blob: f657389e156e8fff757e6e1cf4a50de549ba26b4 [file] [log] [blame]
/*
* Copyright (C) 2012-2013 Samsung Electronics Co., Ltd.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* linux/fs/fat/misc.c
*
* Written 1992,1993 by Werner Almesberger
* 22/11/2000 - Fixed fat_date_unix2dos for dates earlier than 01/01/1980
* and date_dos2unix for date==0 by Igor Zhbanov(bsg@uniyar.ac.ru)
*/
/************************************************************************/
/* */
/* PROJECT : exFAT & FAT12/16/32 File System */
/* FILE : misc.c */
/* PURPOSE : Helper function for checksum and handing sdFAT error */
/* */
/*----------------------------------------------------------------------*/
/* NOTES */
/* */
/* */
/************************************************************************/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/buffer_head.h>
#include <linux/time.h>
#include "sdfat.h"
#include "version.h"
#ifdef CONFIG_SDFAT_SUPPORT_STLOG
#ifdef CONFIG_PROC_FSLOG
#include <linux/fslog.h>
#else
#include <linux/stlog.h>
#endif
#else
#define ST_LOG(fmt, ...)
#endif
/*************************************************************************
* FUNCTIONS WHICH HAS KERNEL VERSION DEPENDENCY
*************************************************************************/
#ifdef CONFIG_SDFAT_UEVENT
static struct kobject sdfat_uevent_kobj;
int sdfat_uevent_init(struct kset *sdfat_kset)
{
int err;
struct kobj_type *ktype = get_ktype(&sdfat_kset->kobj);
sdfat_uevent_kobj.kset = sdfat_kset;
err = kobject_init_and_add(&sdfat_uevent_kobj, ktype, NULL, "uevent");
if (err)
pr_err("[SDFAT] Unable to create sdfat uevent kobj\n");
return err;
}
void sdfat_uevent_uninit(void)
{
kobject_del(&sdfat_uevent_kobj);
memset(&sdfat_uevent_kobj, 0, sizeof(struct kobject));
}
void sdfat_uevent_ro_remount(struct super_block *sb)
{
struct block_device *bdev = sb->s_bdev;
dev_t bd_dev = bdev ? bdev->bd_dev : 0;
char major[16], minor[16];
char *envp[] = { major, minor, NULL };
/* Do not trigger uevent if a device has been ejected */
if (fsapi_check_bdi_valid(sb))
return;
snprintf(major, sizeof(major), "MAJOR=%d", MAJOR(bd_dev));
snprintf(minor, sizeof(minor), "MINOR=%d", MINOR(bd_dev));
kobject_uevent_env(&sdfat_uevent_kobj, KOBJ_CHANGE, envp);
ST_LOG("[SDFAT](%s[%d:%d]): Uevent triggered\n",
sb->s_id, MAJOR(bd_dev), MINOR(bd_dev));
}
#endif
/*
* sdfat_fs_error reports a file system problem that might indicate fa data
* corruption/inconsistency. Depending on 'errors' mount option the
* panic() is called, or error message is printed FAT and nothing is done,
* or filesystem is remounted read-only (default behavior).
* In case the file system is remounted read-only, it can be made writable
* again by remounting it.
*/
void __sdfat_fs_error(struct super_block *sb, int report, const char *fmt, ...)
