blob: 3df55ac5940dee5bd6c2ae61dbfd98f800cd124d [file] [log] [blame]
#include <linux/sched.h>
#include <linux/sched/sysctl.h>
#include <linux/sched/rt.h>
#include <linux/u64_stats_sync.h>
#include <linux/sched/deadline.h>
#include <linux/binfmts.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/stop_machine.h>
#include <linux/irq_work.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include "cpupri.h"
#include "cpudeadline.h"
#include "cpuacct.h"
#ifdef CONFIG_SCHED_DEBUG
#define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
#else
#define SCHED_WARN_ON(x) ((void)(x))
#endif
struct rq;
struct cpuidle_state;
extern __read_mostly bool sched_predl;
#ifdef CONFIG_SCHED_WALT
extern unsigned int sched_ravg_window;
struct walt_sched_stats {
int nr_big_tasks;
u64 cumulative_runnable_avg;
u64 pred_demands_sum;
};
struct cpu_cycle {
u64 cycles;
u64 time;
};
struct group_cpu_time {
u64 curr_runnable_sum;
u64 prev_runnable_sum;
u64 nt_curr_runnable_sum;
u64 nt_prev_runnable_sum;
};
struct load_subtractions {
u64 window_start;
u64 subs;
u64 new_subs;
};
#define NUM_TRACKED_WINDOWS 2
#define NUM_LOAD_INDICES 1000
struct sched_cluster {
raw_spinlock_t load_lock;
struct list_head list;
struct cpumask cpus;
int id;
int max_power_cost;
int min_power_cost;
int max_possible_capacity;
int capacity;
int efficiency; /* Differentiate cpus with different IPC capability */
int load_scale_factor;
unsigned int exec_scale_factor;
/*
* max_freq = user maximum
* max_mitigated_freq = thermal defined maximum
* max_possible_freq = maximum supported by hardware
*/
unsigned int cur_freq, max_freq, max_mitigated_freq, min_freq;
unsigned int max_possible_freq;
bool freq_init_done;
int dstate, dstate_wakeup_latency, dstate_wakeup_energy;
unsigned int static_cluster_pwr_cost;
int notifier_sent;
bool wake_up_idle;
u64 aggr_grp_load;
};
extern unsigned int sched_disable_window_stats;
extern struct timer_list sched_grp_timer;
#endif /* CONFIG_SCHED_WALT */
/* task_struct::on_rq states: */
#define TASK_ON_RQ_QUEUED 1
#define TASK_ON_RQ_MIGRATING 2
extern __read_mostly int scheduler_running;
extern unsigned long calc_load_update;
extern atomic_long_t calc_load_tasks;
extern void calc_global_load_tick(struct rq *this_rq);
extern long calc_load_fold_active(struct rq *this_rq, long adjust);
#ifdef CONFIG_SMP
extern void cpu_load_update_active(struct rq *this_rq);
#else
static inline void cpu_load_update_active(struct rq *this_rq) { }
#endif
#ifdef CONFIG_SCHED_SMT
extern void update_idle_core(struct rq *rq);
#else
static inline void update_idle_core(struct rq *rq) { }
#endif
/*
* Helpers for converting nanosecond timing to jiffy resolution
*/
#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
/*
* Increase resolution of nice-level calculations for 64-bit architectures.
* The extra resolution improves shares distribution and load balancing of
* low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
* hierarchies, especially on larger systems. This is not a user-visible change
* and does not change the user-interface for setting shares/weights.
*
* We increase resolution only if we have enough bits to allow this increased
* resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
* pretty high and the returns do not justify the increased costs.
*
* Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
* increase coverage and consistency always enable it on 64bit platforms.
*/
#ifdef CONFIG_64BIT
# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
#else
# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
# define scale_load(w) (w)
# define scale_load_down(w) (w)
#endif
/*
* Task weight (visible to users) and its load (invisible to users) have
* independent resolution, but they should be well calibrated. We use
* scale_load() and scale_load_down(w) to convert between them. The
* following must be true:
*
* scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
*
*/
#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
/*
* Single value that decides SCHED_DEADLINE internal math precision.
* 10 -> just above 1us
* 9 -> just above 0.5us
*/
#define DL_SCALE (10)
/*
* These are the 'tuning knobs' of the scheduler:
*/
/*
* single value that denotes runtime == period, ie unlimited time.
*/
#define RUNTIME_INF ((u64)~0ULL)
static inline int idle_policy(int policy)
{
return policy == SCHED_IDLE;
}
static inline int fair_policy(int policy)
{
return policy == SCHED_NORMAL || policy == SCHED_BATCH;
}
static inline int rt_policy(int policy)
{
return policy == SCHED_FIFO || policy == SCHED_RR;
}
static inline int dl_policy(int policy)
{
return policy == SCHED_DEADLINE;
}
static inline bool valid_policy(int policy)
{
return idle_policy(policy) || fair_policy(policy) ||
rt_policy(policy) || dl_policy(policy);
}
static inline int task_has_rt_policy(struct task_struct *p)
{
return rt_policy(p->policy);
}
static inline int task_has_dl_policy(struct task_struct *p)
{
return dl_policy(p->policy);
}
/*
* Tells if entity @a should preempt entity @b.
*/
static inline bool
dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
{
return dl_time_before(a->deadline, b->deadline);
}
/*
* This is the priority-queue data structure of the RT scheduling class:
*/
struct rt_prio_array {
DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
struct list_head queue[MAX_RT_PRIO];
};
struct rt_bandwidth {
/* nests inside the rq lock: */
raw_spinlock_t rt_runtime_lock;
ktime_t rt_period;
u64 rt_runtime;
struct hrtimer rt_period_timer;
unsigned int rt_period_active;
};
void __dl_clear_params(struct task_struct *p);
/*
* To keep the bandwidth of -deadline tasks and groups under control
* we need some place where:
* - store the maximum -deadline bandwidth of the system (the group);
* - cache the fraction of that bandwidth that is currently allocated.
*
* This is all done in the data structure below. It is similar to the
* one used for RT-throttling (rt_bandwidth), with the main difference
* that, since here we are only interested in admission control, we
* do not decrease any runtime while the group "executes", neither we
* need a timer to replenish it.
*
* With respect to SMP, the bandwidth is given on a per-CPU basis,
* meaning that:
* - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
* - dl_total_bw array contains, in the i-eth element, the currently
* allocated bandwidth on the i-eth CPU.
* Moreover, groups consume bandwidth on each CPU, while tasks only
* consume bandwidth on the CPU they're running on.
* Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
* that will be shown the next time the proc or cgroup controls will
* be red. It on its turn can be changed by writing on its own
* control.
*/
struct dl_bandwidth {
raw_spinlock_t dl_runtime_lock;
u64 dl_runtime;
u64 dl_period;
};
static inline int dl_bandwidth_enabled(void)
{
return sysctl_sched_rt_runtime >= 0;
}
extern struct dl_bw *dl_bw_of(int i);
struct dl_bw {
raw_spinlock_t lock;
u64 bw, total_bw;
};
static inline
void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
{
dl_b->total_bw -= tsk_bw;
}
static inline
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
{
dl_b->total_bw += tsk_bw;
}
static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
return dl_b->bw != -1 &&
dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}
extern struct mutex sched_domains_mutex;
#ifdef CONFIG_CGROUP_SCHED
#include <linux/cgroup.h>
struct cfs_rq;
struct rt_rq;
extern struct list_head task_groups;
struct cfs_bandwidth {
#ifdef CONFIG_CFS_BANDWIDTH
raw_spinlock_t lock;
ktime_t period;
u64 quota, runtime;
s64 hierarchical_quota;
u64 runtime_expires;
int idle, period_active;
struct hrtimer period_timer, slack_timer;
struct list_head throttled_cfs_rq;
/* statistics */
int nr_periods, nr_throttled;
u64 throttled_time;
#endif
};
/* task group related information */
struct task_group {
struct cgroup_subsys_state css;
#ifdef CONFIG_FAIR_GROUP_SCHED
/* schedulable entities of this group on each cpu */
struct sched_entity **se;
/* runqueue "owned" by this group on each cpu */
struct cfs_rq **cfs_rq;
unsigned long shares;
#ifdef CONFIG_SMP
/*
* load_avg can be heavily contended at clock tick time, so put
* it in its own cacheline separated from the fields above which
* will also be accessed at each tick.
*/
atomic_long_t load_avg ____cacheline_aligned;
#endif
#endif
#ifdef CONFIG_RT_GROUP_SCHED
struct sched_rt_entity **rt_se;
struct rt_rq **rt_rq;
struct rt_bandwidth rt_bandwidth;
#endif
struct rcu_head rcu;
struct list_head list;
struct task_group *parent;
struct list_head siblings;
struct list_head children;
#ifdef CONFIG_SCHED_AUTOGROUP
struct autogroup *autogroup;
#endif
struct cfs_bandwidth cfs_bandwidth;
};
#ifdef CONFIG_FAIR_GROUP_SCHED
#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
/*
* A weight of 0 or 1 can cause arithmetics problems.
* A weight of a cfs_rq is the sum of weights of which entities
* are queued on this cfs_rq, so a weight of a entity should not be
* too large, so as the shares value of a task group.
