master->num_chipselect = 1; |
| master->dev.class = &spi_master_class; |
| master->dev.parent = dev; |
| pm_suspend_ignore_children(&master->dev, true); |
| spi_master_set_devdata(master, &master[1]); |
| |
| return master; |
| } |
| EXPORT_SYMBOL_GPL(spi_alloc_master); |
| |
| static void devm_spi_release_master(struct device *dev, void *master) |
| { |
| spi_master_put(*(struct spi_master **)master); |
| } |
| |
| /** |
| * devm_spi_alloc_master - resource-managed spi_alloc_master() |
| * @dev: physical device of SPI master |
| * @size: how much zeroed driver-private data to allocate |
| * Context: can sleep |
| * |
| * Allocate an SPI master and automatically release a reference on it |
| * when @dev is unbound from its driver. Drivers are thus relieved from |
| * having to call spi_master_put(). |
| * |
| * The arguments to this function are identical to spi_alloc_master(). |
| * |
| * Return: the SPI master structure on success, else NULL. |
| */ |
| struct spi_master *devm_spi_alloc_master(struct device *dev, unsigned int size) |
| { |
| struct spi_master **ptr, *master; |
| |
| ptr = devres_alloc(devm_spi_release_master, sizeof(*ptr), |
| GFP_KERNEL); |
| if (!ptr) |
| return NULL; |
| |
| master = spi_alloc_master(dev, size); |
| if (master) { |
| *ptr = master; |
| devres_add(dev, ptr); |
| } else { |
| devres_free(ptr); |
| } |
| |
| return master; |
| } |
| EXPORT_SYMBOL_GPL(devm_spi_alloc_master); |
| |
| #ifdef CONFIG_OF |
| static int of_spi_register_master(struct spi_master *master) |
| { |
| int nb, i, *cs; |
| struct device_node *np = master->dev.of_node; |
| |
| if (!np) |
| return 0; |
| |
| nb = of_gpio_named_count(np, "cs-gpios"); |
| master->num_chipselect = max_t(int, nb, master->num_chipselect); |
| |
| /* Return error only for an incorrectly formed cs-gpios property */ |
| if (nb == 0 || nb == -ENOENT) |
| return 0; |
| else if (nb < 0) |
| return nb; |
| |
| cs = devm_kzalloc(&master->dev, |
| sizeof(int) * master->num_chipselect, |
| GFP_KERNEL); |
| master->cs_gpios = cs; |
| |
| if (!master->cs_gpios) |
| return -ENOMEM; |
| |
| for (i = 0; i < master->num_chipselect; i++) |
| cs[i] = -ENOENT; |
| |
| for (i = 0; i < nb; i++) |
| cs[i] = of_get_named_gpio(np, "cs-gpios", i); |
| |
| return 0; |
| } |
| #else |
| static int of_spi_register_master(struct spi_master *master) |
| { |
| return 0; |
| } |
| #endif |
| |
| /** |
| * spi_register_master - register SPI master controller |
| * @master: initialized master, originally from spi_alloc_master() |
| * Context: can sleep |
| * |
| * SPI master controllers connect to their drivers using some non-SPI bus, |
| * such as the platform bus. The final stage of probe() in that code |
| * includes calling spi_register_master() to hook up to this SPI bus glue. |
| * |
| * SPI controllers use board specific (often SOC specific) bus numbers, |
| * and board-specific addressing for SPI devices combines those numbers |
| * with chip select numbers. Since SPI does not directly support dynamic |
| * device identification, boards need configuration tables telling which |
| * chip is at which address. |
| * |
| * This must be called from context that can sleep. It returns zero on |
| * success, else a negative error code (dropping the master's refcount). |
| * After a successful return, the caller is responsible for calling |
| * spi_unregister_master(). |
| * |
| * Return: zero on success, else a negative error code. |
| */ |
| int spi_register_master(struct spi_master *master) |
| { |
| static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); |
| struct device *dev = master->dev.parent; |
| struct boardinfo *bi; |
| int status = -ENODEV; |
| int dynamic = 0; |
| |
| if (!dev) |
| return -ENODEV; |
| |
| status = of_spi_register_master(master); |
| if (status) |
| return status; |
| |
| /* even if it's just one always-selected device, there must |
| * be at least one chipselect |
| */ |
| if (master->num_chipselect == 0) |
| return -EINVAL; |
| |
| if ((master->bus_num < 0) && master->dev.of_node) |
| master->bus_num = of_alias_get_id(master->dev.of_node, "spi"); |
| |
| /* convention: dynamically assigned bus IDs count down from the max */ |
| if (master->bus_num < 0) { |
| /* FIXME switch to an IDR based scheme, something like |
| * I2C now uses, so we can't run out of "dynamic" IDs |
| */ |
| master->bus_num = atomic_dec_return(&dyn_bus_id); |
| dynamic = 1; |
| } |
| |
| INIT_LIST_HEAD(&master->queue); |
| spin_lock_init(&master->queue_lock); |
| spin_lock_init(&master->bus_lock_spinlock); |
| mutex_init(&master->bus_lock_mutex); |
| mutex_init(&master->io_mutex); |
| master->bus_lock_flag = 0; |
| init_completion(&master->xfer_completion); |
| if (!master->max_dma_len) |
| master->max_dma_len = INT_MAX; |
| |
| /* register the device, then userspace will see it. |
| * registration fails if the bus ID is in use. |
| */ |
| dev_set_name(&master->dev, "spi%u", master->bus_num); |
| status = device_add(&master->dev); |
| if (status < 0) |
| goto done; |
| dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), |
| dynamic ? " (dynamic)" : ""); |
| |
| /* If we're using a queued driver, start the queue */ |
| if (master->transfer) |
| dev_info(dev, "master is unqueued, this is deprecated\n"); |
| else { |
| status = spi_master_initialize_queue(master); |
| if (status) { |
| device_del(&master->dev); |
| goto done; |
| } |
| } |
| /* add statistics */ |
| spin_lock_init(&master->statistics.lock); |
| |
| mutex_lock(&board_lock); |
| list_add_tail(&master->list, &spi_master_list); |
| list_for_each_entry(bi, &board_list, list) |
| spi_match_master_to_boardinfo(master, &bi->board_info); |
| mutex_unlock(&board_lock); |
| |
| /* Register devices from the device tree and ACPI */ |
| of_register_spi_devices(master); |
| acpi_register_spi_devices(master); |
| done: |