{
struct sdfat_mount_options *opts = &SDFAT_SB(sb)->options;
va_list args;
struct va_format vaf;
struct block_device *bdev = sb->s_bdev;
dev_t bd_dev = bdev ? bdev->bd_dev : 0;
if (report) {
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
pr_err("[SDFAT](%s[%d:%d]):ERR: %pV\n",
sb->s_id, MAJOR(bd_dev), MINOR(bd_dev), &vaf);
#ifdef CONFIG_SDFAT_SUPPORT_STLOG
if (opts->errors == SDFAT_ERRORS_RO && !sb_rdonly(sb)) {
ST_LOG("[SDFAT](%s[%d:%d]):ERR: %pV\n",
sb->s_id, MAJOR(bd_dev), MINOR(bd_dev), &vaf);
}
#endif
va_end(args);
}
if (opts->errors == SDFAT_ERRORS_PANIC) {
panic("[SDFAT](%s[%d:%d]): fs panic from previous error\n",
sb->s_id, MAJOR(bd_dev), MINOR(bd_dev));
} else if (opts->errors == SDFAT_ERRORS_RO && !sb_rdonly(sb)) {
sb->s_flags |= SB_RDONLY;
sdfat_statistics_set_mnt_ro();
pr_err("[SDFAT](%s[%d:%d]): Filesystem has been set "
"read-only\n", sb->s_id, MAJOR(bd_dev), MINOR(bd_dev));
#ifdef CONFIG_SDFAT_SUPPORT_STLOG
ST_LOG("[SDFAT](%s[%d:%d]): Filesystem has been set read-only\n",
sb->s_id, MAJOR(bd_dev), MINOR(bd_dev));
#endif
sdfat_uevent_ro_remount(sb);
}
}
EXPORT_SYMBOL(__sdfat_fs_error);
/**
* __sdfat_msg() - print preformated SDFAT specific messages.
* All logs except what uses sdfat_fs_error() should be written by __sdfat_msg()
* If 'st' is set, the log is propagated to ST_LOG.
*/
void __sdfat_msg(struct super_block *sb, const char *level, int st, const char *fmt, ...)
{
struct va_format vaf;
va_list args;
struct block_device *bdev = sb->s_bdev;
dev_t bd_dev = bdev ? bdev->bd_dev : 0;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
/* level means KERN_ pacility level */
printk("%s[SDFAT](%s[%d:%d]): %pV\n", level,
sb->s_id, MAJOR(bd_dev), MINOR(bd_dev), &vaf);
#ifdef CONFIG_SDFAT_SUPPORT_STLOG
if (st) {
ST_LOG("[SDFAT](%s[%d:%d]): %pV\n",
sb->s_id, MAJOR(bd_dev), MINOR(bd_dev), &vaf);
}
#endif
va_end(args);
}
EXPORT_SYMBOL(__sdfat_msg);
void sdfat_log_version(void)
{
pr_info("[SDFAT] Filesystem version %s\n", SDFAT_VERSION);
#ifdef CONFIG_SDFAT_SUPPORT_STLOG
ST_LOG("[SDFAT] Filesystem version %s\n", SDFAT_VERSION);
#endif
}
EXPORT_SYMBOL(sdfat_log_version);
/* <linux/time.h> externs sys_tz
* extern struct timezone sys_tz;
*/
#define UNIX_SECS_1980 315532800L
#if BITS_PER_LONG == 64
#define UNIX_SECS_2108 4354819200L
#endif
/* days between 1970/01/01 and 1980/01/01 (2 leap days) */
#define DAYS_DELTA_DECADE (365 * 10 + 2)
/* 120 (2100 - 1980) isn't leap year */
#define NO_LEAP_YEAR_2100 (120)
#define IS_LEAP_YEAR(y) (!((y) & 0x3) && (y) != NO_LEAP_YEAR_2100)
#define SECS_PER_MIN (60)
#define SECS_PER_HOUR (60 * SECS_PER_MIN)
#define SECS_PER_DAY (24 * SECS_PER_HOUR)
#define MAKE_LEAP_YEAR(leap_year, year) \
do { \
/* 2100 isn't leap year */ \
if (unlikely(year > NO_LEAP_YEAR_2100)) \