* (The default weight is 1024 - so there's no practical
* limitation from this.)
*/
#define MIN_SHARES (1UL << 1)
#define MAX_SHARES (1UL << 18)
#endif
typedef int (*tg_visitor)(struct task_group *, void *);
extern int walk_tg_tree_from(struct task_group *from,
tg_visitor down, tg_visitor up, void *data);
/*
* Iterate the full tree, calling @down when first entering a node and @up when
* leaving it for the final time.
*
* Caller must hold rcu_lock or sufficient equivalent.
*/
static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
{
return walk_tg_tree_from(&root_task_group, down, up, data);
}
extern int tg_nop(struct task_group *tg, void *data);
extern void free_fair_sched_group(struct task_group *tg);
extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
extern void online_fair_sched_group(struct task_group *tg);
extern void unregister_fair_sched_group(struct task_group *tg);
extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
struct sched_entity *se, int cpu,
struct sched_entity *parent);
extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
extern void free_rt_sched_group(struct task_group *tg);
extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
struct sched_rt_entity *rt_se, int cpu,
struct sched_rt_entity *parent);
extern struct task_group *sched_create_group(struct task_group *parent);
extern void sched_online_group(struct task_group *tg,
struct task_group *parent);
extern void sched_destroy_group(struct task_group *tg);
extern void sched_offline_group(struct task_group *tg);
extern void sched_move_task(struct task_struct *tsk);
#ifdef CONFIG_FAIR_GROUP_SCHED
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
#ifdef CONFIG_SMP
extern void set_task_rq_fair(struct sched_entity *se,
struct cfs_rq *prev, struct cfs_rq *next);
#else /* !CONFIG_SMP */
static inline void set_task_rq_fair(struct sched_entity *se,
struct cfs_rq *prev, struct cfs_rq *next) { }
#endif /* CONFIG_SMP */
#endif /* CONFIG_FAIR_GROUP_SCHED */
extern struct task_group *css_tg(struct cgroup_subsys_state *css);
#else /* CONFIG_CGROUP_SCHED */
struct cfs_bandwidth { };
#endif /* CONFIG_CGROUP_SCHED */
/* CFS-related fields in a runqueue */
struct cfs_rq {
struct load_weight load;
unsigned int nr_running, h_nr_running;
u64 exec_clock;
u64 min_vruntime;
#ifndef CONFIG_64BIT
u64 min_vruntime_copy;
#endif
struct rb_root tasks_timeline;
struct rb_node *rb_leftmost;
/*
* 'curr' points to currently running entity on this cfs_rq.
* It is set to NULL otherwise (i.e when none are currently running).
*/
struct sched_entity *curr, *next, *last, *skip;
#ifdef CONFIG_SCHED_DEBUG
unsigned int nr_spread_over;
#endif
#ifdef CONFIG_SMP
/*
* CFS load tracking
*/
struct sched_avg avg;
u64 runnable_load_sum;
unsigned long runnable_load_avg;
#ifdef CONFIG_FAIR_GROUP_SCHED
unsigned long tg_load_avg_contrib;
#endif
atomic_long_t removed_load_avg, removed_util_avg;
#ifndef CONFIG_64BIT
u64 load_last_update_time_copy;
#endif
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
* h_load = weight * f(tg)
*
* Where f(tg) is the recursive weight fraction assigned to
* this group.
*/
unsigned long h_load;
u64 last_h_load_update;
struct sched_entity *h_load_next;
#endif /* CONFIG_FAIR_GROUP_SCHED */
#endif /* CONFIG_SMP */
#ifdef CONFIG_FAIR_GROUP_SCHED
struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
/*
* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
* a hierarchy). Non-leaf lrqs hold other higher schedulable entities
* (like users, containers etc.)
*
* leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
* list is used during load balance.
*/
int on_list;
struct list_head leaf_cfs_rq_list;
struct task_group *tg; /* group that "owns" this runqueue */
#ifdef CONFIG_CFS_BANDWIDTH
#ifdef CONFIG_SCHED_WALT
struct walt_sched_stats walt_stats;
#endif
int runtime_enabled;
u64 runtime_expires;
s64 runtime_remaining;
u64 throttled_clock, throttled_clock_task;
u64 throttled_clock_task_time;
int throttled, throttle_count;
struct list_head throttled_list;
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */
};
static inline int rt_bandwidth_enabled(void)
{
return sysctl_sched_rt_runtime >= 0;
}
/* RT IPI pull logic requires IRQ_WORK */
#ifdef CONFIG_IRQ_WORK
# define HAVE_RT_PUSH_IPI
#endif
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
struct rt_prio_array active;
unsigned int rt_nr_running;
unsigned int rr_nr_running;
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
struct {
int curr; /* highest queued rt task prio */
#ifdef CONFIG_SMP
int next; /* next highest */
#endif
} highest_prio;
#endif
#ifdef CONFIG_SMP
unsigned long rt_nr_migratory;
unsigned long rt_nr_total;
int overloaded;
struct plist_head pushable_tasks;
#ifdef HAVE_RT_PUSH_IPI
int push_flags;
int push_cpu;
struct irq_work push_work;
raw_spinlock_t push_lock;
#endif
#endif /* CONFIG_SMP */
int rt_queued;
int rt_throttled;
u64 rt_time;
u64 rt_runtime;
/* Nests inside the rq lock: */
raw_spinlock_t rt_runtime_lock;
#ifdef CONFIG_RT_GROUP_SCHED
unsigned long rt_nr_boosted;
struct rq *rq;
struct task_group *tg;
#endif
};
/* Deadline class' related fields in a runqueue */
struct dl_rq {
/* runqueue is an rbtree, ordered by deadline */
struct rb_root rb_root;
struct rb_node *rb_leftmost;
unsigned long dl_nr_running;
#ifdef CONFIG_SMP
/*
* Deadline values of the currently executing and the
* earliest ready task on this rq. Caching these facilitates
* the decision wether or not a ready but not running task
* should migrate somewhere else.
*/
struct {
u64 curr;
u64 next;
} earliest_dl;
unsigned long dl_nr_migratory;
int overloaded;
/*
* Tasks on this rq that can be pushed away. They are kept in
* an rb-tree, ordered by tasks' deadlines, with caching
* of the leftmost (earliest deadline) element.
*/
struct rb_root pushable_dl_tasks_root;
struct rb_node *pushable_dl_tasks_leftmost;
#else
struct dl_bw dl_bw;
#endif
};
#ifdef CONFIG_SMP
struct max_cpu_capacity {
raw_spinlock_t lock;
unsigned long val;
int cpu;
};
/*
* We add the notion of a root-domain which will be used to define per-domain
* variables. Each exclusive cpuset essentially defines an island domain by
* fully partitioning the member cpus from any other cpuset. Whenever a new
* exclusive cpuset is created, we also create and attach a new root-domain
* object.
*
*/
struct root_domain {
atomic_t refcount;
atomic_t rto_count;
struct rcu_head rcu;
cpumask_var_t span;
cpumask_var_t online;
/* Indicate more than one runnable task for any CPU */
bool overload;
/* Indicate one or more cpus over-utilized (tipping point) */
bool overutilized;
/*
* The bit corresponding to a CPU gets set here if such CPU has more
* than one runnable -deadline task (as it is below for RT tasks).
*/
cpumask_var_t dlo_mask;
atomic_t dlo_count;
struct dl_bw dl_bw;
struct cpudl cpudl;
/*
* The "RT overload" flag: it gets set if a CPU has more than
* one runnable RT task.
*/
cpumask_var_t rto_mask;
struct cpupri cpupri;
/* Maximum cpu capacity in the system. */
struct max_cpu_capacity max_cpu_capacity;
};
extern struct root_domain def_root_domain;
#endif /* CONFIG_SMP */
/*
* This is the main, per-CPU runqueue data structure.
*
* Locking rule: those places that want to lock multiple runqueues
* (such as the load balancing or the thread migration code), lock
* acquire operations must be ordered by ascending &runqueue.
*/
struct rq {
/* runqueue lock: */
raw_spinlock_t lock;
/*
* nr_running and cpu_load should be in the same cacheline because
* remote CPUs use both these fields when doing load calculation.
