| /* |
| * pm.h - Power management interface |
| * |
| * Copyright (C) 2000 Andrew Henroid |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #ifndef _LINUX_PM_H |
| #define _LINUX_PM_H |
| |
| #include <linux/list.h> |
| #include <linux/workqueue.h> |
| #include <linux/spinlock.h> |
| #include <linux/wait.h> |
| #include <linux/timer.h> |
| #include <linux/completion.h> |
| |
| /* |
| * Callbacks for platform drivers to implement. |
| */ |
| extern void (*pm_idle)(void); |
| extern void (*pm_power_off)(void); |
| extern void (*pm_power_off_prepare)(void); |
| |
| /* |
| * Device power management |
| */ |
| |
| struct device; |
| |
| #ifdef CONFIG_PM |
| extern const char power_group_name[]; /* = "power" */ |
| #else |
| #define power_group_name NULL |
| #endif |
| |
| typedef struct pm_message { |
| int event; |
| } pm_message_t; |
| |
| /** |
| * struct dev_pm_ops - device PM callbacks |
| * |
| * Several driver power state transitions are externally visible, affecting |
| * the state of pending I/O queues and (for drivers that touch hardware) |
| * interrupts, wakeups, DMA, and other hardware state. There may also be |
| * internal transitions to various low power modes, which are transparent |
| * to the rest of the driver stack (such as a driver that's ON gating off |
| * clocks which are not in active use). |
| * |
| * The externally visible transitions are handled with the help of the following |
| * callbacks included in this structure: |
| * |
| * @prepare: Prepare the device for the upcoming transition, but do NOT change |
| * its hardware state. Prevent new children of the device from being |
| * registered after @prepare() returns (the driver's subsystem and |
| * generally the rest of the kernel is supposed to prevent new calls to the |
| * probe method from being made too once @prepare() has succeeded). If |
| * @prepare() detects a situation it cannot handle (e.g. registration of a |
| * child already in progress), it may return -EAGAIN, so that the PM core |
| * can execute it once again (e.g. after the new child has been registered) |
| * to recover from the race condition. This method is executed for all |
| * kinds of suspend transitions and is followed by one of the suspend |
| * callbacks: @suspend(), @freeze(), or @poweroff(). |
| * The PM core executes @prepare() for all devices before starting to |
| * execute suspend callbacks for any of them, so drivers may assume all of |
| * the other devices to be present and functional while @prepare() is being |
| * executed. In particular, it is safe to make GFP_KERNEL memory |
| * allocations from within @prepare(). However, drivers may NOT assume |
| * anything about the availability of the user space at that time and it |
| * is not correct to request firmware from within @prepare() (it's too |
| * late to do that). [To work around this limitation, drivers may |
| * register suspend and hibernation notifiers that are executed before the |
| * freezing of tasks.] |
| * |
| * @complete: Undo the changes made by @prepare(). This method is executed for |
| * all kinds of resume transitions, following one of the resume callbacks: |
| * @resume(), @thaw(), @restore(). Also called if the state transition |
| * fails before the driver's suspend callback (@suspend(), @freeze(), |
| * @poweroff()) can be executed (e.g. if the suspend callback fails for one |
| * of the other devices that the PM core has unsuccessfully attempted to |
| * suspend earlier). |
| * The PM core executes @complete() after it has executed the appropriate |
| * resume callback for all devices. |
| * |
| * @suspend: Executed before putting the system into a sleep state in which the |
| * contents of main memory are preserved. Quiesce the device, put it into |
| * a low power state appropriate for the upcoming system state (such as |
| * PCI_D3hot), and enable wakeup events as appropriate. |
| * |