| return status; |
| } |
| EXPORT_SYMBOL_GPL(spi_register_master); |
| |
| static void devm_spi_unregister(struct device *dev, void *res) |
| { |
| spi_unregister_master(*(struct spi_master **)res); |
| } |
| |
| /** |
| * dev_spi_register_master - register managed SPI master controller |
| * @dev: device managing SPI master |
| * @master: initialized master, originally from spi_alloc_master() |
| * Context: can sleep |
| * |
| * Register a SPI device as with spi_register_master() which will |
| * automatically be unregister |
| * |
| * Return: zero on success, else a negative error code. |
| */ |
| int devm_spi_register_master(struct device *dev, struct spi_master *master) |
| { |
| struct spi_master **ptr; |
| int ret; |
| |
| ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); |
| if (!ptr) |
| return -ENOMEM; |
| |
| ret = spi_register_master(master); |
| if (!ret) { |
| *ptr = master; |
| devres_add(dev, ptr); |
| } else { |
| devres_free(ptr); |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(devm_spi_register_master); |
| |
| static int devm_spi_match_master(struct device *dev, void *res, void *master) |
| { |
| return *(struct spi_master **)res == master; |
| } |
| |
| static int __unregister(struct device *dev, void *null) |
| { |
| spi_unregister_device(to_spi_device(dev)); |
| return 0; |
| } |
| |
| /** |
| * spi_unregister_master - unregister SPI master controller |
| * @master: the master being unregistered |
| * Context: can sleep |
| * |
| * This call is used only by SPI master controller drivers, which are the |
| * only ones directly touching chip registers. |
| * |
| * This must be called from context that can sleep. |
| */ |
| void spi_unregister_master(struct spi_master *master) |
| { |
| /* Prevent addition of new devices, unregister existing ones */ |
| if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) |
| mutex_lock(&spi_add_lock); |
| |
| device_for_each_child(&master->dev, NULL, __unregister); |
| |
| if (master->queued) { |
| if (spi_destroy_queue(master)) |
| dev_err(&master->dev, "queue remove failed\n"); |
| } |
| |
| mutex_lock(&board_lock); |
| list_del(&master->list); |
| mutex_unlock(&board_lock); |
| |
| device_del(&master->dev); |
| |
| /* Release the last reference on the master if its driver |
| * has not yet been converted to devm_spi_alloc_master(). |
| */ |
| if (!devres_find(master->dev.parent, devm_spi_release_master, |
| devm_spi_match_master, master)) |
| put_device(&master->dev); |
| |
| if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) |
| mutex_unlock(&spi_add_lock); |
| } |
| EXPORT_SYMBOL_GPL(spi_unregister_master); |
| |
| int spi_master_suspend(struct spi_master *master) |
| { |
| int ret; |
| |
| /* Basically no-ops for non-queued masters */ |
| if (!master->queued) |
| return 0; |
| |
| ret = spi_stop_queue(master); |
| if (ret) |
| dev_err(&master->dev, "queue stop failed\n"); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(spi_master_suspend); |
| |
| int spi_master_resume(struct spi_master *master) |
| { |
| int ret; |
| |
| if (!master->queued) |
| return 0; |
| |
| ret = spi_start_queue(master); |
| if (ret) |
| dev_err(&master->dev, "queue restart failed\n"); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(spi_master_resume); |
| |
| static int __spi_master_match(struct device *dev, const void *data) |
| { |
| struct spi_master *m; |
| const u16 *bus_num = data; |
| |
| m = container_of(dev, struct spi_master, dev); |
| return m->bus_num == *bus_num; |
| } |
| |
| /** |
| * spi_busnum_to_master - look up master associated with bus_num |
| * @bus_num: the master's bus number |
| * Context: can sleep |
| * |
| * This call may be used with devices that are registered after |
| * arch init time. It returns a refcounted pointer to the relevant |
| * spi_master (which the caller must release), or NULL if there is |
| * no such master registered. |
| * |
| * Return: the SPI master structure on success, else NULL. |
| */ |
| struct spi_master *spi_busnum_to_master(u16 bus_num) |
| { |
| struct device *dev; |
| struct spi_master *master = NULL; |
| |
| dev = class_find_device(&spi_master_class, NULL, &bus_num, |
| __spi_master_match); |
| if (dev) |
| master = container_of(dev, struct spi_master, dev); |
| /* reference got in class_find_device */ |
| return master; |
| } |
| EXPORT_SYMBOL_GPL(spi_busnum_to_master); |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* Core methods for SPI resource management */ |
| |
| /** |
| * spi_res_alloc - allocate a spi resource that is life-cycle managed |
| * during the processing of a spi_message while using |
| * spi_transfer_one |
| * @spi: the spi device for which we allocate memory |
| * @release: the release code to execute for this resource |
| * @size: size to alloc and return |
| * @gfp: GFP allocation flags |
| * |
| * Return: the pointer to the allocated data |
| * |
| * This may get enhanced in the future to allocate from a memory pool |
| * of the @spi_device or @spi_master to avoid repeated allocations. |
| */ |
| void *spi_res_alloc(struct spi_device *spi, |
| spi_res_release_t release, |
| size_t size, gfp_t gfp) |
| { |
| struct spi_res *sres; |
| |
| sres = kzalloc(sizeof(*sres) + size, gfp); |
| if (!sres) |
| return NULL; |
| |
| INIT_LIST_HEAD(&sres->entry); |
| sres->release = release; |
| |
| return sres->data; |
| } |
| EXPORT_SYMBOL_GPL(spi_res_alloc); |
| |
| /** |
| * spi_res_free - free an spi resource |
| * @res: pointer to the custom data of a resource |
| * |
| */ |
| void spi_res_free(void *res) |
| { |
| struct spi_res *sres = container_of(res, struct spi_res, data); |
| |
| if (!res) |
| return; |
| |
| WARN_ON(!list_empty(&sres->entry)); |
| kfree(sres); |
| } |
| EXPORT_SYMBOL_GPL(spi_res_free); |
| |
| /** |
| * spi_res_add - add a spi_res to the spi_message |
| * @message: the spi message |