*/
unsigned int nr_running;
#ifdef CONFIG_NUMA_BALANCING
unsigned int nr_numa_running;
unsigned int nr_preferred_running;
#endif
#define CPU_LOAD_IDX_MAX 5
unsigned long cpu_load[CPU_LOAD_IDX_MAX];
unsigned int misfit_task;
#ifdef CONFIG_NO_HZ_COMMON
#ifdef CONFIG_SMP
unsigned long last_load_update_tick;
#endif /* CONFIG_SMP */
unsigned long nohz_flags;
#endif /* CONFIG_NO_HZ_COMMON */
#ifdef CONFIG_NO_HZ_FULL
unsigned long last_sched_tick;
#endif
#ifdef CONFIG_CPU_QUIET
/* time-based average load */
u64 nr_last_stamp;
u64 nr_running_integral;
seqcount_t ave_seqcnt;
#endif
/* capture load from *all* tasks on this cpu: */
struct load_weight load;
unsigned long nr_load_updates;
u64 nr_switches;
struct cfs_rq cfs;
struct rt_rq rt;
struct dl_rq dl;
#ifdef CONFIG_FAIR_GROUP_SCHED
/* list of leaf cfs_rq on this cpu: */
struct list_head leaf_cfs_rq_list;
#endif /* CONFIG_FAIR_GROUP_SCHED */
/*
* This is part of a global counter where only the total sum
* over all CPUs matters. A task can increase this counter on
* one CPU and if it got migrated afterwards it may decrease
* it on another CPU. Always updated under the runqueue lock:
*/
unsigned long nr_uninterruptible;
struct task_struct *curr, *idle, *stop;
unsigned long next_balance;
struct mm_struct *prev_mm;
unsigned int clock_skip_update;
u64 clock;
u64 clock_task;
atomic_t nr_iowait;
#ifdef CONFIG_SMP
struct root_domain *rd;
struct sched_domain *sd;
unsigned long cpu_capacity;
unsigned long cpu_capacity_orig;
struct callback_head *balance_callback;
unsigned char idle_balance;
/* For active balancing */
int active_balance;
int push_cpu;
struct task_struct *push_task;
struct cpu_stop_work active_balance_work;
/* cpu of this runqueue: */
int cpu;
int online;
struct list_head cfs_tasks;
u64 rt_avg;
u64 age_stamp;
u64 idle_stamp;
u64 avg_idle;
/* This is used to determine avg_idle's max value */
u64 max_idle_balance_cost;
#endif
#ifdef CONFIG_SCHED_WALT
struct sched_cluster *cluster;
struct cpumask freq_domain_cpumask;
struct walt_sched_stats walt_stats;
int cstate, wakeup_latency, wakeup_energy;
u64 window_start;
s64 cum_window_start;
u64 load_reported_window;
unsigned long walt_flags;
u64 cur_irqload;
u64 avg_irqload;
u64 irqload_ts;
unsigned int static_cpu_pwr_cost;
struct task_struct *ed_task;
struct cpu_cycle cc;
u64 old_busy_time, old_busy_time_group;
u64 old_estimated_time;
u64 curr_runnable_sum;
u64 prev_runnable_sum;
u64 nt_curr_runnable_sum;
u64 nt_prev_runnable_sum;
u64 cum_window_demand;
struct group_cpu_time grp_time;
struct load_subtractions load_subs[NUM_TRACKED_WINDOWS];
DECLARE_BITMAP_ARRAY(top_tasks_bitmap,
NUM_TRACKED_WINDOWS, NUM_LOAD_INDICES);
u8 *top_tasks[NUM_TRACKED_WINDOWS];
u8 curr_table;
int prev_top;
int curr_top;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
u64 prev_irq_time;
#endif
#ifdef CONFIG_PARAVIRT
u64 prev_steal_time;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
u64 prev_steal_time_rq;
#endif
/* calc_load related fields */
unsigned long calc_load_update;
long calc_load_active;
#ifdef CONFIG_SCHED_HRTICK
#ifdef CONFIG_SMP
int hrtick_csd_pending;
struct call_single_data hrtick_csd;
#endif
struct hrtimer hrtick_timer;
#endif
#ifdef CONFIG_SCHEDSTATS
/* latency stats */
struct sched_info rq_sched_info;
unsigned long long rq_cpu_time;
/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
/* sys_sched_yield() stats */
unsigned int yld_count;
/* schedule() stats */
unsigned int sched_count;
unsigned int sched_goidle;
/* try_to_wake_up() stats */
unsigned int ttwu_count;
unsigned int ttwu_local;
#endif
#ifdef CONFIG_SMP
struct llist_head wake_list;
#endif
#ifdef CONFIG_CPU_IDLE
/* Must be inspected within a rcu lock section */
struct cpuidle_state *idle_state;
int idle_state_idx;
#endif
};
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
return rq->cpu;
#else
return 0;
#endif
}
DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
#define this_rq() this_cpu_ptr(&runqueues)
#define task_rq(p) cpu_rq(task_cpu(p))
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
#define raw_rq() raw_cpu_ptr(&runqueues)
static inline u64 __rq_clock_broken(struct rq *rq)
{
return READ_ONCE(rq->clock);
}
static inline u64 rq_clock(struct rq *rq)
{
lockdep_assert_held(&rq->lock);
return rq->clock;
}
static inline u64 rq_clock_task(struct rq *rq)
{
lockdep_assert_held(&rq->lock);
return rq->clock_task;
}
#define RQCF_REQ_SKIP 0x01
#define RQCF_ACT_SKIP 0x02
static inline void rq_clock_skip_update(struct rq *rq, bool skip)
{
lockdep_assert_held(&rq->lock);
if (skip)
rq->clock_skip_update |= RQCF_REQ_SKIP;
else
rq->clock_skip_update &= ~RQCF_REQ_SKIP;
}
#ifdef CONFIG_NUMA
enum numa_topology_type {
NUMA_DIRECT,
NUMA_GLUELESS_MESH,
NUMA_BACKPLANE,
};
extern enum numa_topology_type sched_numa_topology_type;
extern int sched_max_numa_distance;
extern bool find_numa_distance(int distance);
#endif
#ifdef CONFIG_NUMA_BALANCING
/* The regions in numa_faults array from task_struct */
enum numa_faults_stats {
NUMA_MEM = 0,
NUMA_CPU,
NUMA_MEMBUF,
NUMA_CPUBUF
};
extern void sched_setnuma(struct task_struct *p, int node);
extern int migrate_task_to(struct task_struct *p, int cpu);
extern int migrate_swap(struct task_struct *, struct task_struct *);
#endif /* CONFIG_NUMA_BALANCING */
#ifdef CONFIG_SMP
static inline void
queue_balance_callback(struct rq *rq,
struct callback_head *head,
void (*func)(struct rq *rq))
{
lockdep_assert_held(&rq->lock);
if (unlikely(head->next))
return;
head->func = (void (*)(struct callback_head *))func;
head->next = rq->balance_callback;
rq->balance_callback = head;
}
extern void sched_ttwu_pending(void);
#define rcu_dereference_check_sched_domain(p) \
rcu_dereference_check((p), \
lockdep_is_held(&sched_domains_mutex))
/*
* The domain tree (rq->sd) is protected by RCU's quiescent state transition.
* See detach_destroy_domains: synchronize_sched for details.
*
* The domain tree of any CPU may only be accessed from within
* preempt-disabled sections.
*/
#define for_each_domain(cpu, __sd) \
for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
__sd; __sd = __sd->parent)
#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
/**
* highest_flag_domain - Return highest sched_domain containing flag.
* @cpu: The cpu whose highest level of sched domain is to
* be returned.
* @flag: The flag to check for the highest sched_domain
* for the given cpu.
*
* Returns the highest sched_domain of a cpu which contains the given flag.
*/
static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
{
struct sched_domain *sd, *hsd = NULL;
for_each_domain(cpu, sd) {
if (!(sd->flags & flag))
break;
hsd = sd;
}
return hsd;
}
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
struct sched_domain *sd;
for_each_domain(cpu, sd) {
if (sd->flags & flag)
break;
}
return sd;
}
DECLARE_PER_CPU(struct sched_domain *, sd_llc);
DECLARE_PER_CPU(int, sd_llc_size);
DECLARE_PER_CPU(int, sd_llc_id);
DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
DECLARE_PER_CPU(struct sched_domain *, sd_numa);
DECLARE_PER_CPU(struct sched_domain *, sd_asym);
DECLARE_PER_CPU(struct sched_domain *, sd_ea);
DECLARE_PER_CPU(struct sched_domain *, sd_scs);
struct sched_group_capacity {
atomic_t ref;
/*
* CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
* for a single CPU.
*/
unsigned long capacity;
unsigned long max_capacity; /* Max per-cpu capacity in group */
unsigned long next_update;
int imbalance; /* XXX unrelated to capacity but shared group state */
unsigned long cpumask[0]; /* iteration mask */
};
struct sched_group {
struct sched_group *next; /* Must be a circular list */
atomic_t ref;
unsigned int group_weight;
struct sched_group_capacity *sgc;
const struct sched_group_energy *sge;
/*
* The CPUs this group covers.
*
* NOTE: this field is variable length. (Allocated dynamically
* by attaching extra space to the end of the structure,
* depending on how many CPUs the kernel has booted up with)
*/
unsigned long cpumask[0];
};
static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
{
return to_cpumask(sg->cpumask);
}
/*
* cpumask masking which cpus in the group are allowed to iterate up the domain
* tree.
*/
static inline struct cpumask *sched_group_mask(struct sched_group *sg)
{
return to_cpumask(sg->sgc->cpumask);
}
/**
* group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
* @group: The group whose first cpu is to be returned.
*/
static inline unsigned int group_first_cpu(struct sched_group *group)
{
return cpumask_first(sched_group_cpus(group));
}
extern int group_balance_cpu(struct sched_group *sg);
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
void register_sched_domain_sysctl(void);
void unregister_sched_domain_sysctl(void);
#else
static inline void register_sched_domain_sysctl(void)
{
}
static inline void unregister_sched_domain_sysctl(void)
{
}
#endif
#else
static inline void sched_ttwu_pending(void) { }
#endif /* CONFIG_SMP */
#include "stats.h"
#include "auto_group.h"
enum sched_boost_policy {
SCHED_BOOST_NONE,
SCHED_BOOST_ON_BIG,
SCHED_BOOST_ON_ALL,
};
/*
* Returns the rq capacity of any rq in a group. This does not play
* well with groups where rq capacity can change independently.