| * @resume: Executed after waking the system up from a sleep state in which the |
| * contents of main memory were preserved. Put the device into the |
| * appropriate state, according to the information saved in memory by the |
| * preceding @suspend(). The driver starts working again, responding to |
| * hardware events and software requests. The hardware may have gone |
| * through a power-off reset, or it may have maintained state from the |
| * previous suspend() which the driver may rely on while resuming. On most |
| * platforms, there are no restrictions on availability of resources like |
| * clocks during @resume(). |
| * |
| * @freeze: Hibernation-specific, executed before creating a hibernation image. |
| * Quiesce operations so that a consistent image can be created, but do NOT |
| * otherwise put the device into a low power device state and do NOT emit |
| * system wakeup events. Save in main memory the device settings to be |
| * used by @restore() during the subsequent resume from hibernation or by |
| * the subsequent @thaw(), if the creation of the image or the restoration |
| * of main memory contents from it fails. |
| * |
| * @thaw: Hibernation-specific, executed after creating a hibernation image OR |
| * if the creation of the image fails. Also executed after a failing |
| * attempt to restore the contents of main memory from such an image. |
| * Undo the changes made by the preceding @freeze(), so the device can be |
| * operated in the same way as immediately before the call to @freeze(). |
| * |
| * @poweroff: Hibernation-specific, executed after saving a hibernation image. |
| * Quiesce the device, put it into a low power state appropriate for the |
| * upcoming system state (such as PCI_D3hot), and enable wakeup events as |
| * appropriate. |
| * |
| * @restore: Hibernation-specific, executed after restoring the contents of main |
| * memory from a hibernation image. Driver starts working again, |
| * responding to hardware events and software requests. Drivers may NOT |
| * make ANY assumptions about the hardware state right prior to @restore(). |
| * On most platforms, there are no restrictions on availability of |
| * resources like clocks during @restore(). |
| * |
| * @suspend_noirq: Complete the operations of ->suspend() by carrying out any |
| * actions required for suspending the device that need interrupts to be |
| * disabled |
| * |
| * @resume_noirq: Prepare for the execution of ->resume() by carrying out any |
| * actions required for resuming the device that need interrupts to be |
| * disabled |
| * |
| * @freeze_noirq: Complete the operations of ->freeze() by carrying out any |
| * actions required for freezing the device that need interrupts to be |
| * disabled |
| * |
| * @thaw_noirq: Prepare for the execution of ->thaw() by carrying out any |
| * actions required for thawing the device that need interrupts to be |
| * disabled |
| * |
| * @poweroff_noirq: Complete the operations of ->poweroff() by carrying out any |
| * actions required for handling the device that need interrupts to be |
| * disabled |
| * |
| * @restore_noirq: Prepare for the execution of ->restore() by carrying out any |
| * actions required for restoring the operations of the device that need |
| * interrupts to be disabled |
| * |
| * All of the above callbacks, except for @complete(), return error codes. |
| * However, the error codes returned by the resume operations, @resume(), |
| * @thaw(), @restore(), @resume_noirq(), @thaw_noirq(), and @restore_noirq() do |
| * not cause the PM core to abort the resume transition during which they are |
| * returned. The error codes returned in that cases are only printed by the PM |
| * core to the system logs for debugging purposes. Still, it is recommended |
| * that drivers only return error codes from their resume methods in case of an |
| * unrecoverable failure (i.e. when the device being handled refuses to resume |
