| /* |
| * linux/fs/ext4/page-io.c |
| * |
| * This contains the new page_io functions for ext4 |
| * |
| * Written by Theodore Ts'o, 2010. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/fs.h> |
| #include <linux/time.h> |
| #include <linux/jbd2.h> |
| #include <linux/highuid.h> |
| #include <linux/pagemap.h> |
| #include <linux/quotaops.h> |
| #include <linux/string.h> |
| #include <linux/buffer_head.h> |
| #include <linux/writeback.h> |
| #include <linux/pagevec.h> |
| #include <linux/mpage.h> |
| #include <linux/namei.h> |
| #include <linux/uio.h> |
| #include <linux/bio.h> |
| #include <linux/workqueue.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| |
| #include "ext4_jbd2.h" |
| #include "xattr.h" |
| #include "acl.h" |
| #include "ext4_extents.h" |
| |
| static struct kmem_cache *io_page_cachep, *io_end_cachep; |
| |
| int __init ext4_init_pageio(void) |
| { |
| io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT); |
| if (io_page_cachep == NULL) |
| return -ENOMEM; |
| io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT); |
| if (io_end_cachep == NULL) { |
| kmem_cache_destroy(io_page_cachep); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| void ext4_exit_pageio(void) |
| { |
| kmem_cache_destroy(io_end_cachep); |
| kmem_cache_destroy(io_page_cachep); |
| } |
| |
| void ext4_ioend_wait(struct inode *inode) |
| { |
| wait_queue_head_t *wq = ext4_ioend_wq(inode); |
| |
| wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0)); |
| } |
| |
| static void put_io_page(struct ext4_io_page *io_page) |
| { |
| if (atomic_dec_and_test(&io_page->p_count)) { |
| end_page_writeback(io_page->p_page); |
| put_page(io_page->p_page); |
| kmem_cache_free(io_page_cachep, io_page); |
| } |
| } |
| |
| void ext4_free_io_end(ext4_io_end_t *io) |
| { |
| int i; |
| wait_queue_head_t *wq; |
| |
| BUG_ON(!io); |
| if (io->page) |
| put_page(io->page); |
| for (i = 0; i < io->num_io_pages; i++) |
| put_io_page(io->pages[i]); |
| io->num_io_pages = 0; |
| wq = ext4_ioend_wq(io->inode); |
| if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count) && |
| waitqueue_active(wq)) |
| wake_up_all(wq); |
| kmem_cache_free(io_end_cachep, io); |
| } |
| |
| /* |
| * check a range of space and convert unwritten extents to written. |
| */ |
| int ext4_end_io_nolock(ext4_io_end_t *io) |
| { |
| struct inode *inode = io->inode; |
| loff_t offset = io->offset; |
| ssize_t size = io->size; |
| wait_queue_head_t *wq; |
| int ret = 0; |
| |
| ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p," |
| "list->prev 0x%p\n", |
| io, inode->i_ino, io->list.next, io->list.prev); |
| |
| if (list_empty(&io->list)) |
| return ret; |
| |
| if (!(io->flag & EXT4_IO_END_UNWRITTEN)) |
| return ret; |
| |
| ret = ext4_convert_unwritten_extents(inode, offset, size); |
| if (ret < 0) { |
| printk(KERN_EMERG "%s: failed to convert unwritten " |
| "extents to written extents, error is %d " |
| "io is still on inode %lu aio dio list\n", |
| __func__, ret, inode->i_ino); |
| return ret; |
| } |
| |
| if (io->iocb) |
| aio_complete(io->iocb, io->result, 0); |
| /* clear the DIO AIO unwritten flag */ |
| if (io->flag & EXT4_IO_END_UNWRITTEN) { |
| io->flag &= ~EXT4_IO_END_UNWRITTEN; |
| /* Wake up anyone waiting on unwritten extent conversion */ |
| wq = ext4_ioend_wq(io->inode); |
| if (atomic_dec_and_test(&EXT4_I(inode)->i_aiodio_unwritten) && |
| waitqueue_active(wq)) { |
| wake_up_all(wq); |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * work on completed aio dio IO, to convert unwritten extents to extents |
| */ |
| static void ext4_end_io_work(struct work_struct *work) |
| { |
| ext4_io_end_t *io = container_of(work, ext4_io_end_t, work); |
| struct inode *inode = io->inode; |
| struct ext4_inode_info *ei = EXT4_I(inode); |
| unsigned long flags; |
| int ret; |
| |
| mutex_lock(&inode->i_mutex); |
| ret = ext4_end_io_nolock(io); |
| if (ret < 0) { |
| mutex_unlock(&inode->i_mutex); |
| return; |
| } |
| |