*/
#define group_rq_capacity(group) cpu_capacity(group_first_cpu(group))
#ifdef CONFIG_CGROUP_SCHED
/*
* Return the group to which this tasks belongs.
*
* We cannot use task_css() and friends because the cgroup subsystem
* changes that value before the cgroup_subsys::attach() method is called,
* therefore we cannot pin it and might observe the wrong value.
*
* The same is true for autogroup's p->signal->autogroup->tg, the autogroup
* core changes this before calling sched_move_task().
*
* Instead we use a 'copy' which is updated from sched_move_task() while
* holding both task_struct::pi_lock and rq::lock.
*/
static inline struct task_group *task_group(struct task_struct *p)
{
return p->sched_task_group;
}
/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
struct task_group *tg = task_group(p);
#endif
#ifdef CONFIG_FAIR_GROUP_SCHED
set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
p->se.cfs_rq = tg->cfs_rq[cpu];
p->se.parent = tg->se[cpu];
#endif
#ifdef CONFIG_RT_GROUP_SCHED
p->rt.rt_rq = tg->rt_rq[cpu];
p->rt.parent = tg->rt_se[cpu];
#endif
}
#else /* CONFIG_CGROUP_SCHED */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
return NULL;
}
#endif /* CONFIG_CGROUP_SCHED */
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
set_task_rq(p, cpu);
#ifdef CONFIG_SMP
/*
* After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
* successfuly executed on another CPU. We must ensure that updates of
* per-task data have been completed by this moment.
*/
smp_wmb();
#ifdef CONFIG_THREAD_INFO_IN_TASK
p->cpu = cpu;
#else
task_thread_info(p)->cpu = cpu;
#endif
p->wake_cpu = cpu;
#endif
}
/*
* Tunables that become constants when CONFIG_SCHED_DEBUG is off:
*/
#ifdef CONFIG_SCHED_DEBUG
# include <linux/static_key.h>
# define const_debug __read_mostly
#else
# define const_debug const
#endif
extern const_debug unsigned int sysctl_sched_features;
#define SCHED_FEAT(name, enabled) \
__SCHED_FEAT_##name ,
enum {
#include "features.h"
__SCHED_FEAT_NR,
};
#undef SCHED_FEAT
#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
#define SCHED_FEAT(name, enabled) \
static __always_inline bool static_branch_##name(struct static_key *key) \
{ \
return static_key_##enabled(key); \
}
#include "features.h"
#undef SCHED_FEAT
extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
extern struct static_key_false sched_numa_balancing;
extern struct static_key_false sched_schedstats;
static inline u64 global_rt_period(void)
{
return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}
static inline u64 global_rt_runtime(void)
{
if (sysctl_sched_rt_runtime < 0)
return RUNTIME_INF;
return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
static inline int task_current(struct rq *rq, struct task_struct *p)
{
return rq->curr == p;
}
static inline int task_running(struct rq *rq, struct task_struct *p)
{
#ifdef CONFIG_SMP
return p->on_cpu;
#else
return task_current(rq, p);
#endif
}
static inline int task_on_rq_queued(struct task_struct *p)
{
return p->on_rq == TASK_ON_RQ_QUEUED;
}
static inline int task_on_rq_migrating(struct task_struct *p)
{
return p->on_rq == TASK_ON_RQ_MIGRATING;
}
#ifndef prepare_arch_switch
# define prepare_arch_switch(next) do { } while (0)
#endif
#ifndef finish_arch_post_lock_switch
# define finish_arch_post_lock_switch() do { } while (0)
#endif
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
{
#ifdef CONFIG_SMP
/*
* We can optimise this out completely for !SMP, because the
* SMP rebalancing from interrupt is the only thing that cares
* here.
*/
next->on_cpu = 1;
#endif
}
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
{
#ifdef CONFIG_SMP
/*
* After ->on_cpu is cleared, the task can be moved to a different CPU.
* We must ensure this doesn't happen until the switch is completely
* finished.
*
* In particular, the load of prev->state in finish_task_switch() must
* happen before this.
*
* Pairs with the smp_cond_load_acquire() in try_to_wake_up().
*/
smp_store_release(&prev->on_cpu, 0);
#endif
#ifdef CONFIG_DEBUG_SPINLOCK
/* this is a valid case when another task releases the spinlock */
rq->lock.owner = current;
#endif
/*
* If we are tracking spinlock dependencies then we have to
* fix up the runqueue lock - which gets 'carried over' from
* prev into current:
*/
spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
raw_spin_unlock_irq(&rq->lock);
}
/*
* wake flags
*/
#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
#define WF_FORK 0x02 /* child wakeup after fork */
#define WF_MIGRATED 0x4 /* internal use, task got migrated */
/*
* To aid in avoiding the subversion of "niceness" due to uneven distribution
* of tasks with abnormal "nice" values across CPUs the contribution that
* each task makes to its run queue's load is weighted according to its
* scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
* scaled version of the new time slice allocation that they receive on time
* slice expiry etc.
*/
#define WEIGHT_IDLEPRIO 3
#define WMULT_IDLEPRIO 1431655765
extern const int sched_prio_to_weight[40];
extern const u32 sched_prio_to_wmult[40];
/*
* {de,en}queue flags:
*
* DEQUEUE_SLEEP - task is no longer runnable
* ENQUEUE_WAKEUP - task just became runnable
*
* SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
* are in a known state which allows modification. Such pairs
* should preserve as much state as possible.
*
* MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
* in the runqueue.
*
* ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
* ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
* ENQUEUE_MIGRATED - the task was migrated during wakeup
*
*/
#define DEQUEUE_SLEEP 0x01
#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
#define ENQUEUE_WAKEUP 0x01
#define ENQUEUE_RESTORE 0x02
#define ENQUEUE_MOVE 0x04
#define ENQUEUE_HEAD 0x08
#define ENQUEUE_REPLENISH 0x10
#ifdef CONFIG_SMP
#define ENQUEUE_MIGRATED 0x20
#else
#define ENQUEUE_MIGRATED 0x00
#endif
#define ENQUEUE_WAKEUP_NEW 0x40
#define RETRY_TASK ((void *)-1UL)
struct sched_class {
const struct sched_class *next;
void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
void (*yield_task) (struct rq *rq);
bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
/*
* It is the responsibility of the pick_next_task() method that will
* return the next task to call put_prev_task() on the @prev task or
* something equivalent.
*
* May return RETRY_TASK when it finds a higher prio class has runnable
* tasks.
*/
struct task_struct * (*pick_next_task) (struct rq *rq,
struct task_struct *prev,
struct pin_cookie cookie);
void (*put_prev_task) (struct rq *rq, struct task_struct *p);
#ifdef CONFIG_SMP
int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
void (*migrate_task_rq)(struct task_struct *p);
void (*task_woken) (struct rq *this_rq, struct task_struct *task);
void (*set_cpus_allowed)(struct task_struct *p,
const struct cpumask *newmask);
void (*rq_online)(struct rq *rq);
void (*rq_offline)(struct rq *rq);
#endif
void (*set_curr_task) (struct rq *rq);
void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
void (*task_fork) (struct task_struct *p);
void (*task_dead) (struct task_struct *p);
/*
* The switched_from() call is allowed to drop rq->lock, therefore we
* cannot assume the switched_from/switched_to pair is serliazed by
* rq->lock. They are however serialized by p->pi_lock.