| * @res: the spi_resource |
| */ |
| void spi_res_add(struct spi_message *message, void *res) |
| { |
| struct spi_res *sres = container_of(res, struct spi_res, data); |
| |
| WARN_ON(!list_empty(&sres->entry)); |
| list_add_tail(&sres->entry, &message->resources); |
| } |
| EXPORT_SYMBOL_GPL(spi_res_add); |
| |
| /** |
| * spi_res_release - release all spi resources for this message |
| * @master: the @spi_master |
| * @message: the @spi_message |
| */ |
| void spi_res_release(struct spi_master *master, |
| struct spi_message *message) |
| { |
| struct spi_res *res; |
| |
| while (!list_empty(&message->resources)) { |
| res = list_last_entry(&message->resources, |
| struct spi_res, entry); |
| |
| if (res->release) |
| res->release(master, message, res->data); |
| |
| list_del(&res->entry); |
| |
| kfree(res); |
| } |
| } |
| EXPORT_SYMBOL_GPL(spi_res_release); |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* Core methods for spi_message alterations */ |
| |
| static void __spi_replace_transfers_release(struct spi_master *master, |
| struct spi_message *msg, |
| void *res) |
| { |
| struct spi_replaced_transfers *rxfer = res; |
| size_t i; |
| |
| /* call extra callback if requested */ |
| if (rxfer->release) |
| rxfer->release(master, msg, res); |
| |
| /* insert replaced transfers back into the message */ |
| list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); |
| |
| /* remove the formerly inserted entries */ |
| for (i = 0; i < rxfer->inserted; i++) |
| list_del(&rxfer->inserted_transfers[i].transfer_list); |
| } |
| |
| /** |
| * spi_replace_transfers - replace transfers with several transfers |
| * and register change with spi_message.resources |
| * @msg: the spi_message we work upon |
| * @xfer_first: the first spi_transfer we want to replace |
| * @remove: number of transfers to remove |
| * @insert: the number of transfers we want to insert instead |
| * @release: extra release code necessary in some circumstances |
| * @extradatasize: extra data to allocate (with alignment guarantees |
| * of struct @spi_transfer) |
| * @gfp: gfp flags |
| * |
| * Returns: pointer to @spi_replaced_transfers, |
| * PTR_ERR(...) in case of errors. |
| */ |
| struct spi_replaced_transfers *spi_replace_transfers( |
| struct spi_message *msg, |
| struct spi_transfer *xfer_first, |
| size_t remove, |
| size_t insert, |
| spi_replaced_release_t release, |
| size_t extradatasize, |
| gfp_t gfp) |
| { |
| struct spi_replaced_transfers *rxfer; |
| struct spi_transfer *xfer; |
| size_t i; |
| |
| /* allocate the structure using spi_res */ |
| rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, |
| insert * sizeof(struct spi_transfer) |
| + sizeof(struct spi_replaced_transfers) |
| + extradatasize, |
| gfp); |
| if (!rxfer) |
| return ERR_PTR(-ENOMEM); |
| |
| /* the release code to invoke before running the generic release */ |
| rxfer->release = release; |
| |
| /* assign extradata */ |
| if (extradatasize) |
| rxfer->extradata = |
| &rxfer->inserted_transfers[insert]; |
| |
| /* init the replaced_transfers list */ |
| INIT_LIST_HEAD(&rxfer->replaced_transfers); |
| |
| /* assign the list_entry after which we should reinsert |
| * the @replaced_transfers - it may be spi_message.messages! |
| */ |
| rxfer->replaced_after = xfer_first->transfer_list.prev; |
| |
| /* remove the requested number of transfers */ |
| for (i = 0; i < remove; i++) { |
| /* if the entry after replaced_after it is msg->transfers |
| * then we have been requested to remove more transfers |
| * than are in the list |
| */ |
| if (rxfer->replaced_after->next == &msg->transfers) { |
| dev_err(&msg->spi->dev, |
| "requested to remove more spi_transfers than are available\n"); |
| /* insert replaced transfers back into the message */ |
| list_splice(&rxfer->replaced_transfers, |
| rxfer->replaced_after); |
| |
| /* free the spi_replace_transfer structure */ |
| spi_res_free(rxfer); |
| |
| /* and return with an error */ |
| return ERR_PTR(-EINVAL); |
| } |
| |
| /* remove the entry after replaced_after from list of |
| * transfers and add it to list of replaced_transfers |
| */ |
| list_move_tail(rxfer->replaced_after->next, |
| &rxfer->replaced_transfers); |
| } |
| |
| /* create copy of the given xfer with identical settings |
| * based on the first transfer to get removed |
| */ |
| for (i = 0; i < insert; i++) { |
| /* we need to run in reverse order */ |
| xfer = &rxfer->inserted_transfers[insert - 1 - i]; |
| |
| /* copy all spi_transfer data */ |
| memcpy(xfer, xfer_first, sizeof(*xfer)); |
| |
| /* add to list */ |
| list_add(&xfer->transfer_list, rxfer->replaced_after); |
| |
| /* clear cs_change and delay_usecs for all but the last */ |
| if (i) { |
| xfer->cs_change = false; |
| xfer->delay_usecs = 0; |
| } |
| } |
| |
| /* set up inserted */ |
| rxfer->inserted = insert; |
| |
| /* and register it with spi_res/spi_message */ |
| spi_res_add(msg, rxfer); |
| |
| return rxfer; |
| } |
| EXPORT_SYMBOL_GPL(spi_replace_transfers); |
| |
| static int __spi_split_transfer_maxsize(struct spi_master *master, |
| struct spi_message *msg, |
| struct spi_transfer **xferp, |
| size_t maxsize, |
| gfp_t gfp) |
| { |
| struct spi_transfer *xfer = *xferp, *xfers; |
| struct spi_replaced_transfers *srt; |
| size_t offset; |
| size_t count, i; |
| |
| /* warn once about this fact that we are splitting a transfer */ |
| dev_warn_once(&msg->spi->dev, |
| "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n", |
| xfer->len, maxsize); |
| |
| /* calculate how many we have to replace */ |
| count = DIV_ROUND_UP(xfer->len, maxsize); |
| |
| /* create replacement */ |
| srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); |
| if (IS_ERR(srt)) |
| return PTR_ERR(srt); |
| xfers = srt->inserted_transfers; |
| |
| /* now handle each of those newly inserted spi_transfers |