| * and becomes unusable) to allow us to modify the PM core in the future, so |
| * that it can avoid attempting to handle devices that failed to resume and |
| * their children. |
| * |
| * It is allowed to unregister devices while the above callbacks are being |
| * executed. However, it is not allowed to unregister a device from within any |
| * of its own callbacks. |
| * |
| * There also are the following callbacks related to run-time power management |
| * of devices: |
| * |
| * @runtime_suspend: Prepare the device for a condition in which it won't be |
| * able to communicate with the CPU(s) and RAM due to power management. |
| * This need not mean that the device should be put into a low power state. |
| * For example, if the device is behind a link which is about to be turned |
| * off, the device may remain at full power. If the device does go to low |
| * power and is capable of generating run-time wake-up events, remote |
| * wake-up (i.e., a hardware mechanism allowing the device to request a |
| * change of its power state via a wake-up event, such as PCI PME) should |
| * be enabled for it. |
| * |
| * @runtime_resume: Put the device into the fully active state in response to a |
| * wake-up event generated by hardware or at the request of software. If |
| * necessary, put the device into the full power state and restore its |
| * registers, so that it is fully operational. |
| * |
| * @runtime_idle: Device appears to be inactive and it might be put into a low |
| * power state if all of the necessary conditions are satisfied. Check |
| * these conditions and handle the device as appropriate, possibly queueing |
| * a suspend request for it. The return value is ignored by the PM core. |
| */ |
| |
| struct dev_pm_ops { |
| int (*prepare)(struct device *dev); |
| void (*complete)(struct device *dev); |
| int (*suspend)(struct device *dev); |
| int (*resume)(struct device *dev); |
| int (*freeze)(struct device *dev); |
| int (*thaw)(struct device *dev); |
| int (*poweroff)(struct device *dev); |
| int (*restore)(struct device *dev); |
| int (*suspend_noirq)(struct device *dev); |
| int (*resume_noirq)(struct device *dev); |
| int (*freeze_noirq)(struct device *dev); |
| int (*thaw_noirq)(struct device *dev); |
| int (*poweroff_noirq)(struct device *dev); |
| int (*restore_noirq)(struct device *dev); |
| int (*runtime_suspend)(struct device *dev); |
| int (*runtime_resume)(struct device *dev); |
| int (*runtime_idle)(struct device *dev); |
| }; |
| |
| #ifdef CONFIG_PM_SLEEP |
| #define SET_SYSTEM_SLEEP_PM_OPS(suspend_fn, resume_fn) \ |
| .suspend = suspend_fn, \ |
| .resume = resume_fn, \ |
| .freeze = suspend_fn, \ |
| .thaw = resume_fn, \ |
| .poweroff = suspend_fn, \ |
| .restore = resume_fn, |
| #else |
| #define SET_SYSTEM_SLEEP_PM_OPS(suspend_fn, resume_fn) |
| #endif |
| |
| #ifdef CONFIG_PM_RUNTIME |
| #define SET_RUNTIME_PM_OPS(suspend_fn, resume_fn, idle_fn) \ |
| .runtime_suspend = suspend_fn, \ |
| .runtime_resume = resume_fn, \ |
| .runtime_idle = idle_fn, |
| #else |
| #define SET_RUNTIME_PM_OPS(suspend_fn, resume_fn, idle_fn) |
| #endif |
| |
| /* |
| * Use this if you want to use the same suspend and resume callbacks for suspend |
| * to RAM and hibernation. |
| */ |
| #define SIMPLE_DEV_PM_OPS(name, suspend_fn, resume_fn) \ |
| const struct dev_pm_ops name = { \ |
| SET_SYSTEM_SLEEP_PM_OPS(suspend_fn, resume_fn) \ |
| } |
| |
| /* |
| * Use this for defining a set of PM operations to be used in all situations |
| * (sustem suspend, hibernation or runtime PM). |
| */ |
| #define UNIVERSAL_DEV_PM_OPS(name, suspend_fn, resume_fn, idle_fn) \ |
| const struct dev_pm_ops name = { \ |
| SET_SYSTEM_SLEEP_PM_OPS(suspend_fn, resume_fn) \ |
| SET_RUNTIME_PM_OPS(suspend_fn, resume_fn, idle_fn) \ |
| } |
| |
| /* |
| * Use this for subsystems (bus types, device types, device classes) that don't |
| * need any special suspend/resume handling in addition to invoking the PM |