*/
void (*switched_from) (struct rq *this_rq, struct task_struct *task);
void (*switched_to) (struct rq *this_rq, struct task_struct *task);
void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
int oldprio);
unsigned int (*get_rr_interval) (struct rq *rq,
struct task_struct *task);
void (*update_curr) (struct rq *rq);
#define TASK_SET_GROUP 0
#define TASK_MOVE_GROUP 1
#ifdef CONFIG_FAIR_GROUP_SCHED
void (*task_change_group) (struct task_struct *p, int type);
#endif
#ifdef CONFIG_SCHED_WALT
void (*fixup_walt_sched_stats)(struct rq *rq, struct task_struct *p,
u32 new_task_load, u32 new_pred_demand);
#endif
};
static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
{
prev->sched_class->put_prev_task(rq, prev);
}
static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
{
curr->sched_class->set_curr_task(rq);
}
#define sched_class_highest (&stop_sched_class)
#define for_each_class(class) \
for (class = sched_class_highest; class; class = class->next)
extern const struct sched_class stop_sched_class;
extern const struct sched_class dl_sched_class;
extern const struct sched_class rt_sched_class;
extern const struct sched_class fair_sched_class;
extern const struct sched_class idle_sched_class;
#ifdef CONFIG_SMP
extern void init_max_cpu_capacity(struct max_cpu_capacity *mcc);
extern void update_group_capacity(struct sched_domain *sd, int cpu);
extern void trigger_load_balance(struct rq *rq);
extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
bool cpu_overutilized(int cpu);
#endif
#ifdef CONFIG_CPU_IDLE
static inline void idle_set_state(struct rq *rq,
struct cpuidle_state *idle_state)
{
rq->idle_state = idle_state;
}
static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
SCHED_WARN_ON(!rcu_read_lock_held());
return rq->idle_state;
}
static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx)
{
rq->idle_state_idx = idle_state_idx;
}
static inline int idle_get_state_idx(struct rq *rq)
{
WARN_ON(!rcu_read_lock_held());
if (rq->nr_running || cpu_of(rq) == raw_smp_processor_id())
return -1;
return rq->idle_state_idx;
}
#else
static inline void idle_set_state(struct rq *rq,
struct cpuidle_state *idle_state)
{
}
static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
return NULL;
}
static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx)
{
}
static inline int idle_get_state_idx(struct rq *rq)
{
return -1;
}
#endif
extern void sysrq_sched_debug_show(void);
extern void sched_init_granularity(void);
extern void update_max_interval(void);
extern void init_sched_dl_class(void);
extern void init_sched_rt_class(void);
extern void init_sched_fair_class(void);
extern void resched_curr(struct rq *rq);
extern void resched_cpu(int cpu);
extern struct rt_bandwidth def_rt_bandwidth;
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
extern struct dl_bandwidth def_dl_bandwidth;
extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
unsigned long to_ratio(u64 period, u64 runtime);
extern void init_entity_runnable_average(struct sched_entity *se);
extern void post_init_entity_util_avg(struct sched_entity *se);
#ifdef CONFIG_NO_HZ_FULL
extern bool sched_can_stop_tick(struct rq *rq);
/*
* Tick may be needed by tasks in the runqueue depending on their policy and
* requirements. If tick is needed, lets send the target an IPI to kick it out of
* nohz mode if necessary.
*/
static inline void sched_update_tick_dependency(struct rq *rq)
{
int cpu;
if (!tick_nohz_full_enabled())
return;
cpu = cpu_of(rq);
if (!tick_nohz_full_cpu(cpu))
return;
if (sched_can_stop_tick(rq))
tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
else
tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
}
#else
static inline void sched_update_tick_dependency(struct rq *rq) { }
#endif
static inline void __add_nr_running(struct rq *rq, unsigned count)
{
unsigned prev_nr = rq->nr_running;
sched_update_nr_prod(cpu_of(rq), count, true);
rq->nr_running = prev_nr + count;
if (prev_nr < 2 && rq->nr_running >= 2) {
#ifdef CONFIG_SMP
if (!rq->rd->overload)
rq->rd->overload = true;
#endif
}
sched_update_tick_dependency(rq);
}
static inline void __sub_nr_running(struct rq *rq, unsigned count)
{
sched_update_nr_prod(cpu_of(rq), count, false);
rq->nr_running -= count;
/* Check if we still need preemption */
sched_update_tick_dependency(rq);
}
#ifdef CONFIG_CPU_QUIET
#define NR_AVE_SCALE(x) ((x) << FSHIFT)
static inline u64 do_nr_running_integral(struct rq *rq)
{
s64 nr, deltax;
u64 nr_running_integral = rq->nr_running_integral;
deltax = rq->clock_task - rq->nr_last_stamp;
nr = NR_AVE_SCALE(rq->nr_running);
nr_running_integral += nr * deltax;
return nr_running_integral;
}
static inline void add_nr_running(struct rq *rq, unsigned count)
{
write_seqcount_begin(&rq->ave_seqcnt);
rq->nr_running_integral = do_nr_running_integral(rq);
rq->nr_last_stamp = rq->clock_task;
__add_nr_running(rq, count);
write_seqcount_end(&rq->ave_seqcnt);
}
static inline void sub_nr_running(struct rq *rq, unsigned count)
{
write_seqcount_begin(&rq->ave_seqcnt);
rq->nr_running_integral = do_nr_running_integral(rq);
rq->nr_last_stamp = rq->clock_task;
__sub_nr_running(rq, count);
write_seqcount_end(&rq->ave_seqcnt);
}
#else
#define add_nr_running __add_nr_running
#define sub_nr_running __sub_nr_running
#endif
static inline void rq_last_tick_reset(struct rq *rq)
{
#ifdef CONFIG_NO_HZ_FULL
rq->last_sched_tick = jiffies;
#endif
}
extern void update_rq_clock(struct rq *rq);
extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
extern const_debug unsigned int sysctl_sched_time_avg;
extern const_debug unsigned int sysctl_sched_nr_migrate;
extern const_debug unsigned int sysctl_sched_migration_cost;
static inline u64 sched_avg_period(void)
{
return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}
#ifdef CONFIG_SCHED_HRTICK
/*
* Use hrtick when:
* - enabled by features
* - hrtimer is actually high res
*/
static inline int hrtick_enabled(struct rq *rq)
{
if (!sched_feat(HRTICK))
return 0;
if (!cpu_active(cpu_of(rq)))
return 0;
return hrtimer_is_hres_active(&rq->hrtick_timer);
}
void hrtick_start(struct rq *rq, u64 delay);
#else
static inline int hrtick_enabled(struct rq *rq)
{
return 0;
}
#endif /* CONFIG_SCHED_HRTICK */
#ifdef CONFIG_SMP
extern void sched_avg_update(struct rq *rq);
#ifndef arch_scale_freq_capacity
static __always_inline
unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
{
return SCHED_CAPACITY_SCALE;
}
#endif
#ifndef arch_scale_cpu_capacity
static __always_inline
unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
{
if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
return sd->smt_gain / sd->span_weight;
return SCHED_CAPACITY_SCALE;
}
#endif
#ifndef arch_update_cpu_capacity
static __always_inline
void arch_update_cpu_capacity(int cpu)
{
}
#endif
#ifdef CONFIG_SMP
static inline unsigned long capacity_of(int cpu)
{
return cpu_rq(cpu)->cpu_capacity;
}
static inline unsigned long capacity_orig_of(int cpu)
{
return cpu_rq(cpu)->cpu_capacity_orig;
}
extern unsigned int walt_disabled;
static inline unsigned long task_util(struct task_struct *p)
{
#ifdef CONFIG_SCHED_WALT
if (!walt_disabled && sysctl_sched_use_walt_task_util)
return p->ravg.demand /
(sched_ravg_window >> SCHED_CAPACITY_SHIFT);
#endif
return p->se.avg.util_avg;
}
/*
* cpu_util returns the amount of capacity of a CPU that is used by CFS
* tasks. The unit of the return value must be the one of capacity so we can
* compare the utilization with the capacity of the CPU that is available for
* CFS task (ie cpu_capacity).
*
* cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
* recent utilization of currently non-runnable tasks on a CPU. It represents
* the amount of utilization of a CPU in the range [0..capacity_orig] where
* capacity_orig is the cpu_capacity available at the highest frequency
* (arch_scale_freq_capacity()).
* The utilization of a CPU converges towards a sum equal to or less than the
* current capacity (capacity_curr <= capacity_orig) of the CPU because it is
* the running time on this CPU scaled by capacity_curr.
*
* Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
* higher than capacity_orig because of unfortunate rounding in
* cfs.avg.util_avg or just after migrating tasks and new task wakeups until
* the average stabilizes with the new running time. We need to check that the
* utilization stays within the range of [0..capacity_orig] and cap it if
* necessary. Without utilization capping, a group could be seen as overloaded
* (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
* available capacity. We allow utilization to overshoot capacity_curr (but not
* capacity_orig) as it useful for predicting the capacity required after task
* migrations (scheduler-driven DVFS).