| * note that the replacements spi_transfers all are preset |
| * to the same values as *xferp, so tx_buf, rx_buf and len |
| * are all identical (as well as most others) |
| * so we just have to fix up len and the pointers. |
| * |
| * this also includes support for the depreciated |
| * spi_message.is_dma_mapped interface |
| */ |
| |
| /* the first transfer just needs the length modified, so we |
| * run it outside the loop |
| */ |
| xfers[0].len = min_t(size_t, maxsize, xfer[0].len); |
| |
| /* all the others need rx_buf/tx_buf also set */ |
| for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { |
| /* update rx_buf, tx_buf and dma */ |
| if (xfers[i].rx_buf) |
| xfers[i].rx_buf += offset; |
| if (xfers[i].rx_dma) |
| xfers[i].rx_dma += offset; |
| if (xfers[i].tx_buf) |
| xfers[i].tx_buf += offset; |
| if (xfers[i].tx_dma) |
| xfers[i].tx_dma += offset; |
| |
| /* update length */ |
| xfers[i].len = min(maxsize, xfers[i].len - offset); |
| } |
| |
| /* we set up xferp to the last entry we have inserted, |
| * so that we skip those already split transfers |
| */ |
| *xferp = &xfers[count - 1]; |
| |
| /* increment statistics counters */ |
| SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, |
| transfers_split_maxsize); |
| SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, |
| transfers_split_maxsize); |
| |
| return 0; |
| } |
| |
| /** |
| * spi_split_tranfers_maxsize - split spi transfers into multiple transfers |
| * when an individual transfer exceeds a |
| * certain size |
| * @master: the @spi_master for this transfer |
| * @msg: the @spi_message to transform |
| * @maxsize: the maximum when to apply this |
| * @gfp: GFP allocation flags |
| * |
| * Return: status of transformation |
| */ |
| int spi_split_transfers_maxsize(struct spi_master *master, |
| struct spi_message *msg, |
| size_t maxsize, |
| gfp_t gfp) |
| { |
| struct spi_transfer *xfer; |
| int ret; |
| |
| /* iterate over the transfer_list, |
| * but note that xfer is advanced to the last transfer inserted |
| * to avoid checking sizes again unnecessarily (also xfer does |
| * potentiall belong to a different list by the time the |
| * replacement has happened |
| */ |
| list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
| if (xfer->len > maxsize) { |
| ret = __spi_split_transfer_maxsize( |
| master, msg, &xfer, maxsize, gfp); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* Core methods for SPI master protocol drivers. Some of the |
| * other core methods are currently defined as inline functions. |
| */ |
| |
| static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word) |
| { |
| if (master->bits_per_word_mask) { |
| /* Only 32 bits fit in the mask */ |
| if (bits_per_word > 32) |
| return -EINVAL; |
| if (!(master->bits_per_word_mask & |
| SPI_BPW_MASK(bits_per_word))) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * spi_setup - setup SPI mode and clock rate |
| * @spi: the device whose settings are being modified |
| * Context: can sleep, and no requests are queued to the device |
| * |
| * SPI protocol drivers may need to update the transfer mode if the |
| * device doesn't work with its default. They may likewise need |
| * to update clock rates or word sizes from initial values. This function |
| * changes those settings, and must be called from a context that can sleep. |
| * Except for SPI_CS_HIGH, which takes effect immediately, the changes take |
| * effect the next time the device is selected and data is transferred to |
| * or from it. When this function returns, the spi device is deselected. |
| * |
| * Note that this call will fail if the protocol driver specifies an option |
| * that the underlying controller or its driver does not support. For |
| * example, not all hardware supports wire transfers using nine bit words, |
| * LSB-first wire encoding, or active-high chipselects. |
| * |
| * Return: zero on success, else a negative error code. |
| */ |
| int spi_setup(struct spi_device *spi) |
| { |
| unsigned bad_bits, ugly_bits; |
| int status; |
| |
| /* check mode to prevent that DUAL and QUAD set at the same time |
| */ |
| if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || |
| ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { |
| dev_err(&spi->dev, |
| "setup: can not select dual and quad at the same time\n"); |
| return -EINVAL; |
| } |
| /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden |
| */ |
| if ((spi->mode & SPI_3WIRE) && (spi->mode & |
| (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD))) |
| return -EINVAL; |
| /* help drivers fail *cleanly* when they need options |
| * that aren't supported with their current master |
| */ |
| bad_bits = spi->mode & ~spi->master->mode_bits; |
| ugly_bits = bad_bits & |
| (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD); |
| if (ugly_bits) { |
| dev_warn(&spi->dev, |
| "setup: ignoring unsupported mode bits %x\n", |
| ugly_bits); |
| spi->mode &= ~ugly_bits; |
| bad_bits &= ~ugly_bits; |
| } |
| if (bad_bits) { |
| dev_err(&spi->dev, "setup: unsupported mode bits %x\n", |
| bad_bits); |
| return -EINVAL; |
| } |
| |
| if (!spi->bits_per_word) |
| spi->bits_per_word = 8; |
| |
| status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word); |
| if (status) |
| return status; |
| |
| if (!spi->max_speed_hz) |
| spi->max_speed_hz = spi->master->max_speed_hz; |
| |
| if (spi->master->setup) |
| status = spi->master->setup(spi); |
| |
| spi_set_cs(spi, false); |
| |
| dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", |
| (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), |
| (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", |
| (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", |
| (spi->mode & SPI_3WIRE) ? "3wire, " : "", |
| (spi->mode & SPI_LOOP) ? "loopback, " : "", |