leap_year = ((year + 3) / 4) - 1; \
else \
leap_year = ((year + 3) / 4); \
} while (0)
/* Linear day numbers of the respective 1sts in non-leap years. */
static time_t accum_days_in_year[] = {
/* Month : N 01 02 03 04 05 06 07 08 09 10 11 12 */
0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 0, 0, 0,
};
#define TIMEZONE_SEC(x) ((x) * 15 * SECS_PER_MIN)
/* Convert a FAT time/date pair to a UNIX date (seconds since 1 1 70). */
void sdfat_time_fat2unix(struct sdfat_sb_info *sbi, sdfat_timespec_t *ts,
DATE_TIME_T *tp)
{
time_t year = tp->Year;
time_t ld; /* leap day */
MAKE_LEAP_YEAR(ld, year);
if (IS_LEAP_YEAR(year) && (tp->Month) > 2)
ld++;
ts->tv_sec = tp->Second + tp->Minute * SECS_PER_MIN
+ tp->Hour * SECS_PER_HOUR
+ (year * 365 + ld + accum_days_in_year[tp->Month]
+ (tp->Day - 1) + DAYS_DELTA_DECADE) * SECS_PER_DAY;
ts->tv_nsec = 0;
/* Treat as local time */
if (!sbi->options.tz_utc && !tp->Timezone.valid) {
ts->tv_sec += sys_tz.tz_minuteswest * SECS_PER_MIN;
return;
}
/* Treat as UTC time */
if (!tp->Timezone.valid)
return;
/* Treat as UTC time, but need to adjust timezone to UTC0 */
if (tp->Timezone.off <= 0x3F)
ts->tv_sec -= TIMEZONE_SEC(tp->Timezone.off);
else /* 0x40 <= (tp->Timezone & 0x7F) <=0x7F */
ts->tv_sec += TIMEZONE_SEC(0x80 - tp->Timezone.off);
}
#define TIMEZONE_CUR_OFFSET() ((sys_tz.tz_minuteswest / (-15)) & 0x7F)
/* Convert linear UNIX date to a FAT time/date pair. */
void sdfat_time_unix2fat(struct sdfat_sb_info *sbi, sdfat_timespec_t *ts,
DATE_TIME_T *tp)
{
bool tz_valid = (sbi->fsi.vol_type == EXFAT) ? true : false;
time_t second = ts->tv_sec;
time_t day, month, year;
time_t ld; /* leap day */
tp->Timezone.value = 0x00;
/* Treats as local time with proper time */
if (tz_valid || !sbi->options.tz_utc) {
second -= sys_tz.tz_minuteswest * SECS_PER_MIN;
if (tz_valid) {
tp->Timezone.valid = 1;
tp->Timezone.off = TIMEZONE_CUR_OFFSET();
}
}
/* Jan 1 GMT 00:00:00 1980. But what about another time zone? */
if (second < UNIX_SECS_1980) {
tp->Second = 0;
tp->Minute = 0;
tp->Hour = 0;
tp->Day = 1;
tp->Month = 1;
tp->Year = 0;
return;
}
#if (BITS_PER_LONG == 64)
if (second >= UNIX_SECS_2108) {
tp->Second = 59;
tp->Minute = 59;
tp->Hour = 23;
tp->Day = 31;
tp->Month = 12;
tp->Year = 127;
return;
}
#endif
day = second / SECS_PER_DAY - DAYS_DELTA_DECADE;
year = day / 365;
MAKE_LEAP_YEAR(ld, year);
if (year * 365 + ld > day)
year--;
MAKE_LEAP_YEAR(ld, year);
day -= year * 365 + ld;
if (IS_LEAP_YEAR(year) && day == accum_days_in_year[3]) {
month = 2;
} else {
if (IS_LEAP_YEAR(year) && day > accum_days_in_year[3])
day--;
for (month = 1; month < 12; month++) {
if (accum_days_in_year[month + 1] > day)
break;
}
}
day -= accum_days_in_year[month];
tp->Second = second % SECS_PER_MIN;
tp->Minute = (second / SECS_PER_MIN) % 60;