| * callbacks provided by device drivers supporting both the system sleep PM and |
| * runtime PM, make the pm member point to generic_subsys_pm_ops. |
| */ |
| #ifdef CONFIG_PM |
| extern struct dev_pm_ops generic_subsys_pm_ops; |
| #define GENERIC_SUBSYS_PM_OPS (&generic_subsys_pm_ops) |
| #else |
| #define GENERIC_SUBSYS_PM_OPS NULL |
| #endif |
| |
| /** |
| * PM_EVENT_ messages |
| * |
| * The following PM_EVENT_ messages are defined for the internal use of the PM |
| * core, in order to provide a mechanism allowing the high level suspend and |
| * hibernation code to convey the necessary information to the device PM core |
| * code: |
| * |
| * ON No transition. |
| * |
| * FREEZE System is going to hibernate, call ->prepare() and ->freeze() |
| * for all devices. |
| * |
| * SUSPEND System is going to suspend, call ->prepare() and ->suspend() |
| * for all devices. |
| * |
| * HIBERNATE Hibernation image has been saved, call ->prepare() and |
| * ->poweroff() for all devices. |
| * |
| * QUIESCE Contents of main memory are going to be restored from a (loaded) |
| * hibernation image, call ->prepare() and ->freeze() for all |
| * devices. |
| * |
| * RESUME System is resuming, call ->resume() and ->complete() for all |
| * devices. |
| * |
| * THAW Hibernation image has been created, call ->thaw() and |
| * ->complete() for all devices. |
| * |
| * RESTORE Contents of main memory have been restored from a hibernation |
| * image, call ->restore() and ->complete() for all devices. |
| * |
| * RECOVER Creation of a hibernation image or restoration of the main |
| * memory contents from a hibernation image has failed, call |
| * ->thaw() and ->complete() for all devices. |
| * |
| * The following PM_EVENT_ messages are defined for internal use by |
| * kernel subsystems. They are never issued by the PM core. |
| * |
| * USER_SUSPEND Manual selective suspend was issued by userspace. |
| * |
| * USER_RESUME Manual selective resume was issued by userspace. |
| * |
| * REMOTE_WAKEUP Remote-wakeup request was received from the device. |
| * |
| * AUTO_SUSPEND Automatic (device idle) runtime suspend was |
| * initiated by the subsystem. |
| * |
| * AUTO_RESUME Automatic (device needed) runtime resume was |
| * requested by a driver. |
| */ |
| |
| #define PM_EVENT_ON 0x0000 |
| #define PM_EVENT_FREEZE 0x0001 |
| #define PM_EVENT_SUSPEND 0x0002 |
| #define PM_EVENT_HIBERNATE 0x0004 |
| #define PM_EVENT_QUIESCE 0x0008 |
| #define PM_EVENT_RESUME 0x0010 |
| #define PM_EVENT_THAW 0x0020 |
| #define PM_EVENT_RESTORE 0x0040 |
| #define PM_EVENT_RECOVER 0x0080 |
| #define PM_EVENT_USER 0x0100 |
| #define PM_EVENT_REMOTE 0x0200 |
| #define PM_EVENT_AUTO 0x0400 |
| |
| #define PM_EVENT_SLEEP (PM_EVENT_SUSPEND | PM_EVENT_HIBERNATE) |
| #define PM_EVENT_USER_SUSPEND (PM_EVENT_USER | PM_EVENT_SUSPEND) |
| #define PM_EVENT_USER_RESUME (PM_EVENT_USER | PM_EVENT_RESUME) |
| #define PM_EVENT_REMOTE_RESUME (PM_EVENT_REMOTE | PM_EVENT_RESUME) |
| #define PM_EVENT_AUTO_SUSPEND (PM_EVENT_AUTO | PM_EVENT_SUSPEND) |
| #define PM_EVENT_AUTO_RESUME (PM_EVENT_AUTO | PM_EVENT_RESUME) |
| |
| #define PMSG_ON ((struct pm_message){ .event = PM_EVENT_ON, }) |
| #define PMSG_FREEZE ((struct pm_message){ .event = PM_EVENT_FREEZE, }) |
| #define PMSG_QUIESCE ((struct pm_message){ .event = PM_EVENT_QUIESCE, }) |
| #define PMSG_SUSPEND ((struct pm_message){ .event = PM_EVENT_SUSPEND, }) |
| #define PMSG_HIBERNATE ((struct pm_message){ .event = PM_EVENT_HIBERNATE, }) |
| #define PMSG_RESUME ((struct pm_message){ .event = PM_EVENT_RESUME, }) |
| #define PMSG_THAW ((struct pm_message){ .event = PM_EVENT_THAW, }) |
| #define PMSG_RESTORE ((struct pm_message){ .event = PM_EVENT_RESTORE, }) |
| #define PMSG_RECOVER ((struct pm_message){ .event = PM_EVENT_RECOVER, }) |
| #define PMSG_USER_SUSPEND ((struct pm_message) \ |
| { .event = PM_EVENT_USER_SUSPEND, }) |