| spi->bits_per_word, spi->max_speed_hz, |
| status); |
| |
| return status; |
| } |
| EXPORT_SYMBOL_GPL(spi_setup); |
| |
| static int __spi_validate(struct spi_device *spi, struct spi_message *message) |
| { |
| struct spi_master *master = spi->master; |
| struct spi_transfer *xfer; |
| int w_size; |
| |
| if (list_empty(&message->transfers)) |
| return -EINVAL; |
| |
| /* Half-duplex links include original MicroWire, and ones with |
| * only one data pin like SPI_3WIRE (switches direction) or where |
| * either MOSI or MISO is missing. They can also be caused by |
| * software limitations. |
| */ |
| if ((master->flags & SPI_MASTER_HALF_DUPLEX) |
| || (spi->mode & SPI_3WIRE)) { |
| unsigned flags = master->flags; |
| |
| list_for_each_entry(xfer, &message->transfers, transfer_list) { |
| if (xfer->rx_buf && xfer->tx_buf) |
| return -EINVAL; |
| if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) |
| return -EINVAL; |
| if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) |
| return -EINVAL; |
| } |
| } |
| |
| /** |
| * Set transfer bits_per_word and max speed as spi device default if |
| * it is not set for this transfer. |
| * Set transfer tx_nbits and rx_nbits as single transfer default |
| * (SPI_NBITS_SINGLE) if it is not set for this transfer. |
| */ |
| message->frame_length = 0; |
| list_for_each_entry(xfer, &message->transfers, transfer_list) { |
| message->frame_length += xfer->len; |
| if (!xfer->bits_per_word) |
| xfer->bits_per_word = spi->bits_per_word; |
| |
| if (!xfer->speed_hz) |
| xfer->speed_hz = spi->max_speed_hz; |
| if (!xfer->speed_hz) |
| xfer->speed_hz = master->max_speed_hz; |
| |
| if (master->max_speed_hz && |
| xfer->speed_hz > master->max_speed_hz) |
| xfer->speed_hz = master->max_speed_hz; |
| |
| if (__spi_validate_bits_per_word(master, xfer->bits_per_word)) |
| return -EINVAL; |
| |
| /* |
| * SPI transfer length should be multiple of SPI word size |
| * where SPI word size should be power-of-two multiple |
| */ |
| if (xfer->bits_per_word <= 8) |
| w_size = 1; |
| else if (xfer->bits_per_word <= 16) |
| w_size = 2; |
| else |
| w_size = 4; |
| |
| /* No partial transfers accepted */ |
| if (xfer->len % w_size) |
| return -EINVAL; |
| |
| if (xfer->speed_hz && master->min_speed_hz && |
| xfer->speed_hz < master->min_speed_hz) |
| return -EINVAL; |
| |
| if (xfer->tx_buf && !xfer->tx_nbits) |
| xfer->tx_nbits = SPI_NBITS_SINGLE; |
| if (xfer->rx_buf && !xfer->rx_nbits) |
| xfer->rx_nbits = SPI_NBITS_SINGLE; |
| /* check transfer tx/rx_nbits: |
| * 1. check the value matches one of single, dual and quad |
| * 2. check tx/rx_nbits match the mode in spi_device |
| */ |
| if (xfer->tx_buf) { |
| if (xfer->tx_nbits != SPI_NBITS_SINGLE && |
| xfer->tx_nbits != SPI_NBITS_DUAL && |
| xfer->tx_nbits != SPI_NBITS_QUAD) |
| return -EINVAL; |
| if ((xfer->tx_nbits == SPI_NBITS_DUAL) && |
| !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) |
| return -EINVAL; |
| if ((xfer->tx_nbits == SPI_NBITS_QUAD) && |
| !(spi->mode & SPI_TX_QUAD)) |
| return -EINVAL; |
| } |
| /* check transfer rx_nbits */ |
| if (xfer->rx_buf) { |
| if (xfer->rx_nbits != SPI_NBITS_SINGLE && |
| xfer->rx_nbits != SPI_NBITS_DUAL && |
| xfer->rx_nbits != SPI_NBITS_QUAD) |
| return -EINVAL; |
| if ((xfer->rx_nbits == SPI_NBITS_DUAL) && |
| !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) |
| return -EINVAL; |
| if ((xfer->rx_nbits == SPI_NBITS_QUAD) && |
| !(spi->mode & SPI_RX_QUAD)) |
| return -EINVAL; |
| } |
| } |
| |
| message->status = -EINPROGRESS; |
| |
| return 0; |
| } |
| |
| static int __spi_async(struct spi_device *spi, struct spi_message *message) |
| { |
| struct spi_master *master = spi->master; |
| |
| message->spi = spi; |
| |
| SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async); |
| SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); |
| |
| trace_spi_message_submit(message); |
| |
| return master->transfer(spi, message); |
| } |
| |
| /** |
| * spi_async - asynchronous SPI transfer |
| * @spi: device with which data will be exchanged |
| * @message: describes the data transfers, including completion callback |
| * Context: any (irqs may be blocked, etc) |
| * |
| * This call may be used in_irq and other contexts which can't sleep, |
| * as well as from task contexts which can sleep. |
| * |
| * The completion callback is invoked in a context which can't sleep. |
| * Before that invocation, the value of message->status is undefined. |
| * When the callback is issued, message->status holds either zero (to |
| * indicate complete success) or a negative error code. After that |
| * callback returns, the driver which issued the transfer request may |
| * deallocate the associated memory; it's no longer in use by any SPI |
| * core or controller driver code. |
| * |
| * Note that although all messages to a spi_device are handled in |
| * FIFO order, messages may go to different devices in other orders. |
| * Some device might be higher priority, or have various "hard" access |
| * time requirements, for example. |
| * |
| * On detection of any fault during the transfer, processing of |
| * the entire message is aborted, and the device is deselected. |
| * Until returning from the associated message completion callback, |
| * no other spi_message queued to that device will be processed. |
| * (This rule applies equally to all the synchronous transfer calls, |
| * which are wrappers around this core asynchronous primitive.) |
| * |
| * Return: zero on success, else a negative error code. |
| */ |
| int spi_async(struct spi_device *spi, struct spi_message *message) |
| { |
| struct spi_master *master = spi->master; |
| int ret; |
| unsigned long flags; |
| |
| ret = __spi_validate(spi, message); |
| if (ret != 0) |
| return ret; |
| |
| spin_lock_irqsave(&master->bus_lock_spinlock, flags); |
| |