*/
static inline unsigned long __cpu_util(int cpu, int delta)
{
u64 util = cpu_rq(cpu)->cfs.avg.util_avg;
unsigned long capacity = capacity_orig_of(cpu);
#ifdef CONFIG_SCHED_WALT
if (!walt_disabled && sysctl_sched_use_walt_cpu_util) {
util = cpu_rq(cpu)->walt_stats.cumulative_runnable_avg;
util = div64_u64(util,
sched_ravg_window >> SCHED_CAPACITY_SHIFT);
}
#endif
delta += util;
if (delta < 0)
return 0;
return (delta >= capacity) ? capacity : delta;
}
static inline unsigned long cpu_util(int cpu)
{
return __cpu_util(cpu, 0);
}
struct sched_walt_cpu_load {
unsigned long prev_window_util;
unsigned long nl;
unsigned long pl;
u64 ws;
};
static inline unsigned long cpu_util_cum(int cpu, int delta)
{
u64 util = cpu_rq(cpu)->cfs.avg.util_avg;
unsigned long capacity = capacity_orig_of(cpu);
#ifdef CONFIG_SCHED_WALT
if (!walt_disabled && sysctl_sched_use_walt_cpu_util) {
util = cpu_rq(cpu)->cum_window_demand;
util = div64_u64(util,
sched_ravg_window >> SCHED_CAPACITY_SHIFT);
}
#endif
delta += util;
if (delta < 0)
return 0;
return (delta >= capacity) ? capacity : delta;
}
#ifdef CONFIG_SCHED_WALT
u64 freq_policy_load(struct rq *rq);
#endif
static inline unsigned long
cpu_util_freq(int cpu, struct sched_walt_cpu_load *walt_load)
{
struct rq *rq = cpu_rq(cpu);
u64 util = rq->cfs.avg.util_avg;
unsigned long capacity = capacity_orig_of(cpu);
#ifdef CONFIG_SCHED_WALT
if (!walt_disabled && sysctl_sched_use_walt_cpu_util) {
util = freq_policy_load(rq);
util = div64_u64(util,
sched_ravg_window >> SCHED_CAPACITY_SHIFT);
if (walt_load) {
u64 nl = cpu_rq(cpu)->nt_prev_runnable_sum +
rq->grp_time.nt_prev_runnable_sum;
u64 pl = rq->walt_stats.pred_demands_sum;
nl = div64_u64(nl, sched_ravg_window >>
SCHED_CAPACITY_SHIFT);
pl = div64_u64(pl, sched_ravg_window >>
SCHED_CAPACITY_SHIFT);
walt_load->prev_window_util = util;
walt_load->nl = nl;
walt_load->pl = pl;
rq->old_busy_time = util;
rq->old_estimated_time = pl;
walt_load->ws = rq->window_start;
}
}
#endif
return (util >= capacity) ? capacity : util;
}
#endif
extern unsigned int capacity_margin_freq;
static inline unsigned long add_capacity_margin(unsigned long cpu_capacity)
{
cpu_capacity = cpu_capacity * capacity_margin_freq;
cpu_capacity /= SCHED_CAPACITY_SCALE;
return cpu_capacity;
}
#ifdef CONFIG_CPU_FREQ_GOV_SCHED
#define capacity_max SCHED_CAPACITY_SCALE
extern struct static_key __sched_freq;
static inline bool sched_freq(void)
{
return static_key_false(&__sched_freq);
}
DECLARE_PER_CPU(struct sched_capacity_reqs, cpu_sched_capacity_reqs);
void update_cpu_capacity_request(int cpu, bool request);
static inline void set_cfs_cpu_capacity(int cpu, bool request,
unsigned long capacity)
{
struct sched_capacity_reqs *scr = &per_cpu(cpu_sched_capacity_reqs, cpu);
#ifdef CONFIG_SCHED_WALT
if (!walt_disabled && sysctl_sched_use_walt_cpu_util) {
int rtdl = scr->rt + scr->dl;
/*
* WALT tracks the utilization of a CPU considering the load
* generated by all the scheduling classes.
* Since the following call to:
* update_cpu_capacity
* is already adding the RT and DL utilizations let's remove
* these contributions from the WALT signal.
*/
if (capacity > rtdl)
capacity -= rtdl;
else
capacity = 0;
}
#endif
if (scr->cfs != capacity) {
scr->cfs = capacity;
update_cpu_capacity_request(cpu, request);
}
}
static inline void set_rt_cpu_capacity(int cpu, bool request,
unsigned long capacity)
{
if (per_cpu(cpu_sched_capacity_reqs, cpu).rt != capacity) {
per_cpu(cpu_sched_capacity_reqs, cpu).rt = capacity;
update_cpu_capacity_request(cpu, request);
}
}
static inline void set_dl_cpu_capacity(int cpu, bool request,
unsigned long capacity)
{
if (per_cpu(cpu_sched_capacity_reqs, cpu).dl != capacity) {
per_cpu(cpu_sched_capacity_reqs, cpu).dl = capacity;
update_cpu_capacity_request(cpu, request);
}
}
#else
static inline bool sched_freq(void) { return false; }
static inline void set_cfs_cpu_capacity(int cpu, bool request,
unsigned long capacity)
{ }
static inline void set_rt_cpu_capacity(int cpu, bool request,
unsigned long capacity)
{ }
static inline void set_dl_cpu_capacity(int cpu, bool request,
unsigned long capacity)
{ }
#endif
static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
}
#else
static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
static inline void sched_avg_update(struct rq *rq) { }
#endif
struct rq_flags {
unsigned long flags;
struct pin_cookie cookie;
};
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
__acquires(rq->lock);
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
__acquires(p->pi_lock)
__acquires(rq->lock);
static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
__releases(rq->lock)
{
lockdep_unpin_lock(&rq->lock, rf->cookie);
raw_spin_unlock(&rq->lock);
}
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
__releases(rq->lock)
__releases(p->pi_lock)
{
lockdep_unpin_lock(&rq->lock, rf->cookie);
raw_spin_unlock(&rq->lock);
raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
}
extern struct rq *lock_rq_of(struct task_struct *p, struct rq_flags *flags);
extern void unlock_rq_of(struct rq *rq, struct task_struct *p, struct rq_flags *flags);
#ifdef CONFIG_SMP
#ifdef CONFIG_PREEMPT
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
/*
* fair double_lock_balance: Safely acquires both rq->locks in a fair
* way at the expense of forcing extra atomic operations in all
* invocations. This assures that the double_lock is acquired using the
* same underlying policy as the spinlock_t on this architecture, which
* reduces latency compared to the unfair variant below. However, it
* also adds more overhead and therefore may reduce throughput.
*/
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
__releases(this_rq->lock)
__acquires(busiest->lock)
__acquires(this_rq->lock)
{
raw_spin_unlock(&this_rq->lock);
double_rq_lock(this_rq, busiest);
return 1;
}
#else
/*
* Unfair double_lock_balance: Optimizes throughput at the expense of
* latency by eliminating extra atomic operations when the locks are
* already in proper order on entry. This favors lower cpu-ids and will
* grant the double lock to lower cpus over higher ids under contention,
* regardless of entry order into the function.
*/
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
__releases(this_rq->lock)
__acquires(busiest->lock)
__acquires(this_rq->lock)
{
int ret = 0;
if (unlikely(!raw_spin_trylock(&busiest->lock))) {
if (busiest < this_rq) {
raw_spin_unlock(&this_rq->lock);
raw_spin_lock(&busiest->lock);
raw_spin_lock_nested(&this_rq->lock,
SINGLE_DEPTH_NESTING);
ret = 1;
} else
raw_spin_lock_nested(&busiest->lock,
SINGLE_DEPTH_NESTING);
}
return ret;
}
#endif /* CONFIG_PREEMPT */
/*
* double_lock_balance - lock the busiest runqueue, this_rq is locked already.
*/
static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
if (unlikely(!irqs_disabled())) {
/* printk() doesn't work good under rq->lock */
raw_spin_unlock(&this_rq->lock);
BUG_ON(1);
}
return _double_lock_balance(this_rq, busiest);
}
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
__releases(busiest->lock)
{
if (this_rq != busiest)
raw_spin_unlock(&busiest->lock);
lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
{
if (l1 > l2)
swap(l1, l2);
spin_lock(l1);
spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}
static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
{
if (l1 > l2)
swap(l1, l2);
spin_lock_irq(l1);
spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}
static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
{
if (l1 > l2)
swap(l1, l2);
raw_spin_lock(l1);
raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}
/*
* double_rq_lock - safely lock two runqueues
*
* Note this does not disable interrupts like task_rq_lock,
* you need to do so manually before calling.
*/
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
__acquires(rq1->lock)
__acquires(rq2->lock)
{
BUG_ON(!irqs_disabled());
if (rq1 == rq2) {
raw_spin_lock(&rq1->lock);
__acquire(rq2->lock); /* Fake it out ;) */
} else {
if (rq1 < rq2) {
raw_spin_lock(&rq1->lock);
raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
} else {
raw_spin_lock(&rq2->lock);
raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
}
}
}
/*
* double_rq_unlock - safely unlock two runqueues
*
* Note this does not restore interrupts like task_rq_unlock,
* you need to do so manually after calling.
*/
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
__releases(rq1->lock)
__releases(rq2->lock)
{
raw_spin_unlock(&rq1->lock);
if (rq1 != rq2)
raw_spin_unlock(&rq2->lock);
else
__release(rq2->lock);
}
/*
* task_may_not_preempt - check whether a task may not be preemptible soon
*/
extern bool task_may_not_preempt(struct task_struct *task, int cpu);
#else /* CONFIG_SMP */
/*
* double_rq_lock - safely lock two runqueues
*
* Note this does not disable interrupts like task_rq_lock,
* you need to do so manually before calling.
*/
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
__acquires(rq1->lock)
__acquires(rq2->lock)
{
BUG_ON(!irqs_disabled());
BUG_ON(rq1 != rq2);
raw_spin_lock(&rq1->lock);
__acquire(rq2->lock); /* Fake it out ;) */
}
/*
* double_rq_unlock - safely unlock two runqueues
*
* Note this does not restore interrupts like task_rq_unlock,
* you need to do so manually after calling.