| spin_lock_irqsave(&ei->i_completed_io_lock, flags); |
| if (!list_empty(&io->list)) |
| list_del_init(&io->list); |
| spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); |
| mutex_unlock(&inode->i_mutex); |
| ext4_free_io_end(io); |
| } |
| |
| ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags) |
| { |
| ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags); |
| if (io) { |
| atomic_inc(&EXT4_I(inode)->i_ioend_count); |
| io->inode = inode; |
| INIT_WORK(&io->work, ext4_end_io_work); |
| INIT_LIST_HEAD(&io->list); |
| } |
| return io; |
| } |
| |
| /* |
| * Print an buffer I/O error compatible with the fs/buffer.c. This |
| * provides compatibility with dmesg scrapers that look for a specific |
| * buffer I/O error message. We really need a unified error reporting |
| * structure to userspace ala Digital Unix's uerf system, but it's |
| * probably not going to happen in my lifetime, due to LKML politics... |
| */ |
| static void buffer_io_error(struct buffer_head *bh) |
| { |
| char b[BDEVNAME_SIZE]; |
| printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n", |
| bdevname(bh->b_bdev, b), |
| (unsigned long long)bh->b_blocknr); |
| } |
| |
| static void ext4_end_bio(struct bio *bio, int error) |
| { |
| ext4_io_end_t *io_end = bio->bi_private; |
| struct workqueue_struct *wq; |
| struct inode *inode; |
| unsigned long flags; |
| int i; |
| sector_t bi_sector = bio->bi_sector; |
| |
| BUG_ON(!io_end); |
| bio->bi_private = NULL; |
| bio->bi_end_io = NULL; |
| if (test_bit(BIO_UPTODATE, &bio->bi_flags)) |
| error = 0; |
| bio_put(bio); |
| |
| for (i = 0; i < io_end->num_io_pages; i++) { |
| struct page *page = io_end->pages[i]->p_page; |
| struct buffer_head *bh, *head; |
| int partial_write = 0; |
| |
| head = page_buffers(page); |
| if (error) |
| SetPageError(page); |
| BUG_ON(!head); |
| if (head->b_size != PAGE_CACHE_SIZE) { |
| loff_t offset; |
| loff_t io_end_offset = io_end->offset + io_end->size; |
| |
| offset = (sector_t) page->index << PAGE_CACHE_SHIFT; |
| bh = head; |
| do { |
| if ((offset >= io_end->offset) && |
| (offset+bh->b_size <= io_end_offset)) { |
| if (error) |
| buffer_io_error(bh); |
| |
| } |
| if (buffer_delay(bh)) |
| partial_write = 1; |
| else if (!buffer_mapped(bh)) |
| clear_buffer_dirty(bh); |
| else if (buffer_dirty(bh)) |
| partial_write = 1; |
| offset += bh->b_size; |
| bh = bh->b_this_page; |
| } while (bh != head); |
| } |
| |
| /* |
| * If this is a partial write which happened to make |
| * all buffers uptodate then we can optimize away a |
| * bogus readpage() for the next read(). Here we |
| * 'discover' whether the page went uptodate as a |
| * result of this (potentially partial) write. |
| */ |
| if (!partial_write) |
| SetPageUptodate(page); |
| |
| put_io_page(io_end->pages[i]); |
| } |
| io_end->num_io_pages = 0; |
| inode = io_end->inode; |
| |
| if (error) { |
| io_end->flag |= EXT4_IO_END_ERROR; |
| ext4_warning(inode->i_sb, "I/O error writing to inode %lu " |
| "(offset %llu size %ld starting block %llu)", |
| inode->i_ino, |
| (unsigned long long) io_end->offset, |
| (long) io_end->size, |
| (unsigned long long) |
| bi_sector >> (inode->i_blkbits - 9)); |
| } |
| |
| /* Add the io_end to per-inode completed io list*/ |
| spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); |
| list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); |
| spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); |
| |
| wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; |
| /* queue the work to convert unwritten extents to written */ |
| queue_work(wq, &io_end->work); |
| } |
| |
| void ext4_io_submit(struct ext4_io_submit *io) |
| { |
| struct bio *bio = io->io_bio; |
| |
| if (bio) { |
| bio_get(io->io_bio); |
| submit_bio(io->io_op, io->io_bio); |
| BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP)); |
| bio_put(io->io_bio); |
| } |
| io->io_bio = NULL; |
| io->io_op = 0; |
| io->io_end = NULL; |
| } |
| |