| if (master->bus_lock_flag) |
| ret = -EBUSY; |
| else |
| ret = __spi_async(spi, message); |
| |
| spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(spi_async); |
| |
| /** |
| * spi_async_locked - version of spi_async with exclusive bus usage |
| * @spi: device with which data will be exchanged |
| * @message: describes the data transfers, including completion callback |
| * Context: any (irqs may be blocked, etc) |
| * |
| * This call may be used in_irq and other contexts which can't sleep, |
| * as well as from task contexts which can sleep. |
| * |
| * The completion callback is invoked in a context which can't sleep. |
| * Before that invocation, the value of message->status is undefined. |
| * When the callback is issued, message->status holds either zero (to |
| * indicate complete success) or a negative error code. After that |
| * callback returns, the driver which issued the transfer request may |
| * deallocate the associated memory; it's no longer in use by any SPI |
| * core or controller driver code. |
| * |
| * Note that although all messages to a spi_device are handled in |
| * FIFO order, messages may go to different devices in other orders. |
| * Some device might be higher priority, or have various "hard" access |
| * time requirements, for example. |
| * |
| * On detection of any fault during the transfer, processing of |
| * the entire message is aborted, and the device is deselected. |
| * Until returning from the associated message completion callback, |
| * no other spi_message queued to that device will be processed. |
| * (This rule applies equally to all the synchronous transfer calls, |
| * which are wrappers around this core asynchronous primitive.) |
| * |
| * Return: zero on success, else a negative error code. |
| */ |
| int spi_async_locked(struct spi_device *spi, struct spi_message *message) |
| { |
| struct spi_master *master = spi->master; |
| int ret; |
| unsigned long flags; |
| |
| ret = __spi_validate(spi, message); |
| if (ret != 0) |
| return ret; |
| |
| spin_lock_irqsave(&master->bus_lock_spinlock, flags); |
| |
| ret = __spi_async(spi, message); |
| |
| spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); |
| |
| return ret; |
| |
| } |
| EXPORT_SYMBOL_GPL(spi_async_locked); |
| |
| |
| int spi_flash_read(struct spi_device *spi, |
| struct spi_flash_read_message *msg) |
| |
| { |
| struct spi_master *master = spi->master; |
| struct device *rx_dev = NULL; |
| int ret; |
| |
| if ((msg->opcode_nbits == SPI_NBITS_DUAL || |
| msg->addr_nbits == SPI_NBITS_DUAL) && |
| !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) |
| return -EINVAL; |
| if ((msg->opcode_nbits == SPI_NBITS_QUAD || |
| msg->addr_nbits == SPI_NBITS_QUAD) && |
| !(spi->mode & SPI_TX_QUAD)) |
| return -EINVAL; |
| if (msg->data_nbits == SPI_NBITS_DUAL && |
| !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) |
| return -EINVAL; |
| if (msg->data_nbits == SPI_NBITS_QUAD && |
| !(spi->mode & SPI_RX_QUAD)) |
| return -EINVAL; |
| |
| if (master->auto_runtime_pm) { |
| ret = pm_runtime_get_sync(master->dev.parent); |
| if (ret < 0) { |
| dev_err(&master->dev, "Failed to power device: %d\n", |
| ret); |
| return ret; |
| } |
| } |
| |
| mutex_lock(&master->bus_lock_mutex); |
| mutex_lock(&master->io_mutex); |
| if (master->dma_rx) { |
| rx_dev = master->dma_rx->device->dev; |
| ret = spi_map_buf(master, rx_dev, &msg->rx_sg, |
| msg->buf, msg->len, |
| DMA_FROM_DEVICE); |
| if (!ret) |
| msg->cur_msg_mapped = true; |
| } |
| ret = master->spi_flash_read(spi, msg); |
| if (msg->cur_msg_mapped) |
| spi_unmap_buf(master, rx_dev, &msg->rx_sg, |
| DMA_FROM_DEVICE); |
| mutex_unlock(&master->io_mutex); |
| mutex_unlock(&master->bus_lock_mutex); |
| |
| if (master->auto_runtime_pm) |
| pm_runtime_put(master->dev.parent); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(spi_flash_read); |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* Utility methods for SPI master protocol drivers, layered on |
| * top of the core. Some other utility methods are defined as |
| * inline functions. |
| */ |
| |
| static void spi_complete(void *arg) |
| { |
| complete(arg); |
| } |
| |
| static int __spi_sync(struct spi_device *spi, struct spi_message *message) |
| { |
| DECLARE_COMPLETION_ONSTACK(done); |
| int status; |
| struct spi_master *master = spi->master; |
| unsigned long flags; |
| |
| status = __spi_validate(spi, message); |
| if (status != 0) |
| return status; |
| |
| message->complete = spi_complete; |
| message->context = &done; |
| message->spi = spi; |
| |
| SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync); |
| SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); |
| |
| /* If we're not using the legacy transfer method then we will |
| * try to transfer in the calling context so special case. |
| * This code would be less tricky if we could remove the |
| * support for driver implemented message queues. |
| */ |
| if (master->transfer == spi_queued_transfer) { |
| spin_lock_irqsave(&master->bus_lock_spinlock, flags); |
| |
| trace_spi_message_submit(message); |
| |
| status = __spi_queued_transfer(spi, message, false); |
| |
| spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); |
| } else { |
| status = spi_async_locked(spi, message); |
| } |
| |
| if (status == 0) { |
| /* Push out the messages in the calling context if we |
| * can. |
| */ |
| if (master->transfer == spi_queued_transfer) { |
| SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, |
| spi_sync_immediate); |
| SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, |
| spi_sync_immediate); |
| __spi_pump_messages(master, false); |
| } |
| |
| wait_for_completion(&done); |
| status = message->status; |
| } |
| message->context = NULL; |
| return status; |
| } |
| |
| /** |
| * spi_sync - blocking/synchronous SPI data transfers |