*/
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
__releases(rq1->lock)
__releases(rq2->lock)
{
BUG_ON(rq1 != rq2);
raw_spin_unlock(&rq1->lock);
__release(rq2->lock);
}
#endif
extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
#ifdef CONFIG_SCHED_DEBUG
extern void print_cfs_stats(struct seq_file *m, int cpu);
extern void print_rt_stats(struct seq_file *m, int cpu);
extern void print_dl_stats(struct seq_file *m, int cpu);
extern void
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
#ifdef CONFIG_NUMA_BALANCING
extern void
show_numa_stats(struct task_struct *p, struct seq_file *m);
extern void
print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
unsigned long tpf, unsigned long gsf, unsigned long gpf);
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
extern void init_cfs_rq(struct cfs_rq *cfs_rq);
extern void init_rt_rq(struct rt_rq *rt_rq);
extern void init_dl_rq(struct dl_rq *dl_rq);
extern void cfs_bandwidth_usage_inc(void);
extern void cfs_bandwidth_usage_dec(void);
#ifdef CONFIG_NO_HZ_COMMON
enum rq_nohz_flag_bits {
NOHZ_TICK_STOPPED,
NOHZ_BALANCE_KICK,
};
#define NOHZ_KICK_ANY 0
#define NOHZ_KICK_RESTRICT 1
#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
extern void nohz_balance_exit_idle(unsigned int cpu);
#else
static inline void nohz_balance_exit_idle(unsigned int cpu) { }
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
struct irqtime {
u64 hardirq_time;
u64 softirq_time;
u64 irq_start_time;
struct u64_stats_sync sync;
};
DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
static inline u64 irq_time_read(int cpu)
{
struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
unsigned int seq;
u64 total;
do {
seq = __u64_stats_fetch_begin(&irqtime->sync);
total = irqtime->softirq_time + irqtime->hardirq_time;
} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
return total;
}
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
#ifdef CONFIG_SCHED_WALT
void note_task_waking(struct task_struct *p, u64 wallclock);
#else /* CONFIG_SCHED_WALT */
static inline void note_task_waking(struct task_struct *p, u64 wallclock) { }
#endif /* CONFIG_SCHED_WALT */
#ifdef CONFIG_CPU_FREQ
DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
/**
* cpufreq_update_util - Take a note about CPU utilization changes.
* @rq: Runqueue to carry out the update for.
* @flags: Update reason flags.
*
* This function is called by the scheduler on the CPU whose utilization is
* being updated.
*
* It can only be called from RCU-sched read-side critical sections.
*
* The way cpufreq is currently arranged requires it to evaluate the CPU
* performance state (frequency/voltage) on a regular basis to prevent it from
* being stuck in a completely inadequate performance level for too long.
* That is not guaranteed to happen if the updates are only triggered from CFS,
* though, because they may not be coming in if RT or deadline tasks are active
* all the time (or there are RT and DL tasks only).
*
* As a workaround for that issue, this function is called by the RT and DL
* sched classes to trigger extra cpufreq updates to prevent it from stalling,
* but that really is a band-aid. Going forward it should be replaced with
* solutions targeted more specifically at RT and DL tasks.
*/
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
{
struct update_util_data *data;
#ifdef CONFIG_SCHED_WALT
unsigned int exception_flags = SCHED_CPUFREQ_INTERCLUSTER_MIG |
SCHED_CPUFREQ_PL;
/*
* Skip if we've already reported, but not if this is an inter-cluster
* migration. Also only allow WALT update sites.
*/
if (!(flags & SCHED_CPUFREQ_WALT))
return;
if (!sched_disable_window_stats &&
(rq->load_reported_window == rq->window_start) &&
!(flags & exception_flags))
return;
rq->load_reported_window = rq->window_start;
#endif
data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
cpu_of(rq)));
if (data)
data->func(data, ktime_get_ns(), flags);
}
static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
{
if (cpu_of(rq) == smp_processor_id())
cpufreq_update_util(rq, flags);
}
#else
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
#endif /* CONFIG_CPU_FREQ */
#ifdef arch_scale_freq_capacity
#ifndef arch_scale_freq_invariant
#define arch_scale_freq_invariant() (true)
#endif
#else /* arch_scale_freq_capacity */
#define arch_scale_freq_invariant() (false)
#endif
#ifdef CONFIG_SCHED_WALT
static inline int cluster_first_cpu(struct sched_cluster *cluster)
{
return cpumask_first(&cluster->cpus);
}
struct related_thread_group {
int id;
raw_spinlock_t lock;
struct list_head tasks;
struct list_head list;
struct sched_cluster *preferred_cluster;
struct rcu_head rcu;
u64 last_update;
};
extern struct list_head cluster_head;
extern int num_clusters;
extern struct sched_cluster *sched_cluster[NR_CPUS];
#define for_each_sched_cluster(cluster) \
list_for_each_entry_rcu(cluster, &cluster_head, list)
#define WINDOW_STATS_RECENT 0
#define WINDOW_STATS_MAX 1
#define WINDOW_STATS_MAX_RECENT_AVG 2
#define WINDOW_STATS_AVG 3
#define WINDOW_STATS_INVALID_POLICY 4
#define SCHED_UPMIGRATE_MIN_NICE 15
#define EXITING_TASK_MARKER 0xdeaddead
#define UP_MIGRATION 1
#define DOWN_MIGRATION 2
#define IRQLOAD_MIGRATION 3
extern struct mutex policy_mutex;
extern unsigned int sched_disable_window_stats;
extern unsigned int max_possible_freq;
extern unsigned int min_max_freq;
extern unsigned int max_possible_efficiency;
extern unsigned int min_possible_efficiency;
extern unsigned int max_capacity;
extern unsigned int min_capacity;
extern unsigned int max_load_scale_factor;
extern unsigned int max_possible_capacity;
extern unsigned int min_max_possible_capacity;
extern unsigned int max_power_cost;
extern unsigned int sched_init_task_load_windows;
extern unsigned int up_down_migrate_scale_factor;
extern unsigned int sysctl_sched_restrict_cluster_spill;
extern unsigned int sched_pred_alert_load;
extern struct sched_cluster init_cluster;
extern unsigned int __read_mostly sched_short_sleep_task_threshold;
extern unsigned int __read_mostly sched_long_cpu_selection_threshold;
extern unsigned int __read_mostly sched_big_waker_task_load;
extern unsigned int __read_mostly sched_small_wakee_task_load;
extern unsigned int __read_mostly sched_spill_load;
extern unsigned int __read_mostly sched_upmigrate;
extern unsigned int __read_mostly sched_downmigrate;
extern unsigned int __read_mostly sysctl_sched_spill_nr_run;
extern unsigned int __read_mostly sched_load_granule;
extern int register_cpu_cycle_counter_cb(struct cpu_cycle_counter_cb *cb);
extern int update_preferred_cluster(struct related_thread_group *grp,
struct task_struct *p, u32 old_load);
extern void set_preferred_cluster(struct related_thread_group *grp);
extern void add_new_task_to_grp(struct task_struct *new);
extern unsigned int update_freq_aggregate_threshold(unsigned int threshold);
#define NO_BOOST 0
#define FULL_THROTTLE_BOOST 1
#define CONSERVATIVE_BOOST 2
#define RESTRAINED_BOOST 3
static inline int cpu_capacity(int cpu)
{
return cpu_rq(cpu)->cluster->capacity;
}
static inline int cpu_max_possible_capacity(int cpu)
{
return cpu_rq(cpu)->cluster->max_possible_capacity;
}
static inline int cpu_load_scale_factor(int cpu)
{
return cpu_rq(cpu)->cluster->load_scale_factor;
}
static inline int cpu_efficiency(int cpu)
{
return cpu_rq(cpu)->cluster->efficiency;
}
static inline unsigned int cpu_min_freq(int cpu)
{
return cpu_rq(cpu)->cluster->min_freq;
}
static inline unsigned int cluster_max_freq(struct sched_cluster *cluster)
{
/*
* Governor and thermal driver don't know the other party's mitigation
* voting. So struct cluster saves both and return min() for current
* cluster fmax.
*/
return min(cluster->max_mitigated_freq, cluster->max_freq);
}
static inline unsigned int cpu_max_freq(int cpu)
{
return cluster_max_freq(cpu_rq(cpu)->cluster);
}
static inline unsigned int cpu_max_possible_freq(int cpu)
{
return cpu_rq(cpu)->cluster->max_possible_freq;
}
/* Keep track of max/min capacity possible across CPUs "currently" */
static inline void __update_min_max_capacity(void)
{
int i;
int max_cap = 0, min_cap = INT_MAX;
for_each_online_cpu(i) {
max_cap = max(max_cap, cpu_capacity(i));
min_cap = min(min_cap, cpu_capacity(i));
}
max_capacity = max_cap;
min_capacity = min_cap;
}
/*
* Return load_scale_factor of a cpu in reference to "most" efficient cpu, so
* that "most" efficient cpu gets a load_scale_factor of 1
*/
static inline unsigned long
load_scale_cpu_efficiency(struct sched_cluster *cluster)
{
return DIV_ROUND_UP(1024 * max_possible_efficiency,
cluster->efficiency);
}
/*
* Return load_scale_factor of a cpu in reference to cpu with best max_freq
* (max_possible_freq), so that one with best max_freq gets a load_scale_factor
* of 1.
*/
static inline unsigned long load_scale_cpu_freq(struct sched_cluster *cluster)
{
return DIV_ROUND_UP(1024 * max_possible_freq,
cluster_max_freq(cluster));
}
static inline int compute_load_scale_factor(struct sched_cluster *cluster)
{
int load_scale = 1024;
/*
* load_scale_factor accounts for the fact that task load
* is in reference to "best" performing cpu. Task's load will need to be
* scaled (up) by a factor to determine suitability to be placed on a
* (little) cpu.