| #define PMSG_USER_RESUME ((struct pm_message) \ |
| { .event = PM_EVENT_USER_RESUME, }) |
| #define PMSG_REMOTE_RESUME ((struct pm_message) \ |
| { .event = PM_EVENT_REMOTE_RESUME, }) |
| #define PMSG_AUTO_SUSPEND ((struct pm_message) \ |
| { .event = PM_EVENT_AUTO_SUSPEND, }) |
| #define PMSG_AUTO_RESUME ((struct pm_message) \ |
| { .event = PM_EVENT_AUTO_RESUME, }) |
| |
| /** |
| * Device run-time power management status. |
| * |
| * These status labels are used internally by the PM core to indicate the |
| * current status of a device with respect to the PM core operations. They do |
| * not reflect the actual power state of the device or its status as seen by the |
| * driver. |
| * |
| * RPM_ACTIVE Device is fully operational. Indicates that the device |
| * bus type's ->runtime_resume() callback has completed |
| * successfully. |
| * |
| * RPM_SUSPENDED Device bus type's ->runtime_suspend() callback has |
| * completed successfully. The device is regarded as |
| * suspended. |
| * |
| * RPM_RESUMING Device bus type's ->runtime_resume() callback is being |
| * executed. |
| * |
| * RPM_SUSPENDING Device bus type's ->runtime_suspend() callback is being |
| * executed. |
| */ |
| |
| enum rpm_status { |
| RPM_ACTIVE = 0, |
| RPM_RESUMING, |
| RPM_SUSPENDED, |
| RPM_SUSPENDING, |
| }; |
| |
| /** |
| * Device run-time power management request types. |
| * |
| * RPM_REQ_NONE Do nothing. |
| * |
| * RPM_REQ_IDLE Run the device bus type's ->runtime_idle() callback |
| * |
| * RPM_REQ_SUSPEND Run the device bus type's ->runtime_suspend() callback |
| * |
| * RPM_REQ_AUTOSUSPEND Same as RPM_REQ_SUSPEND, but not until the device has |
| * been inactive for as long as power.autosuspend_delay |
| * |
| * RPM_REQ_RESUME Run the device bus type's ->runtime_resume() callback |
| */ |
| |
| enum rpm_request { |
| RPM_REQ_NONE = 0, |
| RPM_REQ_IDLE, |
| RPM_REQ_SUSPEND, |
| RPM_REQ_AUTOSUSPEND, |
| RPM_REQ_RESUME, |
| }; |
| |
| struct wakeup_source; |
| |
| struct dev_pm_info { |
| pm_message_t power_state; |
| unsigned int can_wakeup:1; |
| unsigned int async_suspend:1; |
| unsigned int in_suspend:1; /* Owned by the PM core */ |
| spinlock_t lock; |
| #ifdef CONFIG_PM_SLEEP |
| struct list_head entry; |
| struct completion completion; |
| struct wakeup_source *wakeup; |
| #else |
| unsigned int should_wakeup:1; |
| #endif |
| #ifdef CONFIG_PM_RUNTIME |
| struct timer_list suspend_timer; |
| unsigned long timer_expires; |
| struct work_struct work; |
| wait_queue_head_t wait_queue; |
| atomic_t usage_count; |
| atomic_t child_count; |
| unsigned int disable_depth:3; |
| unsigned int ignore_children:1; |
| unsigned int idle_notification:1; |
| unsigned int request_pending:1; |
| unsigned int deferred_resume:1; |
| unsigned int run_wake:1; |
| unsigned int runtime_auto:1; |
| unsigned int no_callbacks:1; |
| unsigned int irq_safe:1; |
| unsigned int use_autosuspend:1; |
| unsigned int timer_autosuspends:1; |
| enum rpm_request request; |
| enum rpm_status runtime_status; |
| int runtime_error; |
| int autosuspend_delay; |
| unsigned long last_busy; |
| unsigned long active_jiffies; |
| unsigned long suspended_jiffies; |
| unsigned long accounting_timestamp; |
| #endif |
| }; |
| |
| extern void update_pm_runtime_accounting(struct device *dev); |
| |
| |
| /* |
| * The PM_EVENT_ messages are also used by drivers implementing the legacy |
| * suspend framework, based on the ->suspend() and ->resume() callbacks common |
| * for suspend and hibernation transitions, according to the rules below. |
| */ |
| |
| /* Necessary, because several drivers use PM_EVENT_PRETHAW */ |
| #define PM_EVENT_PRETHAW PM_EVENT_QUIESCE |
| |
| /* |
| * One transition is triggered by resume(), after a suspend() call; the |
| * message is implicit: |
| * |
| * ON Driver starts working again, responding to hardware events |
| * and software requests. The hardware may have gone through |