| * @spi: device with which data will be exchanged |
| * @message: describes the data transfers |
| * Context: can sleep |
| * |
| * This call may only be used from a context that may sleep. The sleep |
| * is non-interruptible, and has no timeout. Low-overhead controller |
| * drivers may DMA directly into and out of the message buffers. |
| * |
| * Note that the SPI device's chip select is active during the message, |
| * and then is normally disabled between messages. Drivers for some |
| * frequently-used devices may want to minimize costs of selecting a chip, |
| * by leaving it selected in anticipation that the next message will go |
| * to the same chip. (That may increase power usage.) |
| * |
| * Also, the caller is guaranteeing that the memory associated with the |
| * message will not be freed before this call returns. |
| * |
| * Return: zero on success, else a negative error code. |
| */ |
| int spi_sync(struct spi_device *spi, struct spi_message *message) |
| { |
| int ret; |
| |
| mutex_lock(&spi->master->bus_lock_mutex); |
| ret = __spi_sync(spi, message); |
| mutex_unlock(&spi->master->bus_lock_mutex); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(spi_sync); |
| |
| /** |
| * spi_sync_locked - version of spi_sync with exclusive bus usage |
| * @spi: device with which data will be exchanged |
| * @message: describes the data transfers |
| * Context: can sleep |
| * |
| * This call may only be used from a context that may sleep. The sleep |
| * is non-interruptible, and has no timeout. Low-overhead controller |
| * drivers may DMA directly into and out of the message buffers. |
| * |
| * This call should be used by drivers that require exclusive access to the |
| * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must |
| * be released by a spi_bus_unlock call when the exclusive access is over. |
| * |
| * Return: zero on success, else a negative error code. |
| */ |
| int spi_sync_locked(struct spi_device *spi, struct spi_message *message) |
| { |
| return __spi_sync(spi, message); |
| } |
| EXPORT_SYMBOL_GPL(spi_sync_locked); |
| |
| /** |
| * spi_bus_lock - obtain a lock for exclusive SPI bus usage |
| * @master: SPI bus master that should be locked for exclusive bus access |
| * Context: can sleep |
| * |
| * This call may only be used from a context that may sleep. The sleep |
| * is non-interruptible, and has no timeout. |
| * |
| * This call should be used by drivers that require exclusive access to the |
| * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the |
| * exclusive access is over. Data transfer must be done by spi_sync_locked |
| * and spi_async_locked calls when the SPI bus lock is held. |
| * |
| * Return: always zero. |
| */ |
| int spi_bus_lock(struct spi_master *master) |
| { |
| unsigned long flags; |
| |
| mutex_lock(&master->bus_lock_mutex); |
| |
| spin_lock_irqsave(&master->bus_lock_spinlock, flags); |
| master->bus_lock_flag = 1; |
| spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); |
| |
| /* mutex remains locked until spi_bus_unlock is called */ |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(spi_bus_lock); |
| |
| /** |
| * spi_bus_unlock - release the lock for exclusive SPI bus usage |
| * @master: SPI bus master that was locked for exclusive bus access |
| * Context: can sleep |
| * |
| * This call may only be used from a context that may sleep. The sleep |
| * is non-interruptible, and has no timeout. |
| * |
| * This call releases an SPI bus lock previously obtained by an spi_bus_lock |
| * call. |
| * |
| * Return: always zero. |
| */ |
| int spi_bus_unlock(struct spi_master *master) |
| { |
| master->bus_lock_flag = 0; |
| |
| mutex_unlock(&master->bus_lock_mutex); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(spi_bus_unlock); |
| |
| /* portable code must never pass more than 32 bytes */ |
| #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) |
| |
| static u8 *buf; |
| |
| /** |
| * spi_write_then_read - SPI synchronous write followed by read |
| * @spi: device with which data will be exchanged |
| * @txbuf: data to be written (need not be dma-safe) |
| * @n_tx: size of txbuf, in bytes |
| * @rxbuf: buffer into which data will be read (need not be dma-safe) |
| * @n_rx: size of rxbuf, in bytes |
| * Context: can sleep |
| * |
| * This performs a half duplex MicroWire style transaction with the |
| * device, sending txbuf and then reading rxbuf. The return value |
| * is zero for success, else a negative errno status code. |
| * This call may only be used from a context that may sleep. |
| * |
| * Parameters to this routine are always copied using a small buffer; |
| * portable code should never use this for more than 32 bytes. |
| * Performance-sensitive or bulk transfer code should instead use |
| * spi_{async,sync}() calls with dma-safe buffers. |
| * |
| * Return: zero on success, else a negative error code. |
| */ |
| int spi_write_then_read(struct spi_device *spi, |
| const void *txbuf, unsigned n_tx, |
| void *rxbuf, unsigned n_rx) |
| { |
| static DEFINE_MUTEX(lock); |
| |
| int status; |
| struct spi_message message; |
| struct spi_transfer x[2]; |
| u8 *local_buf; |
| |
| /* Use preallocated DMA-safe buffer if we can. We can't avoid |
| * copying here, (as a pure convenience thing), but we can |
| * keep heap costs out of the hot path unless someone else is |
| * using the pre-allocated buffer or the transfer is too large. |
| */ |
| if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { |
| local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), |
| GFP_KERNEL | GFP_DMA); |
| if (!local_buf) |
| return -ENOMEM; |
| } else { |
| local_buf = buf; |
| } |
| |
| spi_message_init(&message); |
| memset(x, 0, sizeof(x)); |
| if (n_tx) { |
| x[0].len = n_tx; |
| spi_message_add_tail(&x[0], &message); |
| } |
| if (n_rx) { |