tp->Hour = (second / SECS_PER_HOUR) % 24;
tp->Day = day + 1;
tp->Month = month;
tp->Year = year;
}
TIMESTAMP_T *tm_now(struct inode *inode, TIMESTAMP_T *tp)
{
sdfat_timespec_t ts = current_time(inode);
DATE_TIME_T dt;
sdfat_time_unix2fat(SDFAT_SB(inode->i_sb), &ts, &dt);
tp->year = dt.Year;
tp->mon = dt.Month;
tp->day = dt.Day;
tp->hour = dt.Hour;
tp->min = dt.Minute;
tp->sec = dt.Second;
tp->tz.value = dt.Timezone.value;
return tp;
}
u8 calc_chksum_1byte(void *data, s32 len, u8 chksum)
{
s32 i;
u8 *c = (u8 *) data;
for (i = 0; i < len; i++, c++)
chksum = (((chksum & 1) << 7) | ((chksum & 0xFE) >> 1)) + *c;
return chksum;
}
u16 calc_chksum_2byte(void *data, s32 len, u16 chksum, s32 type)
{
s32 i;
u8 *c = (u8 *) data;
for (i = 0; i < len; i++, c++) {
if (((i == 2) || (i == 3)) && (type == CS_DIR_ENTRY))
continue;
chksum = (((chksum & 1) << 15) | ((chksum & 0xFFFE) >> 1)) + (u16) *c;
}
return chksum;
}
#ifdef CONFIG_SDFAT_TRACE_ELAPSED_TIME
struct timeval __t1, __t2;
u32 sdfat_time_current_usec(struct timeval *tv)
{
do_gettimeofday(tv);
return (u32)(tv->tv_sec*1000000 + tv->tv_usec);
}
#endif /* CONFIG_SDFAT_TRACE_ELAPSED_TIME */
#ifdef CONFIG_SDFAT_DBG_CAREFUL
/* Check the consistency of i_size_ondisk (FAT32, or flags 0x01 only) */
void sdfat_debug_check_clusters(struct inode *inode)
{
unsigned int num_clusters;
volatile uint32_t tmp_fat_chain[50];
volatile int tmp_i = 0;
volatile unsigned int num_clusters_org, tmp_i = 0;
CHAIN_T clu;
FILE_ID_T *fid = &(SDFAT_I(inode)->fid);
FS_INFO_T *fsi = &(SDFAT_SB(inode->i_sb)->fsi);
if (SDFAT_I(inode)->i_size_ondisk == 0)
num_clusters = 0;
else
num_clusters = ((SDFAT_I(inode)->i_size_ondisk-1) >> fsi->cluster_size_bits) + 1;
clu.dir = fid->start_clu;
clu.size = num_clusters;
clu.flags = fid->flags;
num_clusters_org = num_clusters;
if (clu.flags == 0x03)
return;
while (num_clusters > 0) {
/* FAT chain logging */
tmp_fat_chain[tmp_i] = clu.dir;
tmp_i++;
if (tmp_i >= 50)
tmp_i = 0;
BUG_ON(IS_CLUS_EOF(clu.dir) || IS_CLUS_FREE(clu.dir));
if (get_next_clus_safe(inode->i_sb, &(clu.dir)))
EMSG("%s: failed to access to FAT\n");
num_clusters--;
}
BUG_ON(!IS_CLUS_EOF(clu.dir));
}
#endif /* CONFIG_SDFAT_DBG_CAREFUL */
#ifdef CONFIG_SDFAT_DBG_MSG
void __sdfat_dmsg(int level, const char *fmt, ...)
{
#ifdef CONFIG_SDFAT_DBG_SHOW_PID
struct va_format vaf;
va_list args;
/* should check type */
if (level > SDFAT_MSG_LEVEL)
return;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
/* fmt already includes KERN_ pacility level */
printk("[%u] %pV", current->pid, &vaf);
va_end(args);
#else
va_list args;
/* should check type */
if (level > SDFAT_MSG_LEVEL)
return;
va_start(args, fmt);
/* fmt already includes KERN_ pacility level */
vprintk(fmt, args);
va_end(args);
#endif
}
#endif