| * a power-off reset, or it may have maintained state from the |
| * previous suspend() which the driver will rely on while |
| * resuming. On most platforms, there are no restrictions on |
| * availability of resources like clocks during resume(). |
| * |
| * Other transitions are triggered by messages sent using suspend(). All |
| * these transitions quiesce the driver, so that I/O queues are inactive. |
| * That commonly entails turning off IRQs and DMA; there may be rules |
| * about how to quiesce that are specific to the bus or the device's type. |
| * (For example, network drivers mark the link state.) Other details may |
| * differ according to the message: |
| * |
| * SUSPEND Quiesce, enter a low power device state appropriate for |
| * the upcoming system state (such as PCI_D3hot), and enable |
| * wakeup events as appropriate. |
| * |
| * HIBERNATE Enter a low power device state appropriate for the hibernation |
| * state (eg. ACPI S4) and enable wakeup events as appropriate. |
| * |
| * FREEZE Quiesce operations so that a consistent image can be saved; |
| * but do NOT otherwise enter a low power device state, and do |
| * NOT emit system wakeup events. |
| * |
| * PRETHAW Quiesce as if for FREEZE; additionally, prepare for restoring |
| * the system from a snapshot taken after an earlier FREEZE. |
| * Some drivers will need to reset their hardware state instead |
| * of preserving it, to ensure that it's never mistaken for the |
| * state which that earlier snapshot had set up. |
| * |
| * A minimally power-aware driver treats all messages as SUSPEND, fully |
| * reinitializes its device during resume() -- whether or not it was reset |
| * during the suspend/resume cycle -- and can't issue wakeup events. |
| * |
| * More power-aware drivers may also use low power states at runtime as |
| * well as during system sleep states like PM_SUSPEND_STANDBY. They may |
| * be able to use wakeup events to exit from runtime low-power states, |
| * or from system low-power states such as standby or suspend-to-RAM. |
| */ |
| |
| #ifdef CONFIG_PM_SLEEP |
| extern void device_pm_lock(void); |
| extern int sysdev_resume(void); |
| extern void dpm_resume_noirq(pm_message_t state); |
| extern void dpm_resume_end(pm_message_t state); |
| |
| extern void device_pm_unlock(void); |
| extern int sysdev_suspend(pm_message_t state); |
| extern int dpm_suspend_noirq(pm_message_t state); |
| extern int dpm_suspend_start(pm_message_t state); |
| |
| extern void __suspend_report_result(const char *function, void *fn, int ret); |
| |
| #define suspend_report_result(fn, ret) \ |
| do { \ |
| __suspend_report_result(__func__, fn, ret); \ |
| } while (0) |
| |
| extern int device_pm_wait_for_dev(struct device *sub, struct device *dev); |
| #else /* !CONFIG_PM_SLEEP */ |
| |
| #define device_pm_lock() do {} while (0) |
| #define device_pm_unlock() do {} while (0) |
| |
| static inline int dpm_suspend_start(pm_message_t state) |
| { |
| return 0; |
| } |
| |
| #define suspend_report_result(fn, ret) do {} while (0) |
| |
| static inline int device_pm_wait_for_dev(struct device *a, struct device *b) |
| { |
| return 0; |
| } |
| #endif /* !CONFIG_PM_SLEEP */ |
| |
| /* How to reorder dpm_list after device_move() */ |
| enum dpm_order { |
| DPM_ORDER_NONE, |
| DPM_ORDER_DEV_AFTER_PARENT, |
| DPM_ORDER_PARENT_BEFORE_DEV, |
| DPM_ORDER_DEV_LAST, |
| }; |
| |
| /* |
| * Global Power Management flags |
| * Used to keep APM and ACPI from both being active |
| */ |
| extern unsigned int pm_flags; |
| |
| #define PM_APM 1 |
| #define PM_ACPI 2 |
| |
| extern int pm_generic_suspend(struct device *dev); |
| extern int pm_generic_resume(struct device *dev); |
| extern int pm_generic_freeze(struct device *dev); |
| extern int pm_generic_thaw(struct device *dev); |
| extern int pm_generic_restore(struct device *dev); |
| extern int pm_generic_poweroff(struct device *dev); |
| |
| #endif /* _LINUX_PM_H */ |