*/
load_scale *= load_scale_cpu_efficiency(cluster);
load_scale >>= 10;
load_scale *= load_scale_cpu_freq(cluster);
load_scale >>= 10;
return load_scale;
}
static inline int cpu_max_power_cost(int cpu)
{
return cpu_rq(cpu)->cluster->max_power_cost;
}
static inline int cpu_min_power_cost(int cpu)
{
return cpu_rq(cpu)->cluster->min_power_cost;
}
static inline bool hmp_capable(void)
{
return max_possible_capacity != min_max_possible_capacity;
}
static inline bool is_max_capacity_cpu(int cpu)
{
return cpu_max_possible_capacity(cpu) == max_possible_capacity;
}
static inline bool is_min_capacity_cpu(int cpu)
{
return cpu_max_possible_capacity(cpu) == min_max_possible_capacity;
}
/*
* 'load' is in reference to "best cpu" at its best frequency.
* Scale that in reference to a given cpu, accounting for how bad it is
* in reference to "best cpu".
*/
static inline u64 scale_load_to_cpu(u64 task_load, int cpu)
{
u64 lsf = cpu_load_scale_factor(cpu);
if (lsf != 1024) {
task_load *= lsf;
task_load /= 1024;
}
return task_load;
}
/*
* Return 'capacity' of a cpu in reference to "least" efficient cpu, such that
* least efficient cpu gets capacity of 1024
*/
static unsigned long
capacity_scale_cpu_efficiency(struct sched_cluster *cluster)
{
return (1024 * cluster->efficiency) / min_possible_efficiency;
}
/*
* Return 'capacity' of a cpu in reference to cpu with lowest max_freq
* (min_max_freq), such that one with lowest max_freq gets capacity of 1024.
*/
static unsigned long capacity_scale_cpu_freq(struct sched_cluster *cluster)
{
return (1024 * cluster_max_freq(cluster)) / min_max_freq;
}
static inline int compute_capacity(struct sched_cluster *cluster)
{
int capacity = 1024;
capacity *= capacity_scale_cpu_efficiency(cluster);
capacity >>= 10;
capacity *= capacity_scale_cpu_freq(cluster);
capacity >>= 10;
return capacity;
}
static inline unsigned int task_load(struct task_struct *p)
{
return p->ravg.demand;
}
static inline unsigned int task_pl(struct task_struct *p)
{
return p->ravg.pred_demand;
}
#define pct_to_real(tunable) \
(div64_u64((u64)tunable * (u64)max_task_load(), 100))
#define real_to_pct(tunable) \
(div64_u64((u64)tunable * (u64)100, (u64)max_task_load()))
static inline bool task_in_related_thread_group(struct task_struct *p)
{
return !!(rcu_access_pointer(p->grp) != NULL);
}
static inline
struct related_thread_group *task_related_thread_group(struct task_struct *p)
{
return rcu_dereference(p->grp);
}
#define PRED_DEMAND_DELTA ((s64)new_pred_demand - p->ravg.pred_demand)
/* Is frequency of two cpus synchronized with each other? */
static inline int same_freq_domain(int src_cpu, int dst_cpu)
{
struct rq *rq = cpu_rq(src_cpu);
if (src_cpu == dst_cpu)
return 1;
return cpumask_test_cpu(dst_cpu, &rq->freq_domain_cpumask);
}
#define BOOST_KICK 0
#define CPU_RESERVED 1
extern int sched_boost(void);
extern int preferred_cluster(struct sched_cluster *cluster,
struct task_struct *p);
extern struct sched_cluster *rq_cluster(struct rq *rq);
extern void reset_task_stats(struct task_struct *p);
extern void clear_top_tasks_bitmap(unsigned long *bitmap);
#if defined(CONFIG_SCHED_TUNE) && defined(CONFIG_CGROUP_SCHEDTUNE)
extern bool task_sched_boost(struct task_struct *p);
extern int sync_cgroup_colocation(struct task_struct *p, bool insert);
extern bool same_schedtune(struct task_struct *tsk1, struct task_struct *tsk2);
extern void update_cgroup_boost_settings(void);
extern void restore_cgroup_boost_settings(void);
#else
static inline bool
same_schedtune(struct task_struct *tsk1, struct task_struct *tsk2)
{
return true;
}
static inline bool task_sched_boost(struct task_struct *p)
{
return true;
}
static inline void update_cgroup_boost_settings(void) { }
static inline void restore_cgroup_boost_settings(void) { }
#endif
extern int alloc_related_thread_groups(void);
extern unsigned long all_cluster_ids[];
extern void check_for_migration(struct rq *rq, struct task_struct *p);
static inline int is_reserved(int cpu)
{
struct rq *rq = cpu_rq(cpu);
return test_bit(CPU_RESERVED, &rq->walt_flags);
}
static inline int mark_reserved(int cpu)
{
struct rq *rq = cpu_rq(cpu);
return test_and_set_bit(CPU_RESERVED, &rq->walt_flags);
}
static inline void clear_reserved(int cpu)
{
struct rq *rq = cpu_rq(cpu);
clear_bit(CPU_RESERVED, &rq->walt_flags);
}
static inline bool
task_in_cum_window_demand(struct rq *rq, struct task_struct *p)
{
return cpu_of(rq) == task_cpu(p) && (p->on_rq || p->last_sleep_ts >=
rq->window_start);
}
static inline void walt_fixup_cum_window_demand(struct rq *rq, s64 delta)
{
rq->cum_window_demand += delta;
if (unlikely((s64)rq->cum_window_demand < 0))
rq->cum_window_demand = 0;
}
extern void update_cpu_cluster_capacity(const cpumask_t *cpus);
extern unsigned long thermal_cap(int cpu);
extern void clear_walt_request(int cpu);
extern int got_boost_kick(void);
extern void clear_boost_kick(int cpu);
extern enum sched_boost_policy sched_boost_policy(void);
extern void sched_boost_parse_dt(void);
extern void clear_ed_task(struct task_struct *p, struct rq *rq);
extern bool early_detection_notify(struct rq *rq, u64 wallclock);
static inline unsigned int power_cost(int cpu, u64 demand)
{
return cpu_max_possible_capacity(cpu);
}
#else /* CONFIG_SCHED_WALT */
struct walt_sched_stats;
struct related_thread_group;
struct sched_cluster;
static inline bool task_sched_boost(struct task_struct *p)
{
return true;
}
static inline void check_for_migration(struct rq *rq, struct task_struct *p) { }
static inline int sched_boost(void)
{
return 0;
}
static inline bool hmp_capable(void) { return false; }
static inline bool is_max_capacity_cpu(int cpu) { return true; }
static inline bool is_min_capacity_cpu(int cpu) { return true; }
static inline int
preferred_cluster(struct sched_cluster *cluster, struct task_struct *p)
{
return 1;
}
static inline struct sched_cluster *rq_cluster(struct rq *rq)
{
return NULL;
}
static inline u64 scale_load_to_cpu(u64 load, int cpu)
{
return load;
}
static inline int cpu_capacity(int cpu)
{
return SCHED_CAPACITY_SCALE;
}
static inline void set_preferred_cluster(struct related_thread_group *grp) { }
static inline bool task_in_related_thread_group(struct task_struct *p)
{
return false;
}
static inline
struct related_thread_group *task_related_thread_group(struct task_struct *p)
{
return NULL;
}
static inline u32 task_load(struct task_struct *p) { return 0; }
static inline u32 task_pl(struct task_struct *p) { return 0; }
static inline int update_preferred_cluster(struct related_thread_group *grp,
struct task_struct *p, u32 old_load)
{
return 0;
}
static inline void add_new_task_to_grp(struct task_struct *new) {}
#define PRED_DEMAND_DELTA (0)
static inline int same_freq_domain(int src_cpu, int dst_cpu)
{
return 1;
}
static inline void clear_reserved(int cpu) { }
static inline int alloc_related_thread_groups(void) { return 0; }
#define trace_sched_cpu_load(...)
#define trace_sched_cpu_load_lb(...)
#define trace_sched_cpu_load_cgroup(...)
#define trace_sched_cpu_load_wakeup(...)
static inline void walt_fixup_cum_window_demand(struct rq *rq, s64 delta) { }
static inline void update_cpu_cluster_capacity(const cpumask_t *cpus) { }
#ifdef CONFIG_SMP
static inline unsigned long thermal_cap(int cpu)
{
return cpu_rq(cpu)->cpu_capacity_orig;
}
#endif
static inline void clear_walt_request(int cpu) { }
static inline int got_boost_kick(void)
{
return 0;
}
static inline void clear_boost_kick(int cpu) { }
static inline enum sched_boost_policy sched_boost_policy(void)
{
return SCHED_BOOST_NONE;
}
static inline void sched_boost_parse_dt(void) { }
static inline void clear_ed_task(struct task_struct *p, struct rq *rq) { }
static inline bool early_detection_notify(struct rq *rq, u64 wallclock)
{
return 0;
}
static inline unsigned int power_cost(int cpu, u64 demand)
{
return SCHED_CAPACITY_SCALE;
}
#endif /* CONFIG_SCHED_WALT */
static inline bool energy_aware(void)
{
return sched_feat(ENERGY_AWARE);
}