| static int io_submit_init(struct ext4_io_submit *io, |
| struct inode *inode, |
| struct writeback_control *wbc, |
| struct buffer_head *bh) |
| { |
| ext4_io_end_t *io_end; |
| struct page *page = bh->b_page; |
| int nvecs = bio_get_nr_vecs(bh->b_bdev); |
| struct bio *bio; |
| |
| io_end = ext4_init_io_end(inode, GFP_NOFS); |
| if (!io_end) |
| return -ENOMEM; |
| do { |
| bio = bio_alloc(GFP_NOIO, nvecs); |
| nvecs >>= 1; |
| } while (bio == NULL); |
| |
| bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); |
| bio->bi_bdev = bh->b_bdev; |
| bio->bi_private = io->io_end = io_end; |
| bio->bi_end_io = ext4_end_bio; |
| |
| io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh); |
| |
| io->io_bio = bio; |
| io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? |
| WRITE_SYNC_PLUG : WRITE); |
| io->io_next_block = bh->b_blocknr; |
| return 0; |
| } |
| |
| static int io_submit_add_bh(struct ext4_io_submit *io, |
| struct ext4_io_page *io_page, |
| struct inode *inode, |
| struct writeback_control *wbc, |
| struct buffer_head *bh) |
| { |
| ext4_io_end_t *io_end; |
| int ret; |
| |
| if (buffer_new(bh)) { |
| clear_buffer_new(bh); |
| unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); |
| } |
| |
| if (!buffer_mapped(bh) || buffer_delay(bh)) { |
| if (!buffer_mapped(bh)) |
| clear_buffer_dirty(bh); |
| if (io->io_bio) |
| ext4_io_submit(io); |
| return 0; |
| } |
| |
| if (io->io_bio && bh->b_blocknr != io->io_next_block) { |
| submit_and_retry: |
| ext4_io_submit(io); |
| } |
| if (io->io_bio == NULL) { |
| ret = io_submit_init(io, inode, wbc, bh); |
| if (ret) |
| return ret; |
| } |
| io_end = io->io_end; |
| if ((io_end->num_io_pages >= MAX_IO_PAGES) && |
| (io_end->pages[io_end->num_io_pages-1] != io_page)) |
| goto submit_and_retry; |
| if (buffer_uninit(bh)) |
| io->io_end->flag |= EXT4_IO_END_UNWRITTEN; |
| io->io_end->size += bh->b_size; |
| io->io_next_block++; |
| ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh)); |
| if (ret != bh->b_size) |
| goto submit_and_retry; |
| if ((io_end->num_io_pages == 0) || |
| (io_end->pages[io_end->num_io_pages-1] != io_page)) { |
| io_end->pages[io_end->num_io_pages++] = io_page; |
| atomic_inc(&io_page->p_count); |
| } |
| return 0; |
| } |
| |
| int ext4_bio_write_page(struct ext4_io_submit *io, |
| struct page *page, |
| int len, |
| struct writeback_control *wbc) |
| { |
| struct inode *inode = page->mapping->host; |
| unsigned block_start, block_end, blocksize; |
| struct ext4_io_page *io_page; |
| struct buffer_head *bh, *head; |
| int ret = 0; |
| |
| blocksize = 1 << inode->i_blkbits; |
| |
| BUG_ON(!PageLocked(page)); |
| BUG_ON(PageWriteback(page)); |
| set_page_writeback(page); |
| ClearPageError(page); |
| |
| io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS); |
| if (!io_page) { |
| set_page_dirty(page); |
| unlock_page(page); |
| return -ENOMEM; |
| } |
| io_page->p_page = page; |
| atomic_set(&io_page->p_count, 1); |
| get_page(page); |
| |
| for (bh = head = page_buffers(page), block_start = 0; |
| bh != head || !block_start; |
| block_start = block_end, bh = bh->b_this_page) { |
| |
| block_end = block_start + blocksize; |
| if (block_start >= len) { |
| clear_buffer_dirty(bh); |
| set_buffer_uptodate(bh); |
| continue; |
| } |
| clear_buffer_dirty(bh); |
| ret = io_submit_add_bh(io, io_page, inode, wbc, bh); |
| if (ret) { |
| /* |
| * We only get here on ENOMEM. Not much else |
| * we can do but mark the page as dirty, and |
| * better luck next time. |
| */ |
| set_page_dirty(page); |
| break; |
| } |
| } |
| unlock_page(page); |
| /* |
| * If the page was truncated before we could do the writeback, |
| * or we had a memory allocation error while trying to write |
| * the first buffer head, we won't have submitted any pages for |
| * I/O. In that case we need to make sure we've cleared the |
| * PageWriteback bit from the page to prevent the system from |
| * wedging later on. |
| */ |
| put_io_page(io_page); |
| return ret; |
| } |