| x[1].len = n_rx; |
| spi_message_add_tail(&x[1], &message); |
| } |
| |
| memcpy(local_buf, txbuf, n_tx); |
| x[0].tx_buf = local_buf; |
| x[1].rx_buf = local_buf + n_tx; |
| |
| /* do the i/o */ |
| status = spi_sync(spi, &message); |
| if (status == 0) |
| memcpy(rxbuf, x[1].rx_buf, n_rx); |
| |
| if (x[0].tx_buf == buf) |
| mutex_unlock(&lock); |
| else |
| kfree(local_buf); |
| |
| return status; |
| } |
| EXPORT_SYMBOL_GPL(spi_write_then_read); |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| #if IS_ENABLED(CONFIG_OF_DYNAMIC) |
| static int __spi_of_device_match(struct device *dev, void *data) |
| { |
| return dev->of_node == data; |
| } |
| |
| /* must call put_device() when done with returned spi_device device */ |
| static struct spi_device *of_find_spi_device_by_node(struct device_node *node) |
| { |
| struct device *dev = bus_find_device(&spi_bus_type, NULL, node, |
| __spi_of_device_match); |
| return dev ? to_spi_device(dev) : NULL; |
| } |
| |
| static int __spi_of_master_match(struct device *dev, const void *data) |
| { |
| return dev->of_node == data; |
| } |
| |
| /* the spi masters are not using spi_bus, so we find it with another way */ |
| static struct spi_master *of_find_spi_master_by_node(struct device_node *node) |
| { |
| struct device *dev; |
| |
| dev = class_find_device(&spi_master_class, NULL, node, |
| __spi_of_master_match); |
| if (!dev) |
| return NULL; |
| |
| /* reference got in class_find_device */ |
| return container_of(dev, struct spi_master, dev); |
| } |
| |
| static int of_spi_notify(struct notifier_block *nb, unsigned long action, |
| void *arg) |
| { |
| struct of_reconfig_data *rd = arg; |
| struct spi_master *master; |
| struct spi_device *spi; |
| |
| switch (of_reconfig_get_state_change(action, arg)) { |
| case OF_RECONFIG_CHANGE_ADD: |
| master = of_find_spi_master_by_node(rd->dn->parent); |
| if (master == NULL) |
| return NOTIFY_OK; /* not for us */ |
| |
| if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { |
| put_device(&master->dev); |
| return NOTIFY_OK; |
| } |
| |
| spi = of_register_spi_device(master, rd->dn); |
| put_device(&master->dev); |
| |
| if (IS_ERR(spi)) { |
| pr_err("%s: failed to create for '%s'\n", |
| __func__, rd->dn->full_name); |
| of_node_clear_flag(rd->dn, OF_POPULATED); |
| return notifier_from_errno(PTR_ERR(spi)); |
| } |
| break; |
| |
| case OF_RECONFIG_CHANGE_REMOVE: |
| /* already depopulated? */ |
| if (!of_node_check_flag(rd->dn, OF_POPULATED)) |
| return NOTIFY_OK; |
| |
| /* find our device by node */ |
| spi = of_find_spi_device_by_node(rd->dn); |
| if (spi == NULL) |
| return NOTIFY_OK; /* no? not meant for us */ |
| |
| /* unregister takes one ref away */ |
| spi_unregister_device(spi); |
| |
| /* and put the reference of the find */ |
| put_device(&spi->dev); |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block spi_of_notifier = { |
| .notifier_call = of_spi_notify, |
| }; |
| #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ |
| extern struct notifier_block spi_of_notifier; |
| #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ |
| |
| #if IS_ENABLED(CONFIG_ACPI) |
| static int spi_acpi_master_match(struct device *dev, const void *data) |
| { |
| return ACPI_COMPANION(dev->parent) == data; |
| } |
| |
| static int spi_acpi_device_match(struct device *dev, void *data) |
| { |
| return ACPI_COMPANION(dev) == data; |
| } |
| |
| static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev) |
| { |
| struct device *dev; |
| |
| dev = class_find_device(&spi_master_class, NULL, adev, |
| spi_acpi_master_match); |
| if (!dev) |
| return NULL; |
| |
| return container_of(dev, struct spi_master, dev); |
| } |
| |
| static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) |
| { |
| struct device *dev; |
| |
| dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match); |
| |
| return dev ? to_spi_device(dev) : NULL; |
| } |
| |
| static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, |
| void *arg) |
| { |
| struct acpi_device *adev = arg; |
| struct spi_master *master; |
| struct spi_device *spi; |
| |
| switch (value) { |
| case ACPI_RECONFIG_DEVICE_ADD: |
| master = acpi_spi_find_master_by_adev(adev->parent); |
| if (!master) |
| break; |
| |
| acpi_register_spi_device(master, adev); |
| put_device(&master->dev); |
| break; |
| case ACPI_RECONFIG_DEVICE_REMOVE: |
| if (!acpi_device_enumerated(adev)) |
| break; |
| |
| spi = acpi_spi_find_device_by_adev(adev); |
| if (!spi) |
| break; |
| |
| spi_unregister_device(spi); |
| put_device(&spi->dev); |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block spi_acpi_notifier = { |
| .notifier_call = acpi_spi_notify, |
| }; |
| #else |
| extern struct notifier_block spi_acpi_notifier; |
| #endif |
| |
| static int __init spi_init(void) |
| { |
| int status; |
| |
| buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); |
| if (!buf) { |
| status = -ENOMEM; |
| goto err0; |
| } |
| |
| status = bus_register(&spi_bus_type); |
| if (status < 0) |
| goto err1; |
| |
| status = class_register(&spi_master_class); |
| if (status < 0) |
| goto err2; |
| |
| if (IS_ENABLED(CONFIG_OF_DYNAMIC)) |
| WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); |
| if (IS_ENABLED(CONFIG_ACPI)) |
| WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); |
| |
| return 0; |
| |
| err2: |
| bus_unregister(&spi_bus_type); |
| err1: |
| kfree(buf); |
| buf = NULL; |
| err0: |
| return status; |
| } |
| |
| /* board_info is normally registered in arch_initcall(), |
| * but even essential drivers wait till later |
| * |
| * REVISIT only boardinfo really needs static linking. the rest (device and |
| * driver registration) _could_ be dynamically linked (modular) ... costs |
| * include needing to have boardinfo data structures be much more public. |
| */ |
| postcore_initcall(spi_init); |
| |